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ABSTRACT

In distributed learning environments like federated learning, data heterogeneity
across clients has been a key challenge, which often leads to suboptimal model
performance and convergence issues. So far, plenty of efforts have focused on
addressing data heterogeneity by relying on a hypothetical clustering structure or
a consistent information-sharing mechanism. However, because of the inherent
complexity and diversity of real-world data, these assumptions may be largely vi-
olated. In this work, we argue that information sharing is mostly fragmented in
the collaboration network in reality. The distribution overlaps are not consistent
but scattered among local clients. We propose the concept of Precision Collabo-
ration, which refers to accurately identifying the informative data in other clients
precisely while carefully avoiding the potential negative transfer induced by oth-
ers. In particular, we propose to pre-learn a global manifold, which infers the
local data manifolds and estimates the exact local data density simultaneously.
The learned manifold aims to precisely identify the shared data in other clients.
The estimated exact likelihood allows for generating samples from the manifold
precisely. Our pre-training strategy enables reusable and scalable model learning,
especially when an ongoing influx of new clients becomes part of the network.
Experiments show that our proposed method effectively identifies the favorable
data in other clients without compromising privacy preservation, and significantly
overcomes baselines on benchmarks and a real-world clinical data set.

1 INTRODUCTION

Distributed learning frameworks, such as federated learning (FL), have garnered significant attention
across various fields in recent years (Wen et al.,[2023)). It enables collaborative model learning when
training data are collected by multiple clients in a network. As it learns from distributed data sources
without the need to access the raw data across different clients, it facilitates real-world scenarios
where privacy preservation is crucial, such as finance (Yang et al.,[2019), healthcare (Xu et al.|[2021])
and criminal justice (Berkl[2012). While it is common that the data samples in local clients are non-
i.i.d., existing research reveals that data heterogeneity could lead to non-guaranteed convergence,
inconsistent performance and catastrophic forgetting across local clients (Qu et al.l |2022). Despite
the promise of FL, an increasing concern is how to effectively handle data heterogeneity before FL.
is applied in real-world data scenarios.

To address this issue, personalization has emerged as a critical research direction. A variety of
efforts have been made to explore this direction. For example, Ghosh et al.| (2020) proposed to
cluster the clients according to their sample distributions and build a customized model for each
cluster. However, their hypothesis excludes the possibility of knowledge transfer across clusters. [Li
et al.| (2021b) enhanced personalized model learning by introducing a global regularization term,
which assumed that the shared knowledge was consistent across all clients.

Given the variety of local data distributions, we explore a more adaptable and generalized scenario
where distribution overlaps may be fragmented, as illustrated in Figure[I] (a). Since the informative
and ambiguous data shards exist simultaneously in other clients, collaborating with all data may do
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harm to the model learning. An interesting and challenging problem is how to selectively collaborate
with the favorable part of other clients.

In this paper, we put forward the concept “Precision Collaboration” for fragmented information
sharing. To begin with, we argue that data heterogeneity comes from inconsistent local data mani-
folds, and the local data manifolds share different overlaps. Maximizing the benefit of collaboration
requires a precise utilization of these overlaps. Moreover, local data are usually collected from the
manifold based on a particular density. If we want to generate data from the manifold, a precise
distribution density approximation for each client could facilitate model learning.
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(a) data in local clients (b) global and local manifold (c) identify overlapped data (d) sample from A1*

Figure 1: Overview of our proposed PCML. (a) Fragmented distribution overlaps exist among clients;
(b) learn the global data manifold M9 and determine the local manifold M? for each client; (c) the
data from other clients lie on the local manifold M are identified as data overlaps; (d) learn a local
density pi (z) for local data generation.

To realize our proposed precision collaboration, we develop a novel framework to achieve Precision
Collaboration for Model Learning named PCML shown in Figure [I} We assert that the key to pre-
cisely collaborative model learning is identifying the distribution overlaps scattered in other clients
and the local distribution density. To infer the local data manifold to identify the overlaps and ap-
proximate the local distribution simultaneously, we propose to learn a normalizing flow (NF) for the
federated network. For the manifold learning, we first infer the underlying manifold M9 of the data
from all clients by learning a global NF model. In this way, the data from all clients is utilized for
manifold inference. Then the local manifold M? C MY of the i-th client could be determined by
local data D? as shown in Figure 1] (b).

From Figure [1| (c), the local data manifold M? is used to identify the beneficial overlaps from
other clients. In particular, if a subset of the data from D7 lies on M?, this subset is the overlaps
between the i-th and j-th clients. For the local distribution density learning, we approximate the
local distribution density during the learning of the normalizing flow. We suggest sampling from
M with the approximated local distribution density as shown in Figure [1| (d), which effectively
mitigates the potential distribution discrepancy. During the model learning, we keep the raw data
and the invertible representations learned by NF in local clients to avoid additional privacy leakage.
We highlight our key contributions as follows:

* We propose the concept “Precision Collaboration”, which refers to an optimal collabo-
ration that learns from the inconsistently shared data shards and excludes the ambiguous
information;

* We develop PCML to achieve precise model collaboration by pre-learning a data manifold.
It enables a reusable and scalable model learning, especially as an ongoing influx of new
clients joins the collaboration network;

» Empirical experiments corroborate that PCML significantly outperforms all baselines on a
series of benchmark data sets and a real-world clinical data set.

2 RELATED WORK

2.1 DISTRIBUTED LEARNING SCENARIOS AND DATA HETEROGENEITY

Recent years have witnessed growing attention to distributed learning scenarios, e.g., federated
learning (McMabhan et al.|[2017), of which several challenges have been concerning topics including
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Figure 2: Illustrations of the three assumptions on data heterogeneity. (a) clustered sharing; 1.
all information is shared within the clusters; 2. the sharing is not consistent across all clients;
(b) common partial sharing; 1. partial information within clients are shared; 2. the sharing is
consistent across all clients; (c) fragmented sharing; 1. partial information within clients may be
shared with others, 2. the sharing is not consistent.

communication efficiency (Konecny et al., |2016)), privacy (Agarwal et al.l 2018) and data hetero-
geneity (Karimireddy et al.l [2020). While data heterogeneity could cause the lack of convergence
and the potential of catastrophic forgetting (Qu et al., 2022), there are researchers aiming to tackle
the heterogeneity by learning a global model. For example, |Li et al.|(2020) add a proximal term to
constrain local updates, [Mohri et al.| (2019) maximize performance on arbitrary distributions, and
Li et al.| (2021a) use MOON to align local and global representations. Instead of pursuing a bal-
anced performance distribution, we are interested in achieving the best performance for each client
by precisely learning the shared informative overlaps from others. (Cheng et al.| (2024) introduce
momentum to FedAvg and SCAFFOLD, boosting convergence and performance in non-IID settings
without bounded heterogeneity assumptions.

2.2 PERSONALIZATION

In addition to reaching global consensus, personalized model learning also attracts widespread con-
cern in FL community, which may boost the flexibility of learned models when adapting to local
distributions |Cui et al.| (2022)); [Li et al. (2021b)); Mclaughlin & Su| (2024); |Ghari & Shen| (2024).
Plentiful research has proposed techniques for a trade-off between local and global models. For ex-
ample, |[Fallah et al.[{(2020) proposed to train local models that can quickly adapt to local data starting
from an initial shared model in a meta-learning way. Some works train personalized models by in-
terpolating between global and local models (Deng et al., [2020; |Dinh et al., [2020). L1 et al.[(2021Db))
achieve such a trade-off through regularizing local models close to the global model. [Shen et al.
(2024) enhances generic federated learning by dynamically selecting personalized plug-in modules
to optimize performance across diverse client data distributions. There are other works suggesting
a partially shared model structure for efficient information transferring (Liang et al.l 2020; (Collins
et al., 2021). Nonetheless, we argue that global models struggle to capture varied shared informa-
tion, necessitating the precise identification of fragmented knowledge in collaborative learning.

To mitigate the potential overfitting when learning from limited local data, some works use gener-
ative methods to improve the model performance (Du & Wul 2020} [Zhu et al.| [2021). |Zhu et al.
(2021) regulate local training with the distilled knowledge from all clients. |Du & Wu| (2020) lead
into GAN for generating similar data for local clients. However, generating data at an arbitrary den-
sity could result in distribution discrepancy. An optimal sampling density may present more benefits
for local learning tasks.

3 NOTATIONS AND PROBLEM DEFINITION

3.1 NOTATIONS

Suppose there are NN clients in a collaboration network, each client owns a private dataset D* with
n¥ data samples. The dataset D* = {X* Y'*} consists of the input space X* and output space Y'*.
We use z = {x,y} to denote a data point, and z € M denotes the data manifold. The input space
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and the output space are shared across all clients. In the following, we also use D’ to denote the i-th
client without causing further confusion.

Averaging Method. The goal of each client is to learn the best model to predict the label y by
collaborating with others. For example, McMahan et al.|(2017) propose FedAvg, which learns a
global model f for all clients by minimizing the empirical risk over the samples from all clients, i.e.,

1 N nF
min ——— l ak k 1
min zﬁzlnk;; (f (=7),97), (1)
where F is the hypothesis space and [ denotes the loss objective of all clients. From Eq[I] FedAvg
assumes that the i.i.d. data from different clients associate with a common data manifold M and
sampling density pJ(z).

3.2 ASSUMPTIONS ON DATA HETEROGENEITY

However, the i.i.d. assumption is largely violated as the local data distributions may be significantly
distinctive Mohri et al.[(2019). In this event, learning a consensus by averaging the local gradients
could cause severe performance degradation on certain clients (Li et al., 2019b; |Cui et al.l [2021).
There are research studying distributed learning scenarios with non-i.i.d. data, and the assumptions
on data heterogeneity are mainly from the two perspectives.

Clustered sharing. As shown in Figure 2| (a), the clients partitioned in each cluster own common
data manifolds (M) and sampling density (p’(z)). Clustered sharing requires that all message is
shared within the clusters, and there is no knowledge transfer across clusters.
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Figure 3: Illustration of the manifold learning via an NF method. By Split operation, the NF model
could learn a low-dimensional latent representation u’, and the model parameters significantly de-
crease. For a complex distribution p, (z), the NF model learns a tractable injective chart g o h, which
models p,(z) to a simple distribution p, (u').

Common partial sharing. From Figure 2| (b), a common distribution overlap is shared across all
clients. Meanwhile, each client owns specific knowledge that cannot be leveraged by others. This
means that each client is associated with a specific data manifold M?, and the overlapped region of
the manifold is shared across all clients.

Compared with the previous assumptions above, we study a more general scenario fragmented shar-
ing, where the shared distribution overlaps are scattered among the clients. Besides, these overlaps
are inconsistent across all clients as shown in Figure E] (©).

Fragmented sharing. The local data z € D? are sampled from the local manifold M in a particular
density p’(z), and there exist overlaps among data manifolds, i.e.,

zeMICRY z~pi(2) (2a)
34,5 €{0,1,...,N =1}, s.t., MM #0, (2b)

where d in Eq.(24) is the dimension of z. Eq.(2b) implies the data sharing a common distribution
may not be consistent across all clients.

4 METHODOLOGY

4.1 PRELIMINARIES: NORMALIZING FLOW AND MANIFOLD LEARNING

Normalizing flow (NF). The generative method NF achieves exact likelihood estimation through an
invertible transformation from a known distribution to a complex target distribution. Given a target
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dataset D = {20,21,...,2n_1},2 € R? and a base variable ¢ € R? with a known density p.(e),
classic NF methods learn a diffeomorphism f : ¢; = g(z;) which maps p, to the density pe:

p=(2) = pe (9(2)) det Jy (9(2)) 7, 3)

where det J, (g(z)) € R?*? denotes the Jacobian matrix evaluated at g(z). Since g is bijective, it
is trackable and Eq.(3) could be effectively computed. By fitting the dataset D, the approximated
distribution p’,(z) is optimized through a pushforward operation. To enhance the scalability of g,
one could compose several diffeomorphisms g = g,,_1 o -+ - 0 g1 0 gg for a larger model capacity.

Manifold learning via a NF model. Consider a data generation procedure z € M C R?, where M
is the data manifold embeded in a d’ dimensional latent space d’ < d. A classical NF model requires
a fixed dimensionality of the latent space, which is the same as the dimension of the data d. To
approximate the low-dimensional manifold via NF, existing research |Brehmer & Cranmer (2020)
proposes to split the latent space shown in Figure [3] In particular, Given the data z, a bijective
transformation gy is used to obtain the latent representation e € F,

e=gg(z), where z= g;l(e). €]

Then the latent space E is separated &/ = U x V as shown in Figure where U = R? denotes the
coordinates on the manifold. V = ¥4~ denotes the remaining coordinates, which are the directions
orthogonal to the manifold. The separation operation improves the optimization efficiency because
of fewer parameter dimensions, especially when the data z is high-dimensional.

To model the density p,, (u), the variable w is transformed to the variable v’ with the given density
P (u') using a bijective model hy:

u' = hey(u), where u = Split(e), (5)

where Split(e) denotes deleting the d — d’ dimensional ¥ vector from e, and Pad(u) denotes the
inverse operation.

4.2 AN OVERVIEW OF PCML

Learning an optimal personalized model f* for the i-th client expects a sufficient utilization of the
data, sharing a common distribution from other clients. However, due to privacy concerns, one
cannot identify these overlaps with direct access to the raw data. We suggest leveraging the overlaps
via the learned data manifold to prevent privacy leakage. As shown in Figure ] in general, our
proposed precisely collaborative learning scheme contains:

* for the data in other clients, we aim to precisely learn from the shared overlaps identified
by the local data manifold, as shown in Figure (a) (b) (¢);

* for the data generated from Mi, we expect to advance models with the generated data in
an optimal sampling density p’,(z), as shown in Figure 4{(d).

4.3 PRECISION COLLABORATION I: LEARNING FROM THE SHARED OVERLAPS

From Figure E] (a), different clients could share different distribution overlaps, and the distribution
overlaps are associated with the overlapped region of the local data manifolds. While the data
manifold of local clients is mostly unknown and can hardly be inferred from limited local data, we
propose to learn the global data manifold with the data on all clients. In this way, all data are utilized
and contribute to manifold learning.

Learn the global manifold. The data z € D are usually supported on an unknown lower-
dimensional manifold M. In our realization, we propose to use an NF method to learn the global
manifold MY, and the learning of the NF is shown in Figure[3| In particular, we learn two bijective
transformations g and h to transform the data z to the latent variable ', ie.,

u' = hg o Splito gg(z), (6)

where v’ is the learned representation of the sample z. Please note that in the rest of this paper we
will use g; to denote Split o gy and g, ~1 denotes 9o L o Pad.

With the Split operation, we learn a diffeomorphism from the data z ~ pJ(z) to a lower dimension
space u’' ~ p,(u’) as shown in Figure[d](a). This means that we transform the original data manifold
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Figure 4: (a) all clients collaboratively learn the global manifold, which transforms p? to a given

density p,/(u’); (b) identify the data overlaps by the determined projected manifold U""; (c) the
clients train their models using the identified data overlaps (D*7) from others; (d) local clients train
their models using the sampled data with the learned density p’ (z).

M to the projected data manifold U’. Note that the decoder is the inverse of the encoder. The data
is reconstructed given the latent variable v’ € U, i.e., z = g; ' o h;l (u).

Determine the local manifold. From Figure[T} the global manifold M9 contains the local manifold
M?*. A local data manifold M"* should contain the local data D*. Considering that the original

global manifold M9 and the latent space U’ (U’ = R are topologically equivalent, we propose to
approximate the local manifold with the learned representations:

Mi=gito h;l(ﬁ), where U = {hy o g;(:c;)}n (7)

j=1’

where U’ denotes the set of the samples transformed to U’ from D', and U" is called the projected
local data manifold. It is computed as the convex hull of U, which continuously contains all
representations. For example, if U’* contains two representations {[0.1,0.2],[0.2,0.1]}, the convex

hull 7" is a line segment in R?, which is from the coordinate point [0.1, 0.2] to [0.2,0.1]
Identify the data overlaps from other clients. Since we cannot determine the data overlaps di-
rectly because of privacy concerns, we propose to identify the overlaps using the learned projected

manifolds U’ as shown in Figure @ (b). Note that the data overlaps correspond to the overlaps of
the data manifolds. For example, suppose D*? C D7 is a subset of D7, if D" lies on M*, D*J

is the data overlap between D’ and D’. From Eq., M is reconstructed by g 1o h;l with U’
Therefore, D*J could be identified as follows:

D% = {4]|hy o g5(:]) €U,V 2 € DI} M. (8)

From Eq., D is the data in D7 whose representation ko g5 (21 ) fall into the projected manifold
of D'

By learning from the overlaps identified from other clients, we have the following objective to train
fi for the i-th client shown in Figure[d](c),

N-1
. 1

m T Z E(or yryepis (L fi(z"), 4*)). )

‘ k=0,k=i

4.4 PRECISION COLLABORATION II: LEARNING WITH AN OPTIMAL SAMPLING DENSITY

In Sec. [4.3] we learn personalized models from the data overlaps between clients. However, the
model performance on the unshared data cannot be improved by collaborating with others. The
specific region M, has no overlap with others, which is formulated as

M =gy~ o h M (UL, where Ul = U — UYL (U7 N U™, (10)

!'The computation of the convex hull of a high-dimensional point set may be time-consuming. We approxi-
mate the convex hull, and the computation method is in Appendix.
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We propose to advance the model by generating data sampled from the local manifold M®.

While an arbitrary sampling density could generate data D’® deviated from the local distribution
d(D'"", D) > e, this could induce bias to the learned model. An optimal utilization of the synthetic
data expects a sampling density close to p’ (z). Therefore, we propose to sample from M? with the
exact estimation of p’ (z).

Exact likelihood estimation. Note that we learn the manifold by applying a normalizing flow
framework, which achieves the exact likelihood estimation simultaneously.

Since we learn the global data manifold, the global data density pJ(z) is transformed to p,, (u'). For
the local data density p° (z), we have the following proposition.

Proposition 1. (proof in Appendix) For any data point z € M., the local density p'(z) satisfies

PL(2) =¢ - pur (hy 0 g3 (2)) |det Jn, (hy o g5 (=)
1 (11)

’det [Jg; (96 (2)) Jg; (95('2))” ’

where c is a proportionality constant, and Jy, and Jg: are the Jacobian matrix of hy and gg,
respectively.

From the Proposition to sample 2z € M in the density p’ (z), we could firstly sample u’ ~ p, (u)
and choose v/ € U/ defined in Eq.. Then we transform the sampled v’ to the data space by
z= g;_l o h;l(u’ ) as shown in Figure(d). The objective for the generated data is formulated as
follows

i) Big s () L(fi(2), ), (12)

where the sampled (x, %) in the third term satisfies (z,y) € M-,

Combining the identified data overlaps, the final objective could be formulated as follows

1 i
}?en;ﬁ;afi(z ), Y5)
R - a3)
Tty Z Ear yyepin (E(fi(27),57))

k=0, ki
+ ﬂ : E(m,y)wpi(z)g(fi (l‘), y)v

where a, § > 0 are the regularization parameters.

4.5 THE REALIZATION OF PCML

Learning the global manifold MY and identifying overlaps. Following the work in (Brehmer &
Cranmer, 2020), we train go and hg by a two-stage optimization framework. In particular, we first
train gy to obtain the projection onto the manifold by minimizing the reconstruction error. Then, we
optimize hy to approximate the density by maximizing the likelihood (Brehmer & Cranmer, 2020).

After learning the MY, the local manifold M? and the overlaps among clients could be identified
according to Eq.(7) and Eq.(8).

Sampling data with the learned local manifold M*. We approximate the exact likelyhood in
Eq.(11) when learning the NF model. The data could be generated from the determined M in
Eq.(10). More implementation details could be found in the Appendix.

4.6 DISCUSSION ON PRIVACY OF PCML

In the realization of PCML, we try our best to achieve privacy protection as other distributed learning
scenario methods or FL. methods. In particular,

1. the model training : during the training of the manifold MY and the local model f;, only the
sum of the gradients is allowed to be transferred to the server. The raw data and the invertible
representations are not allowed to be shared thoroughly.
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Figure 5: Illustrations of the synthetic experiments. (a) The learning tasks of the six clients; (b),
(c), and (d) are the performance of the models learned by local training, FedAvg and PCML; (e) the
learned projected global data manifolds. The points denote the samples from different clients. The
colored lines denote the identified local manifolds.

2. the computation of the overlaps: the server computes the overlaps between clients using the

projected manifold [ uploaded by local clients, and U"" has no information about the raw data or
the invertible representations.

5 EXPERIMENTS

5.1 SYNTHETIC EXPERIMENTS

Firstly, we show the motivation of our method by conducting experiments on synthetic data

Synthetic data. Suppose there are 96 clients: D*,i € {1,2...,96}. The data points z = {z,y} is
generated from two objectives y = sin(z) + € or y = —sin(x) + € shown in Figure 5| (a), where
e ~ N(0,0.1) denotes label noise.

Fragmented data overlaps. To generate heterogeneous and overlapped local data, we sample x
from the overlapped ranges. In particular, we separate the input space X into four intervals [0, 7],
[Z, 7], [, 2] and [2F, 2], and each client randomly chooses two different intervals to sample
data. To create conflicting learning tasks, the label of the selected 48 clients is calculated by y =

sin(x) + €, and the label of the remaining 48 clients is calculated by y = —sin(z) + ¢.

In this setting, learning a global model for all clients could hurt the model performance as there
are two conflicting learning tasks shown in Figure [5] (c). The best way of collaborative model
learning is identifying the data overlaps, which are sampled from the identical objective with the
same intervals. For example, D" consists of the data sampled from [0, %] and [F, 7], while D'
consists of the data sampled from [Z, 7] and [r, 2F] shown in Figure 5| (a). Learning an optimal
model for D° needs to precisely identify the data overlap sampled from [5, 7] in D*. From Figure
(e), PCML efficiently obtains local data manifolds and identifies the data overlaps between clients.
Therefore, PCML learns a better model by precision collaboration, which maximizes the benefits and
avoids potential negative transfer from other clients as shown in Figure [5](d).

5.2 BENCHMARK EXPERIMENTS

Datasets. We adopt three benchmark image datasets: CIFAR10 (Krizhevsky et al., 2009), FEM-
NIST (Caldas et al., 2018)) and a tabular dataset Adult (Kohavi et al., [1996). We create the federated
environment with data heterogeneity for CIFAR10 by randomly allocating several classes to each
client following the work (McMahan et al., 2017). We use K to denote the number of clients and
S to denote the number of classes in each client. For CIFAR10, K = 150, S = 5 means there are
150 clients and each client contains 5 classes of images. For FEMNIST which has 10 classes of

>The source codes are made publicly available at https://anonymous.4open.science/r/
PCML-0EBA.
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Figure 6: Visualization of the experimental results on CIFAR10, FEMNIST and eICU.

handwritten letters, we consider the setting of K = 200, S = 5. The number of samples in each
client is determined according to a log-normal distribution 20194). For the tabular dataset
Adult, the task is to predict whether an individual’s income is beyond 50K/year based on some cen-
sus features, including age, race, workclass, etc. Following the setting in (Mohri et al, 2019), all
individuals are split into two clients. One is PhD client and the other is non-PhD client.

Baselines. We compare our method with various baselines, including global and personalized meth-
ods. Global baselines include: 1) FedAvg (McMahan et all 2017); 2) FedProx 2020);
3) SCAFFOLD-M 2024). Personalized baselines include: 1) Fed-MTL
2017); 2) PerFedAvg (Fallah et al.,[2020); 3) LG-FedAvg (Liang et al.,[2020); 4) FedPer (Arivazha-
gan et al., [2019); 5) FedRep (Collins et al., [2021)); 6) APFL (Deng et al., [2020); 7) L2GD (Hanzely!

& Richtarik, 2020); 8) Ditto (Li et al.,[2021b)); 9) kKNN-Per (Marfoq et al.,|{2022).

Experimental Results. The accuracy of all methods on CIFAR10 dataset are shown in Table[I] and
Figure [6|PCML outperforms all baselines on this classification task. Since each client has insuffi-
cient data samples (n* = 333), FedAvg (72.3%) learning from all data has a better performance
compared with local (68.9). FedRep (82.2%) surpasses other baselines by learning a global feature
extractor. As a pluggable method, PCML could be used to enhance the performance of other art
methods. From Figure@ PCML improves the performance of FedRep by 5.1%, which indicates that
PCML effectively identifies the informative knowledge from others.

Table 1: Experiments on CIFAR10, FEMNIST, and eICU (%).
Methods CIFARI10 (ACC) FEMNIST (ACC) eICU (AUC)

local 6894111 59949 737414
FedAvg 723+ 5 854, g 73245
FedProx 71-5:I:.8 84.9:‘:1.7 78.2:{:_2

SCAFFOLD-M 728413 85349 70.54 3
Fed-MTL 68.4i2'2 60.7i2.2 77-2i1.6
PerFedAvg 67.341 26.84 5 73.843
LG-FedAvg 69.24 3 352494 7454 5
FedPer 82.24 9 82.94 5 7434 7
FedRep 822418 82.8141.4 741410
APFL 64.5137 623114 68.34 8
L2GD 10.0+ ¢ 145416 720+ 6

Ditto 82145 85.44 78.3+1
kKNN-Per 79.44 4 86.14+ g 75243

PCML 873119 919, 4 80.01 ¢

6 CONCLUSION

In this paper, we propose a precise collaboration framework PCML for a more general FL learning
scenario, where the fragmented and shared knowledge is distributed among other clients. Experi-
ments on benchmark datasets and a real-world clinical dataset verify the superiority of our method
because of optimal and precise utilization of the shared information. Our framework determines
the overlaps between clients, which suggests several attractive topics, such as identifying malicious
clients or noisy data, etc.
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A THEORETICAL PROOFS

A.1 PROOF OF PROPOSITION 1

Suppose there is a smooth and injective mapping g : R4 — R? with d’ < d, U € R? is the latent

variable and has Z := g, 1 (U). From differential geometry (Krantz & Parks} [2008), we have

po(2) = pu (63 2) Jdet 5 (63(20) I )| (14)

Suppose there is a smooth and bijective mapping h : RY — Rd', U’ € R is the latent variable
which has U := hy(U’). We have

Pul(t) = pur (hy(w)) |det Jn, (ho(w))] . (15)

According to the chain rule, combining Eq.(T4) and Eq.(I3), we have

—1/2

P(2) = pur (hs © 95 () [det Ju, (g © g3 ()] ™" [det I (g3(2)) s (95 (=) - (16)

12



Under review as a conference paper at ICLR 2026

Since we learn a global manifold MY with the data from all clients, the density of the data from all
clients pg(z) is approximated in Eq.( . From the definition of M in Eq.(10), if there is a data
point z € M, z will cannot be sampled from any other manifolds MJ (7#1) but Mt ie.,

Vze MY, st z2¢ MI(j#i0)if z€ M. (17)
Therefore, we have
- o pl(zyze ML ze MY pd(z,z € M) 1 - -
I(z,2 € Mylze M") === 2 =2 52— — -pl(z,2€ M).
P e M e M) = T e e M) ey HEZEM)
(18)
Combining with Eq., for 2 € M, we have
, —-1/2
PL(=) = e pur (g 0 9 (2)) [det Tn, (s 0 g5 (2)) | [aes I (932)) s (G| (19)

and Proposition [T|holds.

Algorithm 1 Learn the global manifold in the federated learning setting
Input: epoch 7,,, batch size B,,, initial manifold model MY with the parameters 6 and

0.

1: fort=0,. —1do

2 randomly select a subset of clients .S;

3:  forclient D’ € S, in parallel do

4 draw mini-batch 2" : 2¢ ,...,2{, ~ D'

5: ift <T,,/2 then

6 calculate the loss: i Zl 2= g, (g0 (2Y) |l

7 then calculate the gradients of loss with respect to parameters 6;

8 else

9: calculate the loss: fﬁn Zf:"i (log pur (he © g5 (2")) — log det Ju(hy o g5 (2%)));
10: then calculate the gradients of loss with respect to parameters ¢;
11: end if
12: end for

13:  Server aggregates the gradients of selected clients and update the parameters 6 and ¢.
14: end for
15: Output: the learned manifold model gy and h.

B PIPELINE OF OUR FRAMEWORK PCML

The pipeline of the global manifold learning MY is elaborated in Algorithm [I] We learn a global
manifold model in the federated learning setting. There are two phases of training. Firstly, only the
parameters of gy are updated as in Line 5-7. Then the parameters of h are updated as in Line 9-10.
The learned manifold model gj o hy is utilized in our framework PCML, whose pipeline is elaborated
in Algorithm 2} To begin with, the local manifolds of clients are extracted based on Eq.(7) and the
distribution overlaps are calculated based on Eq.(8). Since only the borders of convex hulls are
exchanged, there is no leakage of sensitive information. The data from the overlapped distribution
of other clients are used to train the models. They are utilized by transmitting the average gradients
through the server as in Line 7-14.

C MORE DISCUSSIONS ABOUT PCML

C.1 A NEW METRIC OF CLIENT SIMILARITY

Our framework PCML inspires a novel metric for measuring the similarity between local clients.
For example, suppose the i-th client and j-th client has the identical local manifold M? = M7,
the similarity between clients is close to 1. On the contrary, if the two local manifolds are disjoint
M N M = (), the measured similarity should be 0. In particular, we propose to measure the
similarity as the Intersection of Union (IoU) of the projected local manifold,

S(D', D?) = ToU(U"E, U"). (20)
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Algorithm 2 The learning framework PCML

Input: epoch T, batch size B, initial models { FO, .., fNT } hyperparameters « and
B;
1: all the clients determine the local manifold M® and U’ based on Eq., and send U’ to the
Server. L L
the Server calculates the overlaps of U’ between clients, calculates U* based on Eq., and
sends them to each client;
fort=0,....,T —1do
randomly select a subset of clients S,
the selected ¢1ients send their local models to the Server;
for client D* € S; in parallel do
draw mini-batch (z*, y*) ~ D%
calculate the 10ss E ;i yiye pi (C(fi (%), y*)) + B+ E(z,y)epi (2)€(fi(2), ), and update the
model f? using the gradients of loss;
9: fork=0,...,N,k #ido

N

AN

10: draw mini-batch (z¥, y*) ~ D®F _
11: calculate the loss a - E(,x yiyepirl(fi(2¥),y*), and update the model f* using the
gradients of loss;

12: end for _

13: the Server aggregates the parameters of f* from other clients and send the average to the
i-th client;

14: then the i-th client D? updates the model f? with the received parameters and local gradi-
ents.

15:  end for

16: end for

17: Output: the learned personalized models { f°, ..., fN~1}.

A communication-efficient client-level collaboration. Our proposed metric allows efficient col-
laborator identification which reduces the communication and computation overhead. For example,
we require D’ to collaborate with certain clients who have a higher client similarity:

1 N-1 nk
min D DD SN F @
2k=0,8(D, DF)>e k=0,S(Di,D*)>e i=1
where € > 0 is a pre-defined threshold. Note that the objective in Eq.(21)) is different from clustered
FL methods. Clustered FL methods learn a common model for each cluster while Eq.(21) learns a
personalized model for each client. Experimental results shown in Sec. verify that this method
achieves a comparable performance while reducing communication and computation overhead.

Previous work has explored the problem of identifying similar datasets in a graph network for down-
stream learning tasks (Hallac et al., 2015). In particular, Jung (2020) formulate the learning from
distributed local datasets as a convex optimization problem and proposes to cluster the local datasets
according to the learned parameters. |[Jung & Tran| (2019) extend network lasso methods in re-
gression tasks under a clustering assumption. These cluster-based methods could be applied in
federated learning with a proper design for privacy-preserving. In our experiments, we use network
lasso to cluster the local datasets under the federated setting. In Table 2] we show the comparison
of PCML and the clustered methods. Our method outperforms all cluster-based methods, which
demonstrates that a precision identification of overlaps in other clients facilitates model learning.
Moreover, an interesting direction is the application of our proposed similarity metric in the graph
network. For example, the manifold learning of local datasets in the graph network may also be used
for similarity measurement.

C.2 EVALUATION ABOUT THE PROPOSED NOVEL METRIC

In Sec. we propose a novel metric for measuring the distance between local clients, which could
be used for a communication-efficient client-level collaboration. We conduct experiments on eICU
dataset, in which we select the most similar 7 clients for each client to learn a personalized model.
The experimental results are shown in Table
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Table 2: More experimental results on elCU
Methods AUC (%)

local 737414
FedAvg 7324 5
FedProx 78249

Fed-MTL 772416
PerFedAvg 73.84 3
LG-FedAvg 74.54 2

FedPer 7434 7
FedRep 74.1:‘:1'2
APFL 68.31 3
L2GD 72.0+ 6
Ditto 78341

Clustered FL T4.74 3
Network Lasso 76345
ours 80.04 ¢

From Table [3| our method for identifying the collaborators achieves a comparable performance
compared with baselines and reduces computation and communication overhead by collaborating
with a subset of local clients.

To explore the effect of € on the performance of the learned models, we set € by controlling the
number of clients to collaborate for each client. There are 14 clients in eICU dataset. We test the
number of the collaborator (C') to be 1, 3, 5, ... etc. The results are shown in Table When C =7,
the learned model achieves the highest AUC (78.0). When C' > 7, the performance tends to remain
unchanged.

Table 3: Experimental results on eICU

Methods  AUC (%)
local 737414
FedAvg 7324 5
FedProx 7824 5
Fed-MTL 772416
PerFedAvg 73.843
LG-FedAvg 74.51 5
FedPer 7434 7
FedRep 741410

APFL 68.34+ ¢
L2GD 72.04 6
Ditto 78341

ours 78.04 1

Table 4: Experimental results on eICU with adaptive €

C AUC (%)
1 69.04 4
3 7544 o
5 75.54 7
7 78.0+ 1
9 77119
11 76.84 9
13 77.0L3

C.3 COMPUTATION COMPLEXITY AND OPTIMIZATION EFFICIENCY
From Algorithm[I]and Algorithm[2] PCML is realized by a two-staged optimization framework. For

the training of the normalizing flow in the first stage, PCML learns a global model for all clients,
which has the computation complexity as FedAvg. For the identification of the manifold overlaps,
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it has O(1) time complexity as the server only computes it once. For the training of local models
in the second stage, PCML learns a personalized model for each client, which has the computation
complexity as other personalized methods. From the above all, PCML achieves a similar computation
complexity as baselines.

A classical NF method requires a fixed dimensionality of the latent space, which is the same as
the dimension of the data. In this case, learning such a NF model could bring a huge computation
overhead when the data is high-dimensional. In the first phase of our framework, we learn a low-
dimensional manifold in a NF method, which significantly reduces the computation overhead.

Our method learns from local data, data overlaps of other clients, and sampled data in the manifold.
By precision collaboration, we avoid learning from all data. We make comparisons of run-time con-
sumption with the baselines. The experiments are conducted on the same device NVIDIA GeForce
RTX 2080 Ti. The results on eICU dataset are displayed in Table[5} As a pluggable method, the time
consumption of PCML is comparable to the corresponding baselines. Fed-MTL involves computing
the correlation of the parameters among all client models, which could result in more computation
overhead.

Table 5: Run-time consumption comparisons

Methods Run-time consumption

local 33 min 47 s
FedAvg 57 min 41 s
FedProx 56 min 35 s

Fed-MTL 101 min 12's
PerFedAvg 79 min 47 s
LG-FedAvg 55 min 27 s

FedPer 57 min 43 s
FedRep 40 min 37 s
APFL 92 min 13 s
L2GD 63 min4 s
Ditto 71 min 34 s
PCML 74 min 27 s

C.4 PRIVACY PRESERVING

PCML maintains data confidentiality as baselines because there is no shared data between local
clients. PCML achieves privacy-preserving as baselines because our framework learns models by
communicating model parameters only. Federated learning may need further exploration to main-
tain data privacy. Some researchers claim there is information leakage when sharing models or
gradients (Zhu et al.| [2019). To alleviate this issue, there are research proposing to apply other tech-
niques to FL methods, such as differential privacy (Wei et al.,[2020)), secure multi-party computation,
etc. PCML is also compatible with these techniques.

D ABLATION STUDIES

D.1 MORE ABLATION STUDIES ABOUT PCML

PCML is pluggable for other algorithms. We test local, FedAvg, FedRep and Ditto which are im-
plemented with/without our method as in Table [6] and Table[7} In the dataset Adult, all individuals
are split into two clients, one of which is PhD client and the other is non-PhD client. The non-PhD
client contains 32148 training samples while the PhD client contains 413 samples. Therefore the
non-PhD client of Adult can not benefit much from other methods. In other datasets, our method
boosts the baselines by large margins.

Table 6: Experiment results of PCML implemented on CIFAR10, FEMNIST, and CelebA (%)

Dataset ‘ local PCML (local) ‘ FedAvg PCML (FedAvg) ‘ FedRep pPCML (FedRep)
CIFARI10 68.941.1 84.14 8 (1 15.2) 723+ 5 795+ .5 (1 7.2) 822418 873+1.2(15.1)
FEMNIST 5994 .9 89.74+ 2 (1 29.8) 8544 8 90.24+1.2(14.8) | 8284+1.4 9194 4 (1 9.1)

CelebA 693411 858+1.1 (116.5) | 852421 89.542.0 (1 4.3) 68.1+ 6 7124 6 (1 3.1)

16



Under review as a conference paper at ICLR 2026

Table 7: Experiment results of PCML on eICU and Adult (%)

Dataset | local PCML (local) | FedAvg  PCML (FedAvg) | Ditto PCML (Ditto)
Adultnon-PhD | 834y 83611 (T.2) | 83413 836+ (T.2) | 83512 83610 (T.1)
Adult PhD 70244  713+7(17.1) | 72942 76812 (13.9) | 75740 76841 (T 1.1)
elCU 737414 78644 (149 | 73245 80046 (16.8) | 78341 79644 (T 1.3)

E EXPERIMENTS AND IMPLEMENTATION DETAILS

E.1 EXPERIMENTS ON MORE HETEROGENEOUS SETTINGS

We also use CelebA dataset to verify the effectiveness of our method. The task on CelebA is to
classify whether the celebrity in the image is smiling (Li et al.,2021b). There are 545 clients and 21
samples per client in average.

The experimental results on CelebA are shown in Table [9] and Figure [7]] Moreover, we conduct
experiments on FEMNIST on more heterogeneous settings with more clients. We partition the
dataset into 400 clients with the Dirichlet distribution Dir4o0(0.1) and Diryg0(0.5) following the
work in (Wang et al.,2019). We compare our method with the baselines, and the results are shown in
Table[8] With more clients, each client has fewer training samples. Local method shows poor perfor-
mance (63.6% in Dir400(0.5)). Global methods (FedAvg and FedProx) achieve better performance
under a less heterogeneous setting (Dir400(0.5)), while the performance of personalized methods
degrades. Under two settings (Dir400(0.1) and Dir400(0.5)), PCML outperforms all baselines by
identifying the informative overlaps for each client.

Table 8: More experimental results on FEMNIST (Acc %)
methods Di?”400(0. 1) Dirggo (05)

local 71.84 3 63.64 4
FedAvg 69.14 5 80.641.7
FedProx 67.84 3 79.94 o

Fed-MTL 81.84 9 60.14 4
PerFedAvg 82.441 1 46.74 8
LG-FedAvg 86.8+ g 49.54 5

FedPer 91.14 3 76.84 9
FedRep 91.841.4 74.64 3
APFL 79.94 9 60.94 5
L2GD T7.64.4 399415
Ditto 91.74 7 82.94 4
PCML 96.14 4 88.3+ 6

Table 9: CeleA (Acc %)

Methods ACC (%)
local 69.3 111
FedAvg 852491
FedProx 81.241.9
Fed-MTL 68.24 4
PerFedAvg 68.64 3
LG-FedAvg 68.4.15
FedPer 68.24 5
FedRep 68.1+6

APFL T4y 6
L2GD 679100
Ditto 84.54
PCML 89.5. 5,

E.2 IMPLEMENTATION DETAILS

To determine the local manifold, we need to calculate the convex hull U’ of latent representation set
U’ = {u}}7_,. While the computation of the convex hull of a high-dimensional point set may be
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Accuracies on CelebA
local I FedRep

100
I FedAvg* Il PCFL+tbaseline

Accuracy

local FedAvg* FedRep

Figure 7: Visualization of the experimental results on CeleA dataset.

time-consuming. We approximate it with a minimum bounding box:

in ul|, < < ' <k<d
{ul min wly < ule < maz wjle, 1 < k< d,

u’;|;, indicates the k-th element of the vector u/ and d’ is the dimension of the vector u}. The
minimum bounding box encloses the convex hull U’.

Our method is implemented with Pytorch and all experiments are run 5 times to calculate the average
results with stds. We use a four-layer MLP for the synthetic experiment, three-layer MLP for FEM-
NIST, two-layer CNNs for CIFAR10 and CelebA, and a one-layer MLP for Adult. Following the
work (Collins et al} 2021), for all the methods we sample 10% of the clients in every global epoch.
We train the models for 200 global epochs on FEMNIST, CIFAR10 and CelebA, 50 on Adult. And
we train 15 local epochs for FEMNIST, CIFAR10 and Adult in every global epoch, 25 for CelebA.
All models are trained with stochastic gradient descent. We use grid search to find the optimal hy-
perparameters « and 3 in the validation set of each dataset. We set a = 0.5, 8 = 0.5 for CIFAR10,
CelebA, Adult; and set o = 1, 8 = 0.5 for FEMNIST and eICU. Besides, we test different man-
ifold dimensions d’ for each benchmark dataset. We keep d’ as small as possible while ensuring
reconstruction quality on the validation set. We d’ = 256 for CIFAR10 and CelebA, d' = 12 for
FEMNIST, d’ = 32 for Adult and eICU. For synthetic experiments, the data dimension d = 3 and
manifold dimension d’ = 2 since one element of data z identically equals to 0. The source codes
are made publically available at https://anonymous.4open.science/r/PCML-BACE/.

E.3 DATASETS

In our experiments, CIFAR10, FEMNIST, CelebA and Adult are all public dataset. For the synthetic
experiment, the data point z = {x, 0, y} has three elements. We add a zero element to data so that
the manifold dimension is smaller than the data dimension, which simulates the situation in real-
world datasets. We create the collaboration environment with data heterogeneity for CIFAR10 and
FEMNSIT by randomly allocating several classes to each client following the work
. For the dataset eICU, we follow the procedure on the websitehttps://eicu—-crd.mit.

edu/and got the approval for the dataset. We follow the data preprocessing as in|[Sheikhalishahi et al.|
and randomly select 14 hospitals as introduced in the main text.

E.4 COMPUTING RESOURCES

Part of the experiments is conducted on a local server with Ubuntu 16.04 system. It has two physical
CPU chips which are Intel(R) Xeon(R) CPU E5-2667 v4 @ 3.20GHz with 32 logical kernels. The
other experiments are conducted on a remote server. It has 8§ GPUs which are GeForce RTX 2080
Ti.
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