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ABSTRACT

Automated optimization modeling via Large Language Models (LLMs) has
emerged as a promising approach to assist complex human decision-making.
While post-training has become a pivotal technique to enhance LLMs’ capabilities
in this domain, its effectiveness is severely constrained by the scarcity and under-
utilization of high-quality training data. However, through a detailed profiling of
error patterns across various problem-response pairs drawn from post-training, we
identify two fundamental limitations of existing automated optimization modeling
approaches: (L1) the sparsity of error-specific problems and (L2) the sparse re-
wards associated with difficult problems. We demonstrate that these limitations
can result in suboptimal performance in domain-specific post-training for LLMs.
To tackle the above two limitations, we propose a novel error-driven learning
framework—namely, automated optimization modeling via a localizable error-
driven perspective (MIND)—that customizes the whole model training framework
from data synthesis to post-training. MIND is based on our key observation of the
unique localizable patterns in error propagation of optimization modelings, that
is, modeling errors may remain localized to specific semantic segments and do
not propagate throughout the entire solution. Thus, in contrast to holistic rea-
soning tasks such as mathematical proofs, MIND leverages the construction of
a focused, high-density training corpus and proposes Dynamic Supervised Fine-
Tuning Policy Optimization (DFPO) to tackle difficult problems through localized
refinement. Its appealing features include that (1) it generates targeted, error-
aware training problems that achieve superior sample efficiency, and (2) it ensures
a coherent and structured learning progression for stable and effective reinforce-
ment learning on difficult problems. Experiments on six benchmarks demonstrate
that MIND consistently outperforms all the state-of-the-art automated optimiza-
tion modeling approaches. Furthermore, we open-source a new training dataset,
MIND-Train, and a new benchmark, MIND-Bench, for the automated optimiza-
tion modeling research community.

1 INTRODUCTION

Advances in computational power and algorithmic techniques have made optimization a fundamen-
tal tool across engineering (Antoniou & Lu, 2007), economics (Intriligator, 2002), logistics (Barto-
lacci et al., 2012), manufacturing (Rao, 2010), and artificial intelligence (Kingma & Ba, 2014),
enabling more intelligent and data-driven decision-making. Optimization seeks values for de-
cision variables that maximize or minimize an objective function while satisfying a set of con-
straints. Optimization modeling formalizes complex real-world problems into mathematical repre-
sentations by defining variables, objectives, and constraints, allowing state-of-the-art solvers such as
Gurobi (Gurobi Optimization, LLC, 2024), PySCIPOpt (Berthold et al., 2024), and CPLEX (IBM
Corporation, 2024) to efficiently compute solutions. Recently, the emergence of Large Language
Models (LLMs) has opened a new avenue for automated optimization modeling, enabling the trans-
lation of natural language problem descriptions directly into mathematical formulations and exe-
cutable solver code. Although automated optimization modeling cannot guarantee complete accu-
racy, their ability to rapidly generate candidate formulations to support human experts in optimiza-
tion modeling is nonetheless of substantial practical value.
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Question

If x and y satisfy the constraints, x,y 

≤ 2, x+y ≥ 3, find the maximum 

value of x + 3y.

Solution

(1) When x + y = 3, the value of x + 

3y is maximized.

(2) Since x ≤ 2 and y ≤ 2, the 

maximum value of x + 3y is 

achieved when x = 2 and y = 1.

(3) Therefore, the maximum value 

of x + 3y is 2 + 3 = 5.

(4) Final answer: [5].

Question

You have two food items to choose from: Steak, Tofu. Each food provides certain amounts of protein, and each has its own 

cost. Here’s the nutritional value and cost of each food: -Steak: It gives you 14 grams of protein for $4. –Tofu: It offers 2 

grams of protein for $6. Your goal is to gets at least 83 grams of protein from whatever combination of these foods you 

choose. The challenge is to keep the cost as low as possible while meeting these nutritional targets. What is the minimum 

cost to meet these nutritional requirements with the available food options?

Solution

**Parameters**: 

- `protein[i]`: Protein content of food `i`.

- `cost[i]`: Cost of food `i`

- `min_protein`: Minimum required protein. 

**Decision Variables**: 

- `x[i]`: Amount of food `i` to include in the meal plan. This is an integer variable (non-negative).

**Objective Function**: 

- Minimize the total cost: \(\text{Minimize} \sum_{i} \text{cost}[i] \cdot x[i]\).

**Constraints**: 

- Protein constraint: \(\sum_{i} \text{protein}[i] \cdot x[i] \geq \text{min_protein}\).

Since the problem does not explicitly require food to 

be purchased in whole units, the variables should be 

allowed to take continuous values. The variable type 

is incorrect, but this does not affect the correctness 

of the parameters, objective function, or constraints.

Error in the first step of the 

mathematical reasoning leads to all 

subsequent steps being incorrect.

Optimization ModelingMathematical Reasoning

Figure 1: Illustration of the difference between mathematical reasoning and optimization modeling.

Recently, many general post-training techniques have been successfully adapted to improve the per-
formance of automated optimization modeling. A range of studies, such as ORLM (Huang et al.,
2025), ReSocratic (Yang et al., 2024), Step-Opt (Wu et al., 2025) and OptMATH (Lu et al., 2025),
adopt the paradigm of first synthesizing new data and subsequently fine-tuning models on the gen-
erated data. Another line of research, including LLMOPT (Ethayarajh et al., 2024) and SIRL (Chen
et al., 2023), explores the adaptation of reinforcement learning methods to this domain. For instance,
SIRL introduces partial KL regularization and leverages solver feedback as a reward signal to up-
date the model. A distinct line of methods focuses on test-time scaling (TTS), which effectively
enhances model performance at inference without modifying the underlying parameters. Within
this line, Chain-of-Experts (Xiao et al., 2023) and OptiMUS (AhmadiTeshnizi et al., 2023) explore
multi-agent systems, whereas Autoformulator (Astorga et al., 2024) leverages Monte-Carlo Tree
Search. However, progress in this field remains constrained by two major challenges: (1) High cost
of generating high-quality data. Existing methods rely heavily on seed data and demonstrate limited
generalization beyond the scope of that data. (2) Sparse reward signals. Representative approaches,
such as SIRL, primarily use the correctness of the final outcome as the reward signal, which tends to
be sparse, particularly for difficult problems. However, our insight reveals that LLMs typically make
errors only within a limited subset of optimization modeling formulations—such as those involving
variables, constraints, or objectives—rather than across all components (as illustrated in Fig 1). This
observation suggests that the formulation of these factors exhibits relative independence, which in
turn motivates us to exploit this characteristic in both the data generation and training stages.

In this work, we propose a novel error-driven learning framework—namely, automated optimization
modeling via a localizable error-driven perspective (MIND) to address the aforementioned chal-
lenges. Specifically, MIND is a two-stage framework: (1) Motivated by our key observation of
the unique localizable patterns in error propagation of optimization modeling, we propose an error-
driven reverse data synthesis pipeline to construct a focused, high-density training corpus, MIND-
Train, which captures common error patterns to support the post-training pipeline; (2) To mitigate
the sparse reward problem arising from the limited capacity of the base model on difficult problems,
we introduce a novel Dynamic Supervised Fine-tuning Policy Optimization method (DFPO) that
dynamically corrects wrong responses while generating corrected responses that remain close to the
distribution of the base model’s responses during the training stage. By leveraging this slight dis-
tributional discrepancy, we integrate the supervised fine-tuning (SFT) and reinforcement learning
(RL) in a novel, stable, and effective manner for automated optimization modeling.

Our contributions are summarized as follows: (1) Conceptually, through extensive empirical analy-
sis, we observe a low error ratio in automated optimization modeling, highlighting a key difference
from general mathematical problems. (2) Methodologically, we propose a novel error-driven learn-
ing framework to customize the entire model training framework from data synthesis to post-training
to address two challenges in automated optimization modeling: the sparsity of error-specific prob-
lems and the scarcity of learning signals on difficult problems. (3) Experimentally, we evaluate
MIND on six benchmarks, demonstrating that it outperforms state-of-the-art automated optimiza-
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tion modeling methods. (4) From a data perspective, we open-source a new training dataset, MIND-
Train, and a new benchmark, MIND-Bench, for the automated optimization research community.

2 RELATED WORK

Domain-specific Data Synthesis and Augmentation Recently, data generation methods have fol-
lowed two main directions: data augmentation, which enhances existing samples through transfor-
mations (including data labeling (Khan et al., 2023), data reformation (Dunlap et al., 2023), and
co-annotation (Li et al., 2023a)), and data synthesis, which creates entirely new samples either from
scratch or using generative models. With the advancements of LLMs (Brown et al., 2020), data
synthesis has made significant strides in both the quality and efficiency of synthetic data generation.
General model distillation (Chen et al., 2023; Eldan & Li, 2023; Li et al., 2023b), domain model
distillation (Lewkowycz et al., 2022; Luo et al., 2023), and model self-improvement (Maini et al.,
2024; Wang et al., 2022; Zelikman et al., 2022) have emerged as mainstream data synthesis methods.
Benefiting from verifiable outputs, data synthesis methods in mathematics, such as those in (Zelik-
man et al., 2022; Luo et al., 2023), generate diverse questions, answers, and more rationale corpora,
which are preserved after verification. Similar to general mathematics, optimization modeling can
also be verified using an optimizer solver. There are three common data synthesis and augmentation
methods in this domain. ORLM (Huang et al., 2025) applies data augmentation to transform ex-
isting automated modeling instances and utilizes forward data synthesis to rephrase questions, sub-
sequently employing LLMs to generate corresponding mathematical formulations. Step-Opt (Wu
et al., 2025) employs iterative problem generation, evolving both complexity and scope, to sys-
tematically and effectively augment existing datasets. In contrast, Resocratic (Yang et al., 2024)
proposes a reverse data synthesis approach that rephrases formulations and then leverages LLMs
to generate the corresponding questions. Combining these methods, OptMATH (Lu et al., 2025)
introduces bidirectional data synthesis, which first rephrases mathematical formulations, then uses
LLMs to generate questions, and finally applies LLMs again to produce mathematical formulations.
The two sets of mathematical formulations are then compared to ensure data quality. Although these
data synthesis and augmentation methods have successfully applied general data synthesis and aug-
mentation techniques to the automated modeling domain, they overlook the unique characteristics
of automated optimization modeling data. This gap motivates the development of MIND.

Domain-specific Post-Training The predominant post-training techniques can be broadly catego-
rized into fine-tuning (Ouyang et al., 2022; Lester et al., 2021; Luong et al., 2024), alignment (Kauf-
mann et al., 2024; Bai et al., 2022; Rafailov et al., 2023), and reasoning (Gou et al., 2023; Jaech
et al., 2024; Guo et al., 2025). By leveraging the verifiable answer characteristics in mathematics (Hu
et al., 2025) and code generation (Luo et al., 2025), Reinforcement Learning with Verifiable Rewards
(RLVR) has made significant progress in addressing these complex reasoning problems. The success
of the representative RLVR method Group Relative Policy Optimization (GRPO) (Shao et al., 2024)
has inspired increasing research on improving RLVR methods through techniques such as normal-
ization, clipping, data filtering, and loss aggregation. Compared to Proximal Policy Optimization
(PPO) (Schulman et al., 2017), GRPO (Shao et al., 2024) computes response-level advantages for
prompts within a group, replacing the value function used in PPO to improve training efficiency.
Based on GRPO, Decoupled Clip and Dynamic Sampling Policy Optimization (DAPO) (Yu et al.,
2025) introduce four curated tricks: it decouples the upper and lower clipping ranges to encourage
exploration and prevent entropy collapse, dynamically filters out samples where all responses are
correct or incorrect to improve training efficiency and stability, aggregates losses at the token level
to better handle long responses, and applies special reward shaping to control overlong or truncated
responses. To address the training instability and inefficiency of the RLVR method, Guided Hy-
brid Policy Optimization (GHPO) (Liu et al., 2025) explores the use of hints extracted from the
ground-truth solution during the reinforcement learning process. Unlike these approaches, Value-
model-based Augmented Proximal Policy Optimization (VAPO) (Yue et al., 2025) uses a value-
model-based RLVR method and adds a negative log-likelihood loss for correctly sampled outcomes.
Within the vertical domain of automated optimization modeling, ORLM (Huang et al., 2025), Step-
Opt (Wu et al., 2025), Resocratic (Yang et al., 2024), and OptMATH (Lu et al., 2025) investigate
supervised fine-tuning (SFT), LLMOPT (Jiang et al., 2024) explores Kahneman–Tversky Optimiza-
tion, and SIRL (Chen et al., 2025) examines RLVR. Although these approaches apply general post-
training techniques to automated optimization modeling, they overlook its unique characteristics.
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Building on the progress of these methods, we emphasize that RLVR can effectively bridge the gap
between general-purpose LLMs and the specific requirements of automated optimization modeling
from an error-driven perspective.

3 PRELIMINARIES

3.1 AUTOMATED OPTIMIZATION MODELING

In general, optimization modeling entails a complex chain-of-thought (Wei et al., 2022), including
problem analysis, extraction of key information to build a rationale, formulation of a mathematical
model with variables, objective functions, and constraints, followed by translation into executable
code. An automated optimization modeling instance is defined as a tuple (q, o, a), where q denotes
the natural language description of the question, o represents the corresponding reasoning path con-
sisting of the rationale Z , mathematical formulation MF , and executable code C, and a is the
resulting objective value. Thus, the corresponding training instance is expressed as (q, a∗), where
a∗ denotes the ground-truth objective of q. The problem of automated optimization modeling is to
transform q into o, such that an optimization solver can execute the code C contained in o to compute
the objective value a. The goal is to find a reasoning path o that yields an objective value a match-
ing the ground-truth objective a∗, thereby corresponding to the correct optimization modeling. We
formulate the automated optimization modeling problem as follows:

max
θ

E(q,a∗)∼D,o∼πθ(·|q),a∼BS(o) [R(a, a∗)] , (1)

where D, θ and BS denote the training dataset, the parameters of the target policy πθ and the back-
bone solver, respectively. Given a question q, the policy πθ produces a reasoning path o. The
backbone solver, such as PySCIPOpt, takes the reasoning path o as input, extracts the corresponding
executable code C, and outputs the objective value a. Finally, a is compared with the ground truth
a∗ to compute the reward R.

3.2 PRELIMINARY RESULTS
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Figure 2: Distribution of error ratio across 100
incorrect generation results for Qwen2.5-7B-
Instruct.

The automated optimization modeling task in-
volves generating mathematical formulations
that typically consist of <VARIABLES, CON-
STRAINTS, OBJECTIVES>. To investigate how
and where errors occur, we conducted prelimi-
nary experiments using the base model Qwen-
2.5-7B-Instruct (Yang et al., 2025) on the ORLM
training dataset (Huang et al., 2025), which con-
tains questions paired with their correct math-
ematical formulations. For each question, we
compare the generated code against the ground-
truth mathematical formulation using an LLM-
as-a-judge approach to identify errors in the
variables, constraints, and objectives. We de-
fine the error ratio E of each instance as
Nerr var+Nerr con+Nerr obj

Nvar+Ncon+Nobj
, where N(·) is the

number of the corresponding component. As shown in Figure 2, when errors occur, LLMs tend to in-
troduce only a small fraction of errors rather than producing entirely incorrect formulations in most
cases. The low average error ratio of 0.33 indicates that the variables, constraints, and objectives are
relatively independent, thus limiting the error propagation. Additionally, we observed that certain
types of errors are more likely to occur in specific components of the formulation. For instance,
when modeling variables, LLMs often struggle to determine the appropriate data type (e.g., integer
or continuous). As shown in Figure 1, we illustrate the difference in error propagation between a
general mathematical reasoning question and an optimization modeling question. This observation
motivates us to systematically collect the most frequent error types from existing datasets and then
synthesize new data that explicitly incorporates these common error patterns.
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Seed Questions

Error Pattern Identification

Quality Control

Data

MIND-Train

question answer

Bidirectional 

Validation

LLM code

Reverse Data Synthesis

Multi-Error Synthesis

Code 

Validation

Single-Error Synthesis

Figure 3: Overview of our proposed data synthesis pipeline.

4 METHODOLOGY

4.1 MIND: ERROR-DRIVEN REVERSE DATA SYNTHESIS PIPELINE

Motivated by our observations, we propose an error-driven reverse data synthesis pipeline, as illus-
trated in Figure 3. Our data generation process differs from prior work (Huang et al., 2024; Yang
et al., 2024) in two key aspects: (1) we skip the costly collection of high-quality seed data by directly
leveraging existing optimization modeling datasets as seeds; and (2) we deliberately target common
error patterns that LLMs are prone to, thereby producing synthesized data that is inherently more
challenging and better suited for robust model training. Our synthesis pipeline consists of three
stages, including error pattern identification, reverse data synthesis, and quality control.

Error Pattern Identification Since our pipeline requires LLMs to make errors on the problems,
we sample seed data from existing optimization modeling training datasets, namely OR-Instruct-
Data-3K (Huang et al., 2025) and OptMATH-Train (Lu et al., 2025). We then apply our base model
to perform the reasoning process on this seed data and extract error patterns by comparing the
generated code with the corresponding ground-truth formulations. The error pattern identification
and extraction are accomplished by powerful LLMs such as DeepSeek-R1 (Guo et al., 2025).

Reverse Data Synthesis After identifying the error patterns, we evolve the original questions into
new ones by systematically incorporating these patterns. Since each question may contain multiple
error types, we design two complementary strategies: single-error reverse data synthesis, where the
LLM is instructed to focus on a single error pattern and generate a new problem that deliberately
embeds a trap at that specific point (See example in Figure 4); and multi-error reverse data synthesis,
which seeks to construct more challenging problems containing multiple potential error-prone points
(See example in Figure 7). Notably, LLMs are instructed to output not only the new problem but
also its corresponding modeling solution.

Quality Control To ensure the quality of the generated data, we implement a two-stage quality
control process: (1) Code validation: We employ the target solver to verify the executability of
the generated code and retain only those instances that can be successfully executed and solved
to yield a reasonable solution (e.g., non-zero optimal value). (2) Bidirectional validation: Since
both the problem and its solution are evolved from the original question, we further employ another
powerful LLM to directly solve the newly synthesized problem and compare the obtained optimal
value against the ground-truth value in the synthesized dataset. Only the instances that pass this
bidirectional validation are retained.

We highlight that our reverse data synthesis method can leverage error patterns from different train-
ing datasets or industry scenario problems to generate diverse and challenging data. This approach
significantly reduces the reliance on costly expert annotations for seed data, thereby improving both
scalability and practicality.
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Question Mathematical Formulation Code

A company plans to undertake an investment 

project that requires raising $50 million in funding. 

The company has two funding options: issuing 

bonds and issuing stocks. The cost of issuing 

bonds is $200,000 in interest for every $1 million 

raised, while the cost of issuing stocks is $250,000 

in fees for every $1 million raised.

Due to risk control and equity structure 

considerations, the company wishes to limit the 

funding amounts for bonds and stocks to no more 

than $30 million and $25 million, respectively. At 

the same time, the company wants the funding 

amount for bonds to be at least $10 million to 

ensure liquidity.

The problem is: Given the above conditions, how 

should the company choose its funding options to 

minimize the funding cost?

# Decision Variables

# Objective Function

# Constraints

# Non-negativity and Integer Constraints

- \(B\): The funding raised through bond issuance 

(in millions of dollars).

- \(S\): The funding raised through stock issuance 

(in millions of dollars).

- Minimize the funding cost: \(Z = 0.2B + 0.25S\)

- This function calculates the total cost of issuing 

bonds and stocks, where the cost per million 

dollars of bonds is $200,000 and the cost per 

million dollars of stocks is $250,000.

1. Total funding constraint: \(B + S = 50\)

   - Ensures that the company raises a total of $50 

million in funding.

2. Bond funding upper limit: \(B \leq 30\)

   - Ensures that the funding amount for bonds 

does not exceed $30 million.

3. Stock funding upper limit: \(S \leq 25\)

   - Ensures that the funding amount for stocks 

does not exceed $25 million.

4. Bond funding lower limit: \(B \geq 10\)

   - Ensures that the funding amount for bonds is at 

least $10 million to ensure liquidity.

- \(B, S \geq 0\), ensures that the funding amounts 

are not negative.

import math

import pyscipopt

model = pyscipopt.Model()

Bonds = model.addVar(vtype="INTEGER", 

name="Bonds", lb=10, ub=30)

Stocks = model.addVar(vtype="INTEGER", 

name="Stocks", lb=0, ub=25)

obj = model.addVar('obj')

model.setObjective(obj, "minimize")

model.addCons(obj == 200 * Bonds + 250 * 

Stocks)

model.addCons(Bonds + Stocks == 50)

model.addCons(Bonds >= 10)

model.addCons(Bonds <= 30)

model.addCons(Stocks <= 25)

model.optimize()

if model.getStatus() == "optimal":

    print("Objective: ", model.getObjVal())

else:

    print("The problem could not be solved to 

optimality.")

Error Pattern

- Variables were defined as INTEGER but funding 

in millions can be fractional (should be 

continuous).

- Objective cost coefficients were incorrectly 

scaled by 1000 (used 200 and 250 instead of 0.2 

and 0.25 million-dollar cost per million).

Synthetic Question

A national government is raising $800 million for infrastructure. They can use long-term bonds and short-term bonds. The cost for long-term bonds is $120,000 

per $1 million raised, and for short-term bonds is $90,000 per $1 million raised. The government requires that at least $300 million come from long-term bonds 

and at most $500 million from long-term bonds. The short-term bonds must be at least $100 million. Minimize the total cost.

Figure 4: Example on single-error reverse data synthesis.

4.2 DYNAMIC SUPERVISED FINE-TUNING POLICY OPTIMIZATION

Existing approaches such as DAPO (Yu et al., 2025), SIRL (Chen et al., 2025) and GHPO (Liu et al.,
2025) have sought to address the sparse reward problem on difficult samples through techniques like
dynamic sampling, curated reward design, and adaptive prompt guidance. However, we argue that
these methods still suffer from critical limitations, including insufficient guidance and distribution
shifting on the policy model. To mitigate these challenges, we propose a novel framework termed
Dynamic Supervised Fine-Tuning Policy Optimization (DFPO).

Reward Design We define modeling fidelity as the extent to which a mathematical formulation
accurately represents the optimization problem it is intended to model. It is measured as the distance
between the predicted formulation and the correct formulation, denoted by E (see Section 3.2 for
details). Objective accuracy represents the distance between the formulation’s objective value and
the ground-truth objective value. We hypothesize that, in general, higher fidelity in the mathematical
formulation of an optimization problem is associated with more accurate objective values. Let MFθ

denote the predicted mathematical formulation based on parameters θ, and let MF∗ denote the one
correct mathematical formulation. We introduce a modeling error measure, E(MFθ,MF∗), which
captures discrepancies in variables, constraints, and the objective function. A larger E indicates
greater deviation from the correct mathematical formulation. Our working hypothesis is that opti-
mization modeling error and objective deviation are positively correlated in expectation. Formally,
for two predicted problems MF (1)

θ and MF (2)
θ , we generally expect:

if E
(
MF (1)

θ ,MF∗
)
< E

(
MF (2)

θ ,MF∗
)
,

then E
[∣∣∣Obj

(
MF (1)

θ

)
−Obj(MF∗)

∣∣∣] ≤ E
[∣∣∣Obj

(
MF (2)

θ

)
−Obj(MF∗)

∣∣∣] , (2)

where Obj(MF) denotes the objective value of the mathematical formulation MF . This assump-
tion underpins our reward design: by rewarding the agent based on the degree of modeling errors,
we enable it to perceive the extent of such errors, thereby guiding the solutions to be structurally
closer to the correct mathematical formulation.
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Figure 5: Overview of our proposed post-training method.

Therefore, we present our reward function as follows:

R = α ·Rfid + (1− α) ·Racc,

where α = 0.2, the modeling fidelity reward is defined as Rfid = 1 − |objMIND−objGT|
max(|objMIND|,|objGT|) , and the

accuracy reward as

Racc =

{
1, if the answer is right,
0, otherwise.

In this way, we mitigate the sparse reward problem by introducing a fidelity score, which provides
partial credit when the generated mathematical formulation is close to, but not exactly identical to,
the ground truth—a situation that accounts for the majority of cases.

Dynamic Supervised Fine-Tuning Policy Optimization Standard GRPO and DAPO algorithms
suffer from the sparse reward problem when dealing with difficult tasks, as they either perform
inefficient explorations or discard unsuccessful samples. A straightforward remedy is to replace
an incorrect rollout with the ground-truth solution or to provide partial solutions as hints when all
rollouts fail, thereby alleviating the sparse reward issue. However, we contend that this approach
still faces notable limitations: (1) not all ground-truth labels include the intermediate reasoning pro-
cess, which is essential for fostering reasoning capabilities; and (2) the ground-truth solutions do
not always align with the output distribution of the current policy model, making it difficult for the
model to directly imitate the labeled behavior. We refer to this challenge as distributional shifting.
To overcome these limitations, we introduce Dynamic Supervised Fine-Tuning Policy Optimiza-
tion (DFPO). Unlike existing methods, as illustrated in Figure 5, our approach leverages a stronger
teacher LLM (e.g., DeepSeek-V3 (Liu et al., 2024)) to refine the base model’s incorrect responses,
thereby ensuring that the corrected outputs remain closely aligned with the response distribution of
the base model (see examples in Appendix C.6). To enhance the reliability of this correction pro-
cess, we provide the teacher LLM with access to the ground-truth solution. Once the teacher LLM
generates a corrected response that is both accurate and distributionally consistent with the original
incorrect rollout, this response is incorporated into the training process by computing the SFT loss.
Finally, both the standard RL loss and the SFT loss are jointly utilized to guide the optimization of
the policy model.

LRL(θ) = −E(q,a∗)∼D,{oi}G
i=1∼πθold (·|q)

[
1∑G

i=1 |oi|

G∑
i=1

|oi|∑
t=1

min
(
ri,t(θ)Âi,t,

clip
(
ri,t(θ), 1− εlow, 1 + εhigh

)
Âi,t

)]
(3)

s.t. 0 < |{oi|is equivalent(a∗,BS(oi))}| < γ ×G,

7



378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

LNLL(θ) = −E(q,a∗)∼D,{oi}G
i=1∼πθold (·|q),ôi∼πteacher(·|q,{oi}G

i=1,ogt)

[ |ôi|∑
t=1

log πθ(at | st)

]
(4)

s.t. |{oi|is equivalent(a∗,BS(oi))}| = 0.

LDFPO(θ) = LRL(θ) + β ·
√

nSFT
nRL

· LNLL(θ), (5)

where nSFT and nRL denote the numbers of SFT and RL responses in each training batch.

5 EXPERIMENTS

We conduct extensive experiments to study the effectiveness of our proposed MIND on automated
optimization modeling. We aim to study the following research questions (RQ):

RQ1 Can MIND improve the base model’s performance in automated optimization modeling?

RQ2 How does MIND compare with state-of-the-art automated optimization methods?

RQ3 How effective is the proposed error-driven reverse data synthesis pipeline?

RQ4 How effective is the proposed error-driven DFPO post-training method?

RQ5 Can MIND generalize to out-of-distribution automated optimization modeling scenarios?

5.1 EXPERIMENTAL SETUP

Following existing work (Huang et al., 2025; Chen et al., 2025), Qwen-2.5-7B-Instruct is employed
as our base model. To further align with recent advances, we also adopt Qwen3-8B, a newly released
and widely adopted open-source model, as an additional base model. We construct the MIND-Train
dataset by synthesizing data from the seed datasets OR-Instruct-Data-3K (Huang et al., 2025) and
OptMATH-Train (Lu et al., 2025). We note that Qwen2.5-7B-Instruct is specifically used for the
error pattern identification stage in the data synthesis pipeline. A detailed summary of MIND-Train
is provided in Appendix A.3. Finally, we sample 10,000 instances for training.

Benchmarks & Baselines We conduct comprehensive evaluations on NL4Opt (Ramamonjison
et al., 2023), IndustryOR (Huang et al., 2025), MAMO (Huang et al., 2024) (EasyLP and Com-
plexLP), OptMATH-Bench (Lu et al., 2025), and OptiBench (Yang et al., 2024). Further details on
the benchmarks can be found in Appendix A.1. We compare our method against GPT-4 (Achiam
et al., 2023), OpenAI o3 (Jaech et al., 2024), Deepseek-V3 (Liu et al., 2024), Deepseek-R1 (Guo
et al., 2025), Qwen2.5-7B-Instruct (Yang et al., 2025), Qwen3-8B (Yang et al., 2025), Autoformu-
lator (Astorga et al., 2024), Chain-of-Experts (Xiao et al., 2023), Step-Opt (Wu et al., 2025), Op-
tiMUS (AhmadiTeshnizi et al., 2023), ORLM (Huang et al., 2025), LLMOPT (Jiang et al., 2024),
OptMATH (Lu et al., 2025), and SIRL (Chen et al., 2025).

Evaluation and Metrics Following previous work, we evaluate all methods with pass@1 accuracy
in a zero-shot setting. A solution is deemed correct if the relative error between the objective value
produced by the LLM and the ground-truth objective value is less than 10−6.

5.2 MAIN RESULTS

RQ1: MIND consistently improves automated modeling performance. As shown in Table 1, MIND-
Qwen2.5-7B enhances the base model’s automated modeling performance by approximately 14.3%
across six benchmarks. On relatively simpler benchmarks such as NL4Opt and EasyLP, MIND
yields moderate improvements over already strong baseline scores. In contrast, on more challenging
benchmarks such as IndustryOR, ComplexLP, and OptMATH, the performance gains are significant,
with an average improvement of 24.1%. Moreover, we observe that on OptiBench, which primarily
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consists of tabular data, MIND-Qwen2.5-7B achieves only marginal improvement, likely due to the
limited representation of similar problem types in the training dataset. Furthermore, MIND-Qwen3-
8B enhances its base model’s performance by approximately 31.0%, providing additional evidence
that MIND is effective across different base model architectures.

Table 1: Performance comparison of models on benchmarks (pass@1↑). Methods marked with *
indicate that their results are taken from the original or reproduced papers.

Category Methods NL4Opt IndustryOR EasyLP ComplexLP OptMATH OptiBench Macro AVG

Proprietary GPT-4* 89.0% 33.0% 87.3% 49.3% 16.6% 68.6% 57.4%
OpenAI o3* 69.4% 44.0% 77.1% 51.2% 44.0% 58.6% 57.4%

Open-Source

Deepseek-V3* 95.9% 37.0% 88.3% 50.2% 44.0% 71.6% 64.5%
Deepseek-R1* 82.4% 45.0% 87.2% 67.9% 40.4% 66.4% 61.9%
Qwen2.5-7B-Instruct 89.0% 24.0% 89.4% 31.5% 3.0% 53.2% 48.4%
Qwen3-8B 72.2% 14.0% 76.8% 17.2% 7.2% 36.5% 37.3%

TTS-based
Autoformulator* 92.6% 48.0% - 62.3% - - -
Chain-of-Experts* 64.2% - - 40.2% - - -
OptiMUS* 78.8% 31.0% 77.0% 43.6% 20.2% 45.8% 49.4%

Fine-Tuning

ORLM-Llama3-8B* 85.7% 24.0% 82.3% 37.4% 2.6% 51.1% 47.2%
Step-Opt-Llama3-8B* 84.5% 36.4% 85.3% 61.6% - - -
LLMOPT-Qwen2.5-14B* 80.3% 29.0% 89.5% 44.1% 12.5% 53.8% 51.1%
OptMATH-Qwen2.5-7B* 94.7% 20.0% 86.5% 51.2% 24.4% 57.9% 55.8%
OptMATH-Qwen2.5-32B* 95.9% 31.0% 89.9% 54.1% 34.7% 66.1% 62.0%

RLVR SIRL-Qwen2.5-7B* 96.3% 33.0% 91.7% 51.7% 30.5% 58.0% 60.2%
SIRL-Qwen2.5-32B* 98.0% 42.0% 94.6% 61.1% 45.8% 67.4% 68.2%

Ours MIND-Qwen2.5-7B 96.7% 34.0% 92.2% 60.1% 36.7% 56.7% 62.7%
MIND-Qwen3-8B 95.1% 42.0% 92.7% 76.8% 41.0% 62.0% 68.3%

RQ2: MIND outperforms state-of-the-art automated modeling methods. We compare MIND-
Qwen2.5-7B and MIND-Qwen3-8B against a range of representative approaches, including propri-
etary models, agent-based frameworks, and training-based methods. As reported in Table 1, MIND-
Qwen2.5-7B achieves superior average performance compared with all baseline models of compa-
rable parameter size. In particular, relative to prior training-based approaches, MIND-Qwen2.5-
7B demonstrates remarkable improvements on more challenging benchmarks such as IndustryOR,
ComplexLP, and OptMATH. These results highlight the effectiveness of our reverse data synthesis
pipeline and our proposed DFPO method. Furthermore, we observe that MIND-Qwen3-8B achieves
competitive performance across all baselines, including larger models such as Deepseek-V3, GPT-4,
OptMATH-Qwen2.5-32B, and SIRL-Qwen2.5-32B.

5.3 ABLATION STUDY
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Figure 6: Ablation study of data synthesis meth-
ods across six benchmarks.

Data Synthesis Framework (RQ3) To as-
sess the effectiveness of our data synthe-
sis approach, we employ DAPO (Yu et al.,
2025) to train Qwen-2.5-7B-Instruct from
scratch on two datasets: OR-Instruct-Data-3K
(3,000 instances) and MIND-3K (3,000 in-
stances), where MIND-3K is generated from
OR-Instruct-Data-3K using our proposed re-
verse data synthesis technique. As illustrated
in Figure6, the model trained on MIND-3K
achieves consistently higher accuracy gains as
training progresses, indicating that our error-
driven reverse data synthesis method yields su-
perior sample efficiency. Furthermore, Table 2
reports a detailed performance comparison af-
ter seven training epochs across six benchmarks, showing that the model trained on MIND-3K
outperforms its counterpart trained on the majority of benchmarks. (See the details of the ablation
study on single-error and multi-error strategies in Appendix C.4).
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Table 2: Ablation results of the data synthesis pipeline on Qwen2.5-7B-Instruct (pass@1↑).

Data NL4OPT IndustryOR EasyLP ComplexLP OptMATH OptiBench Macro AVG
OR-Instruct-Data-3K 93.9% 25.0% 90.7% 35.0% 10.8% 54.4% 51.6%

MIND-3K 94.3% 30.0% 90.8% 39.9% 7.8% 55.5% 53.1%

Post-Training Framework (RQ4) To verify the effectiveness of DFPO, we compare it with
DAPO, SFT, and SFT+GRPO under our reward design. Both methods are trained on the same
dataset of 10,000 instances (Table 1) and use the same chain-of-thought prompt. As shown in Ta-
ble 3, DFPO outperforms DAPO by about 1.9% in macro-average accuracy across six benchmarks,
with a notable gain of 10.2% on OptMATH. This demonstrates that DFPO provides more effective
learning signals for difficult problems. We highlight that while DAPO receives sufficient learning
signals from easy problems through reinforcement learning, it receives limited signals from diffi-
cult problems. In contrast, DFPO leverages dynamic SFT techniques to capture additional learning
signals from difficult problems, as evidenced by its improvement over DAPO in OptMATH. Further-
more, we observe that applying SFT alone on a relatively small training dataset (10,000 instances)
does not yield significant performance gains. However, when used as a warm start for GRPO, the
model achieves notable improvement, though it still lags behind DFPO on challenging benchmarks.

Table 3: Ablation results for post-training method on Qwen2.5-7B-Instruct (pass@1↑).

Methods NL4OPT IndustryOR EasyLP ComplexLP OptMATH OptiBench Macro AVG
DFPO 96.7% 34.0% 92.2% 60.1% 36.7% 56.7% 62.7%
DAPO 96.7% 33.0% 92.5% 58.6% 26.5% 57.5% 60.8%
SFT 92.2% 31.0% 85.4% 37.4% 9.6% 55.9% 51.9%

SFT+GRPO 93.9% 34.0% 90.2% 54.7% 28.3% 57.0% 59.7%

5.4 GENERALIZATION STUDY (RQ5)

In this paper, we introduce MIND-Bench, a benchmark that comprises 69 carefully curated op-
erations research problems drawn from industry scenarios and textbooks (see Appendix A.4 for
details). As shown in Table 4, MIND-Qwen2.5-7B demonstrates superior generalization on MIND-
Bench compared with the state-of-the-art post-training model SIRL-Qwen2.5-7B, although it still
lags behind the 671B-parameter foundation models Deepseek-V3 and Deepseek-R1. Furthermore,
MIND-Qwen3-8B is competitive with Deepseek-V3, Deepseek-R1, and SIRL-Qwen2.5-32B, all of
which have larger parameter sizes.

Table 4: Performance comparison of our proposed MIND and baselines on MIND-BENCH.

Deepseek-V3 Deepseek-R1 Qwen2.5-7B-Instruct Qwen3-8B
66.7% 75.4% 29.0% 27.5%

SIRL-Qwen2.5-7B SIRL-Qwen2.5-32B MIND-Qwen2.5-7B MIND-Qwen3-8B
46.4% 65.2% 50.7% 68.1%

6 CONCLUSION

In this paper, we empirically show that modeling errors are often localized within specific semantic
segments. Motivated by this finding, we propose a novel error-driven learning framework, which
customizes the whole model training framework from data synthesis to post-training. Our study
highlights two key insights: (1) Data synthesis: Domain-specific LLM performance depends heavily
on the diversity, quality, and quantity of training data. (2) Post-training: Due to the complexity of
automated optimization modeling tasks, LLMs often struggle to receive sufficient learning signals
through reinforcement learning alone on difficult problems. Together, these insights advance the
understanding and development of LLMs for automated optimization modeling.
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A DATASET

A.1 BENCHMARK DATASET

NL4Opt (Ramamonjison et al., 2023) NL4OPT contains 245 high-quality questions, validated
by (Lu et al., 2025). It includes only linear programming (LP) problems across various contexts.
As the first curated dataset derived from the NL4OPT Competition, NL4OPT is considered an easy
benchmark, featuring simple constraints and scenarios.

MAMO (Huang et al., 2024) MAMO consist of 642 high-quality questions in EasyLP and 203
high-quality questions in ComplexLP, as revised by (Chen et al., 2025). It focuses on linear pro-
gramming (LP) and mixed-integer linear programming (MILP) problems. Compared with other
benchmarks, MAMO primarily emphasizes LLM modeling skills on MILP, which constitutes the
majority of real-world optimization problems.

IndustryOR (Huang et al., 2025) IndustryOR contains 100 questions collected from real-world
optimization scenarios across various sectors, as verified by (Chen et al., 2025). It includes inte-
ger programming (IP), linear programming (LP), mixed-integer linear programming (MILP), and
nonlinear programming (NLP), and other specialized formulations. Unlike other benchmarks, In-
dustryOR specifically targets industrial applications, capturing the complexity of real-world opti-
mization problems.
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OptiBench (Yang et al., 2024) OptiBench contains 605 questions collected from textbooks (Bert-
simas & Tsitsiklis, 1997; Conforti et al., 2014; Wolsey, 2020). It includes integer programming (IP),
linear programming (LP), mixed-integer linear programming (MILP), and nonlinear programming
(NLP). Compared with other benchmarks, OptiBench features extensive tabular data, enabling the
evaluation of LLMs’ ability to understand and reason with tables.

OptMATH-Bench (Lu et al., 2025) OptMATH-Bench contains 166 carefully curated questions
constructed by human experts. It includes integer programming (IP), linear programming (LP),
mixed-integer linear programming (MILP), nonlinear programming (NLP), and second-order cone
programming (SOCP). Compared with other benchmarks, OptMATH-Bench features longer natural
language contexts and more complex constraints, enabling the evaluation of LLMs’ long-context
optimization modeling capacity.

OptMATH (Lu et al., 2025) and SIRL (Chen et al., 2025) highlight that portions of the problem
statements in benchmarks contain ambiguities, making it difficult for both LLMs and human experts
to determine whether a variable should be treated as integer or continuous, depending on the practi-
cal context. Following their approach, we also adopt a rule-based substitution method. We consider
a case as passed if the optimal solution, whether derived under the integer or continuous assump-
tion, matches the ground truth, i.e., the objective absolute difference between the LLM-generated
mathematical formulation and the ground-truth formulation is less than 10−6.

A.2 SEED DATASET

OR-Instruct-Data-3K OR-Instruct-Data-3K, released by ORLM, contains 3,000 training in-
stances (a subset of the full 30,000 ORLM training examples), each including the question,
mathematical formulation, and code.

OptMATH-Train OptMATH-Train, released by OptMATH, contains 200,000 training instances,
each including the question, mathematical formulation, and code.

A.3 MIND-TRAIN DATASET

MIND-Train Statistics As shown in Table 5, we provide statistical information for MIND-Train,
summarizing the question examples across three stages of the reverse data synthesis pipeline. We
present a multi-error reverse data synthesis example in Figure7, complementing the single-error
reverse data synthesis example (see Figure 4). We note that error pattern 1 comes from Figure 7,
while error pattern 2 comes from Figure 4.

Table 5: MIND-Train dataset construction summary. The single-error strategy uses DeepSeek-R1-
0528, while the multi-error strategy uses DeepSeek-V3.1-Think.

Synthesis Category Seed Data Initial Count Code Bidirectional Passed Rate
Count Rate Count Rate

Single-Error ORLM 5033 5016 99.66% 2007 40.01% 39.88%
Multi-Error ORLM 2977 2910 97.75% 1795 61.68% 60.30%
Single-Error OptMATH 9676 5950 61.49% 2961 49.76% 30.60%
Multi-Error OptMATH 2850 2102 73.75% 1494 71.07% 52.42%
Multi-Error ALL 2473 1843 74.52% 1406 76.29% 56.85%

Total - 23009 17821 77.45% 9663 54.22% 42.00%

Word Cloud Analysis As shown in Figure 8, the word cloud highlights diverse automatic opti-
mization modeling topics (e.g. hospital, transportation, machine, warehouse, surgery, facility, en-
ergy, product).

Gerund Pairs Analysis As shown in Figure 9, we use en core web sm (AI, 2023) to extract
gerund pairs. The top 50 frequent gerund pairs represent typical optimization modeling patterns.
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Question Mathematical Formulation Code

A tourist attraction has 5 key equipment that needs 

regular maintenance, with equipment codes E1, E2, 

E3, E4, and E5. Each equipment's maintenance 

requires a certain amount of time and cost, as 

shown in the table below:

# Decision Variables

# Objective Function

# Constraints

# Non-negativity and Integer Constraints

-  \(x_{ij}\): If equipment \(i\) is maintained on 

day \(j\), then \(x_{ij} = 1\), otherwise \(x_{ij} = 

0\). Where \(i\) represents the equipment \(E1, E2, 

E3, E4, E5\), and \(j\) represents the days \(1, 2, 3, 

4, 5\).

- Minimize the total maintenance cost: \[Z = 

1000x_{E1j} + 1500x_{E2j} + 2000x_{E3j} + 

800x_{E4j} + 1200x_{E5j}\]

  - \(j\) represents the day of maintenance, \(i\) 

represents the equipment code.

1. Each equipment is maintained once within 5 

days: \[\sum_{j=1}^{5} x_{ij} = 1, \forall i\]

   - This ensures that each equipment is maintained 

at least once within 5 days.

2. At most one equipment is maintained per day: 

\[\sum_{i} x_{ij} \leq 1, \forall j\]

   - This ensures that at most one equipment is 

maintained on any given day.

3. Maintenance time does not exceed the working 

hours per day: \[2x_{E1j} + 3x_{E2j} + 4x_{E3j} 

+ 2x_{E4j} + 3x_{E5j} \leq 8, \forall j\]

   - This ensures that the maintenance time per day 

does not exceed 8 hours.

- \(x_{ij} \in \{0, 1\}\), for all equipment \(i\) and 

days \(j\).

import pyscipopt

model = pyscipopt.Model()

E1 = model.addVar(vtype="I", lb=0, ub=5)

E2 = model.addVar(vtype="I", lb=0, ub=5)

E3 = model.addVar(vtype="I", lb=0, ub=5)

E4 = model.addVar(vtype="I", lb=0, ub=5)

E5 = model.addVar(vtype="I", lb=0, ub=5)

obj = model.addVar(vtype="INTEGER", 

name="obj")

model.setObjective(obj, "minimize")

model.addCons(obj == 1000*E1 + 1500*E2 + 

2000*E3 + 800*E4 + 1200*E5)

model.addCons(E1 + E2 + E3 + E4 + E5 <= 5)

model.addCons(E1 + E2 + E3 + E4 + E5 >= 5)

model.addCons(E1 + E2 + E3 + E4 + E5 == 5)

model.addCons(E1 <= 5)

model.addCons(E2 <= 5)

model.addCons(E3 <= 5)

model.addCons(E4 <= 5)

model.addCons(E5 <= 5)

model.optimize()

if model.getStatus() == "optimal":

    print("Objective: ", model.getObjVal())

else:

    print("The problem could not be solved to 

optimality.")

Error Pattern 1
- Error pattern: Incorrect variable representation 

and misinterpretation of decision variables in 

scheduling problems.

Synthetic Question

A construction company must complete five projects (P1 to P5) over the next five years. Each project requires capital (in $ million) 
and engineers, and must be assigned to exactly one year. The data is: Project capital requirements: P1: 2.5, P2: 3.0, P3: 4.0, P4: 
2.0, P5: 3.5; Project engineer requirements: P1: 3, P2: 4, P3: 5, P4: 2, P5: 4; Project costs (in $ million): P1: 1.0, P2: 1.5, P3: 2.0, P4: 
0.8, P5: 1.2; Yearly capital availability (in $ million): Year1: 10, Year2: 12, Year3: 15, Year4: 15, Year5: 10; Yearly engineer 
availability: Year1: 10, Year2: 12, Year3: 15, Year4: 15, Year5: 10. Additionally, there is a fixed cost of $50,000 (which is 0.05 million 
dollars) per engineer used in a year. The total cost is the sum of the project costs and the yearly engineer costs. The goal is to 
assign each project to a year to minimize the total cost without exceeding the capital and engineer availabilities in any year.

# Binary Constraints

Error Pattern 2

- Objective cost 

coefficients were 

incorrectly scaled by 

1000 (used 200 and 250 

instead of 0.2 and 0.25 

million-dollar cost per 

million).

Equipment 
Code 

Maintenance 
Time (hours)

Maintenance 
Cost (yuan)

E1 2 1000

E2 3 1500

E3 4 2000

E4 2 800

E5 3 1200

The maintenance of each equipment affects the 

normal operation of the tourist attraction, so it is 

necessary to minimize the maintenance cost while 

ensuring that all equipment is maintained within 5 

days. The maintenance personnel of the attraction 

work 8 hours per day and can only maintain one 

equipment per day. How should the maintenance 

order and time of the equipment be arranged to 

minimize the total maintenance cost while 

ensuring that all equipment is maintained within 5 

days?

Figure 7: Example on multi-error reverse data synthesis.

Figure 8: The statistical word cloud of MIND-Train.
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Figure 9: Top 50 gerund pairs of questions in MIND-Train.

Length Distribution Analysis As shown in Figure 10, we examine the word length distributions
of the prompts and responses in the training dataset (10,000 instances). The prompts exhibit an
average length of 392 words, with most within the 200–600 word range. In comparison, responses
are substantially longer, averaging 790 words, with the majority falling between 500 and 1,200
words.

To increase the diversity of the training dataset, we sample 5,000 instances from MIND-Train, 1,000
instances from OR-Instruct-Data-3K, and 4,000 instances from OptMATH-Train. In total, we use
10,000 instances to train the Qwen2.5-7B-Instruct.

A.4 MIND-BENCH DATASET

To evaluate the generalization ability of LLMs, we carefully curated 69 questions derived from
textbooks or industry scenarios (See details in Figure 11). These questions originate from out-of-
distribution data sources that differ from those of other public benchmarks and training datasets.
Examples of the questions are shown in Figure 12. For questions in MIND-Bench, there is no
ambiguity regarding variable types, and we do not use a rule-based substitution method.
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Figure 10: Length distribution of the training dataset for MIND-Qwen2.5-7B.
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Figure 11: Scenario statistics of MIND-Bench.
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Question 1 Question 2
A company is planning its production schedule 

over the next six months (it is currently the end of 

month 2). The demand (in units) for its product 

over that timescale is as shown below:\n\n|Month 

|3 |4 |5 |6| 7| 8|\n|:--:|:--:|:--:|:--:|:--:|:--:|:--

:|\n|Demand |5000| 6000| 6500 |7000| 8000| 

9500|\n\nThe company currently has in stock: 

1000 units which were produced in month 2; 2000 

units which were produced in month 1; 500 units 

which were produced in month 0.\n\nThe 

company can only produce up to 8000 units per 

month and the managing director has stated that 

stocks must be built up to help meet demand in 

months 5, 6, 7 and 8. Each unit produced costs $15 

and the cost of holding stock is estimated to be 

$0.75 per unit per month (based upon the stock 

held at the beginning of each month).\n\nThe 

company has a major problem with deterioration 

of stock in that the stock inspection which takes 

place at the end of each month regularly identifies 

ruined stock (costing the company $25 per unit). It 

is estimated that, on average, the stock inspection 

at the end of month t will show that 11% of the 

units in stock which were produced in month t are 

ruined; 47% of the units in stock which were 

produced in month t-1 are ruined; 100% of the 

units in stock which were produced in month t-2 

are ruined. The stock inspection for month 2 is just 

about to take place.\n\nThe company wants a 

production plan for the next six months that avoids 

stockouts. Formulate their problem as a linear 

program.\n\nBecause of the stock deterioration 

problem the managing director is thinking of 

directing that customers should always be supplied 

with the oldest stock available. How would this 

affect your formulation of the problem?

Question 3

Question 4

Chip Green is the head groundskeeper at Birdie 

Valley Golf Club. For the mix of grass for the golf 

course, Chip has decided that the best fertilizer 

would be a 10-8-12 mixture. (Fertilizer is defined 

by three values: a, b and c where a is the 

percentage of nitrogen, b is the percentage of 

phosphorus, and c is the percentage of potash in 

the fertilizer. The remaining material is inert 

matter.) Chip can buy a 10-8-12 mix of fertilizer 

for $21.75 per 100 pounds, but there are other 

fertilizers on the market at a variety of prices. The 

chemical content of [nitrogen, phosphorus, potash] 

and prices are given below. Fertilizer 1: [10,8,12] 

for $21.75 per 100 pounds; Fertilizer 2: [8,11,15] 

for $23.75 per 100 pounds; Fertilizer 3: [12,7,12] 

for $22.00 per 100 pounds; Fertilizer 4: [10,10,10] 

for $19.50 per 100 pounds; Fertilizer 5: [15,10,6] 

for $18.50 per 100 pounds;. Chip would like to 

determine whether or not he could buy several 

fertilizers and mix them together to obtain a 10-8-

12 mixture at a lower cost than $21.75 per 100 

pounds. Recognizing that it might be impossible to 

obtain an exact 10-8-12 mix from the fertilizers, 

Chip is willing to accept chemical percentages of 

at least the target amounts, but no more than 0.5% 

above them (so the nitrogen level should be 

between 10% and 10.5%; the phosphorus level 

should be between 8% and 8.5%; the potash level 

should be between 12% and 12.5%).

Question 5
Dorian Auto has a $20,000 advertising budget. 

Dorian can purchase full-page ads in two 

magazines: Inside Jocks (IJ) and Family Square 

(FS). An exposure occurs when a person reads a 

Dorian Auto ad for the first time. The number of 

exposures generated by each ad in IJ is as follows: 

ads 1-6, 10,000 exposures; ads 7-10, 3,000 

exposures; ads 11-15, 2,500 exposures; ads 16+, 0 

exposures. For example, 8 ads in IJ would 

generate 6(10,000) + 2(3,000) = 66,000 exposures. 

The number of exposures generated by each ad in 

FS is as follows: ads 1-4, 8,000 exposures; ads 5-

12, 6,000 exposures; ads 13-15, 2,000 exposures; 

ads 16+, 0 exposures. Thus, 13 ads in FS would 

generate 4(8,000) + 8(6,000) + 1(2,000) = 82,000 

exposures. Each full-page ad in either magazine 

costs $1,000. Assume there is no overlap in the 

readership of the two magazines. Formulate an IP 

to maximize the number of exposures that Dorian 

can obtain with limited advertising funds.

Question 6

A company is considering opening warehouses in 

four cities: New York, Los Angeles, Chicago, and 

Atlanta. Each warehouse can ship 100 units per 

week. The weekly fixed cost of keeping each 

warehouse open is $400 for New York, $500 for 

Los Angeles, $300 for Chicago, and $150 for 

Atlanta. Region 1 of the country requires 80 units 

per week, region 2 requires 70 units per week, and 

region 3 requires 40 units per week. The costs 

(including production and shipping costs) of 

sending one unit from a plant to a region are 

shown in the table below. We want to meet weekly 

demands at minimum cost, subject to the 

preceding information and the following 

restrictions: 1. If the New York warehouse is 

opened, then the Los Angeles warehouse must be 

opened. 2. At most two warehouses can be opened. 

3. Either the Atlanta or the Los Angeles warehouse 

must be opened. Formulate an IP that can be used 

to minimize the weekly costs of meeting 

demand.\n\n|  |    To ($)    |\n|:---:|:---:|:---:|:---:|\n| 

From | Region 1 | Region 2 | Region 3 |\n| New 

York | 20 | 40 | 50 |\n| Los Angeles | 48 | 15 | 26 |\n| 

Chicago | 26 | 35 | 18 |\n| Atlanta | 24 | 50 | 35 |\n\n

Question 7

A chocolate maker has contracted to operate a 

small candy counter in a fashionable store. To start 

with, the selection of offerings will be 

intentionally limited. The counter will offer a 

regular mix of candy made up of equal parts of 

cashews, raisins, caramels, and chocolates, and a 

deluxe mix that is one-half cashews and one-half 

chocolates, which will be sold in one-pound boxes. 

In addition, the candy counter will offer individual 

one-pound boxes of cashews, raisins, caramels, 

and chocolates. A major attraction of the candy 

counter is that all candies are made fresh at the 

counter. However, storage space for supplies and 

ingredients is limited. Bins are available that can 

hold the amounts shown in the table.\n\n| 

Ingredient | Capacity (pounds per day) |\n|:---:|:---

:|\n| Cashews | 120 |\n| Raisins | 200 |\n| Caramels | 

100 |\n| Chocolates | 160 |\n\nIn order to present a 

good image and to encourage purchases, the 

counter will make at least 20 boxes of each type of 

product each day. Any leftover boxes at the end of 

the day will be removed and given to a nearby 

nursing home for goodwill. The profit per box for 

the various items has been determined as follows. 

\n\n| Item | Profit per Box |\n|:---:|:---:|\n| Regular | 

$0.80 |\n| Deluxe | $0.90 |\n| Cashews | $0.70 |\n| 

Raisins | $0.60 |\n| Caramels | $0.50 |\n| Chocolates 

| $0.75 |\n\nSolve for the optimal values of the 

decision variables and the maximum profit.

Question 8

International Wool Company operates a large farm 

on which sheep are raised. The farm manager 

determined that for the sheep to grow in the 

desired fashion, they need at least minimum 

amounts of four nutrients (the nutrients are 

nontoxic so the sheep can consume more than the 

minimum without harm). The manager is 

considering three different grains to feed the sheep. 

The table below lists the number of units of each 

nutrient in each pound of grain, the minimum 

daily requirements of each nutrient for each sheep, 

and the cost of each grain. The manager believes 

that as long as a sheep receives the minimum daily 

amount of each nutrient, it will be healthy and 

produce a standard amount of wool. The manager 

wants to raise the sheep at minimum cost.\n\n|  | 

Grain 1 | Grain 2 | Grain 3 | Minimum Daily 

Requirement (units) |\n|:---:|:---:|:---:|:---:|:---:|\n| 

Nutrient A | 20 | 30 | 70 | 110 |\n| Nutrient B | 10 | 

10 | 0 | 18 |\n| Nutrient C | 50 | 30 | 0 | 90 |\n| 

Nutrient D | 6 | 2.5 | 10 | 14 |\n| Cost ($/lb) | 41 | 36 

| 96 |  |\n\n

Question 9

There are six cities (cities 1-6) in Kilroy County. 

The county must determine where to build fire 

stations. The county wants to build the minimum 

number of fire stations needed to ensure that at 

least one fire station is within 15 minutes (driving 

time) of each city. The times (in minutes) required 

to drive between the cities in Kilroy County are 

shown in the Table: Time Required to Travel 

between Cities in Kilroy County, From City 1 to 

ctiy 1-6 are 0 10 20 30 30 20; From City 2 to ctiy 

1-6 are 10 0 25 35 20 10;  From City 3 to ctiy 1-6 

are 20 25 0 15 30 20; From City 4 to ctiy 1-6 are 

30 35 15 0 15 25; From City 5 to ctiy 1-6 are 30 

20 30 15 0 14; From City 5 to ctiy 1-6 are 20 10 

20 25 14 0. Formulate an IP that will tell Kilroy 

how many fire stations should be built and where 

they should be located.

A client asks his stockbroker to invest $100,000 

for maximum annual income, subject to the three 

conditions: Spread the investment over no more 

than three different stocks. Put no more than 40 

percent of the money into any one stock. Put a 

minimum of $10,000 into an oil stock. The broker 

has identified three stocks for investment. Their 

estimated annual returns per share and price per 

share are shown in the following table: Stock, 

Price and annual returns are, (Oil, $120, $11), 

(Auto, $52, $4), (Pharmaceutical, $18, $2).

The transportation cost per unit in shipping a 

product from a factory (A or B) to a warehouse 

(W1 or W2) is shown below.\n\n|  | W1 | W2 |\n|:--

-:|:---:|:---:|\n| A | 4 | 5 |\n| B | 6 | 3 |\n\nFor example 

sending one unit from Factory A to warehouse W2 

costs $5. In the forthcoming month it is estimated 

that production capacity at A and B is 2500 and 

3000 units respectively. Demand at W1 and W2 is 

estimated to be 4000 and 1500 units 

respectively.\nFor a variety of logistical reasons 

the amount shipped from factory A to warehouse 

W1 must be within 500 units of the amount 

shipped from factory B to warehouse W1. 

Formulate the problem of determine the optimal 

transportation schedule that minimises the total 

transportation cost as a linear program.

Figure 12: Problem examples from MIND-Bench.
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B PROMPT TEMPLATES

B.1 PROMPT TEMPLATE FOR PRELIMINARY RESULTS

Prompt template used for preliminary results

You will be given:
- A natural language description of an optimization problem.
- A correct mathematical formulation for the optimization problem.
- PySCIPOpt code that may contain errors for the optimization problem.
“‘
{question}
”’
is the natural language description of an optimization problem.
“‘
{mathematical formulation}
”’
is the correct mathematical formulation for the optimization problem.
“‘
{python}
“‘
is the PySCIPOpt code that may contain errors for the optimization problem.
We define a mathematical formulation size function S(·) as follows:

S(MF) = Nvar +Nobj +Ncont, (6)

where Nvar, Nobj, and Ncont denote the numbers of variables, objectives (always set to 1),
and constraints, respectively.
Your task is to analyze the consistency between the correct formulation and its implementa-
tion in PySCIPOpt.

Step 1: Using the correct mathematical formulation MF∗ as a reference, first com-
pute the size of MF∗, S(MF∗), by summing the sizes of all core expressions (variables,
objectives, and constraints) in MF∗.

Step 2: Identify which components of MF∗ are incorrectly implemented in the
PySCIPOpt code. When computing the size of the corresponding mathematical formula-
tion, S(MFerr), focus only on the correctness of each component’s logic, ignoring other
errors that do not affect the logical structure. Sum the sizes of these logically incorrect or
missing components to obtain S(MFerr).

Step 3: Calculate the error ratio E as

E =
S(MFerr)

S(MF∗)
.

Provide detailed, step-by-step reasoning for how S(MF∗) is computed from the correct
formulation, how S(MFerr) is determined based on missing or incorrect components, and
report the final numeric value of the error ratio.

B.2 PROMPT TEMPLATES FOR DATA SYNTHESIS

We use Deepseek-R1 for the error-driven reverse data synthesis pipeline.
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Prompt template used for single-error data synthesis

You are a data synthesis expert in operations research. You will be given:
- A natural language description of an optimization problem.
- A correct mathematical formulation of the optimization problem.
- PySCIPOpt code that may contain errors for the optimization problem.
“‘{question}”’ is the natural language description of an optimization problem.
“‘{mathematical formulation}”’ is the correct mathematical formulation of the op-
timization problem
“‘{python}”’ is the PySCIPOpt code that may contain errors for the optimization problem.
Your task:
1. Carefully compare the PySCIPOpt code against both the natural language description and
the correct mathematical formulation to detect all errors. These errors could include missing
constraints, incorrect coefficients in the objective function or constraints, improper variable
bounds or types (e.g., continuous instead of integer), a wrong objective direction (e.g., max-
imization instead of minimization), or other logical errors in translating the mathematical
formulation into PySCIPOpt code.
2. Identify the specific portions of the PySCIPOpt code that are erroneous and label them
as Error Code Portion. Also, identify and label the parts of the PySCIPOpt code that
correctly implement the problem’s requirements as Correct Code Portion. Then, for
each Error Code Portion, provide the corrected PySCIPOpt code and label it as the
Corrected Code Portion. From this corrected code, explicitly define the underly-
ing modeling logic or pattern that was initially misapplied; this will be referred to as the
Corrected Modeling Pattern.
3. Based on the Corrected Modeling Pattern, generate as many distinct additional
problem instances as reasonably possible. These instances should showcase variety, cov-
ering different types of optimization problems, such as assignment and resource allocation
optimization, cutting and packing optimization, domain-specific optimization (e.g., specific
to a particular industry), facility location optimization, financial and revenue optimization,
network flow optimization, production planning and scheduling optimization, or transporta-
tion and routing optimization. Similarly, explore diverse application scenarios, including
agriculture, energy, health, retail, environment, education, financial services, transportation,
public utilities, manufacturing, software, construction, legal, customer service, entertain-
ment, and others. Each generated instance must include a natural language description (in
plain English), its complete mathematical formulation, and the corresponding PySCIPOpt
code.
4. You must ensure that the additional problem instances generated in the previous step ad-
here to a critical principle of uniqueness and focused reusability. Specifically, while each new
problem instance must incorporate an implementation that is analogous in its core logic to
the Corrected Modeling Pattern (this pattern can be adapted, for instance, by using
a different number of variables, different coefficients suitable for the new problem within that
pattern, or a moderately more complex variant of the same core idea), all other components
of each new problem instance must be fundamentally different and more complex (more vari-
ables, more constraints, more advanced modeling strategies). This means the objective func-
tion, other constraints, overall problem structure, and variable sets not directly involved in the
Corrected Modeling Patternmust not resemble the Correct Code Portion of
the original PySCIPOpt code or the details of the original natural language description and
correct mathematical formulation. This ensures that the additional problem instances are
truly distinct from the original optimization problem in both their formulation and imple-
mentation, beyond the shared corrected modeling pattern.
5. Present the output as a JSON list of objects, each with fields “question” (problem descrip-
tion) and “code solution” (PySCIPOpt code).
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Prompt template used for multi-error data synthesis

You are a data synthesis expert in operations research. You will be given two automated
optimization modeling problems (Problem A and Problem B), each composed of three com-
ponents:
- A natural language description of an optimization problem,
- A correct mathematical formulation of the optimization problem,
- PySCIPOpt code that may contain errors for the optimization problem.
You need to identify the errors in the two automated optimization modeling problems and
perform data synthesis to construct more challenging instances compared to the original
problems. You can follow the steps below to do this:
1. Carefully compare the PySCIPOpt code for Problem A and Problem B against their
corresponding natural language descriptions and mathematical formulations. Identify and
document all discrepancies, including but not limited to: missing constraints, incorrect co-
efficients in the objective function or constraints, improper variable bounds or types (e.g.,
continuous instead of integer), a wrong objective direction (e.g., maximization instead of
minimization), or other logical errors in translating the mathematical model into PySCIPOpt
code.
2. Identify the specific portions of the PySCIPOpt code that are erroneous and la-
bel them as Error Code Portion for Problem A and Problem B. Also, identify
and label the parts of the PySCIPOpt code that correctly implement the problem’s re-
quirements as Correct Code Portion for Problem A and Problem B. Then, for
each Error Code Portion, provide the corrected PySCIPOpt code, labeling it as the
Corrected Code Portion for Problem A and Problem B. From this corrected code,
explicitly define the underlying modeling logic or pattern that was initially misapplied; this
will be referred to as the Corrected Modeling Pattern for Problem A and Problem
B.
3. Based on the Corrected Modeling Pattern for Problem A and Problem
B, you should generate new, more complex instances that simultaneously include the
Corrected Modeling Pattern of both Problem A and Problem B within a single
instance. These instances should showcase variety, covering different optimization problem
types such as assignment and resource allocation optimization, cutting and packing opti-
mization, domain-specific optimization (e.g., specific to a particular industry), facility loca-
tion optimization, financial and revenue optimization, network flow optimization, production
planning and scheduling optimization, or transportation and routing optimization. Similarly,
explore diverse application scenarios, including agriculture, energy, health, retail, environ-
ment, education, financial services, transportation, public utilities, manufacturing, software,
construction, legal, customer service, entertainment, and others. Each generated instance
must include a natural language description (in plain English), its complete mathematical
formulation, and the corresponding PySCIPOpt code.
4. For each newly generated instance, you must simultaneously include the
Corrected Modeling Pattern of both Problem A and Problem B. The rest of the
mathematical formulation can be arbitrary, but it should be substantially different from the
original formulations of Problem A and Problem B.
5. Present the output as a JSON list of objects, each with fields “question” (problem descrip-
tion) and “code solution” (PySCIPOpt code).
Automated optimization problem A as follows:
{question1} is the natural language description of an optimization problem. {model1}
is the correct mathematical formulation for the optimization problem. {python1} is
PySCIPOpt code for the optimization problem.
Automated optimization problem B as follows:
{question2} is the natural language description of an optimization problem. {model2}
is a correct mathematical formulation for the optimization problem. {python2} is
PySCIPOpt code for the optimization problem.
Now, follow the examples to present the output as a JSON list of object...
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B.3 PROMPT TEMPLATE FOR CHAIN-OF-THOUGHT

Following DeepSeek-R1-Zero (Guo et al., 2025) and SIRL (Chen et al., 2025), we adopt a chain-
of-thought prompt. First, we prompt the LLM to analyze the problem and extract key information
to build a rationale. Second, we prompt the LLM to construct a mathematical formulation. Finally,
we prompt the LLM to translate the mathematical formulation into executable PySCIPOpt Python
code.

Prompt template used for chain-of-thought reasoning with Qwen2.5-7B-Instruct

SYSTEM: You are a helpful assistant with expertise in mathematical modeling and the
PySCIPOpt solver. When the User provides an operations research problem, you will an-
alyze it, build a detailed mathematical model, and provide the PySCIPOpt code to solve
it.
Your response should follow these steps:

1. <think>
Carefully analyze the problem to identify decision variables, objective, and con-
straints.
</think>

2. <model>
Develop a complete mathematical model, explicitly defining:

• Sets
• Parameters
• Decision Variables (and their types)
• Objective Function
• Constraints

</model>

3. <python>
Provide the corresponding PySCIPOpt Python code to implement the model.
</python>

USER: Answer the following mathematical modeling question:
“‘question
{question}
”’
Letś think step by step and fill in the PySCIPOpt code into
“‘ python
{python}
”’.
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Prompt template used for chain-of-thought reasoning with Qwen3-8B

SYSTEM: You are a helpful assistant with expertise in mathematical modeling and the
PySCIPOpt solver. When the User provides an operations research problem, you will an-
alyze it, build a detailed mathematical model, and provide the PySCIPOpt code to solve
it.
Your response should follow these steps:

1. <analysis>
Carefully analyze the problem to identify decision variables, objective, and con-
straints.
</analysis>

2. <model>
Develop a complete mathematical model, explicitly defining:

• Sets
• Parameters
• Decision Variables (and their types)
• Objective Function
• Constraints

</model>

3. <python>
Provide the corresponding PySCIPOpt Python code to implement the model.
</python>

USER: Answer the following mathematical modeling question:
“‘question
{question}
”’
Letś think step by step and fill in the PySCIPOpt code into
“‘ python
{python}
”’. /no think

B.4 PROMPT TEMPLATE FOR DYNAMIC SFT

First, we design a prompt to generate correct response. Specifically, we use ground-truth
solutions as guidance and independently solve the operations research problems through chain-of-
thought reasoning, thereby generating the desired responses.
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Prompt template used to generate correct response

SYSTEM: You are a helpful Assistant with expertise in mathematical modeling and the
PySCIPOpt solver. When the User provides an OR question, you will analyze it, build a
detailed mathematical model, and provide the PySCIPOpt code to solve it.
Before answering, you may review the provided reference reasoning or code
{ground truth formulation} for guidance only. Do not copy or rely on it directly.
Your solution must be fully generated independently, using your own analysis and reasoning.
Your response should follow these steps:
1. <analysis>

Explain how the reference {ground truth formulation} can guide your rea-
soning. Highlight any insights or techniques you can borrow, but do not copy any content
verbatim. Be concise and structured.
</analysis>

2. <response>
Provide your complete independent solution, including:
1. <think>

Carefully analyze the problem to identify decision variables, objective, and con-
straints.
</think>

2. <model>
Develop a complete mathematical model, explicitly defining:

• Sets
• Parameters
• Decision Variables (and their types)
• Objective Function
• Constraints

</model>

3. <python>
Provide the corresponding PySCIPOpt Python code to implement the model.
</python>

</response>
Your final output must therefore contain exactly two sections:
<analysis>...</analysis>
<response>...</response>
USER: Answer the following mathematical modeling question:
“‘question
{question}
”’
Letś think step by step.

Then, we design a prompt to correct wrong responses. Specifically, we use correct response
as a reference to correct wrong responses from LLM post-training rollouts, thereby obtaining the
corrected responses.
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Prompt template used to correct wrong response

You are a helpful assistant with expertise in mathematical modeling and the PySCIPOpt
solver. The operations research question is as follows:
{question}.
The correct mathematical modeling response (for reference only) is as follows:
{correct response}.
The wrong mathematical modeling response from another LLM is as follows:
{wrong response}.
Your task:
1. Write your reasoning about how to modify the wrong response based on the correct
response inside <analysis>...</analysis> tags.

- In this section you may explain which parts of the wrong response are incorrect, why,
and how they should be corrected.

- Be concise and structured.
2. Output the **entire corrected version of the wrong response** inside <corrected
response>...</corrected response> tags.

- The corrected response must preserve all parts of the wrong response that are already
correct.

- Change only the portions that are actually incorrect.
- Do not add extra explanation, justification, or commentary in this section — only the

corrected content.
- Keep the same Python coding style as in the wrong response. Do not wrap code into a

function.
Your final output must therefore contain exactly two sections:
<analysis>...</analysis>
<corrected response>...</corrected response>

C MIND DETAILS

C.1 TRAINING AND INFERENCE DETAILS

Training Hyperparameters All experiments were conducted on a single computing node
equipped with four NVIDIA A100 GPUs, each with 80 GB of memory. The ms-swift frame-
work (Zhao et al., 2025) was used to implement SFT, while the VeRL framework (Sheng et al.,
2025) was used to implement GRPO, DAPO and DFPO. All training hyperparameters are listed in
Table 6, Table 7, Table 8 and Table 9.

Inference Hyperparameters As shown in Table 10, we use a greedy decoding strategy for LLM
inference to ensure reproducibility.

C.2 PRELIMINARY RESULTS ON DEEPSEEK-V3

As a supplement to the preliminary results on Qwen2.5-7B-Instruct, we conduct the same prelimi-
nary experiments using Deepseek-V3, a model with a different architecture, on the OR-Instruct-3K.
We also analyze the distribution of error ratios for the questions on which Deepseek-V3 make er-
rors. As shown in Figure 13, when errors occur, Deepseek-V3 also introduces only a small fraction
of errors rather than producing entirely incorrect formulations in most cases, further supporting
the conclusions observed for Qwen2.5-7B-Instruct. Additionally, we find that Deepseek-V3 has a
lower average error ratio of 29% compared with 33% for Qwen2.5-7B-Instruct, indicating that more
powerful LLM may have a higher capacity to produce fewer errors per instance.

C.3 REWARD WEIGHT SENSITIVITY ANALYSIS

For our reward function hyperparameter α, we evaluate its influence by testing values in {0.0, 0.2,
0.4, 0.6}, with the results shown in Figure 14. For the experimental details, we use DAPO to train
Qwen2.5-7B-Instruct on the training dataset (10,000 instances) for 7 epochs. We note that α = 0.0
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Table 6: List of training hyperparameters and their values used in the DFPO.

Data
Parameter Value
Optimizer AdamW
Training epochs 26
Training batch size 1024
Max prompt length 4096
Max response length 8192
Learning rates 10−6

Truncation left

Actor

Parameter Value
Number of rollouts per prompt 8
PPO mini-batch size 256
Clip ratio low 0.20
Clip ratio high 0.28
Entropy loss Disabled
KL loss Disabled
Gradient clipping 1.0
temperature (sampling) 1.0
Top p (sampling) 1.0
Top k (sampling) -1
α 0.2
β 0.05
γ 0.8

Reward

Parameter Value
Overlong buffer length 4096
Overlong penalty factor 1.0
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Figure 13: Distribution of error ratio across 100 incorrect generation results for Deepseek-V3.
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Table 7: List of training hyperparameters and their values used in the DAPO.

Data
Parameter Value
Optimizer AdamW
Training epochs 26
Training batch size 1024
Max prompt length 4096
Max response length 8192
Learning rates 10−6

Truncation left

Actor

Parameter Value
Number of rollouts per prompt 8
PPO mini-batch size 256
Clip ratio low 0.20
Clip ratio high 0.28
Entropy loss Disabled
KL loss Disabled
Gradient clipping 1.0
temperature (sampling) 1.0
Top p (sampling) 1.0
Top k (sampling) -1

Reward

Parameter Value
Overlong buffer length 4096
Overlong penalty factor 1.0

Table 8: List of training hyperparameters and their values used in the GRPO.

Data
Parameter Value
Optimizer AdamW
Training epochs 26
Training batch size 1024
Max prompt length 2048
Max response length 8192
Learning rates 10−6

Actor

Parameter Value
Number of rollouts per prompt 8
PPO mini-batch size 256
Entropy loss Disabled
KL loss coefficient 0.001
KL loss type Low Var KL
Gradient clipping 1.0
temperature (sampling) 1.0
Top p (sampling) 1.0
Top k (sampling) -1
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Table 9: List of training hyperparameters and their values used in the SFT.

Parameter Value
Optimizer AdamW
Training epochs 3
Training batch size 2
Gradient accumulation steps 8
Max prompt length 4096
Max response length 8192
Learning rates 10−4

Train type LoRA Yu et al. (2023)
LoRA rank 8
LoRA alpha 32

Table 10: List of inference hyperparameters and their values used in the DFPO.

Decoding Settings
Parameter Value
Max tokens 8192
Temperature 0.0

corresponds to a standard 0-1 reward. The results show that α = 0.2 and α = 0.4 achieve better
performance on most benchmarks compared with α = 0.0 and α = 0.6, indicating that the fidelity
reward, as an auxiliary signal, should not dominate the final reward value.

C.4 ABLATION STUDY OF DATA SYNTHESIS STRATEGIES

To verify the difference between single-error and multi-error strategies, we split the MIND-3K train-
ing dataset, which is a mixture of single-error and multi-error data synthesis dataset, into MIND-
Single-1.5K (1,500 instances) and MIND-Multi-1.5K (1,500 instances). We then employ DAPO to
train Qwen2.5-7B-Instruct from scratch on MIND-Single-1.5K and MIND-Multi-1.5K. As shown
in Figure 15, the model achieves better training performance on MIND-Mix-3K compared with
MIND-Single-1.5K and MIND-Multi-1.5K. Furthermore, Table 11 presents a detailed performance
comparison after seven training epochs across six benchmarks. Our results also show that training on
MIND-Single-1.5K leads to better performance than training on MIND-Multi-1.5K. We hypothesize
that this disparity arises because LLMs struggle to learn effectively when trained directly on highly
challenging datasets. To further substantiate this hypothesis, we evaluate Qwen2.5-7B-Instruct on
both datasets. The model achieves an average accuracy of 52.9% on MIND-Single-1.5K, but only
41.2% on MIND-Multi-1.5K. This pronounced accuracy gap corroborates our claim that multi-error
reverse data synthesis generates datasets that are substantially more difficult than those produced by
single-error synthesis.

Table 11: Ablation results for the single-error and multi-error strategies on Qwen2.5-7B-Instruct.
(pass@1↑).

Data NL4OPT IndustryOR EasyLP ComplexLP OptMATH OptiBench Macro AVG
MIND-Single-1.5K 91.4% 29.0% 90.4% 40.9% 8.4% 53.6% 52.3%
MIND-Multi-1.5K 91.4% 29.0% 90.2% 33.0% 6.0% 54.0% 50.6%

MIND-Mix-3K 94.3% 30.0% 90.8% 39.9% 7.8% 55.5% 53.1%

C.5 MODELING ERROR ANALYSIS

We randomly sample 300 erroneous responses each from Qwen2.5-7B-Instruct (before post-
training) and MIND-Qwen2.5-7B (after DFPO-based post-training). We first defined a taxonomy of
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Figure 14: Performance comparison for different α in the reward function.
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Figure 15: Ablation study for the single-error and multi-error strategies across six benchmarks.
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Table 12: Analysis of modeling error types in optimization modeling.

Error Type Concrete Error Qwen2.5-7B MIND-Qwen2.5-7B

Variables

Incorrect decision variables. 12.1% 15.5% (↑ 3.4%)
Decision variables omission. 4.4% 10.6% (↑ 6.2%)
Superfluous decision variables. 7.7% 8.1% (↑ 0.4%)
Incorrect variable types. 11.8% 7.1% (↓ 4.7%)

Objective

Optimization direction error. 1.4% 0.0% (↓ 1.4%)
Incorrect objective terms. 12.8% 4.2% (↓ 8.6%)
Objective terms omission. 3.0% 2.5% (↓ 0.5%)
Superfluous objective terms. 1.7% 0.4% (↓ 1.3%)
Incorrect or missing advanced modeling
techniques. The incorrect application or
omission of sophisticated modeling tech-
niques, which can lead to improper han-
dling of multi-objective problems, non-
linear objectives or other advanced mod-
eling scenarios.

2.7% 5.3% (↑ 2.6%)

Constraints

Incorrect constraint. 11.8% 15.5% (↑ 3.7%)
Constraint omission. 10.1% 8.5% (↓ 1.6%)
Superfluous constraints. 3.7% 0.0% (↓ 3.7%)
Equality and inequality constraints con-
fusion.

4.0% 4.2% (↑ 0.2%)

Incorrect or missing advanced modeling
techniques. The incorrect application or
omission of sophisticated modeling tech-
niques, which can lead to improper han-
dling of non-linear constraints, logical
constraints, or other advanced modeling
scenarios.

1.0% 11.7% (↑ 10.7%)

Parameters

Incorrect parameters definition. This in-
cludes missing essential parameters, in-
correctly defined parameters, parameters
assigned with wrong numerical values, or
other incorrect parameter definition sce-
narios.

8.4% 4.6% (↓ 3.8%)

Parameters misuse. The incorrect use of
defined parameters, such as value mis-
use, unit or scale misuse, reference errors,
or other improper applications of param-
eters.

3.4% 1.8% (↓ 1.6%)

error types relevant to optimization modeling. For each query-response pair, three domain experts
independently annotated the dominant error category, achieving high inter-annotator agreement.
As shown in Table 12, the top five error types for Qwen2.5-7B-Instruct are “incorrect objective
terms (12.8%)”, “incorrect decision variables (12.1%)”, “incorrect constraint (11.8%)”, “incorrect
variable types (11.8%)”, and “constraint omission (10.1%)”. In contrast, the top five errors for
MIND-Qwen2.5-7B are “incorrect decision variables (15.5%)”, “incorrect constraint (15.5%)”, “in-
correct or missing advanced modeling techniques (11.7%)”, “decision variable omission (10.6%)”,
and “constraint omission (8.5%)”.
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Notably, while basic syntactic or structural errors (e.g., wrong variable types) diminish after post-
training, new dominant errors involve more sophisticated modeling challenges, such as the ap-
propriate use of advanced techniques (e.g., piecewise linearization, or indicator constraints) and
comprehensive problem scoping (e.g., omitting key variables or constraints in complex scenarios).
This shift strongly suggests that DFPO effectively mitigates simpler, surface-level errors, push the
model’s failure modes toward deeper, semantics-rich challenges—a hallmark of improved reasoning
capability.

Imagine you are a dietitian and you have been tasked with creating a meal plan for a bodybuilder. You have six food items to 

choose from: Steak, Tofu, Chicken, Broccoli, Rice, and Spinach. Each food provides certain amounts of protein, carbohydrates, 

and calories, and each has its own cost.\n\nHere's the nutritional value and cost of each food:\n\n- Steak: It gives you 14 grams of 

protein, 23 grams of carbohydrates, and 63 calories for $4.\n- Tofu: It offers 2 grams of protein, 13 grams of carbohydrates, and 

162 calories for $6.\n- Chicken: It packs a punch with 17 grams of protein, 13 grams of carbohydrates, and gives you 260 calories 

for $6.\n- Broccoli: It provides 3 grams of protein, a mere 1 gram of carbohydrates, and 55 calories for $8.\n- Rice: It gives a 

hearty 15 grams of protein, 23 grams of carbohydrates, and 231 calories for $8.\n- Spinach: It provides 2 grams of protein, 8 grams 

of carbohydrates, and a huge 297 calories for just $5.\n\nYour goal is to ensure that the bodybuilder gets at least 83 grams of 

protein, 192 grams of carbohydrates, and 2089 calories from whatever combination of these foods you choose. The challenge is to 

keep the cost as low as possible while meeting these nutritional targets. \n\nWhat is the minimum cost to meet these nutritional 

requirements with the available food options?

Question 1 from MAMO ComplexLP Benchmark

Figure 16: Question of example 1.

Question 2 from OptMATH Benchmark

The manufacturing facility produces custom components for two jobs, Job 0 and Job 1, each consisting of a sequence of operations 

that must be performed in a specific order. The goal is to schedule these operations to minimize the total completion time 

(makespan) while satisfying all operational constraints. Job 0 has five operations with processing times: Operation 0 takes 4 units, 

Operation 1 takes 1 unit, Operation 2 takes 6 units, Operation 3 takes 6 units, and Operation 4 takes 8 units. Job 1 has four 

operations with processing times: Operation 0 takes 9 units, Operation 1 takes 1 unit, Operation 2 takes 4 units, and Operation 3 

takes 2 units.\n\nPrecedence constraints ensure that operations within each job are performed in sequence with specific gaps. For 

Job 0, Operation 1 must start at least 4 units after Operation 0 starts, Operation 2 must start at least 1 unit after Operation 1 starts, 

Operation 3 must start at least 6 units after Operation 2 starts, and Operation 4 must start at least 6 units after Operation 3 starts. 

For Job 1, Operation 1 must start at least 9 units after Operation 0 starts, Operation 2 must start at least 1 unit after Operation 1 

starts, and Operation 3 must start at least 4 units after Operation 2 starts.\n\nMachine capacity constraints ensure that operations 

assigned to the same machine do not overlap. Binary variables determine the order of operations on shared machines. For example, 

if Operation 1 of Job 0 and Operation 3 of Job 0 are on the same machine, one must complete at least 6 units before the other starts. 

Similarly, if Operation 1 of Job 0 and Operation 2 of Job 1 are on the same machine, one must complete at least 4 units before the 

other starts. These constraints apply to all operation pairs on shared machines, ensuring no overlap and maintaining required time 

gaps. The large constant of 100,000 is used in these constraints to enforce the sequencing logic by ensuring that the constraints are 

only active when the binary variable is set to 1.\n\nThe makespan must be at least as large as the completion time of every 

operation. Specifically, the makespan must be at least 4 units after Operation 0 of Job 0 starts, 1 unit after Operation 1 of Job 0 

starts, 6 units after Operation 2 of Job 0 starts, 6 units after Operation 3 of Job 0 starts, 8 units after Operation 4 of Job 0 starts, 9 

units after Operation 0 of Job 1 starts, 1 unit after Operation 1 of Job 1 starts, 4 units after Operation 2 of Job 1 starts,  and 2 units 

after Operation 3 of Job 1 starts.\n\nThe objective is to determine the start times for all operations and the sequence of operations 

on shared machines to minimize the makespan while respecting all precedence constraints, machine capacity constraints, and the 

makespan definition. Binary variables are used to enforce the correct sequencing of operations on shared machines, with a large 

constant of 100,000 ensuring the constraints are properly applied. The start times for all operations and the makespan must be non-

negative. The binary variables are explicitly defined for all relevant operation pairs on shared machines, and the start times and 

makespan are continuous variables.

Figure 17: Question of example 2.

C.6 CASE STUDY: EXAMPLES OF CORRECTED WRONG RESPONSES FOR DYNAMIC SFT

We select the first instances from MAMO ComplexLP and OptMATH as example 1 (Figure 16) and
example 2 (Figure 17), respectively. As shown in Figure 18 and Figure 19, these cases illustrate
how a powerful LLM can correct the errors in the wrong response from the base model, producing
a corrected response whose distribution closely matches that of the wrong response.

Example 1 is a diet problem. Since the problem does not explicitly require food to be purchased in
whole units, the variables should be allowed to take continuous values. Although the variable type
is incorrect, this does not affect the correctness of the parameters, objective function, or constraints.
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Wrong Response Corrected Response

<think>

To solve this problem, we need to define decision variables, the objective 

function, and the constraints based on the given nutritional requirements and 

costs of the food items.

- **Decision Variables**: We need to decide how much of each food item to 

include in the meal plan. Let's denote the amount of each food item by a 

variable. Since we are dealing with quantities of food, these variables will 

be integer (non-negative real numbers).

- **Objective Function**: The goal is to minimize the total cost of the meal 

plan. The cost for each food item is given, so we will sum the costs of all the 

food items chosen.

- **Constraints**: We need to ensure that the total amount of protein, 

carbohydrates, and calories meet or exceed the specified requirements:

  - At least 83 grams of protein.

  - At least 192 grams of carbohydrates.

  - At least 2089 calories.

</think>

<model>

- **Sets**: None needed as we are dealing with individual food items.

- **Parameters**:

  - `protein[i]`: Protein content of food ̀ i`.

  - `carbs[i]`: Carbohydrates content of food `i`.

  - `calories[i]`: Calories content of food `i`.

  - `cost[i]`: Cost of food ̀ i`.

  - `min_protein`: Minimum required protein.

  - `min_carbs`: Minimum required carbohydrates.

  - `min_calories`: Minimum required calories.

- **Decision Variables**:

  - `x[i]`: Amount of food `i` to include in the meal plan. This is a integer 

variable (non-negative).

- **Objective Function**:

  - Minimize the total cost: \(\text{Minimize} \sum_{i} \text{cost}[i] \cdot 

x[i]\).

- **Constraints**:

  - Protein constraint: \(\sum_{i} \text{protein}[i] \cdot x[i] \geq 

\text{min_protein}\).

  - Carbohydrates constraint: \(\sum_{i} \text{carbs}[i] \cdot x[i] \geq 

\text{min_carbs}\).

  - Calories constraint: \(\sum_{i} \text{calories}[i] \cdot x[i] \geq 

\text{min_calories}\).

</model>

<python>

```python

from pyscipopt import Model

# Create model

model = Model("DietitianProblem")

# Define food items and their nutritional values and costs

foods = {

    'Steak': {'protein': 14, 'carbs': 23, 'calories': 63, 'cost': 4},

    'Tofu': {'protein': 2, 'carbs': 13, 'calories': 162, 'cost': 6},

    'Chicken': {'protein': 17, 'carbs': 13, 'calories': 260, 'cost': 6},

    'Broccoli': {'protein': 3, 'carbs': 1, 'calories': 55, 'cost': 8},

    'Rice': {'protein': 15, 'carbs': 23, 'calories': 231, 'cost': 8},

    'Spinach': {'protein': 2, 'carbs': 8, 'calories': 297, 'cost': 5}

}

# Define minimum nutritional requirements

min_protein = 83

min_carbs = 192

min_calories = 2089

# Define decision variables

x = {}

for food in foods:

    x[food] = model.addVar(vtype="I", name=food)

# Objective: Minimize the total cost

model.setObjective(sum(foods[food]['cost'] * x[food] for food in foods), 

"minimize")

# Constraints

# Protein constraint

model.addCons(sum(foods[food]['protein'] * x[food] for food in foods) >= 

min_protein, "ProteinRequirement")

# Carbohydrates constraint

model.addCons(sum(foods[food]['carbs'] * x[food] for food in foods) >= 

min_carbs, "CarbsRequirement")

# Calories constraint

model.addCons(sum(foods[food]['calories'] * x[food] for food in foods) >= 

min_calories, "CaloriesRequirement")

# Solve the model

model.optimize()

# Print the solution

if model.getStatus() == 'optimal':

    print("Objective: ", model.getObjVal())

else:

    print("No optimal solution found.")

</python>

<think>

To solve this problem, we need to define decision variables, the objective 

function, and the constraints based on the given nutritional requirements and 

costs of the food items.

- **Decision Variables**: We need to decide how much of each food item to 

include in the meal plan. Let's denote the amount of each food item by a 

variable. Since we are dealing with quantities of food, these variables will 

be continuous (non-negative real numbers).

- **Objective Function**: The goal is to minimize the total cost of the meal 

plan. The cost for each food item is given, so we will sum the costs of all the 

food items chosen.

- **Constraints**: We need to ensure that the total amount of protein, 

carbohydrates, and calories meet or exceed the specified requirements:

  - At least 83 grams of protein.

  - At least 192 grams of carbohydrates.

  - At least 2089 calories.

</think>

<model>

- **Sets**: None needed as we are dealing with individual food items.

- **Parameters**:

  - `protein[i]`: Protein content of food ̀ i`.

  - `carbs[i]`: Carbohydrates content of food `i`.

  - `calories[i]`: Calories content of food `i`.

  - `cost[i]`: Cost of food ̀ i`.

  - `min_protein`: Minimum required protein.

  - `min_carbs`: Minimum required carbohydrates.

  - `min_calories`: Minimum required calories.

- **Decision Variables**:

  - `x[i]`: Amount of food `i` to include in the meal plan. This is a continuous 

variable (non-negative).

- **Objective Function**:

  - Minimize the total cost: \( \text{Minimize} \sum_{i} \text{cost}[i] \cdot 

x[i] \).

- **Constraints**:

  - Protein constraint: \(\sum_{i} \text{protein}[i] \cdot x[i] \geq 

\text{min\_protein}\).

  - Carbohydrates constraint: \(\sum_{i} \text{carbs}[i] \cdot x[i] \geq 

\text{min\_carbs}\).

  - Calories constraint: \(\sum_{i} \text{calories}[i] \cdot x[i] \geq 

\text{min\_calories}\).

### Step 3: Provide the Corresponding Pyscipopt Code

</model>

<python>

```python

from pyscipopt import Model

# Create model

model = Model("DietitianProblem")

# Define food items and their nutritional values and costs

foods = {

    'Steak': {'protein': 14, 'carbs': 23, 'calories': 63, 'cost': 4},

    'Tofu': {'protein': 2, 'carbs': 13, 'calories': 162, 'cost': 6},

    'Chicken': {'protein': 17, 'carbs': 13, 'calories': 260, 'cost': 6},

    'Broccoli': {'protein': 3, 'carbs': 1, 'calories': 55, 'cost': 8},

    'Rice': {'protein': 15, 'carbs': 23, 'calories': 231, 'cost': 8},

    'Spinach': {'protein': 2, 'carbs': 8, 'calories': 297, 'cost': 5}

}

# Define minimum nutritional requirements

min_protein = 83

min_carbs = 192

min_calories = 2089

# Define decision variables

x = {}

for food in foods:

    x[food] = model.addVar(vtype="C", name=food)

# Objective: Minimize the total cost

model.setObjective(sum(foods[food]['cost'] * x[food] for food in foods), 

"minimize")

# Constraints

# Protein constraint

model.addCons(sum(foods[food]['protein'] * x[food] for food in foods) >= 

min_protein, "ProteinRequirement")

# Carbohydrates constraint

model.addCons(sum(foods[food]['carbs'] * x[food] for food in foods) >= 

min_carbs, "CarbsRequirement")

# Calories constraint

model.addCons(sum(foods[food]['calories'] * x[food] for food in foods) >= 

min_calories, "CaloriesRequirement")

# Solve the model

model.optimize()

# Print the solution

if model.getStatus() == 'optimal':

    print("Objective: ", model.getObjVal())

else:

    print("No optimal solution found.")

</python>

Question 1

Figure 18: Wrong resposne and corrected response corresponding to example 1.
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Wrong Response Corrected Response

### Step 1: Analyze the Problem

**Decision Variables:**

- \( S_i \): Start time of operation \( i \) (for all operations \( i \)).

- \( M \): Makespan (total completion time).

- \( x_{ij} \): Binary variable indicating if operation \( i \) and operation \( j \) are on the 

same machine (where \( i \) and \( j \) are operations from different jobs or from the same 

job but on shared machines).

**Objective:**

- Minimize the makespan \( M \).

**Constraints:**

1. **Precedence Constraints:**

   - For Job 0:

     - Operation 1 must start at least 4 units after Operation 0 starts: \( S_1 \geq S_0 + 4 \)

     - Operation 2 must start at least 1 unit after Operation 1 starts: \( S_2 \geq S_1 + 1 \)

     - Operation 3 must start at least 6 units after Operation 2 starts: \( S_3 \geq S_2 + 6 \)

     - Operation 4 must start at least 6 units after Operation 3 starts: \( S_4 \geq S_3 + 6 \)

   - For Job 1:

     - Operation 1 must start at least 9 units after Operation 0 starts: \( S_5 \geq S_4 + 9 \)

     - Operation 2 must start at least 1 unit after Operation 1 starts: \( S_6 \geq S_5 + 1 \)

     - Operation 3 must start at least 4 units after Operation 2 starts: \( S_7 \geq S_6 + 4 \)

2. **Machine Capacity Constraints:**

   - For each pair of operations on the same machine, ensure there is no overlap. Use a large 

constant (100,000) to enforce sequencing logic.

   - For example, if Operation 1 of Job 0 and Operation 3 of Job 0 are on the same machine, one 

must complete at least 6 units before the other starts: \( S_1 + p_1 \leq S_3 + 100000 \cdot (1 - 

x_{13}) \) and \( S_3 + p_3 \leq S_1 + 100000 \cdot x_{13} \)

   - Similarly, if Operation 1 of Job 0 and Operation 2 of Job 1 are on the same machine, one 

must complete at least 4 units before the other starts: \( S_1 + p_1 \leq S_6 + 100000 \cdot (1 - 

x_{16}) \) and \( S_6 + p_6 \leq S_1 + 100000 \cdot x_{16} \)

3. **Makespan Constraints:**

   - The makespan must be at least as large as the completion time of every operation:

     - Operation 0 of Job 0: \( M \geq S_0 + 4 \) - Operation 1 of Job 0: \( M \geq S_1 + 1 \)

     - Operation 2 of Job 0: \( M \geq S_2 + 6 \) - Operation 3 of Job 0: \( M \geq S_3 + 6 \)

     - Operation 4 of Job 0: \( M \geq S_4 + 8 \) - Operation 0 of Job 1: \( M \geq S_4 + 9 \)

     - Operation 1 of Job 1: \( M \geq S_5 + 1 \) - Operation 2 of Job 1: \( M \geq S_6 + 4 \)

     - Operation 3 of Job 1: \( M \geq S_7 + 2 \)

4. **Non-negativity and Continuity:**

   - All start times and the makespan must be non-negative and continuous variables.

### Step 2: Develop the Mathematical Model

**Sets:**

- No explicit sets are required here as the operations and their dependencies are explicitly 

defined.

**Parameters:**

- \( p_i \): Processing time of operation \( i \).

**Decision Variables:**

- \( S_i \): Start time of operation \( i \).

- \( M \): Makespan.

- \( x_{ij} \): Binary variable indicating if operation \( i \) and operation \( j \) are on the 

same machine.

**Objective:**

Minimize \( M \).

**Constraints:**

1. **Precedence Constraints:**

   - For Job 0:

     \[S_1 \geq S_0 + 4\]\[S_2 \geq S_1 + 1\]\[S_3 \geq S_2 + 6\] \[S_4 \geq S_3 + 6\]

   - For Job 1:

     \[S_5 \geq S_4 + 9\]\[S_6 \geq S_5 + 1\]\[S_7 \geq S_6 + 4\]

2. **Machine Capacity Constraints:**

   - Example for Operation 1 of Job 0 and Operation 3 of Job 0 on the same machine:

     \[S_1 + p_1 \leq S_3 + 100000 \cdot (1 - x_{13})\]

     \[S_3 + p_3 \leq S_1 + 100000 \cdot x_{13}\]

   - Example for Operation 1 of Job 0 and Operation 2 of Job 1 on the same machine:

     \[S_1 + p_1 \leq S_6 + 100000 \cdot (1 - x_{16})\]

     \[S_6 + p_6 \leq S_1 + 100000 \cdot x_{16}\]

3. **Makespan Constraints:**

   - For each operation:

     \[M \geq S_0 + 4\] \[M \geq S_1 + 1\] \[M \geq S_2 + 6\]

\[M \geq S_3 + 6\] \[M \geq S_4 + 8\] \[M \geq S_4 + 9\]

\[M \geq S_5 + 1\] \[M \geq S_6 + 4\] \[M \geq S_7 + 2\]

### Step 3: Provide the Corresponding Pyscipopt Python Code

```python

from pyscipopt import Model

model = Model("Job_Scheduling")

# Define operations and their processing times

operations = {

    '0': 4,  # Operation 0 of Job 0  '1': 1,  # Operation 1 of Job 0  '2': 6,  # Operation 2 of Job 0

    '3': 6,  # Operation 3 of Job 0  '4': 8,  # Operation 4 of Job 0  '5': 9,  # Operation 0 of Job 1 

    '6': 1,  # Operation 1 of Job 1  '7': 4,  # Operation 2 of Job 1  '8': 2   # Operation 3 of Job 1

}

# Define start times for each operation

S = {op: model.addVar(vtype="C", name=f"S_{op}") for op in operations}

# Define the makespan

M = model.addVar(vtype="C", name="M")

# Precedence constraints for Job 0

model.addCons(S['1'] >= S['0'] + 4, name="precedence_0_1")

model.addCons(S['2'] >= S['1'] + 1, name="precedence_1_2")

model.addCons(S['3'] >= S['2'] + 6, name="precedence_2_3")

model.addCons(S['4'] >= S['3'] + 6, name="precedence_3_4")

# Precedence constraints for Job 1

model.addCons(S['5'] >= S['4'] + 9, name="precedence_4_5")

model.addCons(S['6'] >= S['5'] + 1, name="precedence_5_6")

model.addCons(S['7'] >= S['6'] + 4, name="precedence_6_7")

# Makespan constraints

model.addCons(M >= S['0'] + operations['0'], name="makespan_0")

model.addCons(M >= S['1'] + operations['1'], name="makespan_1")

model.addCons(M >= S['2'] + operations['2'], name="makespan_2")

model.addCons(M >= S['3'] + operations['3'], name="makespan_3")

model.addCons(M >= S['4'] + operations['4'], name="makespan_4")

model.addCons(M >= S['4'] + operations['5'], name="makespan_5")

model.addCons(M >= S['5'] + operations['6'], name="makespan_6")

model.addCons(M >= S['6'] + operations['7'], name="makespan_7")

model.addCons(M >= S['7'] + operations['8'], name="makespan_8")

# Minimize the makespan

model.setObjective(M, "minimize")

# Solve the model

model.optimize()

# Print the solution

if model.getStatus() == 'optimal':

    print("Objective: ", model.getObjVal())

else:

    print("No optimal solution found.")

```

### Step 1: Analyze the Problem

**Decision Variables:**

- \( S_i \): Start time of operation \( i \) (for all operations \( i \)).

- \( M \): Makespan (total completion time).

- \( y_{ij} \): Binary variable indicating the sequencing of operations \( i \) and \( j \) on 

shared machines (1 if \( i \) comes before \( j \), 0 otherwise).

**Objective:**

- Minimize the makespan \( M \).

**Constraints:**

1. **Precedence Constraints:**

   - For Job 0:

     - Operation 1 must start at least 4 units after Operation 0 starts: \( S_1 \geq S_0 + 4 \)

     - Operation 2 must start at least 1 unit after Operation 1 starts: \( S_2 \geq S_1 + 1 \)

     - Operation 3 must start at least 6 units after Operation 2 starts: \( S_3 \geq S_2 + 6 \)

     - Operation 4 must start at least 6 units after Operation 3 starts: \( S_4 \geq S_3 + 6 \)

   - For Job 1:

     - Operation 1 must start at least 9 units after Operation 0 starts: \( S_5 \geq S_4 + 9 \)

     - Operation 2 must start at least 1 unit after Operation 1 starts: \( S_6 \geq S_5 + 1 \)

     - Operation 3 must start at least 4 units after Operation 2 starts: \( S_7 \geq S_6 + 4 \)

2. **Machine Capacity Constraints:**

   - For each pair of operations on the same machine, ensure there is no overlap. Use a large 

constant (100000) to enforce sequencing logic.

   - For Operation 1 of Job 0 and Operation 3 of Job 0 on the same machine:

     \( S_1 + 1 \leq S_3 + 100000 \cdot (1 - y_{13}) \)

  \( S_3 + 6 \leq S_1 + 100000 \cdot y_{13} \)

   - For Operation 1 of Job 0 and Operation 2 of Job 1 on the same machine:

     \( S_1 + 1 \leq S_6 + 100000 \cdot (1 - y_{16}) \)

     \( S_6 + 4 \leq S_1 + 100000 \cdot y_{16} \)

3. **Makespan Constraints:**

   - The makespan must be at least as large as the completion time of every operation:

     - Operation 0 of Job 0: \( M \geq S_0 + 4 \) - Operation 1 of Job 0: \( M \geq S_1 + 1 \)

     - Operation 2 of Job 0: \( M \geq S_2 + 6 \) - Operation 3 of Job 0: \( M \geq S_3 + 6 \)

     - Operation 4 of Job 0: \( M \geq S_4 + 8 \) - Operation 0 of Job 1: \( M \geq S_5 + 9 \)

     - Operation 1 of Job 1: \( M \geq S_6 + 1 \) - Operation 2 of Job 1: \( M \geq S_7 + 4 \)

     - Operation 3 of Job 1: \( M \geq S_8 + 2 \)

4. **Non-negativity and Continuity:**

   - All start times and the makespan must be non-negative and continuous variables.

### Step 2: Develop the Mathematical Model

**Sets:**

- No explicit sets are required here as the operations and their dependencies are explicitly 

defined.

**Parameters:**

- \( p_i \): Processing time of operation \( i \).

**Decision Variables:**

- \( S_i \): Start time of operation \( i \).

- \( M \): Makespan.

- \( y_{ij} \): Binary variable for sequencing operations \( i \) and \( j \) on shared machines.

**Objective:**

Minimize \( M \).

**Constraints:**

1. **Precedence Constraints:**

   - For Job 0:

     \[S_1 \geq S_0 + 4\]\[S_2 \geq S_1 + 1\]\[S_3 \geq S_2 + 6\]\[S_4 \geq S_3 + 6\]

   - For Job 1:

     \[S_5 \geq S_4 + 9\]\[S_6 \geq S_5 + 1\]\[S_7 \geq S_6 + 4\]

2. **Machine Capacity Constraints:**

   - For Operation 1 of Job 0 and Operation 3 of Job 0:

     \[S_1 + 1 \leq S_3 + 100000 \cdot (1 - y_{13})\]

     \[S_3 + 6 \leq S_1 + 100000 \cdot y_{13}\]

   - For Operation 1 of Job 0 and Operation 2 of Job 1:

     \[S_1 + 1 \leq S_6 + 100000 \cdot (1 - y_{16})\]

     \[S_6 + 4 \leq S_1 + 100000 \cdot y_{16}\]

3. **Makespan Constraints:**

   - For each operation:

     \[M \geq S_0 + 4\] \[M \geq S_1 + 1\].    \[M \geq S_2 + 6\]

     \[M \geq S_3 + 6\].    \[M \geq S_4 + 8\].    \[M \geq S_5 + 9\]

     \[M \geq S_6 + 1\].    \[M \geq S_7 + 4\].    \[M \geq S_8 + 2\]

### Step 3: Provide the Corresponding Pyscipopt Python Code

```python

from pyscipopt import Model

model = Model("Job_Scheduling")

# Define operations and their processing times

operations = {

    '0': 4,  # Operation 0 of Job 0  '1': 1,  # Operation 1 of Job 0  '2': 6,  # Operation 2 of Job 0

    '3': 6,  # Operation 3 of Job 0  '4': 8,  # Operation 4 of Job 0  '5': 9,  # Operation 0 of Job 1 

    '6': 1,  # Operation 1 of Job 1  '7': 4,  # Operation 2 of Job 1  '8': 2   # Operation 3 of Job 1

}

# Define start times for each operation

S = {op: model.addVar(vtype="C", name=f"S_{op}") for op in operations}

# Define the makespan

M = model.addVar(vtype="C", name="M")

# Binary variables for machine sequencing

y13 = model.addVar(vtype="B", name="y13")

y16 = model.addVar(vtype="B", name="y16")

# Precedence constraints for Job 0

model.addCons(S['1'] >= S['0'] + 4, name="precedence_0_1")

model.addCons(S['2'] >= S['1'] + 1, name="precedence_1_2")

model.addCons(S['3'] >= S['2'] + 6, name="precedence_2_3")

model.addCons(S['4'] >= S['3'] + 6, name="precedence_3_4")

# Precedence constraints for Job 1

model.addCons(S['6'] >= S['5'] + 9, name="precedence_5_6")

model.addCons(S['7'] >= S['6'] + 1, name="precedence_6_7")

model.addCons(S['8'] >= S['7'] + 4, name="precedence_7_8")

# Machine constraints for shared machines

model.addCons(S['1'] + 1 <= S['3'] + 100000 * (1 - y13), name="machine_1_before_3")

model.addCons(S['3'] + 6 <= S['1'] + 100000 * y13, name="machine_3_before_1")

model.addCons(S['1'] + 1 <= S['7'] + 100000 * (1 - y16), name="machine_1_before_6")

model.addCons(S['7'] + 4 <= S['1'] + 100000 * y16, name="machine_6_before_1")

# Makespan constraints

model.addCons(M >= S['0'] + operations['0'], name="makespan_0")

model.addCons(M >= S['1'] + operations['1'], name="makespan_1")

model.addCons(M >= S['2'] + operations['2'], name="makespan_2")

model.addCons(M >= S['3'] + operations['3'], name="makespan_3")

model.addCons(M >= S['4'] + operations['4'], name="makespan_4")

model.addCons(M >= S['5'] + operations['5'], name="makespan_5")

model.addCons(M >= S['6'] + operations['6'], name="makespan_6")

model.addCons(M >= S['7'] + operations['7'], name="makespan_7")

model.addCons(M >= S['8'] + operations['8'], name="makespan_8")

# Minimize the makespan

model.setObjective(M, "minimize")

# Solve the model

model.optimize()

# Print the solution

if model.getStatus() == 'optimal':

    print("Objective: ", model.getObjVal())

else:

    print("No optimal solution found.")

```

Question 2

Figure 19: Wrong response and corrected response corresponding to example 2.
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Therefore, the errors in the wrong response are localizable. If we fix only these localizable errors,
the overall answer will be corrected.

Example 2 is a scheduling problem. The wrong response includes precedence constraints, ma-
chine capacity constraints, makespan constraints, and non-nagativity constraints. We observe minor
errors in the machine capacity and makespan constraints. However, the errors in the makespan con-
straints do not affect the correctness of the precedence constraints, machine capacity constraints, or
non-negativity constraints. Similarly, the errors in the machine capacity constraints do not affect
the correctness of the precedence constraints, makespan constraints, or non-negativity constraints.
Therefore, the errors in the wrong response are localizable. By fixing only these localizable errors,
the overall solution can be corrected.

D REPRODUCIBILITY STATEMENT

Upon acceptance of this paper, we will publicly release the code, MIND-Train, MIND-Bench, and
MIND-Qwen2.5-7B on GitHub and Hugging Face under the MIT License. All assets used in this
research are properly credited.

E THE USE OF LARGE LANGUAGE MODELS (LLMS)

In this work, we used large language models (LLMs) solely as an auxiliary tool for checking gram-
mar and improving the clarity of our writing. The research ideas, experiments, analyzes, and all
scientific contributions were conducted entirely by the authors.
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