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Abstract

Recent advances in language modeling have demonstrated the effectiveness of
State Space Models (SSMs) for efficient sequence modeling. While hybrid ar-
chitectures such as Samba and the decoder-decoder architecture, YOCO, have
shown promising performance gains over Transformers, prior works have not in-
vestigated the efficiency potential of representation sharing between SSM layers.
In this paper, we introduce the Gated Memory Unit (GMU), a simple yet effec-
tive mechanism for efficient memory sharing across layers. We apply it to create
Sambay, a decoder-hybrid-decoder architecture that incorporates GMUs in the
cross-decoder to share memory readout states from a Samba-based self-decoder.
SambaY significantly enhances decoding efficiency, preserves linear pre-filling
time complexity, and boosts long-context performance, all while eliminating the
need for explicit positional encoding. Through extensive scaling experiments, we
demonstrate that our model exhibits a significantly lower irreducible loss compared
to a strong YOCO baseline, indicating superior performance scalability under
large-scale compute regimes. Our largest model enhanced with Differential Atten-
tion, Phi4-mini-Flash-Reasoning, achieves significantly better performance than
Phi4-mini-Reasoning on reasoning tasks such as Math500, AIME24/25, and GPQA
Diamond without any reinforcement learning, while delivering up to 10x higher
decoding throughput on 2K-length prompts with 32K generation length under the
vLLM inference framework. We release our training codebase on open-source data
athttps://github.com/microsoft/ArchScale.

1 Introduction

State Space Models (SSMs) [GGR21, GGGR22, GD23, DG24], including linear attention [HDLL22,
SDH"23, QHS ™22, YWS 23, YWZ 124, YKH25] and modern Recurrent Neural Networks (RNNs)
[BPS*24, BPL*25, PAAT23, GOA™24], have recently shown promising results for more efficient
sequence modeling over Transformers [VSP*17]. While pure SSMs/RNNs offer computational
advantages with their linear complexity, they exhibit a theoretical expressiveness gap on the in-
context retrieval capability relative to Transformers [WDL24]. This gap can be bridged by hybrid
architectures [LLB124, DSF124, RLL*25, WBR 124, DFD*25, Min25], even with the inclusion of
as few as a single full attention layer [WDL24]. Recently, the decoder-decoder architecture, YOCO
[SDZ'24], achieves linear complexity for long context processing through storing the Key-Value
(KV) pairs from a single self-attention layer and re-using them across all subsequent layers through
cross-attentions. In practice, YOCO has delivered substantial efficiency gains when processing user
prompts with long sequences, but challenges remain; it does not mitigate the attention memory
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I/O cost for its cross-attentions during the generation stage of the model responses. This limitation
becomes particularly pronounced for modern large language models (LLMs) [Ope24, DA25] that
generate extensively long Chains-of-Thought (CoTs) [WWS™22] for hard reasoning tasks.

In this paper, we investigate the potential of representation sharing between SSM layers to enhance
decoding efficiency. We introduce the Gated Memory Unit (GMU), a versatile, simple yet effective
mechanism for efficient memory sharing across layers. Applying GMUs to the cross-decoder of
YOCO, we create a novel model with our decoder-hybrid-decoder architecture named Sambay that
uses Samba [RLL*25] for the self-decoder and replaces half of the cross-attention layers with GMUs
to share the inner representations of the final SSM layer in the self-decoder. Since around 50% of
expensive cross-attention layers are replaced with cheap element-wise gating, SambaY significantly
improves decoding efficiency and maintains a linear pre-filling time complexity, all while removing
the need for explicit positional encoding such as RoPE [SLP*21].

To enable a robust comparison of the scaling capabilities across different architectures, we first
design a principled pyP++ hyperparameter transfer scheme that accounts for both depth and width
scaling, as well as the application of weight decay to vector-like parameters. We then conduct
extensive experiments up to 3.4B parameters/600B tokens to verify the scaling behaviors of both
our pP++ scaling laws and the SambaY architecture. Comparing to Samba+YOCO, an architecture
that naively combines Samba with YOCO, we show that SambaY has significantly lower irreducible
loss [HNAT17] on the validation set when scaling with the training FLOPs, indicating a better
scaling potential with large-scale computes. We also conduct extensive experiments to verify the
long-context retrieval capabilities of our architecture. Our results reveal that Sambay achieves
superior performance on challenging long-context tasks like Phonebook and RULER [HSK™24]
benchmark, even with a modest Sliding Window Attention (SWA) size of 256. To further explore
the capabilities of hybrid models with a single set of full attention memory, we augment SambayY
with Differential Attention [YDXT24], resulting in the Phi4-mini-Flash architecture. We pre-train
our 3.8B-parameter model Phi4-mini-Flash with 5T tokens from the same Phi4-mini data corpus and
further follow Phi4-mini-Reasoning [XPA™25] to conduct the multi-stage distillation with Supervised
Fine-Tuning (SFT) and Direct Preference Optimization (DPO) to produce our reasoning model,
Phi4-mini-Flash-Reasoning. Our model achieves significantly better performance than the strong
Phi4-mini-Reasoning baseline on challenging reasoning benchmarks such as Math500, AIME24/25,
and GPQA Diamond, while excluding any stage of Reinforcement Learning (RL) that is used by
Phi4-mini-Reasoning. Critically, our Phi4-mini-Flash-Reasoning delivers up to 10x higher decoding
throughput on 2K-length prompts with 32K generation length under the vLLM [KLZ"23] inference
framework, showcasing its substantial and practical efficiency gains for the LLM reasoning paradigm
of generating long Chain-of-Thoughts.

2 Decoder-Hybrid-Decoder Architecture

Inspired by the gating mechanism that broadly exists in Gated Linear Units [Sha20], Gated Attention
Units [HDLL22] and SSMs [GD23, YWS™23, YKH25], we introduce our Gated Memory Unit
(GMU) together with its application on YOCO, which produces our final decoder-hybrid-decoder
architecture. We include a dedicated related works section in Appendix I, the limitation section in
Appendix J and provide the background introduction of YOCO in Appendix A.

Token mixing as a matrix operator. Both state-space models (SSMs) and self-attention layers
perform token mixing through a linear operator that can be written as a matrix A € R™*™, where
n is the sequence length. In SSMs, A is a highly structured matrix that captures the parallel form
of an underlying recurrent update, whereas in self-attention A is the row-aggregating attention
matrix whose entries are the query-key softmax probabilities. For a given head at layer I/, the mixed
representation is

M) = A0y @),

where V() € R"*dn denotes either the SSM state inputs or the attention value vectors.

Gated Memory Unit (GMU). From an inter-layer perspective, we define "memory" as hidden
representations passed from preceding layers. Specifically, at a given layer [, GMU operates on
two inputs: the current layer’s input hidden state, X; € R”*9m and the mixed representation
M) g Rm*dn of 3 previous layer I’ (where I’ < ). The GMU then produces an output Y; € R"*dm
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Figure 1: Our decoder-hybrid-decoder architecture taking Samba [RLL25] as the self-decoder.
Gated Memory Units (GMUs) are interleaved with the cross-attention layers in the cross-decoder
to reduce the decoding complexity. As in YOCO [SDZ124], the full attention layer only need
to compute the KV cache during prefilling with the self-decoder, leading to linear computation
complexity for the prefill stage.

through a gating mechanism modulated by learnable projections. Formally, the GMU can be expressed
as:
Y= (MY 6 o(X,W])Ws

where o(-) is the SiLU [EUDI17] activation function, © denotes element-wise multiplication, and
W, Wy € R4 *dm are learnable weight matrices. One can also apply an RMSNorm [ZS19] layer
after the element-wise multiplication, yielding the normalized GMU (nGMU). We show that this
normalization is crucial when the memory originates from linear attention mechanisms [DG24,
YKH25], as detailed in Appendix B and Appendix H. Intuitively, the GMU enables a dynamical
and fine-grained recalibration of the token mixing performed in a previous layer, conditioned on the
current layer’s input across each of the memory channels. Specifically, for each element [, in the

gated output H = M) © GO e R*dn GO = (X, W), we have
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Aiji
which shows that the gate G() effectively lifts the previous token mixing matrix A" into a third-

order tensor with elements Ai]‘ k= GEQA%I), yielding a learned, channel-specific reweighting of the

original token-mixing operator while maintaining linearity on the original value matrix V) at a later
layer [. The concept of the GMU generalizes beyond token-mixed memories. For instance, it can gate
intermediate outputs from previous MLP layers, enabling retrieval from a projected representation
of an earlier layer’s input. In all cases, GMUs reduce both parameter count and computational cost
compared to standard SSM, attention, or MLP layers.

Model architecture. In Figure 1, we illustrate the SambaY architecture, using our decoder-hybrid-
decoder architecture with Samba [RLL 23] as the self-decoder. We apply GMUs to the cross-
decoder of YOCO to replace half of its cross-attention layers. The GMUs share the representation
from the last SSMs layers in the self-decoder so that the pre-filling time complexity is still linear.
Compared to YOCO, our approach only requires caching an additional SSM kernel output state
m € R d;, = 2d,, from the final Mamba layer, an overhead that is negligible in size, alongside
the KV cache from the last full-attention layer during pre-filling. During decoding, we reduce the
memory I/O complexity for half of the cross-attention layers from a linear cost of O(d,N) to a
constant O(d}, ), where N is the sequence length and dy,, is the dimension of key/value vectors. This
leads to significant efficiency gains when N > d},/dy,, a condition that is easily met in practice
since the ratio dy, /dy., typically does not exceed 128.



3 Experiments and Results

Motivated by the theoretical efficiency of our SambaY architecture, we aim to address the follow-
ing research questions: Does the architecture scale effectively? Does it compromise long-context
performance? Can it support reasoning over long generations? Given that a neural architecture’s
performance is tightly coupled with its optimization and initialization settings, we begin by estab-
lishing a generic scaling setup to encourage a fair comparison of scaling behavior across different
architectures.

Baseline Architecture. Apart from our proposed SambaY architecture, we consider the following
baselines in this section: Transformer++ [HDLL22] (which uses SwiGLU [Sha20] for MLP and
ROPE [SLP*21] with the base frequency of 10,000), Samba+YOCO (which uses Samba as self-
decoder for the original YOCO architecture), SWA+YOCO (the original YOCO with SWA layers as
self-decoder), TransformerLS (interleaving SWA with full attention using a layer ratio of 3:1), and
SambaY+DA (which uses Differential Attention (DA) [YDX™24] for all attention layers in SambaY).
More architecture details are included in Appendix D. We standardize the sliding window size to
128 for all architectures with SWA while conducting extensive ablations on window size effects in
Section 3.2. Following the studies in recent hybrid models [LLB*24, RLL*25], we omit explicit
positional encodings (NoPE) for all hybrid SSMs architectures, and demonstrate that NoPE enables
zero-shot 2x retrievable context extrapolation in Appendix F.

3.1 Scaling Experiments on Open-Source Data

Architecture scaling setup. We use a simple linear rule from the previous works on Transformer
models [KMH™'20, TIY+24] for scaling the architectural shape of our Transformer++ baseline,
including model width w, model depth d, number of attention query heads h, and the MLP inner
dimension wyyy, ie.,

w=ad, a=a)=128, hy=d, hgy,=d/4, wnp = 4w,

where the Transformer-specific aspect ratio g and the number of key-value heads Ay, are computed
based on the Llama-3-8B [Met24] architecture. The total number of non-embedding parameters N (d)
for the Transformer++ architecture can then be calculated as,

Nan(d) = 2.5dw?, Nyip(d) = 12dw?,

N(d) = Naw(d) + Npip(d) = 14.5dw? = 23756847,

where Ny, Nmip means the total number of parameters for attention/MLP layers respectively.

Scaling transfer for hybrid architectures. Since different token mixers have their own inner
dimension expansion ratio, it is hard to balance the number of parameters between hybrid models and
Transformers to make fair comparisons. Previous works [DA24a, RLLT25, YKH25] often adjust
the model depth to tie the total number of parameters, but this could change the memory cache size
significantly (e.g. adding two attention layers in a 12-layer Transformer resulting in a 16.7% increase
of KV cache size), making unfair comparisons on the inference time cost. We propose a simple
solution that (1) builds an iso-parametric equation with respect to the aspect ratio via aligning the
total number of non-embedding parameters to the Transformer baseline, (2) solves the equation to
obtain the specific aspect ratio for the hybrid architectures. We maintain consistent hyperparameter
settings with a 4x MLP inner dimension expansion ratio and GQA [ALTdJ 23] group size of 4 for
self-attention layers, matching our Transformer++ baseline. We also fix the head dimension to be
g = 128, and set the inner dimension of the attention layers to be w,y, = aod so that the number of
key-value heads hyg,, is a valid integer. Specifically, for SambaY, we have

Nan(d) = 2.5dw - Wan /4 + 2dw - Watn /4, Nmamba(d) = 6dw? /4, Ngmu(d) = 4dw? /4,

N(d) = Nan(d) + Nanamba(d) + Nnip(d) + Nemu(d) = 144ad® + 14.502d® = 23756847,

where  Nyun, Nmambas Nmilps Ngmu means the total number of parameters for attention/Mam-
ba/MLP/GMU layers. Solving for o, we get a; =~ 124. For Samba+YOCO, we can similarly
solve an iso-parametric equation to obtain iy ~ 126, with more details in Appendix C.



Hyperparameter scaling with yP++. To account for both width and depth scaling of model
architectures, we propose tP++ hyperparameter scaling laws that integrate uP [YHB'22], Depth-uP
[YYZH23], and apply zero weight decay to vector-like or scalar-like parameters' for training stability.
Since we use the AdamW optimizer [LH18], we apply batch-size-based scaling with 77 < v/B. The
learning rate is further scaled as o< 1/ V/d following Depth-1P. For studying the FLOPs scaling
behavior across model architectures, we adopt the Chinchilla scaling law [HBM*22] to scale the
number of training tokens 7 linearly with the number of model parameters. Formally, we have

[Bdy N(d)
n Mo B0d7 0> ON(dO)a

where the base learning rate is set as 79 = 4 x 10~% and the base batch size By = 22! = 2M number
of tokens. We also explore scaling the batch size sub-linearly with respect to the training tokens
[MKAT18, SWW*24, LZH*25], but find that it harms the data scaling behavior of the models, so
we keep the batch size as a constant across scales. The base model depth is set as dy = 16 so that
N(dp) ~ 10° number of parameters. The base training token count 7y is set to 100B, corresponding
to 5x the Chinchilla-optimal ratio of tokens per parameter (approximately 20 based on [HBM*22]),
in order to study scaling behaviors in a typical over-training regime. We summarize the differences
between Standard Parametrization, uP and pP++ in Appendix D, while providing large scale ablation
studies in Appendix E.

Scaling experiment setups. A common concern with SSMs is that they are not theoretically more
expressive than self-attention for in-context retrieval [WDL24]. This raises the question of whether
the better performance of hybrid SSM models is owing to their fast convergence from the recency
bias, while Transformers could eventually match their performance given more training tokens. With
the scaling laws we established in the previous paragraphs, we can now examine this hypothesis
systematically. We first study the data scaling behavior across architectures through fixing the model
size at 1B parameters with d = 16 and scaling the number of training tokens 7" from 100B to 600B.
We also study the FLOPs scaling behaviors of the model architectures with up to 3.4B parameters
and 342B tokens through varying the model depth d = {8,12,16,20,24}. We use a 4K training
sequence length and the SlimPajama [SAKM™23] dataset for all our scaling experiments. More
experimental details are included in Appendix D.

Comparison of scaling behaviors. To quantitatively compare the scaling trajectories, we fit the
validation loss L as a function of compute (FLOPs), denoted as Dy ops, to a power law [HNAT17,
HBM*22] of the form:

L(Driops) = A - Dyglop, + C

This model enables us to estimate the irreducible loss C' which represents the lower bound of
achievable loss for a given architecture or parameterization under infinite compute, and the scaling
exponent b that reflects the learning efficiency with respect to compute. We fit the curves with least
squares and the LMA algorithm [LEV44, Mar63]. A similar power law model is employed for data
scaling experiments, where loss is modeled as a function of the number of training tokens Digkens-

In Figure 2, we present the results of both FLOPs scaling and data scaling experiments, showing
validation loss on the SlimPajama dataset as a function of total training FLOPs or number of training
tokens. We show both the original data points and the fitted power-law curves. The goodness of
fit for each curve is assessed using the R? statistic and all plots have a fitness score R? > 0.999,
indicating near-perfect fits. While larger values of the scaling exponent b or the coefficient A
indicate that a model may converge more rapidly given a small-scale compute or data budget, these
parameters alone do not necessarily predict superior performance at larger scales. Therefore, we
emphasize the irreducible loss C' obtained from scaling law fitting as the primary metric for assessing
an architecture’s long-term scaling potential. As illustrated in Figure 2a, the Sambay architecture
exhibits the lowest irreducible loss (C' = 0.58) for FLOPs scaling, suggesting that it can attain a
superior validation loss when scaled further with substantially increased computational resources.
However, under pP++, all architectures share the same compute efficiency exponent (b = 0.07),
indicating that the hybrid architectures explored did not yield improvements in models’ learning

"Following the definition in uP, parameters are vector-like when exactly one dimension scales with model
width (e.g., embedding and unembedding layers), and scalar-like when no dimension scales with width.
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Figure 2: Validation Loss v.s. FLOPs (left) or Training Tokens (right) on the SlimPajama dataset.
Besides the architecture comparisons, we also compare our yP++ based scaling with the Standard
Parametrization (SP).

efficiency with respect to compute. We also observe that p/P++ yields a lower irreducible loss than
SP under both data and compute scaling, indicating more favorable scaling potentials.

Notably in Figure 2b, the Transformer++ model trained with pP++ exhibits a large validation loss
gap compared to SambaY and Samba+YOCO within the measured range of training tokens. However,
its fitted irreducible loss (C' = 1.82) is nearly identical to those of the hybrid models, suggesting
that with an infinite amount of data, Transformer++ can eventually catch up—albeit with slower
convergence. This aligns with our expectation, as there is no theoretical expressiveness gap between
Transformers and our hybrid models when the number of parameters is held constant. This can
be because we use Mamba-1 as our SSM which falls into the same complexity class of TC? as
Transformers [MPS24]. Interestingly, this convergence no longer holds when both model size and
data scale proportionally. As illustrated in Figure 2a, under the pP++ setting, Transformer++ exhibits
the highest irreducible loss C' = 0.64, indicating that hybrid architectures could offer superior
scalability under limited data regimes.

3.2 Efficient Long Context Retrieval

Given the presence of full-attention layers, we aim to de- 1,
termine the minimal sliding window size required for our
hybrid models to retain effective long-context retrieval ca- s
pabilities—an essential property for supporting advanced
reasoning behaviors that involve long generation with s
backtracking. Specifically, we pre-train 1.0B parameter
models with yP++ and d = 16 using TransformerLS, o
SambaY, SambaY+DA and Samba+YOCO architectures S

respectively on the ProLong-64k [GWYC24] dataset with 2 £ S 3

~&- sambay

32K sequence length and 40B tokens, varying the win- & smevco ~
dow size of their Sliding Window Attention (SWA) in  °* = 18 . N
the range {64, 128, ...,2048}. We align the number of ]

parameters between different architectures through build- Figure 3: Accuracy (with error bars)
ing the iso-parametric equations as in Section 3.1. We V-S. Sliding Window Size on Phonebook
adopt variable-length training, where short documents are ~ With 32K evaluation length.

packed together and self-attended within the same seg-

ment. We evaluate the long-context retrieval capabilities of the models using a difficult Phonebook
benchmark [JBKM24] with a 32K context length (containing 1,850 name-number pairs). We choose
this benchmark because it is a realistic multi-key-value retrieval task with minimal instructions,
which minimizes the confounding influence of instruction-following ability when evaluating long-
context retrieval performance. We use a RoPE base of 640K for TransformerLS, Transformer++
and SWA+YOCO, following the lower bounds proposed in [XMW ™24]. We also examine how the
training corpus and methods affect the long context performance, with more details in Appendix F.

Accuracy




Table 1: Retrieval accuracy on Needle-In-A-Haystack (NIAH) tasks with 32K context from the
RULER [HSK*24] long context benchmark. MK: Multi-Key, MQ: Multi-Query, MV: Mutli-Value,
S: Single-needle. We use the best Sliding Window Attention (SWA) size found on the Phonebook
benchmark for each hybrid architecture. Best results are in bold, second best underlined.

Model SWA MK-1 MK-2 MK-3 MQ MV S-1 S-2  S-3  Avg

Transformer++ - 36.4 3.8 0.0 279 24.1 948 66.0 31.0 355
TransformerLS 256 42.8 6.0 0.0 298 275 918 49.6 234 339
SWA+YOCO 128 24.2 6.8 0.2 102 147 812 32,6 484 273
Samba+YOCO 1024  49.0 28.0 2.6 12.8 183 100.0 632 23.6 372
SambaY 256 54.6 27.8 0.4 12.7 194 832 812 638 429
SambaY+DA 512 64.6 27.6 0.2 128 199 99.8 864 69.6 47.6

As shown in Figure 3, which plots accuracy against SWA size on the Phonebook dataset (32K
evaluation length), surprisingly, larger SWA sizes do not consistently provide better results. Since
learned full attention involves both sliding window (local) patterns and non-local patterns like global
retrieval or attention sinks, using small sliding window sizes, where models like SambaY and
SambaY+DA show strong performance, could enable the model to focus on local patterns more easily
and mitigate issues like attention sinks [GPD'25]. Moreover, shorter sliding windows can facilitate
faster convergence, a crucial factor in long context training scenarios that are often characterized by
limited high-quality data. The lower scores of SWA+YOCO, which consistently underperform the
Sambay variants, could indicate that pure attention-based models require more substantial data for
long-context training.

Table 2: Downstream short-context evaluation on language modeling and common-sense reasoning
tasks in zero-shot for 1B-parameter models with the tuned sliding window size. The training speed is
measured in MTPS (Million Tokens Per Second) with 64 A100-80GB GPUs. Best results are in bold,
second best underlined.

Speed Wiki. LMB. ARC-c ARC-e Hella. PIQA Wino. Avg.
mtpsT ppll acct acc_nft acctT acc_nt acct acctT acct

Transformer++ - 0.89 19.75 4545  27.56 54.17 4386 6877 50.28 4835
TransformerLS 256 1.46 18.49 4877  28.84 57.11 4585 69.21 53.67 50.57
SWA+YOCO 128 1.24 18.01 49.80  28.58 57.79 4648 7046 51.85 50.69
Samba+YOCO 1024  0.99 16.73 50.53  28.50 60.02 48.85 7155 52.57 52.00
SambaY 256 111 1783 5040 29.44 57.87 49.08 71.00 55.25 52.17
SambaY+DA 512 0.91 16.59 49.68  28.33 60.65 49.53 7138 5343 5217

Model SWA

Using the optimal sliding window size from the Phonebook benchmark, we evaluate our architectures
on both long-context retrieval tasks (Table 1) and traditional downstream benchmarks (Table 2).
Across both contexts, hybrid models with SSMs consistently outperform pure Transformer architec-
tures. SambaY variants demonstrate notable advantages in long-context retrieval while maintaining
strong performance on short-context tasks, despite using much smaller sliding window sizes than
Samba+YOCO. The addition of DA further enhances multi-key and single-needle retrieval capa-
bilities, while Transformer-based models show specific strengths in multi-query and multi-value
scenarios. TransformerLL.S/SWA+YOCO outperforms Transformer++ on short-context tasks but falls
behind on the RULER benchmark, highlighting the trade-off on long-context performance caused by
introducing SWA to full attention models. Overall, our results suggest that GMUs facilitate efficient
representation sharing across layers and enable strong performance with smaller SWA sizes.

3.3 Large-Scale Pre-training on High-quality Data

We apply our SambaY+DA architecture to pre-train a larger-scale prototype model named Phi4-mini-
Flash with 3.8B parameters. It uses an SWA size of 512 and GQA of group size 2. Compared to
the configuration described in Section 3.1, this model uses a different aspect ratio & = 80 and an
attention head dimension of 64. It is trained with standard parameterization rather than yP++ due
to resource constraints at the time of scaling study. We pre-train our model on 5T tokens from the
data corpus used by Phi4-mini [MAA™25] on 1K A100-80GB GPUs for 14 days. During training,
we encounter severe loss divergence, which we mitigate by introducing label smoothing of 0.1 and



Table 3: Downstream evaluation performance of post-trained models. We use the completion split for
BigCodeBench evaluation. Bold indicates the best result per row.

Benchmark Metric Phi4-mini  Phi4-mini-Flash
MMLU [HBB*21] 5-shot 67.3 71.9
MMLU-Pro [WMZ"24] 0-shot, CoT 52.8 54.7
Arena Hard [LCF'24] Win Rate 32.8 34.9
GSMS8K [CKB*21] 0-shot, CoT 88.6 89.5
Qasper [DLB121] F1 40.4 40.2
SummScreenFD [CCWG22] ROUGE-L 16.0 17.0
BigCodeBench [ZVC125] pass@1 43.0 44.5
MBPP [AONT21] pass@1 65.3 69.8

attention dropout of 0.05. The optimization setup here is by no means optimal, as the primary goal
of this experiment is to evaluate the viability of our architecture at larger scales. Phi4-mini-Flash
uses a 200K token vocabulary size consistent with Phi4-mini. Additional training and architectural
details, including the mitigation of stability issues, are provided in Appendix D. Table 3 demonstrates
that Phi4-mini-Flash outperforms the Phi4-mini baseline across a diverse range of tasks, with notable
improvements on knowledge-intensive benchmarks like MMLU and coding tasks such as MBPP.
The consistent performance advantage, winning on 7 out of 8 benchmarks, is particularly significant
given that Phi4-mini-Flash achieves these gains while maintaining substantially higher computational
efficiency during inference.

3.4 Efficient Reasoning with Long Generation

Table 4: Pass@1 performance of models on reasoning benchmarks measured with a maximum
generation length of 32K. We report Pass@ 1 accuracy averaged over 64 samples for AIME24/25
and 8 samples for Math500 and GPQA Diamond to ensure evaluation robustness. We also evaluate
popular open-source distilled reasoning models [DA25, Bes, Ope] as reference baselines.

Model AIME24 AIME25 Math500 GPQA Diamond
DeepSeek-R1-Distill-Qwen-1.5B 29.58 20.78 84.50 37.69
DeepSeek-R1-Distill-Qwen-7B 53.70 35.94 93.03 47.85
DeepSeek-R1-Distill-Llama-8B 43.96 27.34 87.48 45.83
Bespoke-Stratos-7B 21.51 18.28 80.73 38.51
OpenThinker-7B 29.69 24.32 87.25 41.60
Phi4-mini-Reasoning (3.8B) 48.13 31.77 91.20 44.51
Phi4-mini-Flash-Reasoning (3.8B) 52.29 33.59 92.45 45.08

Our Phi4-mini-Flash-Reasoning model is continually trained from the Phi4-mini-Flash model with
the same multi-stage distillation data following Phi4-mini-Reasoning [XPA"25]. Due to the limited
resources, we only conduct the distillation with SFT and DPO stages and leave RL for future works.
As shown in Table 4 and Figure 4, our reasoning model achieves significantly better performance
than Phi4-mini-Reasoning (which has a final RL training stage) on AIME24/25 [Art], Math500
[HBK*21], and GPQA Diamond [RHS"23], while employing a substantially more efficient archi-
tecture, achieving up to 10x higher throughput in long-generation scenarios and 4.9 x speedup in
long-context processing. In Figure 4, we evaluate the throughput of our vLLM implementation” using
random model weights to eliminate the influence of potentially shorter generation lengths on speed
measurements, ensuring a fair comparison across different architectures. The same hyperparameter
configurations as Phi4-mini-Flash are applied for the YOCO and SambaY based baseline architectures.
We observe that SambaY achieves the best throughput in both long-context and long-generation
settings across various numbers of concurrent clients, highlighting the significant practical efficiency
gains enabled by our GMU modules. Notably, our Differential Attention implementation relies on
a naive four-pass of the FlashAttention [Dao23] operator for vLLM compatibility, rather than the
optimized custom kernel proposed in the original paper, leaving significant room for further speed

2We customize the official vVLLM framework with the version 0.7.3 to support our Phi4-mini-Flash architec-
ture.



optimization of Phi4-mini-Flash-Reasoning to catch up the efficiency of Sambay. More evaluation
details and case studies on our model’s general reasoning ability are provided in Appendix G.
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Figure 4: Throughput and latency of text generation with various architectures under the vLLM
inference framework (using one A100-80GB GPU and no Tensor Parallelism). A normal distribution
with 30% variance was applied to prompt and generation lengths with averages of 32000/2000 and
500/32000 respectively, following the setting in [HTW24].

4 Ablation Study
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Figure 5: Major architectural variants explored in this section. For GDNY, we use Gated DeltaNet
[YKH25] with normalization after output gate (GDN-A) for self-decoder, and apply normalized
GMU (nGMU) in cross-decoder.

As illustrated in Figure 5, we systematically study the design choices in our decoder-hybrid-decoder
architecture through the following architectural modifications of Sambay:

» SambaY-2 or S-GDNY substitutes Mamba layers with Mamba-2 or GDN-A (as detailed in
Appendix B) respectively in the self-decoder; MambaY/MambaY-2/GDNY employs only
Mamba/Mamba-2/GDN-A respectively in the self-decoder except the full attention layer.
We find it is crucial to also use nGMU for Mamba-2/GDN-A based models to achieve strong
long context performance, with ablation studies in Appendix H.

» SambaY-A applies GMUs to gate intermediate representations from the last full attention
layer in the self-decoder rather than from Mamba.

» SambaY-AA entirely removes cross-attention in the cross-decoder and instead uses GMU to
gate the intermediate representations from the middle full attention layer.

* SambaY-MLP uses GMUs to gate the intermediate representation from the linear projection
branch of the SwiGLU right after the full attention layer.

All ablation models are trained with 1.0B parameters on the ProLong-64K dataset with 40B tokens
and a maximum of 32K sequence length with variable length training, using a SWA size of 128 as in



the scaling experiments. We leverage p/P++ with depth d = 16 and construct iso-parameter equations
to maintain parameter count equivalence across all variants, with more details in Appendix D. We
aim to answer the following research questions given the ablation results in Table 5.

Table 5: Downstream evaluation on Phonebook 32K (PB-32k), language modeling and common-
sense reasoning tasks in zero-shot for 1B-parameter models with a sliding window size of 128. We
measure the training speed in MTPS (Million Tokens Per Second) with 64 A100-80GB GPUs. The
average accuracy excludes PB-32K due to its relatively high variability, with a standard deviation of
around 5%. Best results in bold, second best underlined.

Speed Wiki. PB-32K LMB. ARC-c ARC-e Hella. PIQA Wino. Avg.

Model mtps T ppll acc T accT acc.n?T acctT acc_n?T acctT acctT acct
SambaY 1.10  16.89  78.13 5022  28.58 59.18 49.07 7084 55.09 52.16
MambaY 094  17.29 12.50 50.24  28.84 59.64 4827 7144 5280 51.87
SambaY-2 143 17.17  40.63 4896  28.84 59.18 48.01  70.18 50.83 51.00
MambaY-2 138  18.63 50.78 49.58  28.24 58.75 4829  70.13 51.07 51.01
S-GDNY 1.34  16.78  83.59 50.94  29.61 58.96 4893 7155 51.85 5197
GDNY 122 1692  89.84 50.38  28.84 60.61 48.01 7127 5138 51.75
" SambaY-A 1.1 1812 5859 4985 3029  59.60 4841 7133 5406 52.26

SambaY-AA 1.25 17.03 46.88 4993  28.50 59.05 48.69 7225 5391 52.06
SambaY-MLP  1.15 1870  64.84 50.16  30.38 60.69 4846  71.44 547718 52.65

Alternative architectures for self-decoder in SambaY? As shown in Table 5, while SambaY
performs well on the PB-32K benchmark, replacing its Mamba layers with Mamba-2 leads to a
significant drop in accuracy. This may be attributed to Mamba-2’s coarse, scalar-valued forget gates,
which can reduce the self-decoder’s capacity to encode fine-grained positional information. The
weaker PB-32K performance of MambaY compared to SambaY underscores the importance of local
retrieval ability provided by SWA; recency bias alone appears insufficient for the self-decoder to
support the cross-decoder in completing complex retrieval tasks. While GDN-based models achieve
impressive PB-32K accuracy due to their enhanced retrieval capabilities with delta update rules,
interleaving GDN with short-range SWA notably accelerates training without significantly degrading
performance on either short or long-context tasks.

Is GMU effective for other memories beyond SSMs? We examine SambaY-A and SambaY-
AA, which gate attention inner representations, and SambaY-MLP, which gates MLP intermediate
representations. As shown in Table 5, these variants achieve respectable performance on downstream
tasks, with SambaY-MLP even surpassing the original SambaY on average accuracy for short-context
tasks. However, for the long-context task, PB-32K, we observe a clear hierarchy: SambaY > SambaY-
MLP > SambaY-A > SambaY-AA. This pattern indicates that GMUs remain effective with alternative
memory sources, but their performance on retrieval tasks depends significantly on the memory
source’s inherent characteristics. Gating attention/MLP representations performs worse than the
original SambaY on Phonebook because they lack the recency bias that SSMs naturally provide,
which is beneficial for encoding contiguous local information. Samba¥Y-AA, which completely
removes cross-attention, shows significant degradation, highlighting the importance of having a
sufficient number of cross-attention layers for the successful retrievals from a large pool of multiple
key-value pairs.

5 Conclusion

In this work, we introduce the Gated Memory Unit (GMU), a simple yet effective mechanism for
efficient memory sharing across layers in sequence models. Replacing expansive cross attention
layers with GMUs, we propose Sambay, a decoder-hybrid-decoder architecture with Samba as the
self-decoder, which achieves significant improvements in both computation efficiency and long-
context performance. Our extensive scaling experiments demonstrated that SambaY exhibits a lower
irreducible loss compared to strong baselines when fitted with power laws against training FLOPs,
indicating superior scaling properties with increasing computational resources. Our largest model,
Phi4-mini-Flash-Reasoning, outperforms Phi4-mini-Reasoning on challenging reasoning benchmarks
while delivering substantially higher decoding throughput on long-context generations. Given that
our architecture still retains a full attention layer with linear decoding complexity, future work
could explore dynamic sparse attention mechanisms to further improve efficiency on extremely long
sequence generation, particularly in agentic application scenarios.
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NeurlIPS Paper Checklist

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]
Justification: We explain method and summarize the contribution in introduction.
Guidelines:

e The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It is fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]
Justification: The limitation is included in conclusion section.
Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

* The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory Assumptions and Proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [NA]
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Justification: Our paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental Result Reproducibility

Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: This paper discloses the information needed to reproduce the main experimen-
tal results.

Guidelines:

* The answer NA means that the paper does not include experiments.
* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.
If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.
Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-

sions to provide some reasonable avenue for reproducibility, which may depend on the

nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?
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Answer: [Yes]

Justification: The datasets we used are partially open-source, and we will provide our code
in the footnote of page one.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

¢ Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

 The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.
6. Experimental Setting/Details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have specified all the training and test details necessary to understand the
results

Guidelines:

* The answer NA means that the paper does not include experiments.

» The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.
7. Experiment Statistical Significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: We report average results of multiple runs in our experimental section with
error bars.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)
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8.

10.

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

e It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

» For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments Compute Resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: We explain the computation resources in experiment section.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code Of Ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]
Justification: Research is conducted in the paper conform with NeurIPS Code of Ethics.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).
Broader Impacts

Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?

Answer: [NA]
Justification: Our paper is not highly related to societal impacts.
Guidelines:

* The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.
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» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]
Justification: Our paper poses no such risks. Our work does not release a new model.
Guidelines:

» The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

 Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: CC-BY 4.0, and we referenced the works that we used to implement our code.
Guidelines:

* The answer NA means that the paper does not use existing assets.
* The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.

 For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

 If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.
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16.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We will provide our code in the footnote of page one.
Guidelines:

* The answer NA means that the paper does not release new assets.

» Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.
Crowdsourcing and Research with Human Subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:
* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

* We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

* For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.

Declaration of LLM usage
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Question: Does the paper describe the usage of LLMs if it is an important, original, or
non-standard component of the core methods in this research? Note that if the LLM is used
only for writing, editing, or formatting purposes and does not impact the core methodology,
scientific rigorousness, or originality of the research, declaration is not required.

Answer:
Justification: LLM is used only for writing, editing, or formatting purposes.
Guidelines:

* The answer NA means that the core method development in this research does not
involve LLMs as any important, original, or non-standard components.

¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
for what should or should not be described.
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A Background

YOCO (You Only Cache Once) [SDZT24] is an inference-efficient decoder—decoder architecture
with linear pre-filling complexity. It comprises a self-decoder, formed by the first half of the layers,
which employ token mixers with linear computational complexity and include a final full-attention
layer that generates Key-Value (KV) caches during pre-filling. And the second half of the layers
forms the cross-decoder, which are cross-attention layers that attend to the KV caches produced
by the self-decoder’s last full attention layer. Specifically, for an input sequence of hidden states
Xomem € R™ 4m of the final full-attention layer in the self-decoder, it pre-computes and caches a
sequence of KV pairs during pre-filling:

Kc = Xmem,WK> V:: = XmemWVa

where K, V, € R"*dv are the cached matrices and Wy, Wy, are weight matrices. Subsequently,
at the decoding stage, every cross-attention layer [ in the cross-decoder reuses this single set of KV
cache. Given the input hidden state X C(fn;ql g) to that layer, the cross-attention output is calculated by
generating a new query, QEZT)OSS, and attending to the shared cache:

H o _ -1y
QW = Xx( Wy,

Cross Cross

. 0,.&7
HWY = goftmax | 2222 < | V..
V dkv

During pre-filling, this approach (1) entirely avoids the computation of full attention and (2) requires
inference through only the first half of the layers, substantially reducing the computational cost
of processing user prompts for both short and long contexts. Our SambaY architecture further
improves its efficiency by modifying the cross-decoder: we replace half of its memory I/O-expensive
cross-attention layers with lightweight Gated Memory Units (GMUs), thereby enhancing decoding
efficiency during response generation.

B Additional Theoretical Analysis

Normalization placement in linear attention. In linear attention architectures [QHST22,
SDH™23, YWS™23], including Gated DeltaNet (GDN) [ YKH25], a normalization operator is applied
immediately after token mixing to stabilize training at layer I’:

M) = Norm(A(l/)V(l'))7 y) = (M(l') o) G(l’))WQ(l/)’ ql) = g(I/Vl(l/)X(l’))7

where Norm is typically RMSNorm [ZS19] and X (') is the layer input and Y (") is the layer output.
Placing Norm before the output gating, however, breaks the associativity between the gating matrix
G®) and the token-mixing operator AW 50 the Gated Memory Unit (GMU) can no longer directly
re-weight the token mixing based on the current layer input with X (. To resolve this issue, we
propose to postpone the Norm after output gating for GDN (denoted as GDN-A), following the
design of Mamba-2 [DG24]. Concretely, for layer I’ we instead compute

MO = Ay, y() — Norm(M(l/) o) G(l’)) Wz(l')’

and employ the normalized GMU (nGMU) at layer [ > I’ in the cross-decoder to maintain training
stability while allowing the gate to modulate A®) directly, i.e.

Yy = Norm(M(l/) ®GWY) Wz(l).

This simple reordering preserves associative re-weighting and, as demonstrated empirically in
Appendix H, substantially improves the long context performance when compared to the original
normalization before gating design in GDN.
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C Additional Aspect Ratio Calculations

When solving for the aspect ratio through iso-parametric equations, we rounded it up to an even
integer to guarantee the activation of Tensor Cores®. Based on the Samba+YOCO architecture, we
can derive the iso-parametric equation through calculating the number of non-embedding parameters
as follows,

Nutin(d) = 2.5dw - Wayn /4 + 20w - Waren /2, Nnamba(d) = 6dw? /4,

N(d) = Nyn(d) + Ninamba(d) + Nip(d) = 208ad® + 13.502d> = 237568d°.

Solving for o, we get as ~ 126. For the SambaY+DA architecture, the aspect ratio is not changed
because the number of extra parameters introduced by DA is negligible. For Mambay, we have

Nan(d) = 2dw - Wan /4, Nipamba(d) = 6dw? /2,  Ngmu(d) = ddw? /4,

N(d) = Nun(d) + Nanamba(d) + Nintp(d) + Nemu(d) = 64ad® + 16a2d® = 237568d°.
Solving for o, we get ag ~ 120. For SambaY-MLP, we have

Nan(d) = 2.5dw - Wan /4 + 2dw - Watn /4, Nimamba(d) = 6dw? /4, Ngmu(d) = 8dw? /4,

N(d) = Nayn(d) + Ninamba(d) + Nnip(d) + Nema(d) = 144ad® + 15.50d* = 2375684°.
Solving for o, we get ay ~ 120. For SambaY-Attn, we have

Natm (d) = 25dw . wann/4 + 2dw . watm/4, Nmamba(d) = 6(;[”[1)2/47 Ngmu(d) = 2dw . watm/4,

N(d) = Nan(d) + Ninamba(d) + Ninip(d) + Nema(d) = 208ad® + 13.50°d* = 2375684°.

Solving for a, we get a5 ~ 126, which is the same as Samba+YOCO. For SambaY-Attn-All, we
similarly have

Nattn(d) = 2.5dw - wattn/4a Nmamba(d> = 6dw2/4, Ngmu(d) = 2dw - wattn/27

N(d) = Nan(d) + Ninamba(d) + Ninip(d) + Nema(d) = 208ad® + 13.50°d* = 2375684°.

Solving for o, we get ag =~ 126. For the GDNY architecture, we use a fixed head dimension of 256
and SwiGLU output gating with the Gated DeltaNet layers. The query-key projections with a 0.75
expansion ratio are used, while the value, gating, and output projections are using a 1.5 expansion
ratio with respect to the model width. We also allow negative eigenvalues for improved expressiveness
of the transition matrices [GSF'25]. Specifically, we have

Nun(d) = 2dw - wan /4,  Nopn(d) = 6dw?/2,  Ngnu(d) = 3dw? /4,

N(d) = Nyn(d) + Nopn(d) + Nuip(d) + Nemu(d) = 64ad® + 15.7502d® = 2375684°.

Solving for o, we get a7 =~ 120. As in Sambay, we can similarly solve for S-GDNY to get ag ~ 126
and for SWA+YOCO to get ag ~ 130.

D Implementation Details

Details on scaling comparisons. Except for the learning rate, we fix other hyper-parameters of the
AdamW optimizer with 3; = 0.9, 32 = 0.95, ¢ = 10~® and a weight decay of 0.1. A learning rate
schedule is applied with 1B warm-up tokens linearly increasing to the peak learning rate 7, followed
by a linear decay to zero. We use LeCun uniform initialization (i.e. PyTorch default initialization)
[LBOM12] for the weight matrices following [GD23] and [RLL*25], and tie the input and output
embedding matrices which are initialized from the normal distribution A/(0,0.022). The attention
logits scaler is set to 1/ V/dj, where dy,, is the head dimension. We summarize the key differences
between uP, uP++ and Standard Parameterization (SP) in Table 6, with additional details as follows.
For uP++, we scale the output logits and the learning rate of matrix-like parameters proportional to

1/w. The output of each layer is divided by v/2d following Depth-uP.

For SP, we don’t apply any pP++ scaling laws, and since LeCun initialization already scales its
initialization variance with respect to 1/d;,, as the same as proposed in P, where d;,, is the fan-in

*https://developer.nvidia.com/blog/optimizing-gpu-performance-tensor-cores/
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Table 6: Key differences between pP, P++ and Standard Parameterization (SP). LR mult. denotes
the per-parameter multiplier applied on top of the global learning-rate (1), Res. mult. is the multiplier
applied to the output of residual branches and WD denotes the weight decay. For yP++, n oc 1/ Vd
and zero weight decay is also applied to other scalar or vector-like parameters such as RMSNorm
weights. In this work, o = 10~ for untied embedding and o = 0.02 for tied embedding, and in both
cases 7 = 0.02 and $ = 1. “fan_in” means the input dimension of weight matrices.

Parameter Scheme LR mult. Initialization Res. mult. Weight mult. WD
SP o1 N(0,0%) — o 1 o 1
Embedding uP o 1 N(0,0%) — o 1 x 1
P++ x 1 N(0,0?%) — x1 0
Sp ox 1 0 or tied — ox 1 o1
Unembedding uP x 1 0 or tied — x 1/w x 1
uP++ x 1 0 or tied — x 1/w 0
SP ol N(0,77) 1 ol x 1
i i —B B
Hidden Weights uP < 1/w  U( _— fzm_m) 1 oc 1 oc 1
P4+ < lw UG, 7 1A/2d o 1 o 1

dimension of the weight matrix, we instead use normal initialization with a standard deviation of
0.02 for weight matrices to rule out this confounding effect. We divide the initialization standard
deviation of the output projection of each layer by v/2d, following [RWC* 19, GD23, RLL*25].
The detailed architecture and optimization setups for each of the scales are shown in Table 7.
Following [GD23, YWZ124, RLL*25, YKH25], our downstream evaluations are conducted on the
following benchmarks: Wikitext [MXBS16], LAMBADA (LMB) [PKL*16], Arc-Easy/Challenge
(ARC-e/ARC-c) [CCE™ 18], HellaSwag (Hella.) [ZHB™19], WinoGrande (Wino.) [SBBC21] and
PIQA [BZB*20], where we measure character normalized accuracy (acc_n) for Arc-Challenge and
HellaSwag.

More details on architecture and large-scale pre-training. We provide a comprehensive summary
of the architectures explored in this work, along with the large-scale pre-training setup, in Table 7.
In our architectures, Differential Attention uses a depth-dependent initialization factor, A =
0.8 — 0.6 exp(—0.3 x 1), where [ is the depth index. For each attention head, it employs two sets of
learnable parameters, (A1, Ax1) and (Ag2, Ak2), each of dimension equal to the head dimension and
initialized with a normal distribution of zero mean and 0.1 standard deviation. RMSNorm [ZS19]
with learnable element-wise affine parameters is adopted for attention output normalization. For each
of the intermediate layers, LayerNorm [BKH16] is used with Pre-LN [XYH™"20] for Phi4-mini-Flash
architecture.

MMLU Scores vs. Steps

1

Attn DP on cross-
decoder @ 520K

Attn DP on self-
decoder @ 310K

BF16

\ i m,,, W :

W) ,h\”w ‘U’l‘

0 100000 200000 300000 400000 500000 600000 700000
steps

FP32 No fuslon slow

(a) Fused FP32 LM Head with Cross-Entropy Loss (b) Adding Attention Dropout

Figure 6: Adopted tricks for mitigating the large-scale pre-training instability of Phi4-mini-Flash.

Mitigation of instability in large scale pre-training. During the pre-training stage of Phi4-mini-
Flash, we meet severe loss divergence, which is mitigated with the following two tricks: (1) we
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up-cast the weight and the input to FP32 during chunk-wise matrix multiplication for our fused linear
cross-entropy loss kernel which is modified from the Liger-Kernel*. As shown in Figure 6a, with
the FP32 up-casting, the gradient norm during the training process can be stabilized to closely track
the naive no-fusion baseline, compared to the normal BF16 matrix multiplications with up-shooting
trends that will finally blow up the training loss. Without fusion, the training speed is substantially
slower because of our large 200K vocabulary size. (2) As shown in Figure 6b, we add 0.05 attention
dropout at 310K steps for self-decoder and at 520K steps for cross-decoder, which are the last
checkpoint steps before the loss divergences happen. As we can see from the figure, adding attention
dropout doesn’t harm downstream performance on MMLU [HBB*21], but can successfully stabilize
the whole training process until the end.

Table 7: Model and training configurations for the architectures explored in this work. TransformerLS
adopts the same architecture as Transformer++, with Sliding Window Attention (SWA) applied
to all attention layers except every fourth layer, which uses full attention. MLP Size denotes the
intermediate dimension of the MLP, i.e., the input dimension of the output projection. Phi4-mini and
Phi4-mini-Flash are trained with a batch size of 8M tokens, using a linear learning rate schedule with
3,000 warm-up steps. We allow the intermediate dimension of attention layers to be larger than the
model width, so that the head dimension can be a power of 2. Variants enhanced with Differential
Attention adopt the same architectural configurations as their respective baselines. All models use
tied embeddings. The 3.8B-parameter Sambay and Samba+YOCO models are randomly initialized
for benchmarking under the vLLM inference framework. Except for 3.8B-parameter models which
use a vocabulary of 200K tokens, we apply Llama-2 [TMS*23] tokenizer with a 32K vocabulary for
all other models.

Architecture =~ Depth Model Query KV Head MLP Non-Embed Params Learning Training
d  Width Heads Heads Dim Size Params (M) (M) Rate  Tokens (B)

Transformer++ 8 1024 8 128 4096 121.6 1544  5.66e-04 12.5
12 1536 12 128 6144 410.5 459.7  4.62e-04 422
16 2048 16 128 8192 973.1 1038.6  4.00e-04 100.0
20 2560 20 128 10240 1900.5 1982.5 3.58e-04 195.3
24 3072 24 128 12288 3284.1 3382.4 3.27e-04 337.5

SambaY 8 992 8 128 3968 123.3 155.0  5.66e-04 12.7
12 1488 12 128 5952 416.1 463.7 4.62e-04 42.8
16 1984 16 128 7936 986.3 1049.8  4.00e-04 101.4
20 2480 20 128 9920 1926.5 2005.8 3.58e-04 198.0
24 2976 24 128 11904 3328.9 34242 3.27e-04 342.1

Samba+YOCO 8 1008 8 128 4032 123.2 1554  5.66e-04 12.7
12 1512 12 128 6048 415.6 464.0 4.62e-04 42.7
16 2016 16 128 8064 985.2 1049.7  4.00e-04 101.2
20 2520 20 128 10080 1924.3 2004.9 3.58e-04 197.8
24 3024 24 128 12096 3325.1 34219 3.27e-04 341.7

SWA+YOCO 16 2080 16 8320 984.0 1050.6  4.00e-04 40.0

MambaY 16 1920 16 128 7680 975.2 1036.6  4.00e-04 40.0
GDNY 16 1920 16 128 7680 960.4 1021.9  4.00e-04 40.0
S-GDNY 16 2016 16 128 7680 1001.0 1065.5 4.00e-04 40.0
MambaY-2 16 1920 16 128 7680 975.2 1036.6  4.00e-04 40.0
SambaY-2 16 1984 16 128 7936 986.3 1049.8  4.00e-04 40.0
SambaY-A 16 2016 16 128 8064 985.2 1049.7  4.00e-04 40.0
SambaY-AA 16 2016 16 128 8064 985.2 1049.7  4.00e-04 40.0
SambaY-MLP 16 1920 16 128 7680 985.0 1046.4  4.00e-04 40.0
Phi4-mini 32 3072 24 128 8192 3221.2 3835.8  5.00e-04 5000
Pih4-mini-Flash 32 2560 40 64 10240 3329.2 3841.4 5.00e-04 5000
SambaY 32 2560 40 64 10240 3329.2 3841.4 - -

ISR -CN [ N N N N N N N NN e N O R T S N I VI SN
—_
o
o0

Samba+YOCO 32 2560 40 64 10240 3224.4 3736.5 - -

E Ablation Study on Hyper-parameter Scaling Laws

We conduct a comprehensive ablation study of our puP++ scaling laws to validate their scaling
behavior. All experiments are performed using Transformer++ trained with a 4K sequence length

“https://github.com/linkedin/Liger-Kernel
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X, ® SP 'y ® P+
-~ SP(A=161,b=0.44,C=1.86) -- pP++ (A=1.30,b=0.40,C=1.83)
¢ o ‘\ 4 uP++ (WSD)
--- WP (A=17.92,b=1.10,C=1.96) AN ~== WP++ (WSD) (A=1.53,0=0.47,C=1.86)
B P+ R ®  uP++ (LR Scaling + Indep. WD)
—= uP++ (A=1.28,b=0.37,C=1.82) N\ ~=~ pP++ (LR Scaling + Indep. WD) (A=1.03,b=0.35,C=1.82)
A pP++ (Batch Scaling) h
-~ uP++ (Batch Scaling) (A=1.16,b=0.36,C=1.83)
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Figure 7: Validation Loss v.s. Training Tokens on the SlimPajama dataset for Transformer++ trained
with tied (left) or untied (right) embedding layers. For the training on 600B tokens with pP, the model
encountered NaN losses after 204K gradient update steps. We report the last valid validation loss
prior to divergence as its final performance.

on the SlimPajama dataset. To ensure that the linear learning rate schedule fully decays to zero, we
train six models at different training token budgets: {100B, 200B, ..., 600B} for each of the scaling
curves. We examine the scaling performance under both tied and untied embedding setups. For the
untied setting, we follow RWKYV [PAA™23] by applying normal initialization with zero mean and a
standard deviation of 10~%. The unembedding layer is initialized to zero, following the zero-out trick
proposed in P [YHB22]. As shown in Figure 7a, we observe that the original 1P setup (which uses
LeCun initialization and does not include Depth-uP or weight decay modifications as in uP++) can
lead to severe training instability when scaling to 600B tokens. Since we observe increasing gradient
norms with large spikes for vector-like parameters shortly before the model diverges, this highlights
the importance of the uP++ strategy of applying zero weight decay to vector-like parameters to
enhance training stability at large scales. We also explore batch size scaling with respect to training
token size, following [SWWT24, LZHT25], i.e.

[T
B:BO ?
0

As in Figure 7a, yP++ (Batch Scaling) shows both worse learning efficiency and irreducible loss than
uP++. Generally, we think the batch size mainly affects parallelism and the computation efficiency
as long as the batch size is not too large, and the worse scaling behavior can be because (1) when
scaling up, the batch size can surpass the critical batch size [MKAT18], which leads to worse model
performance, (2) other optimizer hyper-parameters are not adjusted accordingly with batch size as
in [MLPA22] and we leave it for future works to study the large batch size training with pP++. We
also try using Normal Initialization with 0.02 standard deviation for the weight matrices, and scale
the variance with respect to 1/d. However, uP++ (Normal Init.) shows worse scaling than pP++,
indicating that it is better to adjust the initialization multipliers based on each matrix’ dimension
as adopted by LeCun initialization, rather than a global factor related to model width. We explore
integrating the empirical scaling law of the learning rate 7 scaling with respect to training tokens T’

[BBCT25] to uP++, i.e.,
1
_ [Bd (v}
n="o Bod T 5

and adjust weight decay to maintain the same regularization effect across different training tokens
with the setup of Independent Weight Decay [WLX 24, i.e.,

A=,
n
where )\ is the weight decay in AdamW [LH18] and Ay = 0.1. We denote this scaling law as pP++

(LR scaling + Indep. WD). As in Figure 7b, while the irreducible loss is comparable, we observe a
worse learning efficiency with smaller b compared to pyP++. We think that future work is needed to
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have an empirical study of the learning rate scaling with respect to dataset size under uP++, instead
of transferring the empirical law directly to our theoretical laws. We also explore using the WSD
[HTH™24] learning rate scheduler for yP++, where we set the final decay period to be 2/7 of the
total period following [DA24b]. Unfortunately, it depicts worse scaling behavior than pP++ with a
linear learning rate schedule, as shown in Figure 7b. Interestingly, when comparing the performance
of pP++ with tied versus untied embeddings, we observe that P++ with untied embeddings achieves
a significantly lower validation loss with 100B training tokens, but its irreducible loss remains
comparable to that of tied embeddings. This suggests that the additional parameters from untied
embeddings primarily accelerate training convergence without improving the final model performance
if a sufficient amount of data is given.

F Additional Long-Context Retrieval Experiments

Long-context extrapolation with NoPE. In Table 8, we directly measure the retrieval accuracy at
32K, 64K and 128K context length on the Phonebook benchmark for 1B parameter models trained
with 32K sequence length in Section 3.2. We can see SambaY and its variants with NoPE can
extrapolate their retrieval ability by 2x in zero-shot, while RoPE-based models (Transformer++ and
TransformerLS) have a substantial drop beyond 32K. We leave the explanations of why NoPE can
enable limited extrapolations on retrieval tasks as an interesting future work.

Table 8: Long-context extrapolation accuracy (with standard deviations) on the Phonebook benchmark.
The models are trained on the ProLong-64K dataset with 32K sequence length and 1B parameters.

Model SWA Size 32K Acc. (%) 64K Acc. (%) 128K Acc. (%)
Transformer++ - 60.94 + 10.00 0.00 4 0.00 0.00 4 0.00
TransformerLLS 256 60.16 = 7.12 17.19 £5.63 0.78 £1.35
Samba+YOCO 1024 82.81 +6.44 67.97+11.13 20.31 £ 8.41
SambaY 256 92.19 + 1.56 96.09 + 2.59 0.00 4= 0.00
SambaY+DA 512 96.09 £ 1.35 84.38 + 3.12 5.47 £+ 2.59
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Figure 8: Accuracy (with error bars) v.s. Sliding Window Size on Phonebook with 32K evaluation
length using 40B training tokens from SlimPajama (left) or ProLong-64K (right). As an ablation to
Figure 3, variable-length training is not applied for both setting.

Ablation on training data and methodologies. Figure § illustrates how different model architec-
tures perform on the Phonebook long-context task as the sliding window size increases, using either
SlimPajama or ProLong-64K for pre-training with 32K sequence length and without variable-length
training. Specifically, we concatenate the data samples with EOS tokens as separation to form 32K
length training sequences. On SlimPajama, overall accuracy is modest, with SambaY+DA showing
some initial promise at smaller window sizes (peaking at 128) before declining, while Samba+YOCO
performs best at a moderate window size of 512. Transformer-based models generally struggle to
achieve competitive accuracy across window sizes. Notably, reducing RoPE base from 640K to
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10k for TransformerLS significantly harms the performance across window sizes. Switching to the
ProLong-64K dataset leads to a notable performance boost across all architectures compared to
SlimPajama, even without variable-length training. We can observe that SSM-based models enjoy
larger boosts on accuracies than Transformer++. This indicates that SSM-based models can learn to
switch contexts between different data samples within the packed sequences more easily than pure at-
tention models. Notably, SambaY+DA achieves competitive accuracy using a smaller sliding window
(512), matching the performance of Samba+YOCO at larger window sizes. While Samba+YOCO
continues to benefit from increasing window sizes, reaching peak accuracy at 2048, SambaY+DA
demonstrates greater efficiency by achieving strong results with a smaller sliding window size. Given
that variable-length training on ProLong-64K generally yields better results as in Figure 3, these
fixed-length training results indicate that while ProLong-64K benefits long-context performance,
the full potential, especially for pure attention models that are sensitive to sliding window size (e.g.
TransformerLS), can be further unlocked by training methodologies that explicitly account for varying
sequence lengths of each data sample. The different optimal sliding window sizes and performance
trajectories underscore that both the pre-training dataset and the training methodology significantly
influence how effectively the training context length can be utilized for long-context pre-training.

G Additional Details on Efficiency and Reasoning Results

Following Phi4-mini-Reasoning [XPA25], the eval-

uation is conducted with a sampling temperature of S rminesiash ‘
0.6, a top-p [HBD™19] value of 0.95, and a maximum
sequence length of 32,768 tokens. We leverage the
Math-Verify library® (version 0.7.0) and Lighteval®
(version 0.10.0) to enable efficient and robust evalu-
ation on reasoning tasks. We prepend the instruction:
“Please reason step by step, and put your final an-
swer within \\boxed{{}}.” for the evaluation on
AIME24/25 and MATHS500 and “Please reason step
by step, and put your final choice of one letter from TSP oy e e
A/B/C/D within \\boxed{{}}.” for the evaluation Generation Length (tokens)

on GPQA Diamond. Figure 9: Generation latencies at length of
1K, 2K, 4K, 8K, 16K and 32K for a prompt
length of 2000. Given a certain generation
length, we measure the average latency of all
the requests in all the loads of 1, 2, 4, 8, 16
concurrent requests.
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The data-points of latency and throughput in Figure 4
are measured by varying the concurrency levels of
the requests sent to the vLLM server, ranging from
{1,2,4,8,16}. We also compare the latency of our
Phi4-mini-Flash architecture with Phi4-mini across
various generation lengths in Figure 9. We can see
that our model can achieve faster generation speeds starting from a generation length as small as 4K.
Apart from the sub-optimal Differential Attention implementation, our vLLM implementation is also
sub-optimal in calculating unnecessary full attention operations with the following MLP layer for
the user prompt tokens during the prefill stage, leaving additional opportunities for optimizing the
efficiency results in Figure 4 and Figure 9.

We conduct case studies for Phi4-mini-Flash-Reasoning in Example 1 and Example 2 for both
mathematical reasoning and daily-life reasoning. Notably, while our model is only trained on
distillation data with math problems, we can see our model exhibits advanced reasoning techniques
such as double checking (e.g. “Alternatively, maybe I could have completed the square instead?”,
“Breaking it down:”), reflection (e.g. “That means there are no real solutions, right? ”, “Wait, maybe
I miscounted.”), and backtracking (e.g. “But the problem might be expecting complex solutions.”,
“Wait, maybe I'm overcomplicating.”) in both cases. Surprisingly, in Example 2, our model will even
guess the user intention (e.g. “But wait, sometimes people might confuse the number of R’s in a
double letter. ) to finally provide the correct answer.

Shttps://github.com/huggingface/Math-Verify
*https://github.com/huggingface/lighteval
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Example 1: Mathematical Reasoning (Part 1)

Query: solve x"2+3x+4=1

Model’s reasoning process:

Okay, let’s see. I need to solve the equation x squared plus 3x plus 4 equals 1. Hmm, so first,
maybe I should get all the terms on one side so that the equation equals zero. That usually
makes it easier to solve quadratic equations. Let me subtract 1 from both sides. That would give
me x2 + 3x + 4 - 1 = 0. Simplifying that, 4 minus 1 is3, so the equation becomes x2 + 3x + 3 = 0.
Alright, now I have a quadratic equation in standard form, which is ax? + bx + ¢ = 0. Here, a is
1, bis 3, and c is 3. To solve this, I can use the quadratic formula, which is x equals negative b
plus or minus the square root of b squared minus four ac all over 2a. Let me write that down: x
=[-b + /(b%- 4ac)] / (2a).

Plugging in the values from my equation, b is 3, so negative b would be -3. Then, b squared is
3 squared, which is 9.Then, 4ac is 4 times 1 times 3, which is 12. So the discriminant, which
is the part under the square root, would be 9 - 12. That equals -3. Wait, so the discriminant is
negative. That means there are no real solutions, right? Because you can’t take the square root
of a negative number in the real number system.

But the problem might be expecting complex solutions. Let me check. If complex numbers are
allowed, then the square root of -3 can be written as i times the square root of 3,where i is the
imaginary unit. So, substituting back into the quadratic formula, we have x equals [-3 + /(-3)]
/ (2*1). Which simplifies to x = [-3 * i,/3]/2.

Let me double-check my steps to make sure I didn’t make a mistake. Starting equation: x2 + 3x
+4 = 1. Subtract 1: x2+ 3x + 3 = 0. Coefficients a=1, b=3, ¢c=3. Discriminant: 32 - 4*¥1*3 =9 -
12 = -3. Yep, that’s right. So the solutions are complex: (-3 + i,/3)/2.

Alternatively, maybe I could have completed the square instead? Let me try that method to
verify. Starting with x2 + 3x + 3 = 0. Move the constant term to the other side: x2 + 3x =-3. To
complete the square, take half of the coefficient of x, which is 3/2, square it to get (9/4). Add
that to both sides: x?+ 3x + 9/4 = -3 + 9/4. The left side becomes (x + 3/2)2. The right side: -3
is -12/4, s0 -12/4 + 9/4 is -3/4. So (x + 3/2)? = -3/4. Taking the square root of both sides gives
X + 3/2 = £,/(-3/4) = +i,/(3/4) = +i(1/3)/2. Subtract 3/2 from both sides: x = -3/2 + (i,/3)/2.
Which is the same as (-3 * iy/3)/2. So that matches the quadratic formula result.

Therefore, both methods lead to the same complex solutions. Since the original equation has a
negative discriminant, there are no real solutions, only complex ones. The answer should be
expressed in terms of complex numbers.

Just to be thorough, let me plug one of the solutions back into the original equation to verify.
Let’s take x = [-3 + 1,/3]/2. Plugging into X2 + 3x + 4.

First, compute x2 [(-3 + i1/3)/2]"2. Let’s expand that.

(-3 +1i4/3)"2 = (-3)"2 + 2*(-3)*(1/3) + (i/3)'2 =9 - 6iy/3 + (2%(1/3)2) =9 - 6iy/3 + (-1)*3 =
9 - 6i4/3 -3 = 6 - 6i1/3. Then divide by 4: (6 - 6iy/3)/4 = (3 - 3i\/3)/2.

Next, compute 3x: 3*[(-3 + iy/3)/2] = (-9 + 3i/3)/2.

Add x2 + 3x + 4:

(3 - 3iy/3)/2 + (-9 + 3i4/3)/2 + 4. Combine the fractions: [3 - 3i\/3 -9 + 3iy/31/2 + 4 = (-6)/2 +
4 =-3 + 4 = 1. Which matches the right side of the original equation. So the solution checks
out.

Similarly, if I plug in the other solution x = [-3 - i/3]/2, the process would be the same, and the
imaginary parts would cancel out as well, resulting in 1.

Therefore, the solutions are correct. So the final answer is two complex numbers: (-3 * iy/3)/2.
I think that’s all. The key steps were moving all terms to one side, calculating the discriminant,
recognizing it’s negative, and proceeding with complex solutions. Both quadratic formula and
completing the square worked, and verifying by substitution confirmed the answers are correct.

To be continued...




Example 1: Mathematical Reasoning (Part 2)

Model’s Response (continued):
To solve the equation 22 + 3z + 4 = 1:
1. **Rearrange the equation** to standard quadratic form:

22 4+3r4+4-1=0 = 2°4+32+3=0

2. **]dentify coefficients**: ¢ = 1,b =3, c = 3.
3. **Calculate the discriminant®*:

A=b>—4ac=3>-4(1)3)=9—-12=-3

Since the discriminant is negative, solutions are complex.
4. **Apply the quadratic formula**:

-bEVA -3+/-3 -3+iV3
a3 = = =
2a 2 2
5. **Verify via completing the square**:

3\ 3
2
3r = -3 = 2) =-=
x° 4+ 3x (x + 2) 1
Solving gives z = —3 + i‘2/§, confirming the solutions.
3 3
**Final Answer**: The solutions are —5 == %z |

Example 2: Letter Counting in Misspelled Words (Part 1)

Query: how many r’s in "strawberrry"?

Model’s reasoning process:

non

Okay, let’s see. The question is asking how many times the letter "r" appears in the word
"strawberrry". Hmm, first I need to make sure I spell the word correctly. The user wrote
"strawberrry". Let me check that. Normally, the plural of "strawberry" is "strawberries", but
maybe they made a typo or a spelling mistake. Anyway, the word given here is "strawberrry".
Let me count the letters one by one.

Breaking it down: s-t-r-a-w-b-e-r-r-r-y. Let’s write each letter separately:

S, T,R,A,W,B,E,R,R,R, Y.

Wait, so starting from the beginning: S (1), T (2), R (3), A (4), W (5), B (6), E (7), R (8), R (9),
R (10), Y (11). So total letters are 11. Now, how many times does R appearhere?

Looking at the letters: positions 3, 8, 9, 10. That’s four R’s. Let me count again to be sure.
S-T-R-A-W-B-E-R-R-R-Y. So after E comes R, then another R, another R, and then Y. So that’s
three R’s in a row? Wait, no. Let’s see: after E is the first R, then the second R, third R, and then
Y. Wait, no, the word is "strawberrry". So after E, there are three R’s in a row, right? Because
it’s written as "berrry". So breaking down:

s-t-r-a-w-b-e-r-r-r-y. So after E, there are three R’s before Y. So that’s three R’s. Wait, but when
I listed them earlier, I counted four R’s. Let me check again.

Wait, maybe I miscounted. Let’s write out each letter with their positions:
1.S2.T3.R4. A5 W6.B7.E8 R9.R10.R11. Y

So positions 3,8,9,10 are R’s. That’s four R’s. But wait, the word is spelled as "strawberrry".

To be continued...




Example 2: Letter Counting in Misspelled Words (Part 2)

Model’s reasoning process (continued):

So after "straw" and "b", it’s "errry". So "e", then three R’s, then "y". So that’s three R’s. But
according to the breakdown above, there are four R’s. Wait, maybe the user added an extra R
by mistake? Let me check the exact spelling again. The user wrote "strawberrry". So "berrr".
So "b", then "e", then three R’s, then "y". So that’s three R’s. But in my positional list, [ have
four R’s. Wait, maybe I made an error in counting.

Wait, let’s write the word step by step:
s(Ht@)rB)a@HwE)b®)e(Hr@r9)r(10)y(11)

So letters 3,8,9,10 are R’s. That’s four R’s. But the user wrote "strawberrry", which would be
"berrr" at the end. So "b", "e", "rrr", "y". So three R’s. But according to the breakdown, it’s
four. Wait, maybe the user intended "strawberry" but misspelled it as "strawberrry". Let me
confirm. The correct plural of "strawberry" is "strawberries", which has two R’s. But the user
wrote "strawberrry", which has three R’s in a row. So perhaps the answer is three? Or four?
Wait, maybe I’'m overcomplicating. Let’s just take the word as given: "strawberrry". Let’s count
each letter:

s,t,1,a, W, b, e, r, 1,1, y. So that’s 11 letters. The R’s are at positions 3,8,9,10. So four R’s.
Therefore, the answer should be 4. But wait, maybe the userintended "strawberry" with two
R’s, but wrote "strawberrry" by accident. But the question is about the given word, so we have
to go with that. So in "strawberrry", there are four R’s. Wait, but let me check again. Let’s write
the word out:

strawberrry

Yes, after the E, there are three R’s. So that’s three R’s. Wait, but in the list above, positions
3,8,9,10. Wait, position 3 is the third letter, which is R. Then after E (position 7), positions
8,9,10 are R’s, and Yis 11. So that’s three R’s after the E. But position 3 is an R as well. So total
R’s are four. Wait, but in the word "strawberrry", the first R is in "straw", then after "straw",
there’s "b", "e", then three R’s. So total R’s would be 1 (from "straw") plus 3 (from "berrry")
equals 4. So the answer is 4. But maybe I’m miscounting. Let me write it again:
sMt@)r@)a@HwEO)b®)e(r@)r@)r10)y(11)

Yes, that’s four R’s. So the answer is4. But maybe the user intended a different count.
Alternatively, maybe the word is spelled differently. Wait, "strawberry" is spelled s-t-r-a-w-b-e-
r-r-y, which has two R’s. But the user wrote "strawberrry", which adds an extra R, making it
three R’s in a row. Wait, no: "strawberrry" would be s-t-r-a-w-b-e-r-r-1-y, so after "ber" there
are three R’s. So total R’s: in "straw" there’s one R, then "berrry" has three R’s. So total 1 + 3
= 4. Therefore, four R’s. So the answer is4. But I need to make sure. Let me check the exact
spelling again. The user wrote "strawberrry". Let’s break it down:

straw + berry, but with rrrr instead of 1r. So "straw" has one R, "berry" normally has two R’s,
but here it’s written as "rrrr", which would be three R’s? Wait, no. Wait, "berry" is b-e-r-r-y. So
two R’s. If it’s written as "berrry", that’s replacing the double R with triple R? Wait, no. Let me
think. The correct plural is "strawberries", which is s-t-r-a-w-s-b-e-r-r-i-e-s. But perhaps the
user made a typo. However, the question is about the given word "strawberrry". So regardless
of the correct spelling, we have to count the R’s in that exact spelling.

So "strawberrry" is s-t-r-a-w-b-e-r-r-r-y. Let’s count the R’s:

1. The R in "straw" (third letter) 2. The R in "ber" (eighth letter) 3. The next R (ninth) 4. The
next R (tenth)

So four R’s. Therefore, the answer is 4. But maybe I’'m missing something. Let me check
oncemore. Let’s write each letter with its case, but the problem didn’t specify case sensitivity,
so assuming all lowercase aswritten. So the letters are s, t, r, a, w, b, e, 1, 1, 1, y. So R’s at
positions 3,8,9,10. Four of them. So the answer should be 4. But wait, sometimes people might
confuse the number of R’s in a double letter. For example, "berrry" might be considered as
three R’s, but in this case, the word is "strawberrry” with three R’s after "ber". So yes, three R’s
there. Plus the one in "straw" makes four. So the answer is 4. I think that’s correct.

Model’s Response:

The word "strawberrry" is spelled as s-t-r-a-w-b-e-r-r-r-y. Breaking it down:

1. Hskgksk D ckkpkek 3 Kkpkok 4 kkguck 5 Fk gy ok 6 kkpkk T kkakk 8 ok pkok 9 Kkpkok 10 Fkpkok
11, #yr

The letter **r** appears at positions 3, 8, 9, and 10, totaling **4** occurrences.




H Additional Ablation Study

Table 9: Ablation study results on Phonebook 32K (PB-32k), language modeling and common-sense
reasoning tasks in zero-shot for 1B-parameter models with a sliding window size of 128. The average
accuracy does not include PB-32K. NB means applying normalization before output gating in the last
Mamba-2 layer of self-decoder, GMU means replacing nGMU with GMU and using the memory
after normalization but before output gating.

Model Speed Wiki. PB-32K LMB. ARC-c ARC-e Hella. PIQA Wino. Avg.

mtps T ppld acc T accT acc_nfT accT acc_n?T acctT acctT acct

SambaY-2 1.43 17.17  40.63 4896  28.84 59.18 48.01  70.18 50.83 51.00
w/ NB + GMU 140 1776  21.88 4949  29.69 59.68 4871 7122 52.17 51.83
MambaY-2 1.38  18.63  50.78 49.58  28.24 58.75 4829  70.13 51.07 51.01
w/ NB + GMU 1.35 16.99 17.19 4976  27.39 58.46 48.43 7024 5028 50.76
S-GDNY 1.34 1678 83.59 50.94  29.61 58.96 4893 7155 5185 5197
w/GDN+GMU 133  16.84 2734 51.08 28.16 57.49 4825  69.15 53.04 51.20
GDNY 122 1692  89.84 50.38  28.84 60.61 48.01 7127 5138 51.75

w/GDN+GMU  1.24 16.87 54.69 5030  27.73 60.48 4791 70.62 5217 51.53

How does normalization placement and nGMU affect the model performances? Table 9 reveals
a consistent pattern: retaining the nGMU and applying RMSNorm after the output gating is critical
for long-context retrieval performance. In contrast, shifting the normalization before the gate and
replacing nGMU with the simpler GMU (“NB + GMU” rows) leaves short-context benchmarks
largely unaffected but leads to severe performance degradation on PB-32K across all linear-attention
variants. For example, PB-32K accuracy drops by 56.3 points for S-GDNY (from 83.6 to 27.3) and by
35.1 points for GDNY (from 89.8 to 54.7), despite minimal changes (<3%) in Wiki perplexity, zero-
shot commonsense scores, and throughput. These results underscore the importance of maintaining
the associativity between gating and token mixing by (1) normalizing after the output gating and
(2) using memory before normalization with nGMU for achieving effective long-range retrieval
performance with linear attention layers in self-decoder.

I Related Work

KV Cache Sharing. Efficient inference in transformer-based models has been significantly ad-
vanced through techniques that reduce memory consumption, particularly concerning key-value (KV)
caching. Traditional approaches like Multi-Query Attention (MQA) [Shal9] and Grouped-Query
Attention (GQA) [ALTdJ 23] have enabled multiple query heads to share a single key/value head
within the same layer, effectively reducing the number of distinct key/value caches with minimal
impact on accuracy. Apart from YOCO [SDZT24], Cross-Layer Attention (CLA) [BMN™24] extends
KV sharing across adjacent layers, achieving up to two times reduction in KV cache size while
maintaining performance. In contrast, our work studies representation sharing across SSM/RNN
layers, and proposes to directly share the output from the SSM kernel to avoid materializing recurrent
states, thereby preserving the parallel training efficiency of linear recurrent models.

Efficient Long Generation. Efficient long-sequence generation in transformer models has been
a focus of recent research on LLM efficiency, primarily due to the substantial memory demands
associated with key-value (KV) caching during inference with long CoTs [KKL20, WWZ"24,
YCQ™21, DYL*"24]. To address these challenges, several techniques have been proposed to optimize
memory usage without compromising model performance. One notable approach is the Layer-
Condensed KV Cache (LCKV) [WT24], which computes and caches KV pairs for only a subset of
layers, significantly reducing memory consumption and improving inference throughput. Another
advancement is InfiniGen [LLSS24], a dynamic KV cache management framework that selectively
prefetches essential KV cache entries, thereby mitigating fetch overhead from host memory in
offloading-based LLM serving systems. These methods collectively contribute to more efficient
long-sequence generation by optimizing KV cache usage, and are orthogonal to our work, as we can
also apply these techniques to improve the memory /O efficiency of our full attention layer.

Hybrid Neural Architectures. Recent hybrid models have explored combining different types of
token mixing operators—including Sliding Window Attention (SWA) [BPC20], full self-attention
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[VSP™17] and SSMs/RNNs—either in an inter-layer [FDS*22, DSF*24, LLB"24, RLL"25,
Min25] or an intra-layer manner [MZK ™22, RLW 23, PFF™23, MYX"24, MFG24, DFD*+25].
As a typical design of intra-layer hybridization, the efficiency of hybrid-head architecture
[WRHS22, ZLJt22, MFG24, DFD125] is bottlenecked by the slowest token-mixing head, resulting
in theoretically lower GPU utilization than inter-layer hybridization. Samba [RLL™*25], an inter-layer
hybrid model that interleaves Mamba with SWA, achieves improved extrapolation perplexity on
extremely long sequences while maintaining linear complexity. However, its zero-shot retrievable
context length remains limited to its sliding window size. The decoder-decoder architecture, YOCO
[SDZ124], proposes to use linear complexity modules (either SSMs or SWA) in the first half of the
layers with a single full attention in the middle, and reuse the kv cache of the middle full attention
layers for the second half of the attention layers. It shows comparable performance on retrievable
context length as the full attention models while providing much more efficient linear pre-filling
complexity. This design also offers a unique advantage that allows skipping inference computation
in half of the total layers at the prefill stage, yielding substantial efficiency gains—even for short
sequences, where MLPs dominate the computational cost. Our proposed GMU module opens up new
opportunities for the pure RNN-based models to be YOCO-compatible, potentially mitigating the
significant overhead that linear RNNSs typically incur on short sequences.

Neural Scaling Laws. Understanding how model performance scales with size and data is crucial
for efficient and effective large-scale training. Empirical studies have shown that Transformer
models exhibit predictable scaling behaviors, where performance improves with increased model
parameters and training data [HNAT 17, KMH*20, BDK24, ANZ22, HBM22]. Numerous works
have also investigated scaling laws for hyper-parameters, based on either empirical studies [BBC*25,
WLX124] or theoretical analyses [MLPA22, YHB 22, YYZH23, WA24]. In this work, we focus
on theoretical hyper-parameter scaling laws since they are not over-tuned for the Transformer
architectures, and fairer comparisons can be made for the emerging neural architectures. We also
conduct extensive scaling experiments with large-scale compute to verify the empirical effectiveness
of these theoretical scaling laws. In doing so, we find an improved version of the original P
[YHB™22] that accounts for scaling of depth, width, and training stability, and demonstrate that it
provides better scaling behavior in both data and compute scaling scenarios. More importantly, we
introduce a principled approach for comparing the scaling behaviors of different neural architectures
by solving iso-parametric equations, providing a solid foundation for evaluating the scaling potential
of future architectures.

J Limitation

We validate our model’s reasoning capability using distillation-based Supervised Fine-Tuning (SFT),
but Reinforcement Learning (RL) remains under-explored in the context of hybrid architectures. Due
to resource constraints, we do not perform an exhaustive hyperparameter search for each architecture.
Instead, we adopt a generic optimization setup based on Transformer++ for learning rate, initializer
range, weight decay, warm-up schedule, batch size, AdamW betas and epsilon, and other parameters.
It is likely that aggressive tuning of these optimization settings could yield improved results. We leave
a more comprehensive study of the interplay between optimization setups and architecture designs
for future work. Lastly, our architecture still includes a full-attention layer, which leads to linear
per-token computation complexity during decoding. This underscores a future research direction
on designing models for extremely long sequence generation that can maintain constant decoding
complexity while effectively leveraging long-context memory.
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