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ABSTRACT

Recent advancements in 3D deep learning have garnered significant attention,
given their superior performance in fields like AR/VR, autonomous driving, and
robotics. However, as the models and point cloud data continues to scale up,
managing computational and memory demands becomes a critical challenge, par-
ticularly for real-world applications with strict latency and energy requirements.
Previous methods have primarily focused on reducing computational costs and
memory usage by addressing spatial redundancy, i.e., filtering out irrelevant points
or voxels. In contrast, this work presents a novel post-training weight pruning
technique tailored specifically for 3D object detection. Our approach stands out
in two key ways: (1) it operates independently from existing point cloud sparsi-
fication methods, targeting redundant parameters in pre-trained models that mini-
mally affect both spatial accuracy and detection confidence (collectively referred
to as ”detection distortion”), and (2) it provides a flexible, plug-and-play frame-
work compatible with other sparsity schemes including spatial sparsity and with
any 3D detection model. Our method reduces detection distortion by employing
a second-order Taylor approximation to identify layer-wise sparsity, allowing for
a substantial reduction in model complexity without sacrificing detection accu-
racy. To efficiently manage the necessary second-order information, we devised
a lightweight algorithm to gather Hessian information, followed by dynamic pro-
gramming to optimize layer-wise sparsity allocation. Extensive experiments on
the KITTI, nuScenes, and ONCE datasets validate the effectiveness of our ap-
proach, where we not only preserve detection performance but also notice en-
hancement while significantly reducing computational overhead. Noticeably, we
achieve FLOPs reductions for Centerpoint model of as much as 3.89× and 3.01×
on ONCE and nuScenes datasets respectively, without noticeable loss in mean
Average Precision (mAP), and at most 1.65× reduction losslessly for PVRCNN
model on the ONCE dataset, thus pushing the boundaries of state-of-the-art per-
formance.

1 INTRODUCTION

3D deep learning has gained great interest from both research and industry for its wide applications
in autonomous driving, robotics and VR/AR, etc. Particularly, 3D object detection is one of the
essential visual tasks for autonomous driving systems to understand the driving environment, which
serves as the foundation for the subsequent decision-making process. Recent advances in LiDAR-
based object detection Yan et al. (2018); Lang et al. (2019); Shi et al. (2020); Ye et al. (2020); Yi
et al. (2020); Ao et al. (2021); Yin et al. (2021); Mao et al. (2021); Yang et al. (2020); Chen et al.
(2023b) show the demand of significantly costly computation to meet an empirically acceptable
accuracy, particularly in handling the challenges posed by highly heterogeneous and unstructured
3D data. However, to maximally mitigate hazardous events in real-world driving, fast inference
is crucial for achieving low-latency detection. Therefore, accelerating the object detection on 3D
data with high computation and memory demand to make them more feasible in real applications
becomes an urgent task.

Past attempts Contributors (2022); Tang et al. (2023) exploited spatial sparsity in 3D point cloud
modality and skipped unnecessary computation to obtain acceleration. Other attempts further iden-
tified unimportant points and voxels from raw LiDAR data to cut down memory footprint Sun et al.
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Figure 1: AP scores v.s. FLOPs on ONCE dataset of our methods DM3D compared to baselines.
Dash lines are the dense model performances. The speedup measured by FLOPs reduction from
dense models.

(2021); Liu et al. (2022a); Zhao et al. (2023). All of such exploitation only considers removing
computation in voxel-wise connections, agnostic to explicit detection precision preservation in their
formulations. The latest state-of-the-art sparse 3D object detection method Zhao et al. (2023) set a
record of 20% floating-point operations per second (FLOPs) reduction achieved via removing spa-
tial redundancy. However, there is an inevitable upper bound regarding to the FLOPs reductions
when only cutting down point cloud information. On the other hand, the redundancy in the weights
of 3D models remains notably high and has not been adequately addressed. Existing weight sparsifi-
cation method for 3D segmentation task He et al. (2022) pruned out convolution kernel connections
with least neighbouring point access rate. However, such hit-rate-based weight selection scheme is
sub-optimal on maintaining accuracy compared to typical magnitude-based and Taylor-based rank-
ing schemes Lee et al. (2018; 2020); Xu et al. (2023) that have been proven to achieve up to over
90% on benchmark datasets like CIFAR-10. Another challenge in weight sparsification for 3D mod-
els is how to allocate layer-wise pruning ratios such that minimizes the negative impact on model
accuracy. He et al. (2022) addressed this problem by employing a greedy search on single-layer rate-
distortion relations. Although they have relaxed the allocation problem into sub-problems of each
consecutive two layers groups to make the solution tractable, such relaxation still requires extensive
real data collections, undermining the efficiency.

In this paper, we propose a generalized weight pruning framework for 3D object detection models.
Inspired by classic rate-distortion theory, our approach minimizes the detection distortion of 3D
detection models, including the detection locality and confidence, under the constraint of computa-
tion complexity (FLOPs). The pruning of weights is performed in a layer-wise manner where the
pruning ratio of each layer is decided according to a Hessian-based rate-distortion score, which can
be calculated efficiently by pre-computed gradient values. We then develop an ultra-fast dynamic
programming algorithm with polynomial time complexity to find the globally optimal pruning ratio
of each layer. Note that our proposed weight pruning and the previously proposed input pruning
approaches can compensate with each other. By incorporating both weight and input pruning, we
expect to obtain a maximal compression ratio. We compare with previous arts and perform extensive
experiments on various 3D detection models to demonstrate the effectiveness of our approach. As
shown in Fig. 1, we achieve remarkable speedups with negligible performance drops or even gains
on various datasets. To the best of our knowledge, this is the first work that systematically proposes a
weight pruning approach for 3D detection models in a distortion-minimized manner. We summarize
the main contribution of our paper as follows:

• We propose a generic weight pruning framework for 3D object detection models capable of
reducing computation complexity (FLOPs) via sparsifying weights. The pruning objective
is formulated as a Pareto-optimization, which explicitly minimizes distortions of both de-
tection bounding box locality and classification confidence. The proposed pruning scheme
can be applied as a standalone plug-and-play module for post-train processing for the 3D
objection model, and can also serve complementary with other spatial pruning methods.

• Our approach adopts a hessian-based layer-wise pruning scheme. Through performing
dynamic programming and fine-grained optimization, we derive an extremely efficient al-
gorithm with polynomial time complexity to find the global optimal solution. Thanks to the
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distortion-minimized objective and the fine-grained optimization, our approach can maxi-
mally preserve detection accuracy under very high pruning ratio.

• Our approach achieves state-of-the-art performance on six 3D object detection models
across three benchmark datasets.

2 RELATED WORKS

Typically, neural networks for 3D point clouds primarily employ either Point-based Qi et al. (2017)
or Voxel-based approaches. Point-based methods directly process the raw 3D point cloud data using
neural networks, whereas Voxel-based techniques first voxelize the raw data and then operate on the
voxels rather than the original data. Numerous works Rukhovich et al. (2022); Yan et al. (2018); Shi
et al. (2020); Deng et al. (2021); Yin et al. (2021); Chen et al. (2023b) took voxel-based approach
for 3D object detection task.

2.1 SPATIAL SPARSITY

Sparse 3D Convolution. Sparse 3D Convolutional Neural Networks (CNNs) are designed to ef-
ficiently process sparse point cloud data, where a significant portion are background points with
zero values. Therefore computing convolution on such data can be done by skipping empty po-
sitions in 3D space. Engelcke et al. (2017); Riegler et al. (2017) built hierarchical structures for
efficient point cloud data representation. Regular Sparse Convolution (RSC) Graham (2014) and
Submanifold Sparse Convolution (SSC) Graham & Van der Maaten (2017) were proposed to miti-
gate the increase of active sites in order to maintain spatial sparsity across Sparse Conv layers. Some
libraries Tang et al. (2022); Yan et al. (2018) have been developed to support the Sparse 3D convo-
lution for fast inference. Xu et al. (2020) applied different filters based on the input image’s spatial
location, addressing the inefficiencies of using standard convolutions on LiDAR data with spatially
varying distributions.

Spatial Redundancy Reduction. It is easy to observe that natural redundancy in points/voxels still
exist even in active regions of 3D data. Thereby, this approach aims to further identify redundant
spatial data points to reduce computational complexity. Graham (2014) was an early work pro-
posed that output points should be omitted when corresponding input points are absent, ensuring
computations are only performed for areas with relevant input data. Guo et al. (2022) simplified
set abstraction procedure for point-based 3D action recognition models to identify important points
and frames. Chen et al. (2022); Liu et al. (2022a) proposed to engage feature sparsity by predict-
ing importance maps to remove redundant regions, achieving computation and memory reductions.
Multi Li et al. (2023) proposed a focal loss to predict voxel importance combined with voxel dis-
tillation. Ada3D Zhao et al. (2023) further leveraged the spatial redundancy in 2D BEV Backbone
by proposing Sparsity Preserving BatchNorm to perform 3D-to-BEV feature transform. Liu et al.
(2022b); Chen et al. (2023a) exploited the fact that the differences (residuals) between consecutive
3D frames are typically sparse.

2.2 SPARSITY IN MODEL WEIGHTS

Apart from exploiting the intuitive spatial redundancy, much less attempts has been done to leverage
weight redundancy in 3D networks. Zhao et al. (2021) used a generator to propose pruning strategies
and an evaluator that employs Bayesian optimization to select out pruning strategies for 3D object
detection. They configured unique pruning schemes and rates for each layer. Not All NeighboursHe
et al. (2022) identified kernel neurons that are least frequently attended to compute output features
in 3D segmentation models. They also performed a layerwise sparsity allocation by greedy search
on two-layer grouping strategy. CP3 Huang et al. (2023) leveraged structured pruning (channel-wise
pruning) for point-based 3D networks. None of existing weight pruning approaches is established
on minimizing the impact of pruning on the detection performance as we proposed in this paper.

3 PRELIMINARIES

Pruning within layer. We target at pruning learnable parameters with unstructured sparsity for
all feature extraction layers in 3D detection models, i.e., the kernels in SparseConv Contributors
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(2022) in the 3D backbone and Conv2d in the 2D Bird’s Eye View (BEV) backbone. To determine
which parameter in a layer needs to be pruned, given a layer sparsity, we rank the neuron within
each layer by the absolute first-order Taylor expansion term and eliminate the bottom ranked ones.
Mathematically, we first derive the neuron ranking score matrix by the Taylor expansion S = |W ·
∇Wy| Molchanov et al. (2019), where W denotes the network parameters and ∇Wy stands for
the derivative of the network output y to the network parameters W . The above pruning scheme
can be formulated as W̃ = W ⊙Mα(S), where Mα(S) is the binary mask generated from
the ranking score matrix S under the pruning ratio α. We further defines the weight perturbation
∆W = W̃ −W caused by a typical pruning operation to the weight. We further adopt a basic
assumption for the weight perturbation ∆W = W̃ −W caused by a typical pruning operation to
the weight:

Assumption 1 For the network with l layers and the i-th layer with weight W (i), i.i.d. weight
perturbation across layers Zhou et al. (2018) which means the joint distribution across different
layers is zero-meaned:

∀ 0 < i ̸= j < l, E(∆W (i)∆W (j)) = E(∆W (i))E(∆W (j)) = 0, (1)

and also zero co-variance: E(∥∆W (i)∆W (j)∥2) = 0.

4 METHODOLOGIES

4.1 PROBLEM DEFINITION

Given a 3D detection model consisting of (1) a feature extractor f of l layers with the param-
eter set W (1:l) =

(
W (1), ...,W (l)

)
, where W (i) is the weights in layer i and (2) a detection

head on top of the 2D/3D feature f(x;W (1:l)) that output 3D detection bounding box predictions
pb(f(x;W

(1:l))) ∈ RNs×S and confidences pc(f(x;W
(1:l))) ∈ RNs×C where Ns denotes the

number of predicted bounding boxes, C stands for the number of classes and S represents the di-
mension of the bounding box coordinates. Therefore the detection output is the concatenation of
both bounding box prediction and class confidence scores:

y = [pb(f(x;W
(1:l)))⊤,pc(f(x;W

(1:l)))⊤]⊤. (2)
Pruning parameters in the f will give a new parameter set W̃ (1:l). We view the impact of pruning
as the distortion between the dense prediction y and the prediction ỹ of the pruned model.

y − ỹ =

[
pb(f(x;W

(1:l)))− pb(f(x; W̃
(1:l)))

pc(f(x;W
(1:l)))− pc(f(x; W̃

(1:l)))

]
. (3)

Given that various layers contribute to the model’s performance in distinct ways Frankle et al.
(2020), the impact of pruning layer weights would varies from layer to layer, particularly the vary-
ing information carried by active foreground points/voxels across layers. Assigning an appropriate
layer-wise sparsity level for each layer could significantly impact performance. In this regard, our
proposed pruning problem is formulated to obtain a layer-wise sparsity allocation that minimizes
both bounding box localization distortion and confidence score distortion, constrained to a specified
computation reduction target (FLOPs). Hence we formulate a pareto-optimization problem:

min. E

(∥∥∥λ⊤(y − ỹ)
∥∥∥2) s.t.

FLOPs(f(W̃ (1:l)))

FLOPs(f(W (1:l)))
≤ R, (4)

which jointly minimizes the distortion caused by pruning under a certain FLOPs reduction target R.
λ ∈ R2

+ is the Lagrangian multiplier.

4.2 SECOND-ORDER APPROXIMATION OF DETECTION DISTORTION

In order to obtain a tractable solution, the above objective needs to be transformed into some closed-
form functions of the optimization variable, which is the layer-wise pruning ratio. For each layer,
given a parameter scoring method, the corresponding pruning error on weight ∆W is also deter-
mined. First, we expand the distortion y− ỹ using the second-order Taylor expansion (We omit the
superscript (1 : l) for visual clarity from now)

y − ỹ =

l∑
i=1

1

2
∆W (i)⊤Hi∆W (i), (5)
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Algorithm 1 Optimization via dynamic programming.

Input: T : The total number of weights to be pruned. δi,k: Output distortion when pruning weights
in layer i, for 1 ≤ i ≤ l and 1 ≤ k ≤ T .

Output: The layerwise pruning ratios α∗
i , for 1 ≤ i ≤ l.

for i from 1 to l do
for j from 0 to T do

If i = 1: gj1 ← δ1,j , sj1 ← j.
Else: gji ← min{gj−k

i−1 + δi,k}, sji ← argmink{g
j
i }.

end for
end for
for i from l to 1 do

The number of weights pruned in layer i is sTi .

The pruning ratio of layer i is α∗
i =

sTi
|W (i)|

Update T ← T − sTi .
end for

where Hi is the Hessian matrix of the i-th layer weight. We discard the first-order term since it has
been shown neglegible on pre-trained models by prior studies.

Then consider the expectation of the squared L2 norm in the objective Eq. 4, which can be rewritten
as the vector inner-product form:

E(∥λ⊤(y − ỹ)∥2) =
l∑

i,j=1

E

[(
1

2
∆W (i)⊤Hi∆W (i)

)⊤

λλ⊤
(
1

2
∆W (j)⊤Hj∆W (j)

)]
.

(6)
When we further expand the inner-product term, the cross-term for each layer pair (i, j) (1 ≤ i ̸=
j ≤ l) is:

E

[
1

4
∆W (i)∆W (i)⊤H⊤

i λλ⊤∆W (j)⊤Hj∆W (j)

]
. (7)

When we discuss the influence of the random variable ∆W , we can treat the first-order and second-
order derivatives ∇Wy and H as constants and thus move them out of expectation. Also vector
transpose is agnostic inside expectation. Then Eq. 7 becomes

1

4
H⊤

i λλ⊤HjE(∥∆W (i)⊤∆W (j)∥2). (8)

Using Assumption 1, we can find that the above cross-term are also equal to zero, then we can
derive the expectation of the distortion as follows.

E(∥λ⊤(y − ỹ)∥2) =
l∑

i=1

E

(∥∥∥∥12λ⊤∆W (i)⊤Hi∆W (i)

∥∥∥∥2
)
. (9)

After the above relaxation, we estimate the original objective as:

min.
l∑

i=1

E

(∥∥∥∥12λ⊤∆W (i)⊤Hi∆W (i)

∥∥∥∥2
)

s.t.
FLOPs(f(W̃ (1:l)))

FLOPs(f(W (1:l)))
≤ R. (10)

4.3 OPTIMIZATION STRATGY AND EMPIRICAL COMPLEXITY ANALYSIS

Let us denote αi,k to represent the pruning ratio at layer i by k weights, where 0 ≤ αi,k ≤ 1 for all
i and k. In addressing the pruning problem defined by Eq. 10, our approach involves selecting the
optimal pruning ratios to minimize the distortion as expressed in Eq. 10. Denote the term inside L2
norm in Eq. 10 as δ:

δ =
1

2
λ⊤∆W (i)⊤Hi∆W (i). (11)
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Suppose we have obtained a set of δi,k, where δi,k represents the distortion error when pruning k

weights at layer i. Specifically, define g as the state function, in which gji means the minimal distor-
tion caused when pruning j weights at the first i layers. The searching problem can be addressed by
decomposing the original problem into sub-problems by the following state translation rule:

gji = min{gj−k
i−1 + δi,k}, where 1 ≤ k ≤ j. (12)

We achieve the optimal pruning solution by employing dynamic programming using the translation
rule, as outlined in Algorithm 1, with linear time complexity relative to model parameter size.

4.4 PERFORMANCE OPTIMIZATION AND EMPIRICAL COMPLEXITY

Hessian approximation. For empirical networks, we approximate the hessian matrix Hi using
empirical Fisher F̂ Kurtic et al. (2022):

Hi = Hy(W
(i)) ≈ F̂ (W (i)) = κId +

1

N

N∑
n=1

∇W (i)yn∇⊤
W (i)yn, (13)

where κ ≥ 0 is a small dampening constant, Id is the identity matrix. A straightforward way to com-
pute δi,k on a calibration set of size N is to iterate through different pruning ratios αi,k to determine
the corresponding δi,k values. However, even with the use of the approximated Hessian, the process
would still be computationally intensive at the complexity of O(NKD4

i ), where K is the number of
possible pruning ratios and Di = |W (i)| is the number of neurons in i-th layer weight. This poses
challenge in enhancing the efficiency of the proposed method efficient to fully leverage the advan-
tages of a sparse network. We observe that the derivative ∇Wiy remains constant with changes in
the pruning ratio. This allows us to reuse the Hessian matrix for all pruning ratios, reducing the com-
plexity to O((N +K)D2

i +KD4
i ). However, the existence of the biquadratic complexity makes it

still excessively costly. Additionally, we observe that with a slight increase in the pruning ratio, only
a small subset of neurons is identified for further removal from the weight tensor that has already
undergone pruning. Specifically, this means if we denote ∆W

(i)
i,k as the difference on weight tensor

of i-th layer caused by pruning with the pruning ratio of αi,k, the σi,k = ∆W
(i)
i,k − ∆Wi,k will

be very sparse each time when pruning ratio increases from αi,k−1 to αi,k. We select a subvector
sp(σi,k) from σi,k which has much less dimensions than σi,k, where sp(·) denotes the sparsifica-
tion operation to extract non-zero values from vector. Therefore, we can leverage this observation
to vastly reduce the calculation by only calculate the incremental value only related to the subvector
sp(σi,k), if we have calculated the distortion value of the previous step. We can then select certain
rows in ∇W (i) in Eq. (13) that are visible to sp(σi,k) for the subsequent calculations in Eq. (11)
to obtain a reduced hessian H ′

i without affecting the calculations results. We derive the following
update rule to efficiently obtain δi,k given the δi,k−1:

δi,k − δi,k−1 =
1

2
sp(σi,k)

⊤H ′
isp(σi,k)︸ ︷︷ ︸

1⃝

+sp(∆Wi,k−1)
⊤H ′

isp(σi,k).︸ ︷︷ ︸
2⃝

(14)

Denote the dimension of the subvector σ(i)(αi,k) as di,k ≪ Di equals the number of neurons
newly pruned within ∆W (i)(αi,k−1) compared to ∆W (i)(αi,k) as pruning ratio αi,k increases
from αi,k−1, the multiplication calculation in Eq. 14 can be operated at lower dimensions, where
∇⊤′

W (i)y ∈ Rdi,k ,H ′
i ∈ RDi×di,k are subvector and submatrix indexed from the original ones. To

further elinimate any potential confusion, we illustrate the above update rule Eq. 14 in Fig. 3 in the
Appendix. Given that αi,0 = 0, indicating no pruning at all, this ensures that δi,0 = 0. Therefore,
the complexity becomes the summation of K − 1 times of updating O(

∑K
k=2 di,k

∑k−1
k′=1 di,k′).

Since αi,k increases linearly, the di,k ≈ Di

K , therefore, the complexity is around O(N2 D
2
i ). Hence

the total computation complexity for calculating the distortion δi,k across all l layers is around
O( 12

∑l
i=1 D

2
i ), significantly lower than the original complexity.

By far, we established a weight pruning framework that is formulated to minimize distortion in 3D
object detection. Algorithm 2 describes the holistic pruning procedure of the DM3D method.
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Table 1: Performance comparison of DM3D on ONCE val set. Gray background indicates dense
model results. For baseline sparse detection results, we list the performance drop with their corre-
sponding dense ones reported in their original papers.

Method FLOPs
(%)

mAP
(drop)

Vehicle (IoU=0.7) Pedestrian (IoU=0.5) Cyclist (IoU=0.5)
0-30 30-50 50-Inf 0-30 30-50 50-Inf 0-30 30-50 50-Inf

PointRCNN Shi et al. (2019) / 28.74 52.09 - - 4.28 - - 29.84 - -
PointPillar Lang et al. (2019) / 44.34 68.57 - - 17.63 - - 46.81 - -
SECOND Yan et al. (2018) / 51.89 71.16 - - 26.44 - - 58.04 - -

PVRCNN Shi et al. (2020) / 52.44 87.54 72.29 57.22 21.91 20.89 18.18 69.8 54.16 36.8
MultiLi et al. (2023) 60.61 - −2.85 −4.42 −2.81 −5.89 −6.76 −0.58 −10.73 −8.12 −4.77

DM3D (Ours) 60.61 +2 +0.1 −2.07 −2.55 +11.61 +5.41 +0.41 +0.31 −0.25 −0.91
SECOND Yan et al. (2018) / 51.43 83.28 67.13 49.82 26.65 22.88 15.58 68.69 52.06 33.3

Multi Li et al. (2023) 52.54 - −1.49 −5.35 −4.03 −7.84 −6.24 −2.98 −13.32 −8.83 −4.69
DM3D (Ours) 52.54 −1.6 0.45 −1.75 0.0 −2.44 −3.91 −1.54 −1.53 −2.55 −0.18

CenterPoint Yin et al. (2021) - 64.01 76.09 - - 49.37 - - 66.58 - -
Ada3D Zhao et al. (2023) 26.82 −1.31 −2.26 - - −0.71 - - −0.95 - -

DM3D (Ours) 26.82 −0.7 −0.71 - - −0.48 - - −0.94 - -

Table 2: Performance comparison of DM3D on nuScenes val set.
Method FLOPs (%) mAP (drop) NDS (drop)

PointPillar Lang et al. (2019) / 44.63 58.23
SECOND Yan et al. (2018) / 50.59 62.29

CenterPoint-Pillar Yin et al. (2021) / 50.03 60.70

CenterPoint (voxel=0.1)Yin et al. (2021) / 55.43 64.63
Ada3DZhao et al. (2023) (voxel=0.1) 33.24 54.8 (−0.63) 63.53 (−1.1)

DM3D (Ours) (voxel=0.1) 33.24 55.32 (−0.11) 64.36 (−0.27)
VoxelNeXT Chen et al. (2023b) / 60.5 66.6

Ada3D Zhao et al. (2023) 85.12 59.75 (−0.75) 65.84 (−0.76)
DM3D (Ours) 85.12 60.91 (+0.41) 66.91 (+0.31)

Table 3: Performance comparison of DM3D on KITTI val set for Car class.

Method
FLOPs

(%)
Easy

(drop)
Mod.
(drop)

Hard
(drop)

FLOPs
(%)

Easy
(drop)

Mod.
(drop)

Hard
(drop)

Voxel R-CNN Deng et al. (2021) SECOND Yan et al. (2018)

Dense / 89.44 79.2 78.43 / 88.08 77.77 75.89
SPSS-Conv Liu et al. (2022a) 73.0 +0.28 +0.05 −0.04 88.31 +0.21 −0.11 −0.15

DM3D (Ours) 74.36 +0.04 +0.06 +0.11 78.38 +0.10 +0.11 −0.03

5 EXPERIMENTS

5.1 EXPERIMENTAL SETTINGS

Datasets and Models. We evaluate three 3D object detection tasks to prove the effectiveness of
our proposed method, namely KITTI, nuScenes and ONCE. KITTI dataset includes 3712 training
examples, 3769 validation examples and 7518 test examples. Detection targets are categorized into
three classes: Car, Pedestrian, and Cyclist, with ground truth bounding boxes divided into “Easy”,
“Moderate”, and “Hard” difficulty levels. Evaluation of detection performance employs average
precision (AP) for each category, using an IoU threshold of 0.7 for cars and 0.5 for pedestrians and
cyclists. The nuScenes dataset is a comprehensive autonomous driving dataset containing 1,000
driving sequences with different modalities including LIDAR and cameras. We follow the default
split, where train split includes 700 training scenes and val set has 150 scenes. The ONCE dataset
is a large-scale LiDAR-based collection for autonomous driving, featuring 1 million scenes with
16k fully annotated for 3D object detection, utilizing mAP for performance evaluation. We perform
post-train pruning followed by one round of finetuning to fully recover the performance. We provide
implementation details in the Appendix A.2.1.

FLOPs Calculation. Since we prune both 3D and 2D backbones from the detection model, we
accordingly report the FLOPs of sparsified layers in both 3D and 2D backbones. For baselines that
only perform voxel sparsification in 3D backbones, we recalculate the FLOPs reduction w.r.t. 3D
and 2D backbones for fair comparison. Except for results in Tab. 4, when analyzing the effect of
pruning the detection head, we report the FLOPs w.r.t. the whole network for all three cases.
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5.2 MAIN RESULTS

We conduct extensive evaluations of our pruning method on various 3D object detection datasets in-
cluding Nuscene, ONCE and KITTI. As we presented in Tab. 1, on ONCE validation dataset, DM3D
achieves higher detection precision for all three tested detectors, PVRCNN Shi et al. (2020), SEC-
OND Yan et al. (2018) and CenterPoint Yin et al. (2021) compared to the sparse baseline methods
under the same FLOPs reduction level. On PVRCNN Shi et al. (2020) and SECOND Yan et al.
(2018) model, we outperform the voxel pruning scheme Li et al. (2023) on all precision metrics of
class Car Pedestrian and Cyclist. We also observe a huge performance boost from the baseline
dense model on PVRCNN on the mAP score by 2%. On CenterPoint Yin et al. (2021), we also
outperform the current SOTA Zhao et al. (2023). In Tab. 2, we present the results on nuScenes
dataset. Again, we witness less performance drop at the same level of FLOPs reduction with the
baseline w.r.t. to both mAP and NDS metrics. On the recent VoxelNeXT network, compared to
the Ada3D Zhao et al. (2023) with a 0.75 mAP drop, we boost the mAP on the pruned model by
0.41. Comparisons on KITTI datasets are shown in Tab. 3. Our method continues to achieve on-
par performances with baselines on two prevailing models especially for Car AP Mod. score. On
Voxel R-CNN, SPSS-Conv Liu et al. (2022a) performs extremely well on Car AP Easy with a 0.28
gain from dense Voxel R-CNN, whereas our DM3D method brings slightly less but still a positive
performance gain.

We demonstrate our overall detection performance on one of the datasets in Fig. 1. We compare
ourselves with two baselines Multi Li et al. (2023) and Ada3D Zhao et al. (2023) on three detection
networks with different FLOPs reduction levels. On CenterPoint, we compared the pareto-frontier of
our pruning scheme to Ada3D, the only literature reporting the mAP performance. Using our DM3D
scheme, we achieve a 3.89× FLOPs reduction from original CenterPoint model while outperforming
Ada3D. On SECOND and PVRCNN, we perform consistently better than baselines on different
detection categories while gradually decreasing the FLOPs and achieves around 2× speedup.

5.3 ABLATION STUDY AND DISCUSSIONS

Controlling pruning rates of different parts in backbone. As shown in Tab. 4, we explore the
possibility of pruning more and more redundant weights from different modules of the detection
models. Start from pruning 3D backbone only, we prune out 47.62% FLOPs from 3D backbone of
SECOND model, resulting in a total FLOPs reduction of 93.2% w.r.t. the whole network. Then we
prune the 3D and 2D backbone together, keeping the detection head untouched. Finally, we also
include head layers into the pruning, resulting in a total FLOPs reduction of 64.9%. Intuitively, we
notice that the AP scores gradually decrease as the total FLOPs decreases, but by very marginal
amounts, showing that there is still a large degree of weight redundancy in 3D detection model.

Table 4: Ablation study when pruning only certain parts of model of SECOND on KITTI val dataset.
3D
(%)

2D
(%)

Head
(%)

FLOPs
(%)

Car AP Ped. AP Cyc. AP
Easy Mod. High Easy Mod. High Easy Mod. High

/ / / / 88.09 77.77 75.91 53.43 48.63 44.2 81.8 66.04 62.47
47.62 100 100 93.2 +0.14 +0.17 +0.06 −0.42 −0.77 −0.39 −0.2 −0.33 −0.03
47.62 67.57 100 79.22 −0.41 −0.33 −0.52 +0.5 −0.22 −0.12 −1.65 −1.61 −1.22
47.62 67.57 67.37 64.9 −0.43 −0.1 −0.37 +0.15 +0.16 −0.62 −1.78 −1.45 −1.22

Second-order Distortion v.s. True Distortion. To evaluate whether the proposed hessian-based
distortion approximation scheme is faithful to the actual detection distortion from network output,
we conducted an experiment on KITTI val dataset using the distortion data δi,k from real network
prediction y on calibration set as originally described in Eq. 4. Tab. 5 shows no significant difference
between the two approaches, verifying the effectiveness of the proposed Hessian approximation.

Table 5: Comparison of the proposed hessian-based pruning scheme with pruning using distortion
δi,k from actual network output.

Method FLOPs
(%)

Car AP drop Ped. AP drop Cyc. AP drop
Easy Mod. High Easy Mod. High Easy Mod. High

SECOND Yan et al. (2018) / 88.09 77.77 75.91 53.43 48.63 44.2 81.8 66.04 62.47
Hessian (DM3D) 87.85 +0.14 +0.17 +0.06 −0.42 −0.77 −0.39 −0.2 −0.33 −0.03

Actual Dist. 87.85 −0.26 +0.05 +0.1 +0.51 −0.9 −0.12 −0.78 +0.48 −0.35
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Ablation study of different λ. We explored the impact of different λ in Eq. (10) in Tab. 6. For
λ = [λ1, λ2]

⊤, we keep λ1 = 1 and range λ2 from 4 to 0.5. We notice that different choices of
the λ do marginal impact on the overall detection performances, meanwhile some object classes
favors certain choices of the λ scattering around 2 to 0.5 to limited extend. This means our method
are mostly robust to the choice of λ and we simply fix λ as [1, 1]⊤ in all the experiments for the
comprehensive performance of the pruned models.

Table 6: Ablation studies of different head box and classication ratio λ on Kitti val set. The best
results for each metrics are marked in bold and the second bests are marked with underline.

Method FLOPs
(%) λ2/λ1

Car (IoU=0.7) Pedestrian (IoU=0.5) Cyclist (IoU=0.5)
easy moderate hard easy moderate hard easy moderate hard

SECOND / / 88.09 77.77 75.91 53.43 48.63 44.20 81.80 66.04 62.46
DM3D(Ours) 87.85 4 −0.70 −0.34 −0.41 −0.07 −0.35 −0.31 −1.2 −0.95 −0.43
DM3D(Ours) 87.85 2 −0.19 −0.13 −0.24 −0.36 −0.08 −0.07 −0.32 −0.25 +0.45
DM3D(Ours) 87.85 1 −0.20 −0.14 −0.09 −0.23 −1.26 −0.71 −0.54 −0.32 −0.02
DM3D(Ours) 87.85 0.5 +0.01 −0.09 +0.03 −0.40 −0.44 −0.65 −0.60 −0.53 +0.10

Figure 2: The effect of different K val-
ues on detection performance and prun-
ing overhead. X-axis is in log-scale.

Ablation study of different K. Fig. 2 shows the effects
of different K (granularity of pruning ratio sampling)
from the perspective of both performance and pruning
overhead. It shows that as K increases, while the de-
tection scores drop slightly from dense models, pruning
overhead rapidly increases. In practice, we use K = 1000
for optimal cost-effective pruning performance.

We include more discussions in the Appendix A.2, in-
cluding qualitative results and discussions on compar-
isons against layer-wise pruning counterparts.

5.4 COMBINATION WITH SPATIAL PRUNING

Our proposed weight pruning scheme works orthogonally with the prevailing spatial pruning ap-
proaches. To assess the possibility of uniting these approaches to reduce computations, we employ
the DM3D weight pruning on top of spatial pruning method SPSS-Conv Liu et al. (2022a) that
prunes out 50% of redundant voxels, and further prunes out parameters from 3D and 2D Backbones
with a FLOPs reduction of 50.66% w.r.t. the whole network. As shown in Tab. 7, we observe that
pruning weights from spatially sparse network brings negligible performance drop using DM3D,
while the speedup is boosted from 1.36× to 1.97×, showing the generalizability of DM3D with
standard spatial pruning methods.

Table 7: Combining spatial and weight sparsity scheme on KITTI val dataset.

Method Sparsity (%) Total FLOPs
(%)

Easy
(drop)

Mod.
(drop)

Hard
(drop)Voxel Weight

Voxel R-CNN Deng et al. (2021) 100 100 100 89.44 79.2 78.43

SPSS-Conv Liu et al. (2022a) 50 100 73 +0.28 +0.05 −0.04
SPSS-Conv Liu et al. (2022a) + DM3D 50 50.8 50.66 −0.04 +0.08 +0.02

6 CONCLUSIONS

We have presented a weight pruning scheme for voxel-based 3D object detection models orthogonal
to prevailing spatial redundancy-based approaches. The pruning scheme is based on second-order
Taylor approximation on the detection distortion, which is able to minimize detection locality and
confidence degradation on pruned model. The scheme is extremely lightweight, with polynomial
complexity for Hessian information acquisition and linear complexity for layerwise sparsity search.
We show the superiority of the novel scheme on various 3D detection benchmarks over state-of-
the-art approaches that exploits only spatial redundancy. In the future, we aim to develop a unified
pruning scheme that leverages both weight and spatial redundancies for optimal results.

7 REPRODUCIBILITY STATEMENT

We pay attention to the reproducibility of this work. We provided details of the implementation
details in the appendix (see Appendix A.2.1).
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A APPENDIX

A.1 DETAILS OF ALGORITHMS

A.1.1 HESSIAN REDUCED CALCULATION SCHEME.

We illustrate the details of the abovementioned vector and matrix notations as well as the steps of
calculation needed to obtain second-order distortion for αk given the distortion of αk−1 as in Fig. 3.
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Figure 3: Detailed reduced calculation of δi,k described in Eq. 14.

A.1.2 END-TO-END METHOD.

We summarize the holistic algorithm for DM3D in the pseudocode in Algorithm 2.

A.2 MORE EXPERIMENTAL DISCUSIONS

A.2.1 IMPLEMENTATION DETAILS.

We use OpenPCDet Team (2020) framework to perform fine-tuning. We use pre-trained weights
from official sites as possible for post-train pruning. For others, we use our retained model in KITTI
and ONCE which train 80 epochs with all default setting. We set the fine-tuning batch size as 64 on
8 A100 40GB GPUs with Adam optimizer, weight decay of 0.01 for all experiments. We generally
set the fine-tune learning rates 10× lower than the dense training learning rates. We set 30 epoch
for KITTI and nuScenes, 60 epoch for ONCE. We search all the fine-tune models and find the best
performance based on the metric(describe above) of each dataset.

A.2.2 COMPARISONS WITH LAYER-WISE WEIGHT PRUNING METHODS

To see how competitive our layer-wise weight pruning method is compared to other counterparts, we
conduct extensive experiments on the dataset KITTI, as shown in Tab. 8. We can see that our scheme
yields the best performance on most of the metrics, expect for one metric where Uniform+ Gale et al.
(2019) is slightly better.

A.2.3 QUALITATIVE RESULTS.

In Fig. 4, we visualize the qualitative performance of our pruning scheme applied to VoxelNeXT
on nuScenes dataset, which generates 60.91 mAP. One can observe that 3D detector pruned by our
DM3D approach generates high quality bounding boxes for essential visual categories in LiDAR
data, further verifying the effectiveness of the DM3D.
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Algorithm 2 Distortion-Minimized Pruning of 3D Object Detection Model.

Input: Training datasetDt, Calibration datasetDc, 3D detection model F with l layers, Number of
possible pruning ratios for each layer K, Fine-tuning epochs E.

Output: The pruned 3D detection model F̃ .
Inference F on Dc to get output detections: Y← {y(X) | ∀X ∈ Dc}.
Perform back-propagation on F .
Get a list of averaged gradients of each layers: G = {∇W (i)y | 1 ≤ i ≤ l}.
for i from 1 to l do
αi,0 ← 0, δi,0 ← 0.
∆W (i)(αi,0)← 0.
for k from 1 to K do
αi,k ← k+1

K .
Prune W (i) to get W̃ (i) given αi,k : W̃ (i) ←W (i) ⊙Mαi,k

(S).
Calculate pruning error matrix: ∆W (i)(αi,k)←W (i) − W̃ (i).
Calculate δi,k following Eq. 14.

end for
end for
Obtain layerwise pruning ratios α∗

i using δi,k from Algorithm 1.
for i from 1 to l do

Prune W (i) given α∗
i : W (i) ←W (i) ⊙Mα∗

i
(S).

end for
for e from 1 to E do

Finetune F̃ on Dt.
end for

Table 8: Performance comparison of DM3D with layer-wise CNNs weight pruning methods on
KITTI val set for Car class.

Method
FLOPs

(%)
Easy

(drop)
Mod.
(drop)

Hard
(drop)

FLOPs
(%)

Easy
(drop)

Mod.
(drop)

Hard
(drop)

Voxel R-CNN Deng et al. (2021) SECONDYan et al. (2018)

Dense / 89.44 79.2 78.43 / 88.08 77.77 75.89
LAMP Lee et al. (2020) 74.0 +0.46 +0.05 +0.99 78.0 −0.58 −0.77 −1.16

Global Morcos et al. (2019) 74.0 +0.36 +0.13 +0.93 78.0 −0.52 −0.34 −0.50
Uniform Zhu & Gupta (2018) 74.0 +0.47 +0.26 +1.00 78.0 −0.48 −0.37 −0.61
Uniform+ Gale et al. (2019) 74.0 +0.69 +0.32 +0.99 78.0 −0.74 −0.47 −0.83

ERK Evci et al. (2020) 74.0 +0.48 +0.37 +1.11 78.0 −0.38 −0.61 −0.72
DM3D (Ours) 74.95 +0.59 +0.32 +1.01 78.38 −0.47 −0.75 −1.34

A.2.4 LAYER-WISE SPARSITY ALLOCATION RESULTS.

Fig. 5 shows the detailed allocation results of the proposed DM3D. In Fig. 5, we display the layer-
wise sparsity levels optimized by DM3D under different FLOPs constraint levels. We analyze the
behavior on three different networks. Since our method leverages weight redundancies, we are able
to optimize the layer-wise sparsity of 3D and 2D backbones together and automatically decide the
sparsity allocations. We observe that on PVRCNN, our scheme results in more sparsity in layers
in 2D backbone than in 3D part, while on SECOND, it is the opposite case where more weights in
2D backbone is preserved. This implies that the expressiveness of PVRCNN is mostly coming from
3D feature extraction than SECOND. Earlier layers in 2D backbone survive from most pruning
cases regardless of the networks, probably because these layers are essential to smoothly transfer
information from 3D domain to 2D. As FLOPs target decreases, the sparsity distribution remains
roughly the same, where most sensitive layers regarding to the detection distortion remain in less
sparsity rates.
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A-1

A-2

B-1

B-2

C-1

C-2

D-1

D-2

Figure 4: Qualitative performance of the pruned detection model on LiDAR data. ”A”, ”B”, ”C”,
”D” refer to 4 scenes from KITTI dataset, of which ”A” and ”B” scenes are tested under the PVR-
CNN model while ”C” and ”D” scenes are tested under the second model. ”1” denotes the perfor-
mance of model pruned by our method and ”2” denotes the performance of the pre-trained model.
For example, ”A-1” denotes the performance of the PVRCNN-DM3D model, ”A-2” denotes the
performance of the Dense PVRCNN. This figure is best viewed by zoom-in.
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Figure 5: Layer-wise sparsity allocation on three detection networks on ONCE dataset. Sparsity
level close to one means most weights getting pruned out.
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