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Abstract

We develop nested variational inference (NVI), a family of methods that learn proposals for
nested importance samplers by minimizing an inclusive or exclusive KL divergence at each
level of nesting. NVI is applicable to many commonly-used importance sampling strategies
and additionally provides a mechanism for learning intermediate densities, which can serve
as heuristics to guide the sampler. Our experiments apply NVI to learn samplers targeting
(a) an unnormalized density using annealing and (b) the posterior of a hidden Markov
model. We observe improved sample quality in terms of log average weight and effective
sample size.

1. Introduction

Deep generative models provide a mechanism for incorporating priors into methods for
unsupervised representation learning. This is particularly useful in settings where the prior
defines a meaningful inductive bias that reflects a known structure of the underlying domain.

Training models with structured priors, however, poses some challenges. A standard
strategy for training these models is to maximize a reparameterized variational lower bound
with respect to a generative model and an inference model that approximates its posterior
(Kingma and Welling, 2013; Rezende et al., 2014). This approach works well in variational
autoencoders (VAEs) with isotropic Gaussian priors, but often fails in models with high-
dimensional and correlated latent variables.

In recent years, a range of strategies for improving upon standard reparameterized vari-
ational inference have been put forward. These include wake-sleep style variational methods
that minimize the inclusive KL-divergence (Bornschein and Bengio, 2014; Le et al., 2019), as
well as sampling schemes that incorporate annealing (Huang et al., 2018), Sequential Monte
Carlo (Le et al., 2017; Naesseth et al., 2017; Maddison et al., 2017), Gibbs sampling (Wu
et al., 2019; Wang et al., 2018), and MCMC updates (Salimans et al., 2015; Hoffman, 2017;
Li et al., 2017). While these methods offer flexible inference, typically resulting in better
approximations to the posterior compared to traditional variational inference methods, they
are also model-specific, requiring specialized sampling schemes and gradient estimators, and
can not be easily composed with other techniques.

In this paper, we propose nested variational inference (NVI), a framework for com-
bining nested importance sampling and variational inference. Nested importance sampling
formalizes the construction of proposals by way of nested calls to other importance samplers
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(Naesseth et al., 2015, 2019), and admits many existing importance sampling strategies as
special cases, including methods based on annealing (Neal, 2001) and sequential Monte
Carlo (Del Moral et al., 2006). NVI learns proposals by optimizing an inclusive or exclusive
KL divergence at each level of nesting. Combining nested variational objectives with im-
portance resampling allows us to compute gradient estimates based on incremental weights,
which depend only on variables that are sampled locally, rather than on all variables in the
model. Doing so yields lower variance weights, whilst maintaining a high sample diversity
relative to existing variational methods based on sequential Monte Carlo.

NVI extends beyond existing methods in that it defines objectives for learning interme-
diate densities in addition to proposals. In a nested importance sampler, the target density
at each level of nesting defines the proposal at the next level of nesting. These learned
intermediate densities can serve as heuristics that guide the sampler.

To demonstrate the potential of this approach. We compare NVI to existing techniques
in two settings. The first is an annealed sampling task, where we use NVI to learn proposals
and optimize the annealing schedule which specifies the intermediate densities. The second
task is performing posterior inference on a Hidden Markov model, in which NVI is used to
learn proposals and a heuristic factor that incorporates future observations. In both cases,
NVI results in substantial improvements to sample quality.

2. Nested Variational Inference

Problem setting. Nested variational inference makes use of nested importance samplers
(Naesseth et al., 2015, 2019), which provide a means of reasoning about methods that
recursively use importance samplers to generate proposals. Here, we will consider a se-
quence of intractable densities {πk(zk; θk)}Kk=1 and corresponding unnormalized densities
{γk(zk; θk)}Kk=1 with intractible normalizing constant such that

πk(zk; θk) = γk(zk; θk)/Zk(θk), Zk(θk) =

∫
dzk γk(zk; θk).

We are typically interested in the case where the final density γK(z; θ) corresponds to the
posterior distribution pθ(z|x). To simplify notation, we will in the following omit parameters
when they are not needed for context (i.e. we write γ(z) instead of γ(z; θ)).

We define the sequence of intermediate densities to interpolate between a density π1(z1),
for which sampling is easy, to the final density πK(zK) for which sampling is difficult. Two
standard strategies are to define variables zk ∈ Zk on (1) a fixed sample space Z1 = · · · = ZK
with increasingly tightly-peaked densities, e.g. when performing annealing, or (2) on sample
spaces with increasing dimensionality Z1 = Z ′1, Z2 = Z ′1×Z ′2, . . . Zk = Z ′1×Z ′2× . . .×Z ′k,
which is common when sampling from state-space models.

In the first case, we introduce a forward kernel qk(zk | zk−1; φ̂k), and a reverse kernel
rk(zk−1 | zk; φ̌k). This yields a forward and reverse density on the extended space Zk×Zk−1,

γ̂k(zk, zk−1) = qk(zk|zk−1) γk−1(zk−1), γ̌k(zk, zk−1) = γk(zk) rk(zk−1|zk).

In the latter case, we can omit the construction of a reverse kernel as the reverse density at
every step is fully specified by the corresponding intermediate density on Z ′k ×Zk−1

γ̂k(z1:k) = qk(z
′
k|zk−1) γk(zk−1) = qk(z

′
k|z′1:k−1) γk(z

′
1:k−1), γ̌k(zk) = γk(zk) = γk(z

′
1:k).
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Nested Importance Samplers. Nested importance samplers (Naesseth et al., 2015,
2019) define a sampling problem recursively by generalizing from standard sequential im-
portance sampling (SIS) methods. Suppose that we have a mechanism by which we can
generate weighted samples (wk−1, zk−1) from the target density πk−1(zk−1). We can con-
struct samples (wk, zk) that target the next density by the following construction,

zk ∼ qk(· | zk−1), wk = vk wk−1, vk =
γ̌k(zk, zk−1)

γ̂k(zk, zk−1)
, ṽk =

Zk−1

Zk
vk, (1)

where ṽk denotes the incremental weight computed w.r.t. the normalized densities. This
notion of compositionality can be formalized by introducing the concept of proper weighting.

Definition 1 (Proper weighting) Let π be a probability density. A random pair (w, z) ∼
Π is properly weighted (p.w.) for an unnormalized probability density γ ≡ Zπ if w ≥ 0 and
for all measurable functions g it holds that

E
z,w∼Π

[w g(z)] = c

∫
dz γ(z) g(z) = cZ E

z∼π
[g(z)]

for some constant c > 0.

Hence, given properly weighted samples (zl, wl) ∼ Π this ensures that the we can compute
strongly consistent self-normalized estimates

1
L

∑L
l=1w

lg(zl)
1
L

∑L
l=1w

l

a.s.−→ cZ Ez∼π [g(z)]

cZ
= E

z∼π
[g(z)] . (2)

In other words, proper weighting ensures that the bias of our self-normalized estimators
vanishes in the limit of infinite samples.

Compositionality of Proper Weighting. The proper weighting property allows us
to reason about the validity of compositions of sampling operations in a straight-forward
manner. If we can show that individual operations preserve proper weighting, then any
composition of these operations also preserves proper weighting. Importance sampling and
hence the sequential construction in Equation 1 preserves proper weighting, which is to say
that if (wk−1, zk−1) is properly weighted w.r.t. γk−1(zk−1), then (wk, zk) is properly weighted
w.r.t. γk(zk). Other operations that preserve proper weighting are rejection sampling, the
application of an MCMC transition operator, and most notably importance resampling,
which forms the basis for sequential Monte Carlo methods. Composition of these operations
leads to a broad class of verifiably correct importance samplers that admit many existing
methods as special cases.

Nested Variational Objectives. We are interested in defining variational objectives
that can be used to optimize the parameters of nested importance samplers. As before,
we will for purposes of exposition restrict ourselves to samplers that follow the sequential
construction in Equation 1. Given an initial target density γ1(z1) and initial proposal q1(z1),
we define objectives which minimizes an f -divergence based term at each level of nesting

D = Df

(
π1

∣∣∣∣ q1

)
+

K∑
k=2

Df

(
π̌k
∣∣∣∣ π̂k).
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An f -divergence Df (p || q) = Ez∼q[f(p(z)/q(z))] is parameterized by a convex function f
that satisfies f(1) = 0. When fexc(w) := f(w) = − log(w) we recover the exclusive KL
divergence, whereas finc(w) := f(w) = w log(w) recovers the inclusive KL divergence. We
can write each f -divergence in terms of the incremental weight vk

Df

(
π̌k || π̂k

)
= E

π̂k

[
f

(
π̌k(zk, zk−1; θk, φ̌k)

π̂k(zk, zk−1; θk−1, φ̂k−1)

)]
= E

π̂k

[
f

(
vk
Zk−1

Zk

)]
= E

π̂k

[
f (ṽk)

]
In the following we assume that all parameters θK of the final target density are known
or estimated by way of maximum likelihood estimation. Our goal is to minimize D with
respect to parameters {θk}K−1

k=1 of the intermediate densities and parameters {φ̂k}Kk=2 and
{φ̌k}Kk=2 of the forward and reverse kernels at each level of nesting. Intuitively, placing
consecutive intermediate densities closer to each other should result in an easier learning
problem for the corresponding forward and reverse kernels, while bringing the forward and
reverse densities closer should result in a easier sampling problem, e.g optimizing a Pearson
χ2-divergence can be shown to minimize the variance of the importance weight (Müller
et al., 2019). Here we consider KL-divergences only but still take motivation from this
intuition. To the best of our knowledge, optimizing a sequence of divergences combined
with the ability to learn the parameters of the intermediate densities is novel to NVI.

Gradient Computation Building on the NIS framework described above, we are able
to compute consistent self-normalized gradient estimators as shown in Equation 2. While
the computation of gradient estimates for the parameters φ̌k of the reverse kernel and repa-
rameterized gradients estimates for parameters φ̂k of the forward kernel is straightforward,
estimating the gradients w.r.t. parameters of the intermediate densities θk−1 and θk is less
convenient. E.g. in case of the exclusive KL-divergence, the gradient w.r.t. θk−1 is com-
puted using a score function estimator, which uses an additional baseline, and both, the
estimators for θk−1 and θk require to estimate the gradient of the respective log normalizing
constants. Detailed deviation of the gradient estimators can be found in Appendix D.

3. Experiments

We evaluate NVI on two tasks, (1) learning to sample form an unnormalized target den-
sity where intermediate densities are generated along a geometric annealing path, and (2)
learning intermediate densities to generate posterior samples of a hidden Markov model.

3.1. Sampling from an unnormalized target density via annealing

We are targeting a 2-dimensional unnormalized Gaussian mixture model (GMM) γK with
M = 8 equidistantly spaced modes along a circle a round the origin. Starting from a initial
proposal q1(z1) = γ1(z1) we construct a sequence of K annealed densities

γk(z) = q1(z)1−βkγK(z)βk , βk =
k − 1

K − 1
, for k = 1 . . .K

equi-distantly scheduled along a geometric annealing path. We define the corresponding
forward and reverse densities using forward and reverse kernel,

γ̂k(zk, zk−1) = qk(zk | zk−1)γk−1(zk−1), γ̌k(zk, zk−1) = γk(zk)rk(zk−1 | zk).
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Figure 1: (Top) Exemplary samples from forward kernels trained with AVO, and NVI*. The
rightmost column shows ground truth samples from the GMM target. (Bottom-
Left) Annealing schedules learned by NVI* and NIVR* and the equi-distant an-
nealing schedule (EQUI) used by AVO, NVI, and NVIR. Results are averaged over
10 independent restarts, error bars indicate two standard deviations. (Bottom-
Right) The KL-divergences (computed by numeric integration) between consec-
utive intermediate distributions based on equi-distant and learned schedules.

We compare 4 different variants of Nested Variational Inference (NVI, NVIR, NVI*, and
NVIR*), which optimize an exclusive KL-divergence at every step, and Annealed Variational
objectives (AVO) (Huang et al., 2018). NVIR employs additional resampling after every
step, NVI* additionally learns the annealing schedule of the intermediate densities, and
NVIR* combines both. All methods use the architecture described above for the forward
and reverse kernels and are trained for 20, 000 iteration using Adam with a learning rate of
1e−3. A detailed description of the model and architecture can be found in Appendix C.1.

We report the sample quality of the learned samplers in terms of the log average weight
and effective sample size in Table 1 and show the learned annealing schedules and samples
from the intermediate densities in Figure 1. Our results show that samplers trained with
NVI are able to more accurately estimate the log normalizing constant whilst maintaining
a higher effective sample sizes compared to AVO. Moreover, NVI* and NVIR* learn more
equi-distantly spaced annealing schedules in terms of KL-divergence. Both learning the
annealing schedule and resampling empirically helps to learn better samplers.

3.2. Learning Intermediate Heuristic for Hidden Markov Models

Here, we are considering a Hidden Markov Model (HMM) with a GMM likelihood consisting
of M cluster (see Appendix C.2) with data points x1:T , global variables η, and hidden states
z1:T . We can define a sequence of unnormalized target densities {γt}Tt=0 as

γ0(x1:T , η) = p(η), γt(z1:t, x1:T , η) = p(z1:t, x1:t, η).
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log Ẑ (logZ ≈ 2.08) ESS

K=2 K=4 K=6 K=8 K=2 K=4 K=6 K=8
AVO (excl.) 1.88 1.99 2.05 2.07 417 287 285 287
NVI (excl.) 1.88 2.00 2.06 2.07 417 334 307 318
NVIR (excl.) 1.88 1.99 2.06 2.07 417 349 312 329
NVI* (excl.) 1.88 2.07 2.08 2.08 417 395 464 511
NVIR* (excl.) 1.88 2.08 2.08 2.08 417 403 484 521

log Ẑ ESS

K=100 K=100
NVIR (incl.) -1000 931
NVIR-GMM (incl.) -268 920
NVIR* (incl.) -324 876
NVIR× (incl.) -263 950

Table 1: (Left) Experiment 1: AVO and NVI-variants trained for different numbers of an-
nealing steps K and particles per step L for fixed budget of K · L = 288 samples.
We report the log average weight (log Ẑ) and effective sample size (ESS) for 1000
samples per step at test time. All numbers are averages over 100 batches across 10
independent restarts. (Right) Experiment 2: NVIR for different types of heuristics.

Intuitively, this evaluates the utility of a sample for the global variables η based on the
probability under the HMM up to current step t, neglecting future observations xt:T . If the
observations up to step t do only contain a small subset of possible states this can lead to
mode collapse. Here we design a sequence of target densities by learning a heuristic factor
Ψ(·; θ) as part of our target densities

γ0(x1:T , η; θ) = p(η)Ψ(x1:T | η; θ), γt(z1:t, x1:T , η; θ) = p(z1:t, x1:t, η)Ψ(xt+1:T | η; θ).

The heuristic factor evaluates the likelihood of future data points given the global variables.
We consider two heuristic factors which enumerate over individual clusters: (1) a GMM-
style heuristic factor and (2) a neural heuristic factor

ΨGMM(xt:T ; η) =
∏T

l=t

∑M

m=1
p(xl | zl = m, η)p(zl = m)

ΨNEURAL(xt:T ; η, θ) =
∏T

l=t

∑M

m=1
p(xl | zl = m, η)ψ(zl = m;xl, η, θ),

We compare four different variants of NVI, NVIR without a heuristic factor, NVIR-GMM
using the GMM-style heuristic factor, NVIR* and NVIR×, which both use the neural heuris-
tic factor. We found NVIR×, a variant of NVIR* which detaches a part of the gradient,
described in appendix C.2, using an inclusive KL-divergence on a hidden

Table 1 shows that, as expected, employing a heuristic factor results in better sample
quality in terms of log average importance weight and effective sample size. Moreover the
neural heuristic factor outperforms the GMM-style heuristic factor.

4. Conclusion

We develop NVI, a framework that combines nested importance sampling and variational
inference by optimizing a variational objective at every level of nesting. The formulation
allows to learn proposals and intermediate densities for a general class of samplers, which ad-
mit most commonly used importance sampling strategies as special cases. Our experiments
demonstrate that samplers, targeting (a) an unnormalized GMM and (b) the posterior of a
HMM, trained with NVI are able to outperform baselines in terms of log average weight and
effective sampling size. Moreover, we found that learning intermediate distributions based
on the inclusive and exclusive KL-divergence results in better samplers in our experiments.
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Appendix A. Notation

vk =
γk(zk)rk(zk−1|zk,φ̌k)

γk−1(zk−1)qk(zk|zk−1,φ̂k)
k-th incremental weight

ṽk = vk
Zk−1

Zk
=

π(zk)rk(zk−1|zk,φ̌k)

πk−1(zk−1)qk(zk|zk−1,φ̂k)
k-th incremental weight

wk =
∏k
k′=1 vk′ k-th cumulative weight

πk(zk) k-th target density on Zk
γk(zk) = Zkπk(zk) k-th unnormalized target

π̌k(zk, zk−1) = πk(zk)rk(zk−1 | zk, φ̌k) k-th extended target on Zk−1 ×Zk
γ̌k(zk, zk−1) = Zkπ̌k(zk, zk−1) k-th extended unnormalized proposal

π̂k(zk, zk−1) = πk−1(zk−1)qk(zk | zk−1, φ̂k) k-th extended proposal on Zk−1 ×Zk
γ̂k(zk, zk−1) = Zkπ̂k(zk, zk−1) k-th extended unnormalized proposal

Appendix B. Important Identities

Thermodynamic Identity:

d

dθ
logZθ =

1

Zθ

d

dθ

∫
Zθ
dz γ(z; θ) =

∫
Zθ
dz

γ(z; θ)

Zθ

d

dθ
log γ(z; θ) = E

z∼π(·;θ)

[
∂ log γ

∂θ

]
.

Log-derivative trick a.k.a. reinforce trick:

d

dθ
π(z; θ) = π(z)

1

π(z; θ)

d

dθ
π(z; θ) = π(z)

d

dθ
log π(z; θ) (3)

Consequently, it holds that

E
z∼π(·;θ)

[
d

dθ
log π(z; θ)

]
=

∫
Z
dz π(z; θ)

d

dθ
log π(z; θ) =

∫
Z
dz

d

dθ
π(z; θ) =

d

dθ

∫
Z
dz π(z; θ) = 0

Fisher’s Identity:

∇θ log pθ(x) =

∫
dz pθ(z | x)

d

dθ
log pθ(x, z)

Appendix C. Experiment Details

C.1. Experiment 1: Annealing

We are targeting an unnormalized Gaussian mixture model (GMM) γK with M = 8 equidis-
tantly spaced modes along a circle with radius r = 10,

γK(zK) =
M∑
k=1

N (zK ; µm, σ
2I2×2), µm =

(
r sin

(
2mπ

M

)
, r cos

(
2mπ

M

))
,

for m = 1, 2, ...,M and σ = 0.5. The model the forward and backward kernel as conditional
Gaussian, where the mappings for the means µk and standard deviations σk consist of a
multilayer perceptron with a single share hidden layer of 50 neurons with sigmoid activation
functions

qk(zk | zk−1) = N (zk; zk−1 + µk(zk−1),Σk(zk−1)),

rk(zk−1 | zk) = N (zk−1; zk + µk(zk),Σk(zk)).
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Figure 2: Samples from forward kernels trained with AVO, NVI, NVIR, NVIR and NVIR*.
The rightmost column shows ground truth samples from the GMM target

C.2. Experiment 2: Hidden Markov Models

In the second set of experiments, we evaluate NVIR on a hidden Markov model with a GMM
likelihood over data points x1:T , global variables for the GMM components η = {τ1:M , µ1:M},
and local states z1:T ,

τm, µm ∼ NormGamma(α0, β0, µ0, ν0), m = 1, 2, ...,M,

z1 ∼ Cat(π),

zt | zt−1 = m ∼ Cat(Am) t = 1, 2, ..., T,

xt | zt = m ∼ Norm(µm, σm), t = 1, 2, ..., T.

We then construct forward densities by defining proposals q0(η|x1:T ;φ), q1(z1|x1, η;φ)
and qt(zt|zt−1, xt, η;φ) for t = 2, . . . T . At each step, we define a inclusive KL divergence

L0(φ) = KL(π(x1:T , η) || q0(η|x1:T ;φ)),

L1(φ, θ0) = KL(π(z1, x1:T , η) ||π(x1:T , η; θ0)q1(z1|x1, η;φ))

Lt(φ, θt−1) = KL(π(z1:t, x1:T , η) ||π(z1:t−1, x1:T , η; θt−1)q(zt|zt−1, xt, η;φ)), t=2, 3, ..., T.

We empirically found that we achieve better results when detaching the target density
(i.e. the left-hand-side density in each KL) in the objective. This version of NVIR* is

10
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denoted NVIR×. We compute self-normalized gradient estimates

−∇φL0(φ) = Eπ(x1:T ,η) [∇φ log q0(η|x1:T ;φ)]

'
S∑
s=1

ws0∑
s′ w

s′
0

∇φ log q0(ηs|x1:T ;φ)

−∇φ,θ0L1(φ, θ0) = Eπ(z1,x1:T ,η) [∇φ,θ0 (log π(x1:T , η; θ0) + log q1(z1|x1, η;φ))]

'
S∑
s=1

ws1∑
s′ w

s′
1

∇φ,θ0 (log π(x1:T , η
s; θ0) + log q1(zs1|x1, η

s;φ))

−∇φ,θt−1Lt(φ, θt−1) = Eπ(z1:t,x1:T ,η)

[
∇φ,θt−1 (log π(z1:t−1, x1:T , η; θt−1 + log q(zt|zt−1, xt, η;φ))

]
'

S∑
s=1

wst∑
s′ w

s′
t

∇φ,θt−1

(
log π(zs1:t−1, x1:T , η

s; θt−1) + log q(zst |zst−1, xt, η
s;φ)

)
where the importance weights are defined as

ws0 = vs0 =
γ(x1:T , η

s)

q0(ηs|x1:T )
, (4)

ws1 = vs1w
s
0 =

γ(zs1, x1:T , η
s)

γ(x1:T , ηs; θ0) q1(zs1|x1, ηs;φ)
ws0, (5)

wst = vstw
s
t−1 =

γ(zs1:t, x1:T , η
s)

γ(zs1:t−1, x1:T , ηs; θt−1) q(zst |zst−1, xt, η
s;φ)

wst−1. (6)

NVIR NVIR-GMM NVIR* NVIR x 

Figure 3: Qualitative results of the HMM experiment. Visualization of single samples of
predicted means (horizontal lines) and standard deviations (error bars) for one
test HMM instance with 100 data points.

C.3. Architectures of the Proposals

We model the the proposal for global variables η := {τ1:M , µ1:M} as Normal-Gamma dis-
tribution, where the mapping for its parameters α1:M , β1:M , µ1:M , ν1:M consists of a LSTM

11
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with 2 layers, followed by two individual multilayer perceptron with a single hidden layer
of 128 neurons,

q0(τ1:M , µ1:M |x1:T ) =

M∏
m=1

NormGamma(τm, µm;αm, βm, µm, νm) (7)

We model the initial state proposal and consecutive state proposal as Categorical distribu-
tions, where the mapping for its parameters πt consists of a multilayer perceptron with a
single hidden layer of 128 neurons and Tanh activation function,

q1(z1|x1, τ1:M , µ1:M ) = Cat(z1;π1), (8)

q(zt|zt−1, xt, τ1:M , µ1:M ) = Cat(zt;πt), t = 2, 3, ..., T. (9)

12
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Appendix D. Gradient estimation

To compute the gradient of the nested variational objective (NVO) we need to compute the
gradients of the individual terms Df (π̌k || π̂k) w.r.t. parameters φ̌k, φ̂k, θk, and θk−1.

dD
dφ̂k

=
dDf (π̌k || π̂k)

dφ̂k
dD
dφ̌k

=
dDf (π̌k || π̂k)

dφ̌k
dD
dθk

=
dDf (π̌k || π̂k)

dθk
+
dDf (π̌k+1 || π̂k+1)

dθk
dD
dθk−1

=
dDf (π̌k || π̂k)

dθk−1
+
dDf (π̌k−1 || π̂k−1)

dθk−1

In the following we are deriving the relevant gradients for the general f-divergence, exclusive
KL-divergence (f(w) = − logw), and inclusive KL-divergence (f(w) = w logw).

D.1. Gradients for general f-divergences

Gradient w.r.t. parameters φ̂k of the forward kernel: Reparameterizing the sample
zk ≡ zk(εk; φ̂k) allows us, under mild conditions 1, to interchange the order of integration
and differentiation and compute path-wise derivatives.

d

dφ̂k
Df (π̌k || π̂k)

= E
zk−1∼πk−1

[
E

εk∼pk

[
d

dφ̂k
f

(
vk
Zk−1

Zk

)]]

= E
zk−1∼πk−1

 E
εk∼pk

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk
∂zk

∂zk

∂φ̂k

∣∣∣∣
zk=zk(εk;φk)

+
∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk

∂φ̂k


= E
zk−1∼πk−1

 E
εk∼pk

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

(
∂vk
∂zk

∂zk

∂φ̂k

∣∣∣∣
zk=zk(εk;φk)

− ∂qk

∂φ̂k

)
= E
zk−1∼πk−1

 E
εk∼pk

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

(
∂ log vk
∂zk

∂zk

∂φ̂k

∣∣∣∣
zk=zk(εk;φk)

− ∂ log qk

∂φ̂k

)
p.w.
= E

wk−1,zk−1∼Πk−1

 wk−1

cZk−1
E

εk∼pk

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

(
∂ log vk
∂zk

∂zk

∂φ̂k

∣∣∣∣
zk=zk(εk;φk)

− ∂ log qk

∂φ̂k

)
Alternatively, we can compute a score function gradient which does not require the target
density γk to be differentiable w.r.t. the sample zk and hence can also be computed for

1. Leibniz Integration Rules
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discrete variable models.

d

dφ̂k
Df (π̌k || π̂k)

= E
zk−1∼πk−1

[∫
Zk
dzk

d

dφ̂k

(
qk(zk | zk−1, φ̂k)f

(
vk
Zk−1

Zk

))]

= E
zk−1∼πk−1

 E
zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
∂ log qk

∂φ̂k
+
∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk

∂φ̂k


= E
zk−1∼πk−1

 E
zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
∂ log qk

∂φ̂k
+
∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log vk

∂φ̂k


= E
zk−1∼πk−1

 E
zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log qk

∂φ̂k


p.w.
= E

wk−1,zk−1∼Πk−1

 wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log qk

∂φ̂k


Gradient w.r.t. parameters φ̌k of the reverse kernel:

d

dφ̌k
Df (π̌k || π̂k)

= E
zk−1,zk∼π̂k

[
d

dφ̌k
f

(
vk
Zk−1

Zk

)]

= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk

∂φ̌k


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log vk

∂φ̌k


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log rk

∂φ̌k


p.w.
= E

wk−1,zk−1∼Πk−1

 wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log rk

∂φ̌k
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Gradient w.r.t. parameters θk of the current target

d

dθk
Df (π̌k || π̂k)

= E
zk−1,zk∼π̂k

[
d

dθk
f

(
vk
Zk−1

Zk

)]

= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

Zk−1

Zk

∂vk
∂θk


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log vk
∂θk


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log πk
∂θk


= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

(
∂ log γk
∂θk

− ∂ logZk
∂θk

)
= E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log γk
∂θk

− E
zk−1,zk∼π̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 E
zk∼πk

[
∂ log γk
∂θk

]

= Covπ̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk
,
∂ log γk
∂θk


p.w.
= E

wk−1,zk−1∼Πk−1

 wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log γk
∂θk


− E
wk−1,zk−1∼Πk−1

 wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 E
wk,zk∼Πk

[
wk
cZk

∂ log γk
∂θk

]
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Gradient w.r.t. parameters θk−1 of the current proposal

d

dθk−1
Df (π̌k || π̂k)

=
d

dθk−1
E

zk−1,zk∼π̂k

[
f

(
vk
Zk−1

Zk

)]
=

d

dθk−1
E

zk−1∼πk−1

[
E

zk∼qk(·|zk−1;φ̂k)

[
f

(
vk
Zk−1

Zk

)]]

=

∫
Zk−1

dzk−1
d

dθk−1

(
πk−1(zk−1; θk−1) E

zk∼qk(·|zk−1,φ̂k)

[
f

(
vk
Zk−1

Zk

)])

=

∫
Zk−1

dzk−1
d

dθk−1

(
πk−1(zk−1; θk−1)

∂ log πk−1

∂θk−1
E

zk∼qk(·|zk−1,φ̂k)

[
f

(
vk
Zk−1

Zk

)]

+ πk−1(zk−1; θk−1)
∂

∂θk−1
E

zk∼qk(·|zk−1,φ̂k)

[
f

(
vk
Zk−1

Zk

)])

= E
zk−1∼πk−1

[
∂ log πk−1

∂θk−1
E

zk∼qk(·|zk−1,φ̂k)

[
f

(
vk
Zk−1

Zk

)]
+ E
zk∼qk(·|zk−1,φ̂k)

[
∂

∂θk−1
f

(
vk
Zk−1

Zk

)]]

= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
∂ log πk−1

∂θk−1
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

∂ log πk−1

∂θk−1


= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log πk−1

∂θk−1


= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

(∂ log γk−1

∂θk−1
− ∂ logZk−1

∂θk−1

)
= E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log γk−1

∂θk−1


− E
zk−1,zk∼π̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 E
zk−1∼πk−1

∂ log γk−1

∂θk−1


= Covπ̂k

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk
,
∂ log γk−1

∂θk−1


= Covπ̂k

f (vkZk−1

Zk

)
,
∂ log γk−1

∂θk−1

− Covπ̂k

 ∂f
∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk
,
∂ log γk−1

∂θk−1


p.w.
= E

wk−1,zk−1∼Πk−1

 wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 ∂ log γk−1

∂θk−1


− E
wk−1,zk−1∼Πk−1

 wk−1

cZk−1
E

zk∼qk(·|zk−1,φ̂k)

f (vkZk−1

Zk

)
− ∂f

∂w

∣∣∣∣
w=vk

Zk−1
Zk

vk
Zk−1

Zk

 E
zk−1∼πk−1

∂ log γk−1

∂θk−1



16



Nested Variational Inference

D.2. Gradients for the exclusive KL-divergence (f(w) = − log(w))

Building on the deviations for the general case derived in D.1 we derive the gradients for
the exclusive KL-divergence as special cases by substituting f(w) = − log(w).

Gradient w.r.t. parameters φ̂k of the forward kernel:
The reparameterized gradient takes the form

d

dφ̂k
D− logw (π̌k || π̂k) = E

zk−1∼πk−1

[
E

εk∼pk

[
−∂ log vk

∂zk

∂zk

∂φ̂k
− ∂ log qk

∂φ̂k

]]
(10)

= E
zk−1∼πk−1

[
E

εk∼pk

[
−∂ log vk

∂zk

∂zk

∂φ̂k

]]
, (11)

whereas the score function gradient takes the form

d

dφ̂k
D− logw (π̌k || π̂k) = E

zk−1∼πk−1

[
E

zk∼qk(·|zk−1;φ̂k)

[(
1− log

(
vk
Zk−1

Zk

))
∂ log qk

∂φ̂k

]]
(12)

= E
zk−1,zk∼π̂k

[
− log vk

∂ log qk

∂φ̂k

]
. (13)

The final equalities holds due to the reinforce property (Appendix B Equation 3)

E
εk∼pk

[
∂ log qk

∂φ̂k

∣∣∣∣
zk=zk(ε,φ)

]
= E

zk∼qk(·|zk−1,φ̂k)

[
∂ log qk

∂φ̂k

]
= 0.

Gradient w.r.t. parameters φ̌ of the reverse kernel

d

dφ̌k
D− logw (π̌k || π̂k) = E

zk−1,zk∼π̂k

[
−∂ log rk

∂φ̌k

]
. (14)

Gradient w.r.t. parameters θk of the current target

d

dθk
D− logw (π̌k || π̂k) = E

zk−1,zk∼π̂k

[
−∂ log γk

∂θk

]
+ E
zk∼πk

[
∂ log γk
∂θk

]
. (15)

Gradient w.r.t. parameters θk−1 of the current proposal

d

dθk−1
D− logw (π̌k || π̂k) = Covπ̂k

[
− log vk,

∂ log γk−1

∂θk−1

]
(16)
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D.3. Gradients for the inclusive KL-divergence (f(w) = w log(w))

First notice that

Dw logw(π̌k || π̂k) = E
zk−1,zk∼π̂k

[w logw] (17)

= E
zk−1,zk∼π̌k

[logw] (18)

= E
zk−1,zk∼π̌k

[
− logw−1

]
(19)

= D− logw(π̂k || π̌k). (20)

Hence the gradients for the inclusive KL-divergence follow by symmetry from the gradient
of the exclusive KL-divergence by swapping the arguments and identifying the components
rk, πk and corresponding parameters φ̂k, θk with the components of the forward density
qk, πk−1 and parameters φ̌k, θk−1 respectively.

Gradient w.r.t. parameters φ̂k of the forward kernel:

d

dφ̂k
Dw logw (π̌k || π̂k) = E

zk−1,zk∼π̌k

[
−∂ log qk

∂φ̂k

]
Gradient w.r.t. parameters φ̌k of the reverse kernel: Note that the sample zk−1

is assumed to be not reparameterized. Hence we only state the score-function gradient for
the inclusive KL-divergence.

d

dφ̌k
Dw logw (π̌k || π̂k) = E

zk−1,zk∼π̌k

[
log vk

∂ log rk

∂φ̌k

]
. (21)

Gradient w.r.t. parameters θk of the current target

d

dθk
Dw logw (π̌k || π̂k) = Covπ̌k

[
log vk,

∂ log γk
∂θk

]
(22)

Gradient w.r.t. parameters θk−1 of the current proposal

d

dθk−1
Dw logw (π̌k || π̂k) = E

zk−1,zk∼π̌k

[
−∂ log γk−1

∂θk−1

]
+ E
zk∼πk−1

[
∂ log γk−1

∂θk−1

]
. (23)
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