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Abstract

Knowledge tagging is a fundamental task in
intelligent education, associating educational
materials with the most pertinent knowledge
concepts. However, in practical scenarios,
most existing methods have encountered bot-
tlenecks due to the expertise and confusion of
knowledge concepts. In this paper, we pro-
pose LLM4KTS, which achieves a progressive
multi-step reasoning paradigm that fully intro-
duces the reasoning ability of Large language
models (LLMs) for knowledge tagging tasks.
To build LLM4KTS, we first construct a multi-
step reasoning dataset with gradual thinking
and reasoning. LLMA4KT is then fine-tuned
on the dataset to align the LLMs with proces-
sive reasoning. Then, we introduce a step-level
score preference optimization (SSPO) method
to fine-tune the LLM4KT further to improve
the effectiveness and quality of reasoning pro-
cesses. Moreover, we apply a scoring model to
expand the inference scaling and guide the de-
coding process. Extensive experiments verify
that LLM4KTS achieves significant improve-
ments in the knowledge tagging performance,
outperforming current methods.

1 Introduction

In recent years, the development of intelligent ed-
ucation has led to an astonishing growth in educa-
tional data generation. Different from generic data,
educational data possesses inherent prior knowl-
edge and native target, that is, it serves for teaching
specific knowledge concepts (Chen et al., 2014;
Romero and Ventura, 2020; Chen et al., 2022).
Consequently, knowledge tagging is an important
foundation for effectively aggregating and recom-
mending educational resources. The primary goal
of knowledge tagging is to associate educational
materials, particularly question resources, with
their most pertinent knowledge concepts within
a knowledge domain. This task significantly en-
hances the application of educational materials,

What is 12 + 54 ? }
Calculate 69 + 75 . }
Calculate 43 x 28 . }
What is 12.5 x 3.6 ? }

Short Question Texts

non-carry Addition
carry addition
two-digit multiplication
decimal multiplication

Fine-grained Concepts

Knowledge Tagging

Figure 1: An example of knowledge tagging, where
the question text is typically short and the concepts are
fine-grained, making knowledge tagging challenging.

thereby supporting more precise and targeted edu-
cational interventions (Sun et al., 2018; Nie et al.,
2020; Li et al., 2024b).

Unlike general text tagging, knowledge tagging
has several crucial characteristics: Knowledge tag-
ging needs expertise. It demands a profound under-
standing of the specific domains, including intricate
knowledge points and terminology; The knowledge
system often comprises detailed and confusable ter-
minology (Zhang et al., 2021; Lee et al., 2023;
Liu et al., 2023). For instance, distinguishing be-
tween "two-digit addition" and "addition within
10" requires attention; Knowledge tagging tasks
frequently require multi-step reasoning processes
to uncover underlying knowledge concepts in the
question, such as whether addition involves carry.
Due to the above characteristics, such knowledge
tagging tasks are traditionally performed manually
by domain experts. However, manual processes
become impractical and unsustainable when facing
large-scale datasets. Therefore, developing auto-
mated or semi-automated methods for knowledge
tagging is critical for advancing educational data
analysis in intelligent education.

In the literature, many efforts have been made
to conduct automated knowledge tagging. Given
that the object of knowledge tagging for ques-
tions can be viewed as a text tagging task, some
previous works have employed methods such as
CRF (Liu et al., 2021), LSTM (Sun et al., 2018),



and BERT-based pre-training models (Zemlyan-
skiy et al., 2021; Huang et al., 2023). However,
there are limitations in these approaches. On one
hand, questions typically consist of short texts. Cur-
rent methods can only extract limited information
from the short texts, which is not enough to distin-
guish accurately. On the other hand, even BERT-
based methods lack the necessary reasoning capa-
bilities to recognize subtle differences between fine-
grained knowledge concepts as shown in Figure 1
(for example, they cannot differentiate between
"non-carry addition" and "carry addition") (Pod-
korytov et al., 2021). Benefiting from extensive
domain knowledge and strong reasoning ability,
Large Language Models (LLMs) have achieved im-
pressive results across a variety of tasks including
natural language processing, translation, question-
answering, and even some professional tasks (Chen
et al., 2024; Zhao et al., 2024; Liu et al., 2024). In
order to solve the above problems, we adopt the
LLM to process knowledge tagging for the ques-
tions in a generative way.

In this paper, we draw inspiration from the LLMs
and propose a progressive multi-step reasoning
paradigm for the question tagging task, especailly
knowledge tagging. We make full use of the reason-
ing abilities of LLMs and effectively use the gener-
ative method for knowledge tagging tasks with this
paradigm. Firstly, we fine-tune an LLM to obtain
our LLM4KT model by introducing the ability of
knowledge tagging and aligning the LLM with the
given knowledge structures. To make full use of
the reasoning abilities of the LLM, we construct
a multi-step reasoning dataset for knowledge tag-
ging, which aims to expand the prediction process
with gradual thinking and reasoning to obtain a
more reasonable prediction result. Then, we in-
troduce a step-level score preference optimization
(SSPO) method to further fine-tune the LLM4KT
to LLM4KTS. For knowledge tagging tasks with
exact results, we conduct a step-level beam search
method to obtain the expected score of each step.
The higher the expected score, the more likely it
is to generate accurate knowledge concepts after
the step. In addition, we designed a step-level
score preference optimization (SSPO) loss to con-
strain LLM4KT to improve the generated results
at step granularity. Finally, we implement a score-
supervised decoding method for score expectations.
A scoring model is trained using the dataset with
the expected step scores, and it is used to guide the
decoding process, choosing the generation with the

highest score as the final inference result possible.
We fine-tune LLAMA3.1 to obtain LLM4KT
and LLM4KTS following the above paradigm. Ex-
perimental results show that our dataset can en-
hance the performances of LLMs.
The contributions of this paper are:

* We conduct progressive multi-step reasoning
with LLMs for knowledge tagging, Experi-
mental results demonstrate the effectiveness
and superiority of the LLM4KTS.

* We construct a multi-step reasoning dataset,
which divides the knowledge tagging task into
a step-by-step thinking and reasoning process.
This dataset can better leverage the ability
of LLMs. Further, we propose a production
pipeline for the dataset with step-scores, and
no manual labeling is required in the process.

* We design the step-level score preference op-
timization(SSPO), which uses the expected
step score to more reasonably align the LLM
at step granularity.

2 Related Work
2.1 Knowledge Tagging

Knowledge tagging is a fundamental task in ed-
ucational applications, aiming to establish mean-
ingful associations between knowledge concepts
and questions by analyzing stem descriptions or
leveraging their solutions. Early studies, such
as (Sun et al., 2018) utilized LSTM networks com-
bined with attention mechanisms to encode short-
range dependencies in problem statements. Build-
ing on this, (Liu et al., 2019) integrated addi-
tional features, such as Markov properties, to ex-
tract richer concept-related information from ex-
ercises. Subsequent work expanded input modali-
ties to include multi-modal data (Yin et al., 2019)
and LaTeX-augmented textual data (Huang et al.,
2021), significantly improving the ability to capture
implicit contextual information. Another line of
research introduced knowledge graphs into embed-
ding layers, enhancing semantic understanding in
specific domains (Huang et al., 2020). The rise of
transformer-based architectures further advanced
the field. Zemlyanskiy et al. (2021) leveraged pre-
trained BERT models to infer concepts from con-
textual data, while (Huang et al., 2023) designed
a tailored BERT framework to model the interplay
between problem statements and solutions, partic-
ularly for mathematical problems. More recently,



large language models (LLMs) have emerged as
powerful tools for low-resource scenarios. Tech-
niques like chain-of-thought reasoning (COT) and
in-context learning (ICL) enable these models to
simulate human-like tagging processes, showcas-
ing exceptional adaptability even with minimal an-
notated data (Li et al., 2024b,c,a). However, cur-
rent methods still face limitations due to the brevity
of question texts, which provide insufficient infor-
mation for deep differentiation. Even LLLM-based
approaches struggle with reasoning and fail to dis-
tinguish fine-grained knowledge concepts, such as
non-carry and carry addition.

2.2 Preference Learning

Recently, preference learning has become a pivotal
approach for aligning models with human prefer-
ences, offering significant advantages in improving
task performance and user satisfaction (Rafailov
et al., 2023; Jiang et al., 2024). Early efforts, such
as Supervised Fine-Tuning (SFT), aimed to achieve
alignment by increasing the likelihood of gener-
ating desired outputs (Wei et al., 2022a; Ouyang
et al., 2022). However, while SFT enhances the
probability of preferred results, it also inadvertently
raises the likelihood of undesired outputs, such as
hallucinations or logically inconsistent responses.
These limitations are particularly pronounced in
multi-step reasoning tasks, where errors in interme-
diate steps can propagate and compromise the final
output. To mitigate these issues, Reinforcement
Learning from Human Feedback (RLHF) (Zhu
et al., 2023; Ouyang et al., 2022) was introduced
as a framework for leveraging comparison data to
train reward models, which are then used to guide
policy optimization. RLHF has demonstrated no-
table success in generating more reliable outputs
by refining models through human-aligned reward
signals. However, its complex training pipeline
and heavy reliance on the quality of reward mod-
els limit its practicality and scalability, particularly
for reasoning-intensive tasks requiring fine-grained
control (Casper et al., 2023). Direct Preference
Optimization (DPO) (Rafailov et al., 2024) offers a
more streamlined alternative by directly optimizing
models using pairwise preference data, bypassing
the need for reinforcement learning. Nonetheless,
DPO’s performance gains are marginal in domains
that require long-chain reasoning, such as mathe-
matical reasoning or tasks involving complex logi-
cal steps (Ma et al., 2023). Compared to previous
work, our Svpo autonomously annotates step-level

preferences through MCTS, and reflects potential
reasoning errors through the -values at each step,
thereby significantly improving the performance of
preference learning on multi-step reasoning tasks.

3 Progressive Multi-Step Reasoning
Paradigm

In this section, we present our LM4KTS in detail
to further explore the potential of knowledge tag-
ging tasks with the progressive multi-step reason-
ing paradigm. The problem statement in our paper
is as follows: Given the query () with available
text resources of the question, including content,
answer, analysis, and so on, and with the prompt
to guide our LLM. Our target is to fine-tune an
LLM, O, with a progressive multi-step reasoning
paradigm to generate the result R. Where R con-
sists of step-by-step logical analysis, reasoning,
and the selection of the most appropriate knowl-
edge concepts from the given knowledge concept
candidates K = {ki, k2, ...km }.

To solve the problem mentioned, we conduct
LLMA4KTS as follows (as shown in Figure 3): First,
for questions that need to be tagged, we design a
multi-step reasoning prompt to generate the dataset
for fine-tuning (Section 3.1). On this basis, we
can align the LLM with the expected task. Second,
we devise the step-level score preference optimiza-
tion method to further supervise the LLM4KT to
LLM4KTS (Section 3.2). Finally, to further en-
hance the accuracy of generation, we apply a scor-
ing model to guide the decoding process at step
granularity (Section 3.3).

3.1 Dataset Construction and LLM Fine-tune

The most significant difference between LLMs and
other prior machine learning models is their reason-
ing capabilities. By making the large model think
step by step, a reasonable context is conducive
to helping generate the more accurate result (Wei
et al., 2022b; Jin et al., 2024). Further, contributing
to the huge size model parameter and the extensive
pre-training on diverse and vast datasets, LLMs
have demonstrated their strengths in comprehend-
ing instructions in natural language and applying
learned knowledge to new problems without requir-
ing additional training data specific to these tasks.
In our task, to make full use of the reasoning ability
and knowledge of LLM, a COT method is adopted
to guide LLM to generate the multi-step reasoning
for knowledge tagging. We design a multi-step rea-
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Figure 2: Overview of the LLM4KTS framework.

soning process, which is based on the process of ex-
pert analysis and reasoning of questions in practice.
A total of four steps are used in this reasoning pro-
cess, which is: "question analyzing", "preliminary
reasoning", "knowledge summarizing" and "name
reasoning”. Each step contains the step name, the
reasoning process, and the reasoning conclusion.

The prompts for each step are as follows:

Question Analyzing.

You should comprehensively discover,
summarize and analyze all the information
in the question, that helps to reason all the
detailed knowledge concepts given.
Includes but is not limited to the range of
values (n digits, multiplication of n,
computation within n, etc.), operation
methods (addition, subtraction,
multiplication, division, parentheses,
power squares, etc.), numeric types (
integers, fractions, decimals, etc.),
important nouns (such as encounter, trace,
triangle, etc.) and other hidden conditions.

Preliminary Reasoning.

You should summarize all possible
domain of knowledge for the topic,
incorporating the information obtained in
the question analyzing process.

Knowledge Summarizing.

You should converge the knowledge
mentioned in the preliminary reasoning
process based on the scope of knowledge
associated with the question, and remove
the irrelevant knowledge direction.

\

Name Reasoning.

You should refer to the reasoning of the
preceding processes, use the knowledge
and nouns mentioned therein, and
combine all possible formal knowledge
names according to the specification.
Finally, you should choose the most
reliable knowledge concept among the
candidates.

In summary, through such step-by-step reason-
ing, LLM, like an expert in the field of educa-
tion, analyzes the knowledge related to the ques-
tion and deduces the potential knowledge concepts
involved. Instead of producing results with di-
rect prompts like "Give a prediction of knowl-
edge tagging directly". Further, LLM gener-
ates the selections from the candidate knowledge
names with norms. With the multi-step reasoning
prompt, the multi-step reasoning dataset is fully
automatically generated. Based on the dataset,
we can fine-tune a SOTA LLM (e.g., LLAMA3.1)
with each sample {(Q1, R1), (Q2, R2), ...}, Ry =
{Sn,l, Sn72, Snyg, Sn,4} to LLM4KT. Where the
question @ is used as the input, the reasoning
result R is used as the target with four steps



{S1, S2,S3,S4}. Thus, we align the original LLM
to our task to obtain the LLM4KT.

3.2 Step-level Score Preference Optimization

We obtain the LLM4KT with our multi-step rea-
soning dataset. LLM4KT has the ability to invoke
its existing knowledge and generate concept names
step by step according to the question. While low-
quality generations always exist due to errors in
the fine-tuned dataset or direct greedy decoding
method. Therefore, we process a preference opti-
mization method to enhance the likelihood of high-
quality results in the generations. That is, we opti-
mize the output of the model by further aligning the
preferences of the LLM4KT to LLM4KTS with the
objective selection preferences (i.e., the accuracy
of the results in the knowledge tagging task).

As mentioned above, a reasonable context is con-
ducive to help generate a more accurate result. As
with human inductive reasoning about problems,
errors in any one premise or step of reasoning can
lead to wrong results. Therefore, simply supervis-
ing the results or optimizing the whole reasoning
process indiscriminately, as we do in fine-tuning,
is not enough. After fine-tuning, we then introduce
a step-level score preference optimization to align
the reasoning by steps.

In the process of preference optimization, the
evaluation of data is crucial. Different from subjec-
tive tasks, such as free conversation, knowledge tag-
ging is a task with objective results. Therefore, we
can accurately evaluate whether a certain reasoning
process has reached the correct result. Further-
more, different conclusions may be derived from
the same reasoning when the sampling method with
certain randomness is used. In this case, we con-
duct a step-level beam search method to obtain the
score of each step in {57, S2, S3,54}. Obviously,
we can directly evaluate the accuracy of a com-
plete and deterministic generation {S1, S2, S3, S4}
as F'(Sy) = Scorey, where is no need to calcu-
late the expected value. Then we merge question
@ and parts of generation {S1, S2,S3} as the in-
put to only generate the rest tokens in the step
of name reasoning repeatedly as shown in Figure
3. It may lead to the {S4,, S4,, Saq, Sa,, Sas, -}
We synthesize all the results as Scores =
> F(Sy,), while F' evaluates the accuracy of the
result. The score is regarded as the expected
score of the prefix reasoning {Si, 52,53}, and
used to indicate the merits of the previous rea-
soning. Similarly, through such an automated

score and expectation calculation process, we get
the scores {Scorey, Scores, Scores, Scores} for
{51, 52,53, S4}. The scores represent the value of
each step in the reasoning process. In particular, the
higher the score, the more likely it is that this step
(including the preceding steps) will produce supe-
rior results. In particular, for different reasoning
on the same question, we repeat the above process
to obtain the evaluations. For each pair of genera-
tion results, we take the sample with a higher step
score as a positive sample, thus forming the pairs
for preference optimization.

Further, we design the step-level score pref-
erence optimization (SSPO) loss to use the
dataset with step scores to align the LLM4KT
by steps. We use step scores to assign weights
to the tokens of different steps, thereby con-
straining the optimization process. Steps
with higher scores should be valued more.
For a certain pair, we get the step scores
Score, = {Scorey,Scorey, Scores, Scores}
for positive samples and Score, =
{Score}, Scorey, Scorey, Scorey}y  for  nega-
tive samples. Since the optimization direction of
the negative sample is inconsistent with that of
the positive sample relative to the reference model
in the process of preference optimization. That
is, the negative sample should not deviate from
the reference model as much as possible, while
the changes of the positive sample are encouraged.
Therefore, the higher the step score of the positive
sample, it means that the change of this step should
be focused; Even in a negative sample, there may
be a good step with a high score, so the higher
the score of a negative sample step, the more we
should ignore this step, so as to optimize the bad
step and preserve the change of the good step. So
we calculate the weights from the scores as:

W = Softmaxz([Scorey, 1 — Scorey]). (1)
Finally, we represent the SSPO loss as:

L(ry, D) = —E(I7yw7yl)wp[log o(re (x, Wp, Yuw)
—’I”(b(IL‘, Wn,, yl))]
2
where 7(z,w,y) is the weighted reward function,
which measures the difference between the cumu-
lative probability of the sample and the reference
model with weight from the step scores as:

m™(y | z)

— a:)) + Blog Z(x).
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Figure 3: Illustration of supervised decoding, with Sy
as an example.

3.3 Supervised Decoding

We obtain the LLM4KTS with our step-level score
preference optimization. In the process of gener-
ation, in order to better supervise the process of
decoding, we designed a score-supervised decod-
ing process based on process evaluation as shown
in Figure 3. We reuse the dataset with step scores
in the preference optimization process to fine-tune
a reward model ©,. from LLM. Given the whole or
part of the steps, the object of the reward model is
to predict the score of the given steps:

r=0,({Q, 51, ..5.})- “

Further, we process a step-by-step decoding with
LLMA4KTS. In this process, we get N different gen-
eration results for the same input (). We then use
the reward model to evaluate the score of the com-
plete result and the latest step:

ro = @r({Q, S1, 52, 53, 54})’

5
rp = 0,({Q.51), ©)

where ro is the outcome reward, which measures
the correctness of the final result, while rp is
the process reward, which provides an estimate
of the value of the process. For each sample,
we continue to obtain M complete reasoning re-
sults. Then we compute the reward r with r =
axro+ (1 —a)* M rp,, as the score of the
current result. We select the result with the highest
score and continue the reasoning process with the
latest step as the input, that is, the input is {@, S1 }.
We repeat the process to guide the final result. With
the supervised decoding, we obtain the result for
knowledge tagging with a high evaluation.

Statistics

# of questions 77476
# of knowledge concepts 12712
Avg knowledge concepts per question  6.0947
Avg length of questions 44.1949
Avg length of prompts 1031.75
Avg length of reasoning process 1121.91

Table 1: The statistics of the MATH dataset.

4 Experiments

4.1 Experimental Datasets

MATH is a dataset from a professional education
resource platform, that contains high-quality math-
ematics questions. Each question contains content,
knowledge concepts, and optional analysis and an-
swer content. The details of the data as described
in Table 1. Further, we randomly select 5000 ques-
tions from the dataset as the testing data, and the
remaining data as the training data. In particular,
we partition the training data into 90%/10% for
fine-tuning part and preference optimization learn-
ing part. To conduct the multi-step reasoning data,
we use the COT-based prompt to guide the LLM for
inference, in which case the average input length of
the data including the prompt is 1031.75, and the
average inference length of reasoning is 1121.91.

4.2 Experimental Settings

To better illustrate the implementation of our meth-
ods, we will introduce the settings in detail. We use
the LLAMA3.1-8B as the base model for following
the fine-tuning process. In our task, we conduct
the candidates with 10 knowledge concepts, that is
the m = 10. To collect a wide variety of data to
conduct the preference pairs in SSPO, we use the
different temperatures and topk to generate results.
To be specific, (1.0,50),(2.0,50),(0.5,50),(1.0,20)
are used. Moreover, in the supervised decoding
part, we set the N as 5 and M as 3, the temperature
to 1.0, and topk to 10 in the decoding process to
provide enough candidates. Then we set alpha as
0.5 to synthesize the different rewards. All exper-
iments are conducted on a server with 6 NVIDIA
RTX 3090 GPUs.

4.3 Experimental Results

In this section, we verify the effectiveness of
our LLM4KTS by taking GPT40, GPT4-turbo,
LLMALA3.1-8B as the baselines. Each baseline
is validated in two ways, one with a progressive
multi-step reasoning prompt and one with direct



Method ACC@3 ACC@5 ACC@10
LLAMA3.1-8B w/o reason 14.74%  12.32%  9.74%
LLAMA3.1-8B 15.56% 12.80%  7.64%
GPT40 w/o reason 390.58%  33.10%  23.88%
GPT40 5496%  43.02%  32.26%
GPT4-turbo w/o reason 40.12%  30.76%  22.22%
GPT4-turbo 64.62% 52.14%  36.70%
LLMJ4KTS 8231% 7298%  57.68%

Table 2: Performances comparison on Knowledge Tagging.

Method ACC@3 ACC@5 ACC@10
LLM4KT w/o reason 51.04% 47.82%  42.04%
LLM4KT 76.55%  66.06%  49.82%
LLM4KT+ 75.83%  66.57%  50.15%
LLMJ4KTS w/osspo  79.01%  68.58%  52.76%
LLM4KTS w/o sd 81.39%  71.02%  56.81%
LLM4KTS 8231% 7298%  57.68%

Table 3: Performances comparison of LLM4KTS and its variants.
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Figure 4: Results of tagging analysis.

generation (w/o reason). In our experiments, our
target to verify whether a method is able to pick
out the best knowledge concepts from the candi-
dates. Therefore, we design ACC@K to represent
the ratio of selecting the correct knowledge concept
among K candidates. Specifically, we fine-tune a
simple bert model and recalling its top-K predic-
tions with ground truth as the candidates. Com-
pared with existing works in evaluating methods
for knowledge tagging, some key observations are
as follows: 1) Methods with multi-step reasoning
perform better than the methods with direct gen-
eration. It shows multi-step reasoning can make
full user of the abilities of LLMs and benefit the
knowledge tagging tasks. Notablty, our proposed
LLMA4KTS has the best performances. 2) When the
range of candidates is larger, the model encounters
severe confusion, leading to worse results, but our
proposed method achieves the best results

4.4 Ablation Study

To further validate the effectiveness of the key pro-
cess in LLM4KTS, we compared LLM4KTS with
some variants: LLM4KT w/o reason, LLM4KT,

LLM4KT+, LLM4KTS w/o sspo and LLM4KTS
w/o sd. LLM4KT w/o reason removes processive
multi-step reasoning and is only fine-tuned with
direct prompts. LLM4KT is the model which is
only fine-tuned with processive multi-step reason-
ing data. LLM4KT+ is training with all the training
data. LLM4KTS w/o sspo processes preference op-
timization based on LLM4KT without step-level
score. In this case, it degenerates into the form
of a dpo method. LLM4KTS w/o sd use a simple
greedy decoding method to generate the final result.
According to the results in Table 3, we obtain the
following conclusions: 1) Even after the fine-tune,
the method w/o reason performs the worse result
than the multi-step reasoning, it shows the multi-
step reasoning can enhance the abilities for predic-
tion in LLMs. 2) LLM4KTS w/o sspo achieves
better results than the methods with only fine-tune.
It demonstrates that preference optimization is con-
ducive to the further improvement of LLM on our
task. While LLM4KTS w/o sd has better effect
than LLM4KTS w/o sspo, which shows that our
SSPO can than provide finer process constraints
than direct preference optimization. 3) LLM4KTS
achieves the best performance. It shows expand-
ing the inference scaling helps to provide a more
reasonable contextual reasoning process and obtain
more accurate reasoning results.

4.5 Tagging Analysis

In this paper, we focus on selecting the most appro-
priate knowledge points from a set of candidates



S, Question Analyzing

S, Preliminary Reasoning S, Name Reasoning

\ no fraction:
parenthe

uestion:
© numeric type

ts [ applying transposition
which is a technique used
sent. |Lin equation solving

S; Knowledge Summarizing
[ standa
the best

Solve the equation: 2x+5=15

Candidate Concepts:

includes multi-variable aic
orecise |_Solving linear equations.

amethod used but does defining featu
not fully define the might choos

equation-solving process. | Transpositio venuan:‘m]

1. Solving linear equations
2. Transposition in equations

it =
3. Properties of equality

5. Steps in solving linear equations

4. Solving single-variable equations
6. Coefficients and constants in equations [

and constants (5, 15)
;HHV
braic structure

8. Equations and algebraic operations

7. Basic methods for solving equations [
9. Applications of linear equations

[
L
["_and division, but not ] [~ support the solution bu
L

lution but
advar algebraic l are not the main focus of

transformations. the problem

10. Algebraic methods for solving
equations

...the given equanun is

tion of x
... category of solving . falls under solving
:> E:? LLM4KT 2><+5 15, which asks for linear equations, not just Imear equanons amore
/ the solution of x. single-variable cases. general

..most appropriate
knowledge point is
Solving linear equations.

Figure 5: A case study on Knowledge Tagging with LLM4KT and LLM4KTS.

in the context of real-world knowledge annotation.
The construction of these candidates is a key fac-
tor. In our experiments, we fine-tuned a simple
BERT model and used its top-K predictions, along-
side the ground truth, as candidates. However, this
approach may lack comprehensiveness. We investi-
gate how different candidate construction methods
affect the performance and stability of our frame-
work by mixing BERT-selected candidates with ran-
domly chosen ones in varying proportions. BERT-
selected candidates are considered "hard" due to
their closer resemblance to the ground truth, which
increases confusion. We conducted experiments by
fixing both the total number of candidates and the
number of hard candidates separately. The results,
shown in Figure 4, use X_Y notation on the x-axis,
where X represents the number of BERT-selected
candidates and Y denotes the number of random
candidates. Our key findings are: 1) As the number
of hard candidates increases, performance declines
due to greater confusion. 2) Despite a decrease in
the proportion of hard candidates, overall perfor-
mance still drops with more candidates, likely be-
cause the increased selection range outweighs the
impact of hard candidates. 3) LLM4KTS consis-
tently outperforms LLM4KT, confirming the effec-
tiveness of our method and the necessity of SSPO.

4.6 Case Study

To illustrate the advantages of our multi-step rea-
soning framework and process-supervised decod-
ing, we visualize a case study on knowledge tag-
ging with LLM4KT and LLM4KTS. As shown
in the Figure 5, while LLM4KT (trained with
SFT) can perform step-by-step reasoning, the lack
of process supervision may lead to deviations or
suboptimal steps, resulting in errors. In contrast,
LLM4KTS, optimized with SSPO and equipped

with DP, ensures optimal reasoning at each step,
enhancing both stability and accuracy. This high-
lights the effectiveness of our method’s design.

5 Conclusion

In this paper, we introduced LLM4KTS, an LLM
designed to facilitate processive multi-step reason-
ing for knowledge tagging. To build LLM4KTS,
we defined and conducted a multi-step reasoning
dataset, which strengthened the processive reason-
ing abilities. Besides, we developed a step-level
score preference optimization (SSPO) for LLMs
and a scoring model was adopted to guide the infer-
encing. Experiments demonstrated that LLM4KTS
significantly outperforms current LLMs such as
GPT4. We discuss the broader impacts, limitations,
and future work in Limitation.

6 Limitation

In this work, we introduce a step-level preference-
based framework for the task of automatic knowl-
edge tagging in educational questions. This frame-
work is not only effective for the specific task but is
also easily adaptable and transferable to other anno-
tation scenarios, offering broad applicability. How-
ever, the current token processing remains confined
to natural language text, limiting support for multi-
modal data. As a result, predictions for questions
containing image-based information may degrade,
and the understanding of mathematical formulas of-
ten lacks structured depth and hierarchical insight.
These limitations highlight the need for further ex-
ploration of advanced representation methods to
harness better the reasoning and interpretative ca-
pabilities of large language models (LLMs).



References

Stephen Casper, Xander Davies, Claudia Shi,
Thomas Krendl Gilbert, Jérémy Scheurer, Javier
Rando, Rachel Freedman, Tomasz Korbak, David
Lindner, Pedro Freire, et al. 2023. Open problems
and fundamental limitations of reinforcement
learning from human feedback. arXiv preprint
arXiv:2307.15217.

Jun-Ming Chen, Meng-Chang Chen, and Yeali S Sun.
2014. A tag based learning approach to knowledge
acquisition for constructing prior knowledge and en-
hancing student reading comprehension. Computers
& Education, 70:256-268.

Xieling Chen, Di Zou, Haoran Xie, Gary Cheng, and
Caixia Liu. 2022. Two decades of artificial intelli-
gence in education. Educational Technology & Soci-
ety, 25(1):28-47.

Yuyan Chen, Songzhou Yan, Panjun Liu, and Yanghua
Xiao. 2024. Dr. academy: A benchmark for evalu-
ating questioning capability in education for large
language models. In Proceedings of the 62nd Annual
Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 3138-3167.

Tao Huang, Shengze Hu, Huali Yang, Jing Geng, San-
nyuya Liu, Hao Zhang, and Zongkai Yang. 2023.
Pgsct: Pseudo-siamese bert for concept tagging with
both questions and solutions. IEEE Transactions on
Learning Technologies, 16(5):831-846.

Tao Huang, Mengyi Liang, Huali Yang, Zhi Li, Tao Yu,
and Shengze Hu. 2021. Context-aware knowledge
tracing integrated with the exercise representation
and association in mathematics. International Edu-
cational Data Mining Society.

Zhenya Huang, Qi Liu, Weibo Gao, Jinze Wu, Yu Yin,
Hao Wang, and Enhong Chen. 2020. Neural mathe-
matical solver with enhanced formula structure. In
Proceedings of the 43rd International ACM SIGIR
Conference on Research and Development in Infor-
mation Retrieval, pages 1729—-1732.

Ruili Jiang, Kehai Chen, Xuefeng Bai, Zhixuan He,
Juntao Li, Muyun Yang, Tiejun Zhao, Ligiang Nie,
and Min Zhang. 2024. A survey on human preference
learning for large language models. arXiv preprint
arXiv:2406.11191.

Mingyu Jin, Qinkai Yu, Dong Shu, Haiyan Zhao,
Wenyue Hua, Yanda Meng, Yongfeng Zhang, and
Mengnan Du. 2024. The impact of reasoning step
length on large language models. arXiv preprint
arXiv:2401.04925.

Hyun Seung Lee, Seungtack Choi, Yunsung Lee,
Hyeongdon Moon, Shinhyeok Oh, Myeongho Jeong,
Hyojun Go, and Christian Wallraven. 2023. Cross
encoding as augmentation: Towards effective edu-
cational text classification. In Findings of the Asso-
ciation for Computational Linguistics: ACL 2023,
Toronto, Canada, July 9-14, 2023, pages 2184-2195.
Association for Computational Linguistics.

Hang Li, Tianlong Xu, Ethan Chang, and Qingsong
Wen. 2024a. Knowledge tagging with large language
model based multi-agent system. arXiv preprint
arXiv:2409.08406.

Hang Li, Tianlong Xu, Jiliang Tang, and Qingsong
Wen. 2024b. Automate knowledge concept tag-
ging on math questions with llms. arXiv preprint
arXiv:2403.17281.

Hang Li, Tianlong Xu, Jiliang Tang, and Qingsong Wen.
2024c. Knowledge tagging system on math questions
via llms with flexible demonstration retriever. arXiv
preprint arXiv:2406.13885.

Qi Liu, Zhenya Huang, Yu Yin, Enhong Chen, Hui
Xiong, Yu Su, and Guoping Hu. 2019. Ekt: Exercise-
aware knowledge tracing for student performance
prediction. IEEE Transactions on Knowledge and
Data Engineering, 33(1):100-115.

Shuai Liu, Tenghui He, and Jianhua Dai. 2021. A survey
of crf algorithm based knowledge extraction of ele-
mentary mathematics in chinese. Mobile Networks
and Applications, 26(5):1891-1903.

Xiao Liu, Zirui Wu, Xueqing Wu, Pan Lu, Kai-Wei
Chang, and Yansong Feng. 2024. Are llms capable
of data-based statistical and causal reasoning? bench-
marking advanced quantitative reasoning with data.
In Findings of the Association for Computational
Linguistics, ACL 2024, Bangkok, Thailand and vir-
tual meeting, August 11-16, 2024, pages 9215-9235.
Association for Computational Linguistics.

Zitao Liu, Qiongqiong Liu, Jiahao Chen, Shuyan Huang,
Boyu Gao, Weiqi Luo, and Jian Weng. 2023. Enhanc-
ing deep knowledge tracing with auxiliary tasks. In
Proceedings of the ACM Web Conference 2023, pages
4178-4187.

Qianli Ma, Haotian Zhou, Tingkai Liu, Jianbo Yuan,
Pengfei Liu, Yang You, and Hongxia Yang. 2023.
Let’s reward step by step: Step-level reward model

as the navigators for reasoning. arXiv preprint
arXiv:2310.10080.

Ligiang Nie, Yongqi Li, Fuli Feng, Xuemeng Song,
Meng Wang, and Yinglong Wang. 2020. Large-scale
question tagging via joint question-topic embedding
learning. ACM Transactions on Information Systems
(TOIS), 38(2):1-23.

Long Ouyang, Jeffrey Wu, Xu Jiang, Diogo Almeida,
Carroll Wainwright, Pamela Mishkin, Chong Zhang,
Sandhini Agarwal, Katarina Slama, Alex Ray, et al.
2022. Training language models to follow instruc-
tions with human feedback. Advances in neural in-
formation processing systems, 35:27730-27744.

Maksim Podkorytov, Daniel Bis$, and Xiuwen Liu. 2021.
How can the [mask] know? the sources and limi-
tations of knowledge in bert. In 2021 International
Joint Conference on Neural Networks (IJCNN), pages
1-8. IEEE.


https://doi.org/10.18653/V1/2023.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2023.FINDINGS-ACL.137
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.548
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.548
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.548
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.548
https://doi.org/10.18653/V1/2024.FINDINGS-ACL.548

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2023. Direct preference optimization: Your language
model is secretly a reward model. In Advances in
Neural Information Processing Systems, volume 36,
pages 53728-53741. Curran Associates, Inc.

Rafael Rafailov, Archit Sharma, Eric Mitchell, Christo-
pher D Manning, Stefano Ermon, and Chelsea Finn.
2024. Direct preference optimization: Your language
model is secretly a reward model. Advances in Neu-
ral Information Processing Systems, 36.

Cristobal Romero and Sebastian Ventura. 2020. Educa-
tional data mining and learning analytics: An updated
survey. Wiley interdisciplinary reviews: Data mining
and knowledge discovery, 10(3):e1355.

Bo Sun, Yunzong Zhu, Yongkang Xiao, Rong Xiao,
and Yungang Wei. 2018. Automatic question tagging
with deep neural networks. IEEE Transactions on
Learning Technologies, 12(1):29-43.

Jason Wei, Maarten Bosma, Vincent Y. Zhao, Kelvin
Guu, Adams Wei Yu, Brian Lester, Nan Du, An-
drew M. Dai, and Quoc V. Le. 2022a. Finetuned
language models are zero-shot learners. In The Tenth
International Conference on Learning Representa-
tions, ICLR 2022, Virtual Event, April 25-29, 2022.
OpenReview.net.

Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten
Bosma, Fei Xia, Ed Chi, Quoc V Le, Denny Zhou,
et al. 2022b. Chain-of-thought prompting elicits rea-
soning in large language models. Advances in neural
information processing systems, 35:24824-24837.

Yu Yin, Qi Liu, Zhenya Huang, Enhong Chen, Wei Tong,
Shijin Wang, and Yu Su. 2019. Quesnet: A unified
representation for heterogeneous test questions. In
Proceedings of the 25th ACM SIGKDD international
conference on knowledge discovery & data mining,

pages 1328-1336.

Yury Zemlyanskiy, Sudeep Gandhe, Ruining He, Bhar-
gav Kanagal, Anirudh Ravula, Juraj Gottweis, Fei
Sha, and Ilya Eckstein. 2021. Docent: Learning
self-supervised entity representations from large doc-
ument collections. arXiv preprint arXiv:2102.13247.

James Zhang, Casey Wong, Nasser Giacaman, and An-
drew Luxton-Reilly. 2021. Automated classification
of computing education questions using bloom’s tax-
onomy. In Proceedings of the 23rd Australasian
computing education conference, pages 58—65.

Yilun Zhao, Yitao Long, Hongjun Liu, Ryo Kamoi,
Linyong Nan, Lyuhao Chen, Yixin Liu, Xiangru
Tang, Rui Zhang, and Arman Cohan. 2024. Docmath-
eval: Evaluating math reasoning capabilities of 1lms
in understanding financial documents. In Proceed-
ings of the 62nd Annual Meeting of the Association
for Computational Linguistics (Volume 1: Long Pa-
pers), ACL 2024, Bangkok, Thailand, August 11-16,
2024, pages 16103-16120. Association for Computa-
tional Linguistics.

10

Banghua Zhu, Michael Jordan, and Jiantao Jiao. 2023.
Principled reinforcement learning with human feed-
back from pairwise or k-wise comparisons. In In-
ternational Conference on Machine Learning, pages

43037-43067. PMLR.


https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://openreview.net/forum?id=gEZrGCozdqR
https://doi.org/10.18653/V1/2024.ACL-LONG.852
https://doi.org/10.18653/V1/2024.ACL-LONG.852
https://doi.org/10.18653/V1/2024.ACL-LONG.852
https://doi.org/10.18653/V1/2024.ACL-LONG.852
https://doi.org/10.18653/V1/2024.ACL-LONG.852

	Introduction
	Related Work
	Knowledge Tagging
	Preference Learning

	Progressive Multi-Step Reasoning Paradigm
	Dataset Construction and LLM Fine-tune
	Step-level Score Preference Optimization
	Supervised Decoding

	Experiments
	Experimental Datasets
	Experimental Settings
	Experimental Results
	Ablation Study
	Tagging Analysis
	Case Study

	Conclusion
	Limitation

