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Abstract

Time series foundation models are pre-trained on large datasets and are able to
achieve state-of-the-art performance in diverse tasks. However, we observe that
currently, the majority of time series foundation models either are univariate in
nature, or assume channel independence, meaning that they handle multivariate
time series but do not model how the different variables relate. In this paper,
we propose a prompt-tuning-inspired fine-tuning technique, Generalized Prompt
Tuning (Gen-P-Tuning), that enables us to adapt an existing univariate time series
foundation model (treated as frozen) to handle multivariate time series prediction.
Our approach provides a way to combine information across channels (variables)
of multivariate time series. We demonstrate the effectiveness of our fine-tuning
approach against various baselines on 8 classification and 4 forecasting datasets.

Our code is available at:
https://github.com/Ilovecodingforever/Gen-P-Tuning

1 Introduction

With the rapid development of large language models (LLMs) recently, there has been a surge of
interest in developing similar sorts of foundation models for time series analysis (e.g., Das et al.[2023|
Gruver et al.|2024, |Goswami et al.[2024). They are trained on a variety of time series data, with the
idea that time series across disciplines likely share similar patterns. However, a major limitation of
most time series foundation models that have been developed is that they are univariate [Ye et al.,
2024]).

In this paper, our main contribution is to show how to adapt existing unviariate time series foun-
dation models to handle multivariate time series prediction, specifically for both classification and
forecasting. We treat the univariate time series foundation model as frozen, and how we adapt it
to handle multivariate time series prediction is as a form of parameter-efficient fine-tuning (PEFT).
PEFT methods have become popular recently for adapting LLMs to handling various datasets (e.g.,
Hu et al.[2022). Our proposed PEFT method is a generalization of an existing PEFT method called
prompt tuning, of which we specifically generalize the variant called P-tuning v2 by |Liu et al.|[2022].
As such, we call our proposed PEFT method Generalized Prompt Tuning (Gen-P-Tuning).

We show that Gen-P-Tuning is competitive in practice against various fine-tuning baselines in
experiments on classification and forecasting. To the best of our knowledge, our paper is also the first
to benchmark various fine-tuning strategies on time series foundation models.

Bibliographic note A longer version of this paper specialized to healthcare data has been published
at Machine Learning for Health (ML4H) [|Liu et al.,[2024]. In this short workshop paper, we apply
the same method as in our ML4H paper to a wider range of datasets.

NeurIPS 2024 Workshop on Time Series in the Age of Large Models.
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Figure 1: Univariate time series foundation model. The predicted target’s dimensions depend on the
prediction task (Y € [0, 1]™ for M-way classification, and Y € R¥ for forecasting H time steps).

2 Background

2.1 Basic Notation

We denote a single multivariate input time series as X € RE*T, where C is the number of chan-
nels/variables, and T is the number of time steps. The multivariate case corresponds to C' > 2,
whereas in the univariate case (C' = 1), we represent the time series as a 1D array of length 7. We
denote the ground truth prediction target as Y. If the prediction task is classification with M > 2
classes, then Y € [0,1]*. If the prediction task is forecasting, then Y € RE*#  where H is the
time horizon.

2.2 Univariate Time Series Foundation Models

We now state the general form of the univariate foundation models that our proposed fine-tuning
strategy can adapt into multivariate time series predictors. The structure is shown in Figure [l A
more detailed discussion on the structure is in Section 2 of the longer version of this paper [Liu et al.|
2024].

For an input univariate time series X"" € RT where T is the number of time steps , the foundation
model first applies a preprocessing function fem,, to X"™ to produce a preprocessed array

Euni — femb(Xuni) c RPXD7 (1)

where P could be different from 7' due to patching [Nie et al., [2023]] and D is the embedding
dimension. The transformer backbone then takes in E"" to produce intermediate embeddings
Uy € RPXD with transformer layers f,, where £ = 1, ..., L. Finally, a prediction layer (“head”)
fprea is applied to the last transformer layer’s output U“Lni to produce the final prediction:

Y = fpred (Ulini)a
In summary, the full univariate foundation model could be represented as the function
féfpredo(fLofL—lO"'Oflofemb)a 2)

£ frazen

sothat Y = f(Xu0i) = Jored (frrozen (XU™)).

2.3 Handling Multivariate Time Series With Channel Independence

Given an input multivariate time series X € R¢*T, channel-independent models separate it out

into its different channels’ time series X (1), X(2),..., X(c) € R”. Then we can obtain the final
transformer layer’s output across the different channels:

U 2 froen(X()  fore=1,....C. 3)
Finally, we train a prediction head (such as a multilayer perceptron) that takes in U(Ll), ceey U(LC) as

the inputs (or the average of these across channels as a single input) and outputs the predicted target.
Importantly, the univariate foundation model itself does not combine information across channels.
Instead, only the prediction head does.
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Figure 2: Overview of how the prompt P is added to the backbone. Note that the prompt is learned
using a Prompt Module fpromp that summarizes information across all channels. The prompt is then
attached as a prefix to each channel’s embedding Ey), . .., E(¢y. Blue and red boxes are the same as
the ones in Figure[I]

3 Method

We now explain how our Gen-P-Tuning method works for adapting a pre-trained univariate time
series foundation model for multivariate time series prediction. We treat the univariate foundation
model as frozen, and our fine-tuning approach introduces trainable elements.

Overview We only provide a high-level overview of our Gen-P-Tuning approach here; for details, see

Section 3.1 of the longer version of this paper [Liu et al.|[2024]]. Similar to P-tuning v2, Gen-P-Tuning

trains a prompt for each transformer layer. It suffices to explain how Gen-P-Tuning works when there

is a single transformer layer, as shown in Figure[2] Formally, given a frozen channel-independent

model, for each channel’s embedding E (1, . . ., E((i € RP*P (outputs of the blue boxes in Figure
1]

each blue box is the same as the one from Figure 1)), a prompt P € R(C5)*D s trained using the
Prompt Module fpromp: (defined momentarily), where hyperparameter K controls the prompt size.
We then attach the prompt P to each channel’s embedding E (. (forc = 1,. .., C) to obtain

=~ P
Ec L I: :| EIR(C'K'—‘,-P)XD7

(e) E
which we then feed to the univariate foundation model’s transformer layer f; (red boxes in Figure
this is the same red box as in Figure[I)). We design the prompt such that it depends on information
contained in all channels.

The Prompt Module The Prompt Module fpromp: sSummarizes the different preprocessed time series
across channels (a total of P x C' x D numbers) into a single array P € R(C-K)*D that notably does
not depend on the number of patches P. In particular, frompt needs to accommodate the possibility
that different input time series even within the same dataset could have different numbers of patches P
(and across different datasets, the number of channels C could vary). Note that the Prompt Module
consists of all trainable elements of Gen-P-Tuning aside from the final prediction head.

There are many ways to define frompi. We specifically define it to do the following steps:

1. We apply a transformer module to E € RP*¢*D by treating the P different patches as if they are
different data points (so that each “data point” is in R®*?, where C is treated as the “time steps”
by the transformer module). The output per patch is in R“*?, and we stack these outputs into a
single array P’ € RP*ExD,

2. We use a transformer to map P’ from , followed by a max pooling
operation to map it to R€*(5*P) and finally a reshape operation to map it to R %P Note
that there are other ways of aggregating across the P dimension (to make the output of the Prompt
Module not depend on the number of patches) such as recurrent neural networks and multi-layer
perceptrons.

REPXCXD 4 RPXCX(K-D)



Table 1: Average test accuracy on classification tasks. For each univariate foundation model, per
column we bold whichever score is the best and underline the second-best score.

Full LoRA Linear Probing  Prompt Tuning  Gen-P-Tuning
MOMENT 0.732 £0.217 0.763 £0.206  0.769 + 0.204  0.756 £ 0.205 0.761 £ 0.207
GPTATS 0.741 £ 0.213  0.742 £0.204 0.742 £0.202  0.609 £ 0.221  0.590 + 0.243

Table 2: Average test MSE and MAE on forecasting tasks.This table uses the same formatting as
Table|l|(in terms of what bolding and underlining mean).

Full LoRA Linear Probing  Prompt Tuning  Gen-P-Tuning

MSE 1.211+1.161 1.121£1.152 3.252+1.965 1.071+1.068 1.118+ 1.137
MAE 0.698 £0.342 0.631 +0.318 1.208 0.302  0.641 +0.325 0.647 = 0.323

MSE 1.612+ 1313 154641336 3.242+1.757 1.478+1.255 1.482+1.251
MAE 0.807 £0.375 0.7514+0.372 1.212+0.270 0.763 +£0.380 0.760 £ 0.366

MOMENT

GPTATS

4 Experiments

Our experiments aim to show how different fine-tuning strategies for adapting univariate time series
foundation models to multivariate time series classification and forecasting work in practice. To this
end, we specifically consider univariate time series foundation models, MOMENT [Goswami et al.,
2024] and GPT4TS [Zhou et al., 2023 that support both classification and forecasting, and both are
special cases of the formulation we presented in Section[2.2] We use 8 datasets for classification and
4 datasets for forecasting. Details on datasets and implementation details are in Appendix [A]

Baselines We compare Gen-P-Tuning to the following fine-tuning baselines:

1. Full fine-tuning, where all parameters are updated.

2. Low-Rank Adaptation (LoRA) [Hu et al., 2022].

3. Linear probing. For MOMENT, the only learnable part is now the prediction head. For GPT4TS,
this includes the (non-pre-trained) input embedding layer and the prediction head.

4. P-tuning v2 [Liu et al.} 2022] (referred to simply as “Prompt Tuning” in our tables later), where P
is an array of trainable parameters.

The last two baselines are actually special cases of Gen-P-Tuning. Linear probing corresponds to a
degenerate case where prompt size hyperparameter K is set to be 0 so that the prompt P has 0 rows;
the resulting method is precisely the channel-independent strategy in Section[2.3] P-tuning v2 results
from the Prompt Module fpromp: DOt actually depending on any inputs and instead just outputting a
table of numbers, all of which are directly treated as neural network parameters.

Results We report average accuracy across the 8 classification datasets in Table|l} and the average
MSE and MAE across 4 forecasting datasets in Table[2} Full results are included in Appendix [B] Note
that in these tables, “Gen-P-Tuning” refers to our proposed strategy used with a nontrivial Prompt
Module (so that it is not reducing to the special case of either linear probing or P-tuning v2).

No method always performs the best. Gen-P-Tuning (with a nontrivial Prompt Module) is often
among the best-performing ones. Linear probing sometimes performs very well, which suggests
that a channel-independent strategy is sometimes sufficient. Full fine-tuning sometimes does not
perform well, especially for forecasting experiments. This might be a sign of catastrophic forgetting
[Goodfellow et al.l 2014], which is commonly observed in low-data regimes with deep networks.
There has not been previous work on catastrophic forgetting of time series foundation models, but it
has been observed in models such as LSTMs [Schak and Gepperth, |2019].

In practice, note that one could tune Gen-P-Tuning (whether to have the prompt size be O to recover
linear probing, use a trivial Prompt Module to obtain P-tuning v2, or use various nontrivial Prompt
Modules) based on a validation set accuracy metric.

5 Discussion

A limitation of our work is that most of the datasets that we used were in MOMENT’s pre-training
dataset, although we ensured that the test portion was not part of the pre-training dataset. A direction
that we have not explored is interpreting how the learned Prompt Module combines information
across channels. While attention weights of the Prompt Module could be visualized, there is debate
on whether attention weights are interpretable (e.g.,[Serrano and Smith/2019).
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A Experimental Setup Details

Datasets We use 4 datasets (ETTh1, ETTh2, Exchange, ILI) from the dataset used in the Autoformer
paper [Wu et al 2021]] for forecasting tasks and 6 datasets (EthanolConcentration, Japanese Vowels,
SelfRegulationSCP1, SelfRegulationSCP2, SpokenArabicDigits, UWaveGestureLibrary) from the
UEA archive [Bagnall et al.,|2018]] for classification tasks. These datasets are split into 60% training,
10% validation, and 30% testing. The forecasting horizon is 96 hours for ETTh1 and ETTh2, 96
days for Exchange, and 60 weeks for ILI. We forecast all 8 variables in Exchange, and 7 variables in
ETTh1, ETTh2, and ILI. We point out that|Goswami et al.| [2024] also presented forecasting results
on these datasets but they report experimental results only on forecasting one of the variables, so the
numbers they get are not directly comparable to ours.

We also performed two classification experiments on MIMIC-III [Johnson et al.| 2016|], which is a
publicly available electronic health records dataset collected from patients in the intensive care units
of the Beth Israel Deaconess Medical Center from 2001 to 2012. We follow the benchmark proposed
by Harutyunyan et al.|[2019]. Specifically, we focus on two tasks. The first is a binary classification
task of predicting in-hospital mortality based on the first 48 hours of an ICU stay (referred to as
“MIMIC Mortality” in our tables later). The second is a multi-class, multi-label classification task,
where we classify which of 25 acute care conditions occurred in an ICU stay (“MIMIC Phenotyping”).
For these two MIMIC classification tasks, to simulate a resource-constrained environment, we use
only 1000 randomly sampled patients, 60% of the data for training, 10% for validation, and 30% for
testing. In the original benchmark, 17 clinical variables are included. We also include as an additional
variable the number of hours since the time of admission to the ICU. Instead of one-hot encoding as
in the benchmark, we encode categorical variables as ordinal values. The time series are irregularly
sampled, and missing values are imputed using forward filling when possible or using the normal
values suggested by the benchmark otherwise.

Note that the longer version of this paper [Liu et al., [2024] (written prior to this paper) uses a subset
of the datasets we mention here (ILI forecasting and the two MIMIC classification tasks).

Implementation details Experiments were run with NVIDIA RTX A6000, Python 3.11.5, Pytorch
2.4.0, Huggingface-hub 0.24.0, and MOMENT-1-large. Experiments were run with the following
hyperparameters (we did not tune hyparparameters):

* Number of epochs: 10
* Scheduler: OneCycleLR
* Optimizer: AdamW
* Learning rate: 5 x 107
* Max learning rate: 0.01
* Weight decay: 0.05
* Loss function: binary cross-entropy for classification, MSE for forecasting
* Prompt size K: 4 for MIMIC experiments, 16 for others
* LoRA hyperparameters:
— Attention dimension: 1 (attention dimension was chosen to make the number of trainable
parameters of LoRA close to that of Gen-P-Tuning)
— Alpha: 16
— Dropout: 0.1

B Full Results

Results on classification datasets are in Table [3] (excludes MIMIC experiments), Table 4] (MIMIC
Mortality), and Table [5] (MIMIC Phenotyping). Note that for MIMIC experiments, we additionally
use the area under the receiver operating characteristic curve (AUROC), F1, and the area under the
precision-recall curve (AUPRC) evaluation metrics. Results on all forecasting datasets are in Table 6]



Table 3: Test accuracy on classification datasets (mean =+ std. dev. over 5 random seeds) excluding
MIMIC experiments. For each univariate foundation model, per column we bold whichever score is
the best and underline the second-best score.

EthanolConcentration ~ JapaneseVowels ~ SelfRegulationSCP1  SelfRegulationSCP2  SpokenArabicDigits UWaveGestureLibrary

Full 0.283 + 0.022 0913 +0.016 0.800 + 0.070 0.503 + 0.004 0.952 + 0.003 0.679 + 0.060
MOMENT LoRA 0.326 &+ 0.011 0.936 + 0.014 0.766 + 0.035 0.541 + 0.023 0.975 + 0.002 0.853 + 0.017
Linear Probing 0.356 + 0.009 0.961 + 0.003 0.861 + 0.002 0.530 + 0.008 0.978 + 0.002 0.761 + 0.004
Prompt Tuning 0.327 +0.011 0.937 +0.012 0.751 + 0.025 0.538 +0.012 0.969 + 0.005 0.813 +0.041
Gen-P-Tuning 0.323 + 0.006 0.918 + 0.020 0.850 + 0.058 0.526 +0.016 0.969 + 0.005 0.784 + 0.025
Full 0.288 +0.018 0.918 +0.016 0.832 + 0.021 0.513 4+ 0.008 0.937 + 0.007 0.729 + 0.037
GPT4TS Lf)RA ) 0.303 +0.017 0.950 + 0.014 0.763 + 0.051 0.531 +0.022 0.908 + 0.022 0.807 + 0.035
Linear Probing 0.295 + 0.020 0.928 + 0.007 0.820 +0.018 0.546 + 0.023 0.918 +0.016 0.785 + 0.019
Prompt Tuning 0.312 + 0.026 0.308 + 0.075 0.847 + 0.046 0.517 + 0.031 0.671 + 0.043 0.495 + 0.087
Gen-P-Tuning 0.297 + 0.027 0.202 +0.110 0.852 + 0.017 0.529 +0.014 0.646 + 0.055 0.478 + 0.091

Table 4: MIMIC Mortality classification test set scores (mean = std. dev. over 5 random seeds). For
each univariate foundation model, per column we bold whichever score is highest and underline the
second-best score.

Model Fine-Tuning Method Raw Accuracy AUROC F1 AUPRC
Full 0.891 +0.012 0.687 +0.020 0.508 +0.044  0.255 + 0.038

MOMENT LoRA ' 0.875 £0.021  0.720 +£0.019  0.573 £ 0.050  0.272 + 0.025
Linear Probing 0.878 £0.013  0.730 +0.035 0.544 +0.043  0.260 + 0.018
Prompt Tuning 0.883 +£0.012 0.724 +£0.035 0.576 + 0.058 0.274 + 0.020
Gen-P-Tuning 0.881 £0.005  0.754 +0.021  0.591 + 0.031  0.292 + 0.026
Full 0.886 +£0.019  0.743 £ 0.018 0.524 +0.052  0.309 + 0.023

GPTATS LoRA ' 0.871 £0.017  0.708 4 0.056  0.588 + 0.028 0.254 + 0.024
Linear Probing 0.859 £0.015 0.737 +0.033  0.584 + 0.037  0.265 + 0.037
Prompt Tuning 0.891 +£0.013  0.689 +0.062 0.471 +0.004 0.236 + 0.022
Gen-P-Tuning 0.887 +0.016  0.708 & 0.025 0.499 +0.033  0.255 + 0.038

Table 5: MIMIC Phenotyping classification test set scores (mean = std. dev. over 5 random seeds).
For each univariate foundation model, per column we bold whichever score is the best and underline
the second-best score.

Model Fine-Tuning Method Raw Accuracy AUROC F1 AUPRC
Full 0.832 +£0.007 0.643 +0.019 0.070 +0.024  0.276 + 0.021

MOMENT LORA ) 0.832 £ 0.007  0.640 +0.025 0.085 + 0.023  0.273 £ 0.027
Linear Probing 0.830 £ 0.006  0.631 +0.026  0.071 +0.031  0.264 + 0.022
Prompt Tuning 0.832 +£0.008 0.634 +£0.012 0.069 + 0.036  0.268 + 0.015
Gen-P-Tuning 0.835 £ 0.004 0.666 + 0.015 0.135+0.017 0.294 + 0.012
Full 0.823 £0.009 0.593 +0.014 0.060 + 0.028 0.234 + 0.014

GPT4TS LoRA ) 0.801 £0.015 0.596 +0.023  0.107 + 0.024  0.241 + 0.015
Linear Probing 0.789 £ 0.009  0.5554+0.016 0.129 +0.029 0.213 £ 0.015
Prompt Tuning 0.831 £0.010 0.581 +£0.012 0.024 +£0.017 0.227 +0.014
Gen-P-Tuning 0.832 +0.003 0.599 +0.010 0.020 +0.009 0.231 +0.010

Table 6: Test MSE and MAE on forecasting datasets (mean =+ std. dev. over 5 random seeds). For
each univariate foundation model, per column we bold whichever score is the best and underline the
second-best score.

ETThl ETTh2 Exchange ILI
MSE MAE MSE MAE MSE MAE MSE MAE
Full 0.443 £0.006 0.451 £0.007 0.378 £0.019 0.403 £0.009 0.823 £0.137 0.677 £0.057 3.199 £0.102 1.262 £ 0.022
MOMENT LoRA 0.427 £0.016 0438 £0.012 0.351 +£0.009 0.390 +0.004 0.595+0.116 0.519 4+ 0.038 3.109 £ 0.021  1.176 + 0.006
Linear Probing  6.566 + 0.146  1.702 +0.019 2.388 +0.117 1.078 £0.027 1.431+0.033 0.891 £0.013 2.622+0.036 1.159 +0.011
Prompt Tuning  0.430 £ 0.011  0.441 +0.008 0.400 £0.019 0.417 £0.011 0.535£0.099 0.504 £ 0.052 2.918 £ 0.047 1.200 £ 0.009
Gen-P-Tuning ~ 0.439 £ 0.009  0.445 £ 0.007 0.369 + 0.028 0.402 +0.019 0.582 4+ 0.134 0.542 4 0.061 3.083 £ 0.080 1.200 £ 0.016
Full 0.514 £0.024 0.507 £0.016 0.454 +0.020 0.457 £0.007 1.865+0.191 1.023 £0.056 3.219+£0.093 1.240 £+ 0.012
GPT4TS LoRA 0.486 £ 0.021 0490 £0.016 0453 +£0.011 0.463 +0.004 1.19440.131 0.808 4 0.054 3.247 +0.337 1.230 + 0.089

Linear Probing  0.510 +0.023  0.494 £0.016 0.438 £0.056 0.449 £0.026 0.879 £0.128 0.678 £0.036  3.202 +0.303  1.232 4 0.072
Prompt Tuning  0.405 + 0.007  0.429 + 0.006 0.308 +0.008 0.357 +0.005 0.716 = 0.040 0.632 +0.029 3.105 +0.429 1.253 £ 0.098
Gen-P-Tuning  0.414 +£0.005 0.436 +0.005 0.298 +0.007 0.353 +0.005 0.7524+0.217 0.615+0.092 2.939 +0.378  1.209 + 0.092
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