
OPT2023: 15th Annual Workshop on Optimization for Machine Learning

Adagrad Promotes Diffuse Solutions In Overparameterized Regimes

Andrew Rambidis ANDREW.RAMBIDIS@MAIL.MCGILL.CA

Jiayi Wang KELSEY.WANG@MAIL.MCGILL.CA

McGill University

Abstract
With the high use of over-parameterized data in deep learning, the choice of optimizer in training
plays a big role in a model’s generalization ability due to solution selection bias. This work focuses
on the adaptive gradient optimizer Adagrad, in the over-parameterized least-squares regime. We
empirically find that when using sufficiently small step sizes, Adagrad promotes diffuse solutions
in the sense of uniformity among the coordinates of the solution. Additionally, we theoretically
show that Adagrad’s solution, under the same conditions, exhibits greater diffusion compared to
the solution obtained through gradient descent (GD) by analyzing the ratio of their updates. Lastly,
we empirically compare the performance of Adagrad and GD on generated datasets. We observe
a consistent trend that Adagrad promotes more diffuse solutions, which aligns with our theoretical
analysis.

1. Introduction

Many modern applications of deep learning rely on over-parameterized modelling [1, 2, 16, 22].
In such settings, the model has more features than observations to fit the training data on. Under
this regime, the space of possible solutions which minimize the loss function is very large. Impor-
tantly enough, the choice of optimal solution has an effect on the generalization performance of the
trained model [9]. The optimal solution an optimization algorithm converges to is not equal across
algorithms [20]. Instead, different classes of optimization algorithm will have their own implicit
biases towards particular solutions depending on the regime [5, 18]. For small-batch methods such
as stochastic gradient descent (SGD), a plethora of theoretical analyses on its behaviours exist, and
has been shown to promote solutions which generalize well [13, 24].

In this paper, we want to continue the idea of studying the algorithmic behaviours of optimizers;
specifically the class of optimizers known as adaptive-methods [6, 11, 14, 21]. Particularly, we focus
on the diagonalized Adaptive Gradient Algorithm (Adagrad) [6], under the over-parameterized
least-squares problem:

min
x∈Rd

1

2
∥Ax− b∥22 (1)

where x ∈ Rd, A ∈ Rn×d such that d > n (i.e. over-parameterized), and b ∈ Rn. Under this
regime, we aim to study the type of solutions produced by Adagrad. This can help us gain a better
understanding on the ‘why’ of the strong generalization performance, and popularity of adaptive
methods [4, 15]. In recent years, the research focus has changed towards exploring the implicit bias
of Adagrad. Wang et al. [19] provided a detailed theoretical analysis on Adagrad’s convergence
direction. Furthermore, it has also been empirically demonstrated and theoretically proven that the
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solutions produced by Adagrad are influenced by various hyperparameters such as initialization and
step-size [8, 17]. These works support our analysis on the diffuse pattern of Adagrad’s solutions.

While the regime of deep learning warrants the use of more complex neural network (NN) struc-
tures, it has been shown that studying under regime (1) is not arbitrary due to connections between
the linear model and neural networks [10, 12]. That is, studying the over-parameterized linear
regime can allow one to perform more simple and interpretable analysis of algorithmic behaviours
which still have relevant connection to NNs.

Our contributions are: 1) we empirically show evidence that, when applying Adagrad with
sufficiently small step-size under regime (1), Adagrad promotes solutions which are diffuse in the
sense of uniformity among the entries of the solution (the idea of diffusivity is formalized in Section
2); 2) we theoretically show that, under the same assumptions as contribution 1), Adagrad promotes
more diffuse solutions than that of gradient descent (GD), and support this analysis with empirical
evidence.

2. Background

In this section, we briefly recall the diagonal Adagrad update rule, which we will simply refer to as
“Adagrad”, then discuss the preliminary background surrounding the idea of diffusivity of a vector.

Adagrad Let gk ∈ Rd denote the gradient of the least-squares loss function at iteration k, i.e.
gk := ∇ℓ(xk) = ∇1

2∥Axk − b∥22. Under this notation, the Adagrad update rule for problem regime
(1) is:

xk+1 = xk − ηGk · gk (2)

where xk ∈ Rd, η ∈ R is a constant step-size, and Gk ∈ Rd×d is the Adagrad preconditioner matrix
with respect to problem (1) and explicitly presented as:

Gk = Diag

(
k∑

τ=1

gτg
T
τ + ϵ

)−1/2

(3)

where ϵ is a small perturbation parameter to prevent division by zero. A brief intuition behind
this preconditioner matrix Gk is that it dynamically applies feature-specific learning rates to each
feature based on how sparse that feature is. Specifically, the Adagrad preconditioner will assign
higher learning rates towards sparse features, and lower learning rates towards non-sparse features.

Diffusion The following definition presents our method of measuring how diffuse a vector is:

Definition 1 (Local Sparsity Metric) Given a non-zero vector x ∈ Rd \ {0}, we define the local
sparsity metric (LSM) to be the measure of a vector’s relative sparsity via the following metric:
LSM : Rd \ {0} → R where

LSM(x) :=
∥x∥2
∥x∥1

. (4)

This metric and the theory behind the relationship between the ℓ2 and ℓ1 norms comes from the
theory of compressive sensing in which one’s main goal is to find the sparsest solution to an over-
parameterized system of linear equations. The work on their connection is covered by a Russian
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paper written by Garnaev and Gluskin [7] and summarized in English by Zhang in his technical
report [23]. With respect to diffuse vectors, we say that a lower value of the LSM implies a more
diffuse vector; the higher it is, the more locally sparse our vector is. To better clarify Definition 1,
we present the following example: Consider the two vectors

w1 = (0.25, 0.25, 0.15, 0.35)T

w2 = (0.90, 0.02, 0.02, 0.06)T .
(5)

the LSM states that w1 is more diffuse than w2, i.e. LSM(w1) < LSM(w2). To see this, notice
that the entries of w1 are relatively close together in magnitude, that is, the ”total weight” of the
entries is diffuse pretty evenly among the entries, while w2 has a strong localization around the first
entry. The following proposition presents us with bounds for the LSM:

Proposition 2 For any non-zero vector x ∈ Rd \ {0}, its LSM is bounded as follows:

1√
d
≤ LSM(x) ≤ 1. (6)

As was mentioned above, the closer the LSM of a vector is to the lower bound, the more diffuse said
vector is, while the closer it is to the upper bound, the more localized. In fact, the bounds are attain-
able. To see this consider the vectors xlow = (±a, . . . ,±a)T ∈ Rd, and xhigh = (±a, 0, . . . , 0)T ∈
Rd, where a ∈ R \ {0}. Then,

LSM(xlow) =
∥xlow∥2
∥xlow∥1

=

√
a2 + · · ·+ a2

|a|+ · · ·+ |a|
=

√
d|a|
d|a|

=

√
d

d
=

1√
d
,

LSM(xhigh) =
∥xhigh∥2
∥xhigh∥1

=

√
a2

|a|
= 1.

(7)

3. Analysis of the Uniformity Metric on Adagrad and Gradient Descent

In this section, we perform comparative analysis of the LSM value produced by the Adagrad solution
to that of the solution generated by GD under the same setting. We show theoretically that, under the
over-parameterized least-squares regime, and for small enough step-size, Adagrad promotes LSM
values closer to the lower bound than GD. This result supports the experimental comparisons we
provide in Section 4.

Theorem 3 Let A ∈ Rn×d such that n < d and let A(:, i) ∈ Rn denote the i-th column of A
for i = 1, . . . , d. Let xadak , xgdk ∈ Rd denote the k-th iterate generated by Adagrad and gradient
descent, respectively, and b ∈ Rn. Let f : Rd → R be the least squares function

f(x) =
1

2
∥Ax− b∥22. (8)

Finally, consider the magnitudes of both the Adagrad and gradient descent updates at the i-th coor-
dinate:

|∆xadak (i)| = η ·

∣∣∣∣∣∣ 1√∑k
τ=0(g

ada
τ (i))2 + ϵ

· gada
k (i)

∣∣∣∣∣∣ (9)
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and

|∆xgdk (i)| = η ·
∣∣∣ggd

k (i)
∣∣∣ (10)

respectively, where both algorithms start at x0 = 0. For some δ > 0, assume that there exist
coordinates, i, such that

|A(:, i)T b| ≥ δ∥A(:, i)∥. (11)

That is, we consider the coordinates in which |A(:, i)T b| are at least a constant factor greater than
the norm of the column ∥A(:, i)∥. Then, for η > 0 chosen small enough such that, if η1 > 0 satisfies
∥I − η1A

TA∥2 ≤ 1, and η2 > 0 satisfies ∥I − η2G0A
TA∥2 ≤ 1, we set η ≤ min{η1, η2},

where G0 is the Adagrad preconditioner matrix at iteration k = 0. For iterations 0 < k ≤
min

{(
δ

2η∥A∥·∥AT b∥

)
,
(

δ
2η∥A∥·∥G0∥·∥AT b∥

)}
the following bounds hold∣∣∣∣∣∣ 3

√
k ·
√
(32(A

T b)i)2 + ϵk−1/2

∣∣∣∣∣∣ ≤
∣∣∣∣∣∆xadak (i)

∆xgdk (i)

∣∣∣∣∣ ≤
∣∣∣∣∣∣ 3
√
k ·
√

(12(A
T b)i)2 + ϵk−1/2

∣∣∣∣∣∣ (12)

for i satisfying our assumption, and where (AT b)i is the i-th coordinate of the vector AT b.

Theorem 3 states that, for feature columns A(:, i) satisfying our assumptions, the ratio between
the updates ∆xadak and ∆xgdk , at said feature columns, varies inversely to the magnitude of the
feature. Intuitively, this means that for features that show up less frequently in the data, Adagrad
will promote a larger step for said feature in the update compared to GD. On the other hand, for
frequently appearing features, GD will promote a larger step for said feature when compared to
Adagrad. This suggests that the solution attained by Adagrad will have entries that are more diffuse
(or less locally sparse) when compared to gradient descent. Adagrad achieves this by reducing
influence of the weights of frequent features, and simultaneously pushing the weight of infrequent
features closer to those of the frequent ones. The proof of Theorem 3 can be found in Appendix A.

4. Experiments

We now cover our experimental findings in which we observe that Adagrad promotes diffuse solu-
tions for small enough step-size on over-parameterized least-squares.

We present two tables: 1, and 2. Table 1 shows the LSM of the minimum 2-norm, Adagrad, and
stochastic Adagrad (batch size = 1) solutions of over-parameterized least-squares, at the initial point
x0 = 0, for varying step-sizes in the range 0.01 to 0.00001. The LSM values present are taken to
be the average over 5 runs in which for a particular run i, a data matrix Ai and solution vector bi are
randomly generated via a standard normal distribution with Ai ∈ R50×50′000 and bi ∈ R50, ∀i ∈ [5].
Table 2 performs the same experiment, only now we are keeping step-size fixed to η = 0.001, and
varying the dimension. Note that for both tables, we utilize the minimum ℓ2-norm solution as GD
converges to the same solution in over-parameterized least-squares when x0 = 0.

We see in Table 1 that as we decrease the step-size from 0.01 to 0.00001, the LSM of Adagrad
decreases. We note that for higher values of η, the LSM of Adagrad is larger than that of GD’s
solution, then, after passing below a certain step-size threshold, Adagrad’s LSM decreases past
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Learning rate Lower bound 2-Norm Adagrad S-Adagrad Upper bound
η = 0.01 0.00447 0.00561 0.01703 0.00569 1
η = 0.005 0.00447 0.00561 0.01326 0.00576 1
η = 0.001 0.00447 0.00561 0.00583 0.00578 1
η = 0.0005 0.00447 0.00560 0.00477 0.00595 1
η = 0.0001 0.00447 0.00561 0.00449 0.00565 1
η = 0.00001 0.00447 0.00561 0.00448 0.00554 1

Table 1: LSM for different learning rates with dataset size n = 50, d = 50′000. For each learning
rate, the lowest LSM besides the lower bound is marked bold.

Dataset Lower bound 2-Norm Adagrad S-Adagrad Upper bound
n = 50, d = 1000 0.03162 0.03960 0.03231 0.03920 1
n = 50, d = 10000 0.01000 0.01253 0.01010 0.01285 1
n = 50, d = 50000 0.00447 0.00561 0.00583 0.00645 1
n = 50, d = 100000 0.00316 0.00396 0.00507 0.00415 1

Table 2: LSM for different size of dataset with learning rate η = 0.001. For each size of dataset
(each row), the lowest LSM besides the lower bound is marked bold.

that of GD’s and stabilizes to a value close to the LSM’s lower bound. This observation agrees
with Theorem 3 as we expect Adagrad to promote directions towards sparser features, while
dampening directions towards frequent ones for step-sizes that satisfy the bound. Table 1 suggests
that, past such a bound, not only can we not guarantee a lower LSM for Adagrad (vs. GD), but it
seems to increase towards the upper bound of the LSM. Such a behaviour indicates that the step-
size hyperparameter acts more so as a control parameter which allows one to control for desired
diffusivity.

Furthermore, Table 2 shows us that increasing the dimension further also affects the LSM.
Namely, if we fix η and increase the dimension d, the distance between the LSM of Adagrad’s
solution and the lower bound increases.

Note that stochastic Adagrad does not seem to exhibit this behaviour. In fact, stochastic Adagrad
seems to select a solution in which the LSM is similar to that of GD.

Additionally, we expand the analysis to discuss if there are any advantages to diffuse solutions.
We provide an example case of interpolating a line in Appendix C in which a diffuse solution
outperforms locally sparse ones.

5. Conclusion and Future Work

In this work, we proposed the LS metric, and provided experimental evidence showing that smaller
choices of step size for Adagrad, in overparameterized linear regression, yield solutions with dif-
fuse coordinates. Furthermore, we presented comparative analysis and experiments comparing the
solution diffusivity of Adagrad to gradient descent and found that Adagrad promotes more diffuse
solutions than that of gradient descent, with respect to LSM. Additionally, the experiments of Ap-
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pendix C presents more promising generalization performance of diffuse solutions when applied to
radial basis function (RBF) interpolation. Such observations warrants further investigation of dif-
fuse solutions and their benefits to other classes of problems. As such, the next steps of our research
looks to analyze why diffuse solutions generalize better in RBF interpolation, and to further explore
other classes of problems in which diffuse solutions yield better generalization.
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Appendix A. Proof of Theorem 3

Proof [Theorem 3] Under our hypothesis, there exists coordinates, i, such that we satisfy (11).
Under such i, we note that the i-th coordinate of ∇f(x) is

g(i) = (ATAx−AT b)i = (ATAx)i − (AT b)i

Now, for such i respecting (11), we must have for small enough iterations k that the following
inequality holds: ∣∣(ATAxk)i

∣∣ ≤ 1

2

∣∣(AT b)i
∣∣ (13)

for both xadak and xgdk . We show this holds for both gradient descent and Adagrad under our hy-
pothesis and assumptions. First we show this holds for gradient descent which has the following
update:

xk = xk−1 − ηAT (Axk−1 − b).

This can be rewritten into the following recursive form:

xk = (I − ηATA)xk−1 + ηAT b (14)

which can be expanded and written in terms of x0:

xk = (I − ηATA)x0 +AT b ·
k−1∑
i=1

(I − ηATA)i (15)

= AT b ·
k−1∑
i=0

(I − ηATA)i (16)

since x0 = 0. Applying the 2-norm on both sides, we have

∥xk∥ = η∥AT b ·
k−1∑
i=0

(I − ηATA)i∥ (17)

≤ η∥AT b∥ ·
k−1∑
i=0

∥I − ηATA∥i (18)

≤ η∥AT b∥ ·
k−1∑
i=0

1 (19)

= ηk∥AT b∥. (20)

where the inequality from (18) to (19) is due to our choice of η. Now, for i satisfying our assumption,
we have

|(ATAxk)i| = |A(:, i)T (Axk)| (21)

≤ ∥A(:, i)∥ · ∥A∥ · ∥xk∥ (22)

≤ 1

δ
|A(:, i)T b| · ∥A∥ · kη∥AT b∥ (23)

= k ·
(
η∥A∥ · ∥AT b∥

δ

)
|A(:, i)T b|. (24)
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By our choice of k in the hypothesis, we must have that

|(ATAxk)i| ≤ k ·
(
η∥A∥ · ∥AT b∥

δ

)
|A(:, i)T b| ≤ 1

2
|A(:, i)T b|. (25)

Now we show the case for Adagrad. Recall the Adagrad update to be:

xk = xk−1 − ηGkA
T (Axk−1 − b). (26)

Then similar to gradient descent we can express the update as a recursion:

xk = (I − ηGkA
TA)xk−1 + ηGkA

T b (27)

and can be expanded to be written in terms of x0

xk = (I − ηGkA
TA)x0 + ηGkA

T b ·
k−1∑
i=0

(I − ηGkA
TA)i (28)

= ηGkA
T b ·

k−1∑
i=0

(I − ηGkA
TA)i (29)

where the last equality comes from the fact that x0 = 0. From here, we apply the 2-norm to get the
following bound on ∥xk∥:

∥xk∥ ≤ η∥GkA
T b∥ ·

k−1∑
i=0

∥I − ηGkA
TA∥i. (30)

By definition of Gk, we must have ∥G0∥ ≥ ∥Gk∥ for all k > 0 since the denominator of any
diagonal entry of Gk grows each iteration. Therefore, by our choice of η we continue to have

≤ η∥GkA
T b∥ ·

k−1∑
i=0

∥I − ηG0A
TA∥i (31)

≤ η∥GkA
T b∥ ·

k−1∑
i=0

1 (32)

= η(k − 1)∥GkA
T b∥ (33)

≤ ηk∥Gk∥ · ∥AT b∥ (34)

≤ ηk∥G0∥ · ∥AT b∥. (35)

So by similar manipulation as in the gradient descent case, we have that

|(ATAxk)i| ≤ ∥A(:, i)∥ · ∥A∥ · ∥xk∥ (36)

≤ 1

δ
|A(:, i)T b| · ∥A∥ · kη∥G0∥ · ∥AT b∥ (37)

= k ·
(
η∥A∥ · ∥G0∥ · ∥AT b∥

δ

)
|A(:, i)T b|. (38)
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Again, by our choice of k in the hypothesis, we must have that

|(ATAxk)i| ≤
1

2
|A(:, i)T b|. (39)

This concludes the work and we continue with the main proof:

Using (13), we derive the following upper and lower bounds for both |gada
k (i)| and |ggd

k (i)|:

|gk(i)| = |(ATAxk)i − (AT b)i|
≤ |(ATAxk)i|+ |(AT b)i|

≤ 1

2
|(AT b)i|+ |(AT b)i|

=
3

2
|(AT b)i|

(40)

and

|gk(i)| = |(ATAxk)i − (AT b)i|
≥
∣∣|(AT b)i| − |(ATAxk)i|

∣∣
≥
∣∣∣∣|(AT b)i| −

1

2
|(AT b)i|

∣∣∣∣
=

1

2
|(AT b)i|

(41)

where xk depends on whether we set gk(i) to be with respect to Adagrad or GD. Combining (41)
and (40) we get:

1

2
|(AT b)i| ≤ |gk(i)| ≤

3

2
|(AT b)i|. (42)

We therefore have an upper and lower bound for ∆xgdk (i) with respect to |(AT b)i|:

η

2
|(AT b)i| ≤

∣∣∣∆xgdk (i)
∣∣∣ ≤ 3η

2
|(AT b)i|. (43)

Now consider the denominator of the diagonal entries i satisfying our assumption, and denote it as
(G

1/2
k )i:

(G
1/2
k )i :=

√√√√ k∑
τ=0

g2
τ,i + ϵ. (44)

Using (42) with respect to gada
k , we establish the following bound for (G1/2

k )i:

√
k ·
√
(
1

2
(AT b)i))2 + ϵk−1/2 ≤ (G

1/2
k )i ≤

√
k ·
√

(
3

2
(AT b)i))2 + ϵk−1/2. (45)
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Taking the inverse of (G1/2
k )i, our bounds become:

1
√
k ·
√
(32(A

T b)i))2 + ϵk−1/2
≤ (G

1/2
k )−1

i ≤ 1
√
k ·
√

(12(A
T b)i))2 + ϵk−1/2

. (46)

We can then bound our update ∆xadak (i) with respect to |(AT b)i|:∣∣∣∣∣∣ η

2
√
k ·
√

(32(A
T b)i))2 + ϵk−1/2

(AT b)i

∣∣∣∣∣∣ ≤
∣∣∣∆xadak (i)

∣∣∣ ≤
∣∣∣∣∣∣ 3η

2
√
k ·
√
(12(A

T b)i))2 + ϵk−1/2
(AT b)i

∣∣∣∣∣∣
(47)

Using (47) and (43) we get the following final bound for our ratio:∣∣∣∣∣∣ 3
√
k ·
√
(32(A

T b)i)2 + ϵk−1/2

∣∣∣∣∣∣ ≤ |∆xadak (i)|
|∆xgdk (i)|

≤

∣∣∣∣∣∣ 3
√
k ·
√
(12(A

T b)i)2 + ϵk−1/2

∣∣∣∣∣∣ . (48)

This concludes the proof.
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Appendix B. Proof of Proposition 2

Proof [Proposition 2] We note that by the sign invariance under the norms, it suffices to prove this
for x ≥ 0. So, let x = (x1, . . . , xd)

T > 0. To show the lower bound, we have by the Cauchy-
Schwartz inequality that

∥x∥1 =
d∑

k=1

|xk| ≤

(
d∑

k=1

|xk|2
)1/2

·

(
d∑

k=1

12

)1/2

=
√
d∥x∥2

=⇒ 1√
d
≤ ∥x∥2

∥x∥1
.

(49)

For the upper bound, squaring both sides we get that

∥x∥21 = (x1 + · · ·+ xd)
2 ≥ x21 + · · ·+ x2d = ∥x∥22 (50)

which holds due to our assumption that x ≥ 0. Rearranging yields our upper bound:

∥x∥22 ≤ ∥x∥21 =⇒ ∥x∥2
∥x∥1

≤ 1. (51)

This concludes the proof.
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Appendix C. Additional Experiment: Interpolation

In this additional experiment, we present an application for which having a low LSM score is ad-
vantageous in generalization performance. This experiment is based on radial basis function (RBF)
interpolation [3]. We note that solving this problem is equivalent to solving a linear regression
problem Ax = b, where A is a matrix with entries satisfying aij = ϕ(∥ri − ζj∥2), and bi = f(ζi).
Normally, ϕ would be a radial basis function. In our situation, we do not use a common RBF.
Instead, we work with spike-like functions:

ϕ(∥r − ζ∥2) := max

{
0,

α− ∥r − ζ∥2
α2

}
(52)

where ζ ∈ Rm is the centre of the spike, and α ∈ R is a shaping parameter which affects both
height and width of the spike. We note that 52 is constructed such that the integral evaluates to 1.

The goal of our experiment is to interpolate the ”unknown” function f(x) = x. To do so, we
set up our experiment by randomly generating a dataset A ∈ R2n×d (2n < d) and labels b ∈ R2n.
The entries

aij = max

{
0,

α− |ri − ζj |
α2

}
are generated by sampling ri ∈ R using a (0, 1)-Uniform distribution, and the αi ∈ R are sampled
from the same distribution but scaled by 0.1. The centres ζj are also sampled using a (0, 1)-Uniform
distribution, and the entries of b, bi, are take to be the ri (bi = ri, since f(ri) = ri).

Using this generated dataset, we solve the underdetermined system Āx = b̄ where Ā ∈ Rn×d

and b̄ ∈ Rn are taken to be the reduced dataset used for training. We examine how well GD and
Adagrad perform in generalizing the entire dataset by comparing their residuals:

ℓ(x∗) = ∥Ax∗ − b∥2. (53)

We perform 5 runs and take the average of the residuals which have been normalized with respect
to the ℓ2 norm of b, in order to keep consistency among the runs. Said runs operate on a dataset
with dimension 2n = 100, d = 10′000. Training is performed on the reduced dataset of n samples,
and residuals are calculated on the entire dataset (all 2n samples). Tables 3 and 4 display the LSM
and residuals of the minimum 2-norm, and Adagrad solutions trained at the initial point x0 = 0, for
varying step-sizes in the range 0.001 to 1.

Learning rate Lower bound 2-Norm Adagrad Upper bound
η = 1 0.01 0.0139 0.0148 1
η = 0.1 0.01 0.0144 0.0126 1
η = 0.01 0.01 0.0138 0.0123 1
η = 0.001 0.01 0.0139 0.0124 1

Table 3: LSM for different learning rates with dataset size n = 100, d = 10′000. For each learning
rate, the lowest LSM besides the lower bound is marked bold.
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Learning rate 2-Norm Adagrad
η = 1 0.2506 0.1044
η = 0.1 0.3174 0.1406
η = 0.01 0.2338 0.0962
η = 0.001 0.2497 0.0888

Table 4: Residuals of different learning rates on entire dataset (n=100, d=10’000) with training data
size n = 50, d = 10’000. For each learning rate, the lowest residual is marked bold.

Following said tables are plots shown in Figure 1 which visualize the performance of said op-
timizers over two particular runs; the first run is ran for step-size η = 0.001, the latter is ran for
step-size η = 1.

Adagrad, η = 0.001 2-Norm, η = 0.001

Adagrad, η = 1 2-Norm, η = 1

Figure 1: Plots of interpolation performance of Adagrad and minimum 2-Norm solutions on inter-
polation problem with 2n = 100, d = 10′000. Green line represents the true function
y = x, the green dots are the training samples, and the red dots are the interpolated values
at the test points.
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As can be seen from the information given in Tables 3 and 4, having lower LSM does have an
impact on the interpolation performance. We notice that as we increase the step-size η from 0.001 to
1, both the LSM and residuals of Adagrad increases showing some form of correlation between the
two. We note, however, that diffusivity alone does not dictate the success Adagrad displays when
comparing performance to GD. This is supported by the fact that for η = 1, the LSM of Adagrad
is larger than the 2-norm, yet Adagrad still exhibits a lower residual score. This shows that, while
diffusivity affects performance, it is not the sole explanatory factor.
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