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ABSTRACT

Dexterous hands exhibit significant potential for complex real-world grasping
tasks. While recent studies have primarily focused on learning policies for spe-
cific robotic hands, the development of a universal policy that controls diverse
dexterous hands remains largely unexplored. In this work, we study the learn-
ing of cross-embodiment dexterous grasping policies using reinforcement learn-
ing (RL). Inspired by the capability of human hands to control various dexterous
hands through teleoperation, we propose a universal action space based on the
human hand’s eigengrasps. The policy outputs eigengrasp actions that are then
converted into specific joint actions for each robot hand through a retargeting map-
ping. We simplify the robot hand’s proprioception to include only the positions of
fingertips and the palm, offering a unified observation space across different robot
hands. Our approach demonstrates an 80% success rate in grasping objects from
the YCB dataset across four distinct embodiments using a single vision-based pol-
icy. Additionally, our policy exhibits zero-shot generalization to two previously
unseen embodiments and significant improvement in efficient finetuning. For fur-
ther details and videos, visit our project page.

1 INTRODUCTION

Robotic dexterous grasping (Bicchi, 2000; Duan et al., 2021) has been studied for decades, estab-
lishing a foundation for embodied agents to interact with the world through robotic hands. Recent
advances have focused on grasping various objects using multi-fingered dexterous hands, employing
data-driven methods (Qin et al., 2022b; Mandikal & Grauman, 2022; Liu et al., 2023) or reinforce-
ment learning (RL) (Xu et al., 2023; Wan et al., 2023; Wu et al., 2024b), with real-world deployment
of the learned policies (Qin et al., 2023a; Agarwal et al., 2023). However, existing approaches typi-
cally learn policies tailored to specific dexterous hands, such as ShadowHand. Developing a policy
for a new embodiment often necessitates substantial data collection or costly simulations and hyper-
parameter tuning in RL.

In this paper, we aim to develop a cross-embodiment dexterous grasping policy (CrossDex) that is
applicable to various dexterous hands. Cross-embodiment learning leverages shared structural fea-
tures among different robots to acquire generalized skills, thus facilitating enhanced generalization
to new robotic embodiments. Recent research has utilized these shared structures to learn cross-
embodiment policies for different robot arms (Chen et al., 2024), robots with varied morphologies
(Liu et al., 2022; Hejna III et al., 2021), and embodiments for navigation and manipulation (Yang
et al., 2024; Doshi et al., 2024). However, applying cross-embodiment learning to diverse dexterous
hands remains largely unexplored and presents several challenges. Dexterous hands feature high
degrees-of-freedom (DoFs) and vary in the number of fingers and DoFs, which complicates the
unification of the action space for control across different robots. For instance, it is not straight-
forward to map a control command for a 22-DoF, 5-fingered ShadowHand to a 16-DoF, 4-fingered
LEAP Hand (Shaw et al., 2023). Moreover, even if actions could be aligned among different hands,
their varied sizes and shapes make it challenging to implement a single policy in contact-rich grasp-
ing tasks. For example, Patel & Song (2024) develops a policy for LEAP Hands with varied link
morphology using graph neural networks (Scarselli et al., 2008), but this approach struggles to gen-
eralize between LEAP Hand and Allegro Hand, which, despite their structural similarities, differ in
the joint limits of DoFs and shapes of links.
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Figure 1: We propose CrossDex, learning a cross-embodiment policy for dexterous grasping. The
learned RL policy can grasp diverse objects with a variety of dexterous hands and transfer to hands
not seen during training.

We take inspiration from how humans teleoperate robot hands to tackle this challenge. Humans
are not only adept at manipulating everyday objects with their own hands but are also capable of
transferring such manipulation skills to various robotic dexterous hands. In teleoperation systems
(Li et al., 2019; Handa et al., 2020; Qin et al., 2023b), by observing the robot hand and simulta-
neously adjusting their own hand poses, human operators can remotely control any robotic hand
to grasp objects without needing prior knowledge of the specific robot hand or extensive practice.
We adopt a human-like policy that can execute actions within the space of human hand poses to
“teleoperate” different dexterous hands. In our approach, we use eigengrasps (Ciocarlie et al., 2007)
of the MANO (Romero et al., 2022) hand model as the unified action space, which efficiently com-
presses 45-dimensional hand poses into low-dimensional eigenvectors. These output hand poses
are then converted into each dexterous hand’s joint positions through a retargeting algorithm (Handa
et al., 2020), providing commands for the controller. We propose training neural networks to replace
the optimization-based retargeting process, significantly improving the training speed. To unify the
hand’s proprioception within the observation space, we eliminate the hand-specific joint positions
and adopt the 3D positions of fingertips and palms. These positions are crucial in grasping tasks
(Handa et al., 2020) and are consistent across different embodiments.

We train the policy to grasp objects from the YCB dataset (Calli et al., 2015) using reinforcement
learning within the IsaacGym (Makoviychuk et al., 2021) simulation environment. Following the
teacher-student framework (Jia et al., 2022; Wan et al., 2023), we first train individual state-based
policies for each object using PPO (Schulman et al., 2017), and then distill these into a vision-based
policy using DAgger (Ross et al., 2011) to grasp all objects. To train each policy, we use four
different dexterous hands in parallel environments, each attached to a 6-DoF robot arm with its base
fixed on a table. Experimental results demonstrate that our CrossDex policy outperforms baseline
methods on the four training hands and two hands not seen during training. CrossDex achieves high
success rates in grasping YCB objects and exhibits zero-shot generalization to unseen embodiments
with a single policy. Additionally, the policy shows a significant increase in learning efficiency on
unseen embodiments and objects via finetuning.

Our contributions are summarized as follows:

• We propose cross-embodiment training for robotic dexterous grasping, marking a step to-
wards a universal grasping policy.

• We adopt techniques from teleoperation to construct a universal action space and observa-
tion space for policy learning, enabling transfer across various dexterous hands.
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• Our experimental results demonstrate the superior training performance and generalization
capabilities of CrossDex.

2 RELATED WORK

Dexterous grasping. Grasping is a fundamental skill that enables robotic manipulators to interact
with the real-world environment. Multi-fingered dexterous hands (Pons et al., 1999; Kappassov
et al., 2015; Shaw et al., 2023), in contrast to traditional parallel grippers (Yi et al., 2002; Hu et al.,
2019; Fang et al., 2020), offer advanced hardware capabilities. However, the complexity of using
dexterous hands to grasp objects brings significant challenges. To address how to grasp, a substantial
number of studies focus on generating grasping poses (Zhu et al., 2021; Shao et al., 2020; Li et al.,
2023; Liu et al., 2023) and constructing grasping datasets (Wang et al., 2023; Chao et al., 2021).
Real-world applications require not only static grasping poses but also closed-loop grasping policies
that can execute complete trajectories. Recent studies utilize learning from demonstrations (Qin
et al., 2022b; Mandikal & Grauman, 2022; Qin et al., 2022a) and deep reinforcement learning (RL)
(Xu et al., 2023; Wan et al., 2023; Wu et al., 2024b; Qin et al., 2023a; Kannan et al., 2023) to develop
dexterous grasping policies. RL offers distinct advantages due to its independence from human
supervision and its scalability to numerous objects (Xu et al., 2023). In this paper, we study cross-
embodiment dexterous grasping using RL, marking a significant step towards a universal policy.

Cross-Embodiment Learning lays the foundation for developing generalized agents by utilizing
data across various embodiments. In the field of embodiment transfer (Niu et al., 2024), leveraging
data from source embodiments to learn target embodiment policies facilitates data-efficient transfer
learning. Techniques include modeling mappings between embodiments (Zhang et al., 2021; Chen
et al., 2024), learning invariant representations (Zakka et al., 2022; Salhotra et al., 2023; Wang et al.,
2024), and employing hierarchical learning to share high-level policies (Hejna et al., 2020).

Another line of research focuses on multi-robot training to develop universal, generalizable policies.
Studies by Hejna III et al. (2021); Liu et al. (2022); Patel & Song (2024) explore generating varied
morphologies and utilizing graph neural networks (Scarselli et al., 2008) to learn embodiment rep-
resentations. Yu et al. (2023); Bousmalis et al. (2023) use Transformers (Vaswani et al., 2017) to
adapt policies to different embodiments in-context. Recent efforts (Doshi et al., 2024; Yang et al.,
2024; Xu et al., 2024) aim to train a universal policy that accommodates embodiments with diverse
functionalities, such as combining manipulation and navigation tasks.

However, existing research has not yet developed a universal policy for various dexterous hands.
GET-Zero (Patel & Song, 2024) learns a policy for in-hand reorientation tasks using different mor-
phological variants of LEAP Hand (Shaw et al., 2023), but this method cannot generalize across
different types of dexterous hands. Our research is the first to introduce a universal grasping policy
for diverse dexterous hands, achieving zero-shot generalization on hands not seen during training.

Hand Motion Retargeting is primarily studied within the context of robotic teleoperation (Antot-
siou et al., 2018; Qin et al., 2023b; Fu et al., 2024), where detected human hand poses are trans-
formed into target joint positions of robotic hands. Practical approaches include direct mapping (Fu
et al., 2024), supervised learning (Li et al., 2019), and optimization for energy functions (Antotsiou
et al., 2018; Handa et al., 2020; Sivakumar et al., 2022). DexPilot (Handa et al., 2020), a notable
optimization-based method for dexterous hand teleoperation, explicitly considers the relationships
between fingertip positions. In our research, we integrate DexPilot with an RL policy, enabling the
control of various dexterous hands with a single policy.

3 PRELIMINARIES

3.1 REINFORCEMENT LEARNING FOR UNIVERSAL DEXTEROUS GRASPING

We consider a tabletop grasping scenario where a dexterous hand is mounted on a 6-DoF robot arm
with its base fixed (see Figure 1). The goal is to grasp and lift an object initially placed on the table.

We assume that tasks differ in the dexterous hand h ∈ H and the object ω ∈ Ω, whereH denotes the
embodiment space and Ω denotes the object set. Each task, characterized by a unique combination
of an embodiment and an object, is formulated as a Partially Observable Markov Decision Process

3
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(POMDP) Mh,ω = ⟨O,S,A, T , R,U⟩, which represents the observation space O, the state space
S, the action space A, the transition dynamics T (st+1|st, at), the reward function R(st, at), and
the observation emission function U(ot|st). At each timestep t, the agent observes ot ∈ O and takes
an action at ∈ A, then receives a reward rt = R(st, at). The environment then transitions to the
next state st+1 ∼ T (st+1|st, at). The objective of cross-embodiment dexterous grasping is to
maximize the expected return across all tasks

∑
h∈H,ω∈Ω E

[∑T−1
t=0 γtrt

]
, where T is the time limit

and γ is a discount factor.

Existing literature (Qin et al., 2023a; Xu et al., 2023; Wu et al., 2024b) on dexterous grasping focuses
on using a single dexterous hand (|H| = 1) with m DoFs and n fingers to grasp any object. The
observation o ∈ O consists of: (1) Robot proprioception, including the joint positions of the arm
Ja ∈ R6, the joint positions of the hand Jh ∈ Rm, and the positions of the fingertips and palm
xh ∈ R(n+1)×3; (2) Object perception, which includes the object pose b ∈ R7 consisting of the
object position and quaternion in simulation and a visual code vω representing the static shape of
the object. In the real world, however, we access object information through visual observations.
We choose to use the object point cloud p ∈ RN×3, which contains N points captured by cameras.
The action a ∈ A includes the target joint positions for the arm Ĵa and the target joint positions for
the hand Ĵh, which are passed to a PD controller for joint torque control. The objective is to learn
a vision-based policy πVϕ

(
at|Jat ,Jht ,xht ,pt, at−1

)
parameterized by ϕ to maximize the expected

return across all objects.

Training a vision-based policy for all objects directly using RL encounters optimization challenges
inherent in multi-task RL (Yu et al., 2020), as well as the high-dimensionality of point cloud obser-
vations, which can slow down the learning process. Recent works (Jia et al., 2022; Xu et al., 2023;
Wan et al., 2023) propose a teacher-student framework with curriculum learning to address these is-
sues. We adopt a simplified approach from these studies. First, the object set is clustered into several
groups, and a state-based policy πSψi

(
at|Jat ,Jht ,xht , bt,vω, at−1

)
parameterized by ψi is trained

using RL for each group i. Then, all state-based policies {πSψi
} are distilled into a single vision-

based policy πVϕ using DAgger (Ross et al., 2011), an online imitation learning algorithm. In our
research, we leverage this framework to address the challenge of learning a universal vision-based
dexterous grasping policy for various embodiments and objects.

3.2 HAND POSE MODELING AND RETARGETING

The main challenge in cross-embodiment learning arises from the misalignment of hand joint posi-
tions Jh that occurs in both observations and actions among different dexterous hands. This diver-
gence results from differences in dimensions, joint limits, and the functionality of each joint across
various embodiments. Then, can we find a shared representation of hand joint positions across these
embodiments and establish mappings between them?

The literature on hand teleoperation (Handa et al., 2020; Qin et al., 2023b) suggests that human
hand poses can effectively represent poses for dexterous hands. A human hand pose is represented
by (θ, β), where θ ∈ R48 denotes the 16 axis angles of the hand joints and wrist, while β ∈ R10

denotes the hand shape. Using the MANO hand model (Romero et al., 2022), we can derive the
3D positions of 21 keypoints on the hand from the hand pose: xM = MANO(θ, β),xM ∈ R21×3.
The human hand pose can then be mapped to the joint positions of any dexterous hand through
a retargeting process. We adopt optimization-based retargeting methods that optimize Jht at each
timestep t:

min
Jh
t

S
(
fh(Jht ),x

M
t

)
+ ∥Jht − Jht−1∥2 (1)

s.t. Jhlower ≤ Jht ≤ Jhupper, (2)

where fh is the forward kinematics function of the dexterous hand, providing the positions of the
fingertips and palm. Jhlower and Jhupper represent the joint limits of the dexterous hand, and S is a
predefined function that measures the similarity between the robot hand pose and the human hand
pose. For example, DexPilot (Handa et al., 2020) evaluates the distances of the relative positions for
each pair of fingertips of the robot hand and the human hand within S. This problem can be solved
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Figure 2: CrossDex employs a unified observation and action space to facilitate the learning of a
universal policy across various dexterous hands. Rather than relying on joint angles specific to each
hand, our policy utilizes the positions of the fingertips and palm to discern the spatial relationship
between the hand and the object. Actions are represented using eigengrasps from the MANO hand
model, which are mapped to position targets of each hand’s PD controller through a retargeting
process. This design, akin to teleoperation, enables consistent control across different dexterous
hands. The policy is trained using reinforcement learning within a cross-embodiment simulation
environment built on IsaacGym. To learn a vision-based policy, we substitute the object pose in this
pipeline with the object’s point cloud.

using quadratic programming algorithms. Thus, we can leverage the human hand pose (θ, β) as a
universal representation for dexterous hand poses.

4 METHOD

In this section, we present the proposed method, CrossDex, which utilizes shared representations
of actions and observations to learn a cross-embodiment policy for dexterous grasping. Figure 2
provides an overview of our approach.

4.1 EIGENGRASP ACTIONS

We propose using human hand poses as a universal action interface for dexterous hands. The output
human hand pose is converted to target joint positions for each dexterous hand through retargeting.
Since a human hand pose can be translated into similar grasping poses across various dexterous
hands, these actions have the potential to generalize across embodiments, sharing similar trajectories
for grasping each object.

However, the dimensionality of human hand poses is significantly higher than the DoFs of most
dexterous hands, which can make RL less efficient. Additionally, because the joints of human hands
do not move independently and the limits of each joint are unknown, defining the policy’s output
space becomes challenging. We aim for the policy’s output space to be a compact subspace of
human hand poses that contains meaningful and natural poses. To achieve this, we adopt eigengrasps
(Ciocarlie et al., 2007) to compress human hand poses.

Given a datasetD = {θi} capturing human hand poses in daily life, where each θi represents the axis
angles of a hand pose (with β = 0 to disregard the variability in shapes), we apply PCA to the dataset
and retain the first-k eigenvectors, {ei}ki=1, known as eigengrasps. Each eigengrasp represents a
distinctive hand pose, and we can generate diverse, novel hand poses by linearly combining these
eigengrasps. In addition to the arm actions, our cross-embodiment policy outputs k-dimensional
hand actions w = (w1, · · · , wk), which represent a weighted sum of eigengrasps: θ =

∑k
i=1 wiei.

The hand pose θ is then converted into keypoint positions using MANO and subsequently mapped
to the target joint positions of each dexterous hand via DexPilot retargeting.

Agarwal et al. (2023) also used eigengrasps to improve RL for dexterous manipulation. While their
work applies eigengrasps in the LEAP Hand’s action space, we leverage eigengrasps of human hand
poses as a universal action interface, enabling cross-embodiment control through retargeting.

5
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4.2 A UNIFIED OBSERVATION SPACE

The hand joint positions Jh within the observation space, which require embodiment-specific inter-
pretation, are likely to hinder the policy when adapting to new embodiments with unknown propri-
oception structures. Therefore, we simplify the observation by discarding the hand joint positions,
retaining only the fingertips and wrist positions xh. These positions are also used in the retargeting
process, as shown in Equation 1, providing shared hand state representations across different em-
bodiments. Notably, fingertips and palm positions are crucial for grasping tasks, as they enable the
agent to effectively infer actions and value based on the relative positions of the object and the hand.

In practice, we use the concatenated 3D positions of the palm and the first four fingers: thumb, index,
middle, and ring. For five-fingered hands, we omit the little finger’s position. This simplification is
practical as the little finger is typically less critical in grasping tasks. For hands less than four fingers,
the method can be generalized by setting the unused finger positions to zero in the observations. In
principle, this approach extends to any hands with up to N fingers, maintaining compatibility by
zero-padding unused positions.

At this point, we establish the structures for cross-embodiment policies. Our state-based policy
takes the form πSψ

(
Ĵat ,wt|Jat ,xht , bt,vω, Ĵat−1,wt−1

)
, while the vision-based policy takes the

form πVϕ

(
Ĵat ,wt|Jat ,xht ,pt, Ĵat−1,wt−1

)
, where wt ∈ Rk denotes the eigengrasp action.

4.3 MULTI-TASK LEARNING

Following the teacher-student framework, we divide the entire task space of embodiments and ob-
jects,H×Ω, into groups. We learn state-based policies individually for each group, then distill these
policies into a vision-based policy. Our experimental observations, detailed in Section 5.2, sug-
gest that our policy architecture benefits from co-training across embodiments, exhibiting slightly
enhanced stability and comparable performance when trained simultaneously on all embodiments
compared to individual training on each dexterous hand. Therefore, we choose to divide only the
object set for training the state-based policies.

We establish cross-embodiment simulation environments using IsaacGym (Makoviychuk et al.,
2021) to train policies. During the teacher learning phase, we train a state-based policy πSψω

for
each object ω using PPO (Schulman et al., 2017) within parallel environments that iterate through
all dexterous hands. In the distillation phase, we set up parallel environments for every combination
of objects and hands. Here, we iteratively use the vision-based policy πVϕ to collect trajectories.
Actions in these trajectories are then relabeled using the learned teacher policies {πSψω

}ω∈Ω, and we
optimize ϕ with behavior cloning.

While the parallel environments in IsaacGym run at a frame rate of tens of thousands of fps, the re-
targeting process, which involves iterative optimization, runs at only 300 fps, significantly slowing
down the training process. Fortunately, due to the continuous nature of the retargeting mappings
from the human hand to dexterous hands, we propose to use neural networks to accelerate the retar-
geting process. For each dexterous hand h, we use MANO and the retargeting algorithm to label all
samples θi ∈ D from the dataset of human hand poses with the corresponding joint positions of the
dexterous hand Jhi . Then, we train a neural network Phξ parameterized by ξ to fit the mapping from
θi to Jhi . These trained retargeting networks {Phξ }h∈H enable batch computations within parallel
environments, enhancing overall training efficiency.

Due to the limited number of dexterous hand embodiments available, we incorporate some ran-
domization to enrich the embodiment space for training, aiming at enhancing the robustness and
transferability of the policy. Specifically, we add Gaussian noise to the origin position of the joint
connecting the hand and the arm, which encourages the policy to adapt to variations in the hand
attachment.

We summarize our training process in Appendix A. Further implementation details can be found in
Appendix B.

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Table 1: Comparison of grasping success rates for YCB objects between CrossDex and baseline
methods. The ‘Training hands’ columns show average performance on the four hands provided
during training, while the ‘Unseen hands’ columns show average zero-shot performance on two
hands not seen during training. ‘State’ denotes state-based RL policies, and ‘Vision’ denotes vision-
based policies after multi-task distillation.

Method Training hands
(State)

Training hands
(Vision)

Unseen hands
(State)

Unseen hands
(Vision)

MT-Raw-OA 0.914 0.782 0.054 0.162
MT-Raw-A 0.823 0.728 0.272 0.210
MT-Raw-O 0.884 0.779 0.046 0.145
CrossDex 0.885 0.800 0.391 0.352

5 EXPERIMENTS

5.1 TASKS SETUP

We evaluate CrossDex on 45 daily objects from the YCB dataset (Calli et al., 2015) and 6 dexterous
hands, with URDFs provided by Ding et al. (2024). We use four of these dexterous hands in training
and the remaining two – a 16-DoF, 4-fingered LEAP Hand and a 12-DoF, 5-fingered Inspire Hand
– are reserved for testing the model’s generalization capabilities. In simulation, we implement a
unified reward to train across all objects and dexterous hands:

rtotal = rdis + rheight + rxy + rsuccess, (3)

where rdis encourages to minimize the distance between the fingertips and the palm to the object,
rheight encourages to lift the object, rxy discourages horizontal object displacement, and rsuccess
indicates successful task completion. Success is defined as maintaining the object at a specific height
for 30 steps while keeping the hand close to the object. The episode ends either when the task is
completed or the object falls off the table. Detailed descriptions of the tasks and simulation settings
are provided in Appendix B.

To obtain eigengrasps and train the retargeting networks, we use the GRAB dataset (Taheri et al.,
2020), which includes 1.6M frames depicting human hands interacting with various objects. For RL
and DAgger, we deploy 8192 parallel environments that encompass combinations of all the required
objects and the four training hands. Additional training details can be found in Appendix B.

5.2 CROSS-EMBODIMENT LEARNING

To evaluate the performance of our method, we compare it against multi-task RL methods for cross-
embodiment learning. Highlighting our principal technical contribution of unifying observations
and actions for dexterous hands, we introduce MT-Raw-OA. This baseline trains policies using the
complete proprioception of the robot and the original hand actions of target joint positions. To align
the dimensions of hand joint positions across different hands, we pad them to a fixed dimension
with zeros. To diminish the ambiguity in such observations and actions, we include a one-hot label
of the embodiment within observations. Similarly, MT-Raw-A uses original actions with our uni-
fied observations and MT-Raw-O uses original observations but integrates our proposed eigengrasp
actions. All baselines are trained using the same teacher-student framework as our method.

Table 1 presents the success rates of these approaches on YCB objects. Our vision-based policy
surpasses all baselines on both training hands and unseen hands, demonstrating its superior per-
formance. According to Figure 5 in the Appendix, our vision-based policy achieves success rates
greater than 60% on 42 of the 45 objects across the four training hands. This performance highlights
its capability to effectively control various embodiments with a single policy. CrossDex particularly
excels in zero-shot performance on new hands, showcasing unique transferability of the learned
skills across different embodiments.

MT-Raw-OA and MT-Raw-O demonstrate high performance in state-based training. However, their
performance decreases a lot when distilled into a vision-based policy. The primary reason is that

7
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Table 2: Finetuning performance of CrossDex compared to baselines on the unseen LEAP Hand.
We evaluate the finetuning of state-based policies and the multi-task vision-based policy for YCB
objects. Additionally, we evaluate multi-task finetuning on unseen objects using 55 objects from the
GRAB dataset. Training curves for these experiments can be found in Appendix C.2.

Method YCB
(5 objects, state)

YCB
(multi-task, vision)

GRAB
(multi-task, vision)

No-Pretrain 0.758±0.122 0.436±0.159 0.313±0.373
MT-Raw-OA 0.701±0.002 0.417±0.007 0.651±0.007
MT-Raw-A 0.798±0.002 0.390±0.005 0.655±0.006
MT-Raw-O 0.708±0.014 0.385±0.003 0.616±0.018
CrossDex 0.872±0.013 0.643±0.009 0.740±0.009
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Figure 3: Comparison of RL training curves:
cross-embodiment learning vs. average per-
formance of individual training.

Table 3: Abaltion study examining the selec-
tion of optimization objectives used in retarget-
ing. “Position retargeting” focuses on optimiz-
ing the absolute positions of the fingertips and
palm. “Vector retargeting” focuses on optimiz-
ing the relative positions from the palm to each
fingertip. “DexPilot” includes optimization of the
relative positions between the fingertips.

Retarget Training hands Unseen hands

Position 0.884±0.030 0.500±0.037
Vector 0.841±0.042 0.435±0.047
DexPilot 0.892±0.005 0.482±0.043

these approaches incorporate embodiment labels in observations during state-based training, which
makes the policy to rely on this information. During distillation, to enhance generalization across
embodiments, we remove these robot labels in the vision-based policy, resulting in less informative
observations. Consequently, on unseen hands, these two methods perform worse with state-based
policies than with vision-based policies, as the state-based policies utilize the specific unseen label
of the new robot, whereas vision-based policies discard this information to enhance generalization.

We notice that even when using the raw action space (MT-Raw-OA and MT-Raw-A), the policy
generalizes to unseen hands, albeit with a lower success rate. This generalization is facilitated by
the careful alignment of the URDFs for all dexterous hands, ensuring that the arrangement of joint
position elements (from the thumb to the little finger) and the corresponding movements (opening
the hand with increasing values and closing with decreasing values) are consistent. This manual
alignment underperforms our method that leverages human hand eigengrasps to effectively align
embodiments.

All methods achieve success rates exceeding 80% during state-based training, demonstrating the
effectiveness of jointly training various embodiments. Figure 3 illustrates the training curves of
CrossDex alongside those from training each dexterous hand individually. We observe that cross-
embodiment training slightly enhances training efficiency and stability compared to individual train-
ing, while achieving comparable performance. This observation supports our approach of co-
training across embodiments rather than dividing the embodiment space for individual training.

5.3 EMBODIMENT TRANSFER

The zero-shot performance on unseen hands, as shown in Table 1, highlights the cross-embodiment
tranferability of the learned policy. Such capabilities not only allow for the direct deployment of
the policy to new hands but also facilitate efficient finetuning by treating the policy as a pre-trained
model for universal grasping skills across all embodiments. We conduct RL finetuning experiments
using a simple yet effective approach based on PPO. We initialize the finetuning policy π with the

8
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Figure 4: Abaltion study on the eigengrasp action space. “MANO” refers to using raw axis angles
of the MANO hand model as actions. “k-E” refers to using the first-k eigengrasps as actions. Results
show average success rates across five YCB objects.

Table 4: Ablation study on embodiment randomization and the inclusion of embodiment-specific
observations. “Rand.” refers to applying randomization to the hand mount position. “Obs.” refers
to including one-hot robot labels and the randomized positions in the observations.

Rand. Obs. Training hands
(State)

Training hands
(Vision)

Unseen hands
(State)

Unseen hands
(Vision)

✗ ✓ 0.834 0.738 0.044 0.146
✗ ✗ 0.836 0.735 0.259 0.209
✓ ✓ 0.840 0.726 0.040 0.187
✓ ✗ 0.885 0.800 0.391 0.352

pre-trained CrossDex policy π0, and during each training iteration, we update π using a weighted
sum of the surrogate loss from PPO and the KL divergence to the pre-trained policy, DKL (π||π0),
to mitigate forgetting.

The results are presented in Table 2 and detailed training curves are provided in Appendix C.2.
These results include finetuning state-based policies on the unseen hand, finetuning the multi-task
vision-based policy on the unseen hand with all objects, and finetuning the vision-based policy to
learn 55 unseen objects from the GRAB dataset (Taheri et al., 2020). We observe that CrossDex
offers a superior pre-trained policy compared to other methods, excelling in all finetuning tasks
involving an unseen hand. Notably, while a policy learned from scratch (No-Pretrain) struggles
in multi-task learning, finetuning the CrossDex policy proves to be a promising approach to learn
tasks across all objects simultaneously. Furthermore, finetuning approaches demonstrate enhanced
stability compared to learning from scratch, as evidenced by the reduced variation and smoother
training curves.

5.4 ABLATION STUDY

We conduct ablation studies to assess the impact of key components in CrossDex, particularly fo-
cusing on the unified actions and observations.

Retargeting Methods: In our main results, we use DexPilot retargeting to map eigengrasp actions
to robot joint positions. To evaluate it, we compare DexPilot with two other optimization-based
retargeting methods by training state-based policies on 5 randomly chosen YCB objects. As shown
in Table 3, all retargeting approaches yield similar training and test performance, which underscores
the robustness of CrossDex to the choice of retargeting algorithm.

Eigengrasp Actions: We explore the importance of using eigengrasps and the impact of varying the
number of eigenvectors k. Results presented in Figure 4 indicate that modifying k from 1 to 36 leads
to consistent training and test performance, highlighting our method’s insensitivity to changes in k.
However, CrossDex-1-E shows decreased training performance, likely due to the limited capacity of
the action space. CrossDex-MANO, which uses the 45-dimensional axis angles of the human hand

9
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as actions, performs worse on zero-shot adaptation than the configurations using varied numbers of
eigengrasps.

Embodiment Randomization and Observations: Table 4 investigates whether applying embod-
iment randomization or adding embodiment-specific information to observations affects perfor-
mance. Incorporating randomization appears to improve performance across both training and test
hands, suggesting greater generalizability of the policy. However, including embodiment specific
observations increases the performance gap between state-based and vision-based policies on train-
ing hands, as these observations benefit state-based policies but are unavailable for vision-based
policies. Moreover, these observations lead to poorer generalization to unseen hands, supporting
our argument for unifying observations for cross-embodiment learning.

5.5 REAL-WORLD EXPERIMENTS

We establish a real-world setup using a RealMan RM65 robot arm paired with a LEAP Hand. The
object point cloud is captured using three Intel RealSense D435i RGBD cameras. We provide video
records of the real-world test on our project page.

6 CONCLUSION AND LIMITATIONS

In this paper, we propose CrossDex to address the challenges in cross-embodiment learning for dex-
terous grasping. Our main technical contributions include unifying hand actions with human hand
eigengrasps to control various dexterous hands, utilizing pre-trained neural networks for efficient
hand pose retargeting, and proposing a shared embodiment-unaware observation space to enhance
generalization. Our experimental results demonstrate that CrossDex facilitates robust training com-
pared to individual embodiment training, successfully controls various hand embodiments with a
single policy, and effectively transfers to unseen embodiments through zero-shot generalization and
finetuning.

Our work has some limitations that can be addressed in future research. First, we train policies
on only four dexterous hands due to limited access to dexterous hand models. Future work should
include a wider range of dexterous hand embodiments, which is likely to improve embodiment
generalization. Additionally, while this work focuses on grasping tasks, there are many real-world
tasks for robotic hands – such as in-hand reorientation, dynamic handover, and functional grasping
– that remain unexplored in the literature of cross-embodiment learning. Future work could extend
CrossDex to these tasks.
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A ALGORITHM

Algorithm 1: CrossDex training process.
Input: Dexterous hand modelsH; Object set Ω; Human hand pose dataset D; Untrained

retargeting networks {Phξ }h∈H, state-based policies {πSψω
}ω∈Ω, and the vision-based

policy πVϕ .
Output: The learned vision-based policy πVϕ .

Preprocessing:

{ei}ki=1 ← PCA(D);
for h ∈ H do

Construct D′ = {(θi,Jhi )}θi∈D using MANO and DexPilot;
Train Phξ on D′ to minimize MSE loss.

Teacher learning:
for ω ∈ Ω do

Create IsaacGym environments for object ω and all hands;
while not converge do

Get state-based observations oSt ;
Sample actions Ĵat ,wt ∼ πSψω

(oSt );

Compute target joint positions Ĵht ← Phξ (
∑k
i=1 wt,iei);

Step the environments, get rewards rt;
Save (oSt ; Ĵ

a
t ,wt; o

S
t+1; rt) into the PPO buffer;

Update πSψω
using PPO.

Distillation:
Create IsaacGym environments for all objects and hands;
while not converge do

Get state-based observations oSt and vision-based observations oVt ;
Sample actions Ĵat ,wt ∼ πVϕ (oVt );
Step the environments;
Get teacher actions ât ← πSψω

(oSt ) for each object ω;
Save (oVt ; ât) into the buffer;
Update πVϕ to minimize MSE loss using the buffer.

B IMPLEMENTATION DETAILS

B.1 TASKS SETUP

For our experiments, we use objects from the YCB dataset (Calli et al., 2015) to evaluate CrossDex.
We exclude objects that cannot be modeled as a rigid bodies, objects composed of more than 30
convex hulls after VHACD decomposition (to fit within the IsaacGym simulation), and objects that
are either too large or too flat, necessitating functional grasping rewards (Wu et al., 2024a) outside
the scope of our study. The resulting dataset comprises 45 objects, representing a diverse array of
everyday items with varied geometries, such as cups, scissors, and boxes. The full object list is
available in Figure 5. For testing the finetuning performance on unseen objects, we use 55 objects
from the GRAB dataset (Taheri et al., 2020). For state-based finetuning and certain ablation studies,
we select five random objects from the YCB dataset, including mustard bottle, mug, spoon, softball,
and cup j.

Our reward function, adapted from UnidexGrasp++ (Wan et al., 2023), is defined as follows:

rtotal = rdis + rheight + rxy + rsuccess.
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Here, rdis penalizes the weighted L2 distance between the object center and the fingertips and palm:

rdis = −2× average fingertips object distance− palm object distance.

The rheight term encourages lifting the object to a specific height:

rheight =

{
0, if average fingertips object distance ≥ 0.12 and palm object distance ≥ 0.15

0.9− 2|H − 0.6|+ (H − 0.6) + 1
|H−0.6|+1 , otherwise,

where H denotes the current height of the object, starting from an initial height of 0.3 meters.

rxy aims to minimize horizontal displacement of the object:

rxy = −0.3× ∥object xy− object initial xy∥.

Finally, rsuccess awards 200 points upon task completion, defined as maintaining |H − 0.6| ≤ 0.05
and either average fingertips object distance ≤ 0.12 or palm object distance ≤ 0.15 for n steps. n
is set to 30 in test and we increase it to 60 in training to enhance policy robustness.

B.2 EMBODIMENTS

We use six dexterous hand models provided by Ding et al. (2024), allocating four for training and
two for test.

The training embodiments consist of:

• ShadowHand: a 5-fingered hand with 22 DoFs.
• Allegro Hand: a 4-fingered hand with 16 DoFs.
• Schunk SVH Hand: a 5-fingered hand with 20 DoFs.
• Ability Hand: a 5-fingered hand with 10 DoFs.

For testing, we use:

• Leap Hand: a 4-fingered hand with 16 DoFs.
• Inspire Hand: a 5-fingered hand with 12 DoFs.

Refer to Figure 11 for a visualization of the six dexterous hands.

Regarding the robot arm, we employ the 6-DoF RealMan RM65 arm. The base of the arm is
mounted on the side panel of the table, and the dexterous hand is fixed to the end-effector, which
aligns our hardware configuration.

B.3 TRAINING RETARGETING NETWORKS

The retargeting networks are designed to map 45-dimensional axis angles of fingers to joint positions
for each dexterous hand. For simplicity, the 3-dimensional wrist rotation and the shape parameters of
the human hand are set to zero. Each retargeting network is a four-layer MLP with hidden layers of
512 dimensions and ReLU activation functions. Each network is trained for 200 epochs, minimizing
the MSE loss. Figure 11 visualizes the performance of the learned retargeting networks.

B.4 TRAINING POLICIES

Our codebase for RL and DAgger is based on UniDexGrasp (Xu et al., 2023). For each state-
based policy, we use five-layer MLPs for both the actor and the critic, featuring hidden layers with
dimensions [1024, 1024, 512, 512] and using ELU activation functions. For the vision-based policy,
we use a simplified PointNet (Qi et al., 2017) backbone incorporating two 1D convolution layers
and two MLP layers to process the object point cloud, which has dimensions of 512. Both the actor
and the critic share the output of this backbone.

In state-based RL, we train the policies using PPO across 40,000 iterations within parallel simula-
tions of 8,192 environments. Hyperparameters are provided in Table 5. For vision-based distillation,
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we use DAgger for 20,000 iterations within parallel simulations of 16,384 environments. Hyperpa-
rameters are provided in Table 6. In our finetuning experiments, state-based finetuning is conducted
for 10,000 iterations using 8,192 parallel environments, while vision-based multi-task finetuning
is conducted for 20000 iterations using 16,384 parallel environments. Our experiments within en-
vironments of 8,192 can be completed on a single NVIDIA RTX 4090 GPU. For the larger scale
experiments involving 16,384 environments and PointNet backbones, we use a single NVIDIA A800
GPU.

To acquire object point clouds for vision-based policies, we follow the approach in prior work (Wu
et al., 2024b). In simulation, object point clouds are constructed from the objects’ mesh data. At
each timestep, the point clouds are transformed based on the objects’ poses. During training, we
apply Farthest Point Sampling (FPS) to sample 512 points, which are then fed into a PointNet to
extract features. The PointNet is trained jointly with the policy during the distillation process. In the
real world, to acquire similar object point clouds, we use three RGB-D cameras and instance seg-
mentation to capture the object point cloud at the first timestep. For subsequent timesteps, we use
instance tracking and pose estimation to transform the object point cloud, ensuring consistency of
the shape across execution steps. Our approach of constructing object point clouds from mesh data
in simulation avoids the need for simulated cameras, which would significantly limit the number of
parallel environments. Using this approach, IsaacGym can support thousands of parallel environ-
ments, allowing us to train vision-based policies efficiently with 16,384 environments on a single
NVIDIA A800 GPU in approximately 10 hours. We have also validated that same performance can
be achieved using 4,096 environments on an NVIDIA RTX 4090 GPU, which takes approximately
2 days.

Table 5: Hyperparameters of PPO.

Name Symbol Value

Parallel rollout steps per iteration -- 8
Training epochs per iteration -- 5

Minibatch size -- 16384
Optimizer -- Adam

Learning rate η 3e-4
Discount factor γ 0.96
GAE lambda λ 0.95

Clip range ϵ 0.2

Table 6: Hyperparameters of DAgger.

Name Symbol Value

Parallel rollout steps per iteration -- 8
Training epochs per iteration -- 5

Minibatch size -- 4096
Optimizer -- Adam

Learning rate η 3e-4

C ADDITIONAL RESULTS

C.1 SUCCESS RATES PER OBJECT

Figure 5 shows the success rates achieved by the learned vision-based policy for each YCB object.

C.2 TRAINING CURVES

Figure 6, 7, and 8 illustrate the reward vs. training iteration curves for the finetuning experiments.

16



864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

pl
um

ap
pl

e
sp

at
ul

a
fo

am
_b

ric
k

ba
se

ba
ll

to
m

at
o_

so
up

_c
an

h_
cu

ps
ru

bi
ks

_c
ub

e
ra

cq
ue

tb
al

l
la

rg
e_

cla
m

p
le

m
on

te
nn

is_
ba

ll
ph

illi
ps

_s
cr

ew
dr

ive
r

so
ftb

al
l

m
ug

i_c
up

s
to

y_
ai

rp
la

ne
m

ar
bl

es
j_c

up
s

pe
ac

h
f_c

up
s

ba
na

na
le

go
_d

up
lo

po
tte

d_
m

ea
t_

ca
n

fla
t_

sc
re

wd
riv

er
b_

cu
ps

or
an

ge
m

us
ta

rd
_b

ot
tle

c_
cu

ps
d_

cu
ps

su
ga

r_
bo

x
po

we
r_

dr
ill

a_
cu

ps
ha

m
m

er
la

rg
e_

m
ar

ke
r

pe
ar

fo
rk

sp
oo

n
g_

cu
ps

e_
cu

ps
ex

tra
_la

rg
e_

cla
m

p
sc

iss
or

s
sk

ille
t_

lid
kn

ife
ni

ne
_h

ol
e_

pe
g_

te
st

0.0

0.2

0.4

0.6

0.8

1.0

Su
cc

es
s R

at
e

Figure 5: Average success rates for each YCB object across various embodiments.
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Figure 6: Training curves depicting state-based finetuning performance on five YCB objects using
the unseen LEAP Hand.
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Figure 7: Training curves depicting multi-task vision-based finetuning performance on all YCB
objects using the unseen LEAP Hand.
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Figure 8: Training curves depicting multi-task vision-based finetuning performance on the 55 un-
seen GRAB objects using the unseen LEAP Hand.

C.3 TRAINING CURVES FOR DIFFERENT ACTION SPACE CONFIGURATIONS

Figure 9 shows the PPO training curves of CrossDex with different numbers of eigengrasp actions
and CrossDex with the 45-dimensional MANO actions.
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Figure 9: Training curves of CrossDex with different human hand action spaces.
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C.4 VISUALIZATION OF EIGENGRASP ACTIONS AND RETARGETING

Figure 11 displays samples from the eigengrasp action space and the corresponding joint positions
of various dexterous hands predicted by our retargeting networks.

Figure 10: Visualization of hand poses for some eigengrasp actions and the corresponding poses of
the six dexterous hands as predicted by our retargeting neural networks.
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C.5 THE IMPACT OF THE NUMBER OF TRAINING HANDS

We conduct experiments training CrossDex with different numbers of dexterous hands. The re-
sults in Table 7 demonstrate that increasing the number of training hands consistently improves
performance on unseen hands, highlighting the potential for further improvement by including more
dexterous hands in the training set.

Table 7: Performance on the two test hands given different numbers of training hands.

Number of Training Hands 1 2 3 4

Success Rate on Unseen Hands 0.129 0.328 0.434 0.482

C.6 RESULTS FOR A THREE-FINGERED HAND

Figure 11: Comparison of the retargeted hand poses between the three-fingered D’Claw Gripper
and other dexterous hands, with each row corresponding to a specific eigengrasp action.

It is essential to evaluate our method on 3-fingered hands, even though hand retargeting algorithms
are less frequently applied to such hands. To explore this, we conduct an experiment using the
three-fingered D’Claw Gripper. The retargeting algorithm is adapted by ignoring the ring and small
fingers of the human hand and mapping the other three fingers to the robotic fingers. We also use
the GRAB dataset to train the retargeting network. We train the CrossDex policy using the four
previous training hands along with the D’Claw Gripper on the five randomly selected YCB objects.
The results are presented in Table 8.

The results indicate that our method is scalable to the three-fingered D’Claw Gripper, achieving high
success rates.
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Table 8: Performance on the three-fingered D’Claw Gripper trained with the other four hands.

Hand ShadowHand Allegro
Hand

Ability
Hand

Schunk
SVH Hand

D’Claw
Gripper

Num.
Fingers 5 4 5 5 3

Success
Rate 0.891 ± 0.009 0.892 ± 0.008 0.753 ± 0.009 0.911 ± 0.009 0.853 ± 0.033

In Figure 11, we demonstrate that the retargeting network effectively enables the three-fingered
hand to open and close, similar to other dexterous hands. However, we observe lower consistency in
achieving specific hand poses compared to anthropomorphic hands, due to the significant differences
in morphology. For instance, the D’Claw Gripper struggles with certain grasping poses requiring
fingers to curve inward. Future work could address these challenges by developing more tailored
retargeting methods for hands with distinct morphologies.
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