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ABSTRACT

We consider the general class of time-homogeneous stochastic dynamical systems,
both discrete and continuous, and study the problem of learning a representation
of the state that faithfully captures its dynamics. This is instrumental to learning
the transfer operator or the generator of the system, which in turn can be used for
numerous tasks, such as forecasting and interpreting the system dynamics. We show
that the search for a good representation can be cast as an optimization problem
over neural networks. Our approach is supported by recent results in statistical
learning theory, highlighting the role of approximation error and metric distortion
in the learning problem. The objective function we propose is associated with
projection operators from the representation space to the data space, overcomes
metric distortion, and can be empirically estimated from data. In the discrete-time
setting, we further derive a relaxed objective function that is differentiable and
numerically well-conditioned. We compare our method against state-of-the-art
approaches on different datasets, showing better performance across the board.

1 INTRODUCTION

Dynamical systems are a mathematical framework describing the evolution of state variables over
time. These models, often represented by nonlinear differential equations (ordinary or partial) and
possibly stochastic, have broad applications in science and engineering, ranging from climate sciences
(Cannarsa et al., 2020; Fisher et al., 2009), to finance (Pascucci, 2011), to atomistic simulations
(Mardt et al., 2018; McCarty and Parrinello, 2017; Schütte et al., 2001), and to open quantum
system dynamics (Gorini and Kossakowski, 1976; Lindblad, 1976), among others. However, it is
usually the case that no analytical models of the dynamics are available and one must resort to
data-driven techniques to characterize a dynamical system. Two powerful paradigms have emerged:
deep neural networks (DNN) and kernel methods. The latter are backed up by solid statistical
guarantees (Steinwart and Christmann, 2008) determining when linearly parameterized models can
be learned efficiently. Yet, selecting an appropriate kernel function may be a hard task, requiring a
significant amount of experimentation and expertise. In comparison, the former are very effective in
learning complex data representations (Goodfellow et al., 2016), and benefit from a solid ecosystem of
software tools, making the learning process feasible on large-scale systems. However, their statistical
analysis is still in its infancy, with only a few proven results on their generalization properties.
Kernel-based methods hinge on the powerful idea of characterizing dynamical systems by lifting their
definition over a Hilbert space of functions and then studying the associated transfer operators. They
describe the average evolution of functions of the state (observables) over time and for deterministic
systems are also known as Koopman operators. Furthermore, transfer operators are linear, and under
additional assumptions admit a spectral decomposition, which provides a valuable tool to interpret
and analyze the behavior of non-linear systems (see e.g. Brunton et al., 2022; Kutz et al., 2016, and
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Figure 1: Pipeline for learning dynamical systems. DPNets learn a data representation to be used
with standard operator regression methods. In turn, these are employed to solve downstream tasks
such as forecasting and interpreting dynamical systems via spectral decomposition.

references therein). The usefulness of this approach critically relies on an appropriate choice of the
observable space. In particular, in order to fully benefit from the spectral decomposition, it is crucial
to find an observable space F which linearizes the dynamics and is invariant under the action of the
transfer operator. In kernel-based methods, such a space is implicitly linked to the kernel function
and gives a clear mathematical meaning to the problem of choosing a “good” kernel. Unfortunately,
the analytical form of transfer operators is often intractable or unavailable, especially in complex or
poorly understood systems, posing challenges in constructing invariant representations.

In this paper, we build synergistically upon both kernel and DNN paradigms: we first employ
DNNs to learn an invariant representation that fully captures the system dynamics, and then forward
this representation to kernel-based algorithms for the actual transfer operator regression task. This
general framework is illustrated in Fig. 1. Our method, named Deep Projection Networks (DPNets),
addressing the challenge of providing good representations to the operator regression algorithms, can
be cast as an optimization problem over neural networks and can benefit from a differentiable and
numerically well-conditioned score functional, enhancing the stability of the training process.
Previous work Extensive research has been conducted on learning dynamical systems from data.
The monographs (Brunton et al., 2022; Kutz et al., 2016) are standard references in this field. To learn
transfer operators we mention the works (Alexander and Giannakis, 2020; Bouvrie and Hamzi, 2017;
Das and Giannakis, 2020; Kawahara, 2016; Klus et al., 2019; Kostic et al., 2022; Williams et al.,
2015b) presenting kernel-based algorithms, and (Azencot et al., 2020; Bevanda et al., 2021; Fan et al.,
2021; Lusch et al., 2018; Morton et al., 2018) based on deep learning schemes. Finding meaningful
representations of the state of the system to be used in conjunction with transfer operator learning is a
critical challenge, tackled by many authors. We mention the works (Azencot et al., 2020; Federici
et al., 2024; Lusch et al., 2018; Morton et al., 2018; Otto and Rowley, 2019) where a representation is
learned via DNN schemes, as well as (Kawahara, 2016; Li et al., 2017; Mardt et al., 2019; 2018; Tian
and Wu, 2021; Yeung et al., 2019; Wu and Noé, 2019) addressing the problem of learning invariant
subspaces of the transfer operator. Mostly related to our methodology is (Andrew et al., 2013), which
introduced deep canonical correlation analysis and, especially, VAMPnets (Mardt et al., 2018; Wu
and Noé, 2019), which repurposed this approach to learn transfer operators. Within our theoretical
framework, indeed, we will show that VAMPNets can be recovered as a special case in the setting
of discrete dynamics. More in general, operator learning with DNN approaches is reviewed e.g. in
Kovachki et al. (2023), with a specific focus on PDEs.
Contributions Our contributions are: 1) Leveraging recent results in statistical learning theory, we
formalize the problem of representation learning for dynamical systems and design a score function
based on the orthogonal projections of the transfer operator in data spaces (Sec. 2); 2) We show how
to reliably solve the corresponding optimization problem. In the discrete case, our score leads to
optimal representation learning under the mild assumption of compactness of the transfer operator
(Thm. 1). In the continuous case, our method applies to time reversal invariant dynamics (Thm. 2)
including the important case of Langevin dynamics; 3) We show how the learned representation can
be used within the framework of operator regression in a variety of settings. Numerical experiments
illustrate the versatility and competitive performance of our approach against several baselines.
Notation We let N be the set of natural numbers and N0 = {0} [ N. For m2N we denote [m] :=
{1, . . . ,m}. If T is a compact linear operator on two Hilbert spaces we let �i(T ) be its i-th largest
singular value, we let (T )† be the Moore-Penrose pseudo-inverse, and T

⇤ the adjoint operator. We
denote by k · k and k · kHS the operator and Hilbert-Schmidt norm, respectively.

2 REPRESENTATION LEARNING FOR DYNAMICAL SYSTEMS

In this section, we give some background on transfer operators for dynamical systems, discuss key
challenges in learning them from data, and propose our representation learning approach.
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Background Let (Xt)t2T be a stochastic process taking values in some state space X , where the
time index t can be either discrete (T = N0) or continuous (T = [0,+1)), and denote by µt the
law of Xt. Let F ⇢ RX be a prescribed space of real-valued functions, henceforth referred to as
observables space. By letting s, t 2 T, with s  t, the forward transfer operator Ts,t : F ! F

evolves an observable f : X ! R from time s 2 T to time t, by the conditional expectation

[Ts,t(f)](x) := E[f(Xt) |Xs = x], x 2 X . (1)

For a large class of stochastic dynamical systems, these linear operators are time-homogeneous, that
is they only depend on the time difference t � s. In this case Ts,t = T0,t�s =: Tt�s. Further, we
will use the shorthand notation T := T1. Time-homogeneous transfer operators at different times
are related through the Chapman-Kolmogorov equation (Allen, 2007), Ts+t = Tt Ts, implying that
the family (Tt)t2T forms a semigroup. The utility of transfer operators is that, when the space F is
suitably chosen, they linearize the process. Two key requirements are that F is invariant under the
action of Tt, that is Tt[F ] ✓ F for all t (a property that we tacitly assumed above), and rich enough
to represent the flow of the process. Two common choices for F that fulfill both requirements are the
space of bounded Borel-measurable functions and the space of square-integrable functions L2

⇡(X )
with respect to the invariant distribution ⇡, when one exists. To ease our presentation we first focus on
the latter case, and then extend our results to non-stationary time-homogeneous processes. Formally,
the process (Xt)t2T admits an invariant distribution ⇡ when µs = ⇡ implies µt = ⇡ for all s  t
(Ross, 1995). This in turn allows one to define the transfer operator on F = L2

⇡(X ).

While in the discrete-time setting the whole process can be studied only through T = T1, when time
is continuous the process is characterized by the infinitesimal generator of the semigroup (Tt)t�0,
defined as

L := lim
t!0+

(Tt � I)/t. (2)

L can be properly defined on the Sobolev space W 1,2
⇡ (X ) ⇢ L2

⇡(X ) formed by functions with
square-integrable gradients (see Lasota and Mackey, 1994; Ross, 1995).

Learning transfer operators In practice, dynamical systems are only observed, and neither T nor
its domain F =L2

⇡(X ) are known, providing a key challenge to learn them from data. The most
popular algorithms (Brunton et al., 2022; Kutz et al., 2016) aim to learn the action of T : F!F

on a predefined Reproducing Kernel Hilbert Space (RKHS) H, forming a subset of functions in F .
This allows one, via the kernel trick, to formulate the problem of learning the restriction of T to H,
T|H : H ! F , via empirical risk minimization (Kostic et al., 2022). However, recent theoretical
advances (Korda and Mezić, 2017; Klus et al., 2019; Nüske et al., 2023), proved that such algorithms
are statistically consistent only to PHT|H , where PH is the orthogonal projection onto the closure of
H in F . The projection PH constrains the evolved observables back inside H, thereby, in general,
altering the dynamics of the system. Therefore, to assure that one properly learns the dynamics, two
major requirements on H are needed: i) T|H needs to approximate well T , i.e. the space H needs to
be big enough relative to the domain of T ; ii) the difference between the projected restriction and the
true one, i.e. the approximation error

��[I � PH]T|H
��, needs to be small.

When H is an infinite-dimensional universal RKHS, both the above requirements are satisfied (Kostic
et al., 2022), i.e. H is dense in F and the approximation error is zero, leading to an arbitrarily good
approximation of dynamics with enough data. Still, another key issue arises: the norms on the a-priori
chosen H and the unknown F do not coincide, since the latter depends on the process itself. This
metric distortion phenomenon has been recently identified as the source of spurious estimation of
the spectra of T (Kostic et al., 2023), limiting the utility of the learned transfer operators. Indeed,
even if T is self-adjoint, that is the eigenfunctions are orthogonal in F , the estimated ones will not be
orthogonal in H, giving rise to spectral pollution (Kato, 1976). This motivates one to additionally
require that iii) H is a subspace of F , i.e. both spaces have the same norm.

To summarize, the desired optimal H is the leading invariant subspace of T , that is the subspace
corresponding to the largest (in magnitude) eigenvalues of T . This subspace H achieves zero
approximation error, eliminates metric distortion and best approximates (in the dynamical system
sense) the operator T . Since any RKHS H is entirely described by a feature map, learning a leading
invariant subspace H from data is, fundamentally, a representation learning problem.

Approach We start by formalizing the problem of learning a good finite dimensional representation
space for T , and then address the same for the generator L. We keep the discussion less formal
here, and state our main results more precisely in the next section. Our approach is inspired by the
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following upper and lower bounds on the approximation error, a direct consequence of the norm
change from H to F ,

��[I � PH]T PH

��2�+
min

(CH) 
��[I � PH]T|H

��2 
��[I � PH]T PH

��2�max(CH), (3)

where CH is the covariance operator on H w.r.t. the measure ⇡, while �+
min

and �max are the smallest
and largest non-null eigenvalues, respectively. Note that the norms on the hypothetical domain H

and true domain L2

⇡(X ) coincide if and only if CH = I , in which case equalities hold in (3) and the
approximation error becomes

��[I � PH]T PH

��.

When the operator T is known, the latter quantity can be directly minimized by standard numerical
algorithms for spectral computation to find invariant subspaces (see e.g. Golub and Van Loan,
2013). Unfortunately, in our stochastic setting T is unknown since we cannot compute the conditional
expectation in (1). To overcome this issue we propose a learning approach to recover the invariant
space H, which is rooted in the singular value decomposition, holding under the mild assumption
that T is a compact operator1. The main idea is that the subspace made of the leading r left singular
functions of T serves as a good approximation of the desired leading invariant subspace of T .
Namely, due to the orthonormality of the singular functions, we have that CH = I and PHT becomes
the r-truncated SVD of T , that is, its best rank-r approximation. Therefore, according to (3), the
approximation error is at most �r+1(T ), which can be made arbitrarily small by rising r. Moreover,
the distance of the subspace of left singular functions to the desired leading invariant subspace is
determined by the "normality" of T (Trefethen and Embree, 2020). If the operator T is normal, that
is T T

⇤ = T
⇤
T , then both its left and right singular spaces are invariant subspaces of T , resulting in

zero approximation error irrespectively of r. This leads us to the following optimization problem

max
H,H0⇢L2

⇡(X )

n��PHT PH0

��2
HS

| CH = CH0 = I, dim(H)  r, dim(H0)  r
o
. (4)

Relying on the application of Eckart-Young-Mirsky’s Theorem (Kato, 1976), we can show that the
desired representation space H can be computed by solving (4). Note that, in general, the auxiliary
space H

0 is needed to capture right singular functions, while if we have prior knowledge that T is
normal without loss of generality one can set H = H

0 in (4).

The same reasoning cannot be applied straight away to the generator L of a continuous dynamical
system, which in is not even guaranteed to be bounded (Lasota and Mackey, 1994), let alone compact.
For time-reversal invariant processes, however, T and L are self-adjoint, that is T = T

⇤ and L = L
⇤.

This includes the important case of Langevin dynamics, which are of paramount importance for
molecular dynamics (see, e.g., Tuckerman, 2010). For such systems we show (see Theorem 2)
that the leading r-dimensional subspace of the generator L can be found by solving the following
optimization problem featuring the partial trace objective

max
H⇢W 1,2

⇡ (X )

{tr (PH LPH) | CH = I, dim(H)  r} , (5)

where now the projector is PH : W 1,2
⇡ (X ) ! W 1,2

⇡ (X ). We stress that, since we assume L = L
⇤,

we can relax the above assumption on the compactness of the transfer operators (Tt)t�0, and still
show that the leading invariant subspace of L is the optimal H in (5). So, on such H we can estimate
well L via generator operator regression, see e.g. (Hou et al., 2023; Klus et al., 2020).

3 DEEP PROJECTION SCORE FUNCTIONALS

In this section we show how to solve the representation learning problems (4) and (5) using DNNs. In
the discrete case, we consider a generalized version of problem (4), which encompasses non-stationary
processes, for which the probability distributions change along the trajectory. Namely, let X and
X 0 be two X -valued random variables with probability measures µ and µ0, respectively. Because
of time-homogeneity, w.l.o.g. X models the state at time 0 and X 0 its evolution after some time t.
Then, the transfer operator can be defined on the data-dependent domains Tt : L2

µ0(X ) ! L2

µ(X ).
Replacing PH0 with P 0

H0 : L2

µ0(X ) ! L2

µ0(X ) in (4), and using the covariances CH and CH0 w.r.t.

1This property is fulfilled by a large class of Markov processes (see e.g. Kostic et al., 2022) and is weaker
than requiring the operator being Hilbert-Schmidt as in (Mardt et al., 2018).
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the measures µ and µ0, we obtain the appropriate representation learning problem for non-stationary
process; see App. B for more details. Within this general setting we optimize two feature maps

 w : X ! Rr, and  0

w : X ! Rr, (6)

parameterized by w taking values in some set W . Next, defining the two RKHSs2
Hw :=

span( w,j)j2[r] and H
0

w := span( 0

w,j)j2[r], both equipped with the standard inner product, we
aim to solve (4) by optimizing over the weights w. To avoid solving the constrained optimization
problem, we further propose to relax the hard constraints in (4) through a metric distortion loss
R : Rr⇥r

! R+ that is zero if and only if it is applied to the identity matrix. Our choice in Section 5,
well defined for SPD matrices C, is

R(C) := tr(C2
� C � ln(C)).

Finally, in Lem. 3, App. C we show that (4) can be solved by maximizing, for � > 0

P
�(w) =

��(Cw
X)†/2C w

XX0(Cw
X0)†/2

��2
HS
� � (R(Cw

X) +R(Cw
X0)) , (7)

where we introduced the uncentered covariance matrices

Cw
X := E w(X) w(X)>, Cw

X0 := E 0

w(X
0) 0

w(X
0)> and C w

XX0 := E w(X) 0

w(X
0)>. (8)

Notice that if � = 0 and the covariances Cw
X and Cw

X0 are nonsingular, then the score reduces to��(Cw
X)�

1

2C w
XX0(Cw

X0)�
1

2

��2
HS

which is called VAMP-2 score in the VAMPNets approach of (Mardt
et al., 2018). Moreover, if in (7) the HS norm is replaced by the nuclear norm, the score becomes the
objective of canonical correlation analysis (CCA) (Harold, 1936; Hardoon et al., 2004) in feature
space. When DNNs are used to parametrize (6), such score is the objective of Deep-CCA (Andrew
et al., 2013), known as VAMP-1 score (Mardt et al., 2018) in the context of molecular kinetics.
Therefore, by maximizing P

� we look for the strongest linear correlation between Hw and H
0

w. We
stress that differently from Deep-CCA and VAMPNets the crucial addition of R is to decorrelate the
features within each space, guiding the maximization towards a solution in which the norms of H
and H

0 coincide with those of L2

µ(X ) and L2

µ0(X ), overcoming metric distortion.

While in the optimal representation the covariances Cw
X and Cw

X0 are the identity, in general they
are non-invertible, making the score P

� non-differentiable during optimization. Indeed, unless the
rank of both covariances is stable for every w 2W , we might have exploding gradients (Golub and
Pereyra, 1973). Even ignoring differentiability issues, the use of the pseudo-inverse, as well as the use
of the inverse in the non-singular case, can introduce severe numerical instabilities when estimating
P

� and its gradients during the training process. More precisely, the numerical conditioning of
evaluating P

� using (7) is determined by the covariance condition numbers �1(Cw
X)/�r(Cw

X) and
�1(Cw

X0)/�r(Cw
X0) that can be very large in practical situations (see e.g. the fluid dynamics example

in Sec. 5) To overcome this issue, we introduce the relaxed score

S
�(w) :=

��C w
XX0

��2
HS

/ (
��Cw

X

����Cw
X0

��)� � (R(Cw
X) +R(Cw

X0)) , (9)

which, as implied by Theorem 1 below, is a lower bound for the score in (7). A key advantage of this
approach is that the score S� is both differentiable (apart from the trivial case Cw

X , Cw
X0 = 0) and has

stable gradients, since we avoid matrix inversion. Indeed, computing S
� is always well-conditioned,

as the numerical operator norm has conditioning equal to one.

The following theorem provides the theoretical backbone of our representation learning approach.
Theorem 1. If T : L2

µ0(X )!L2

µ(X ) is compact, Hw ✓L2

µ(X ) and H
0

w ✓L2

µ0(X ), then for all
� � 0

S
�(w)  P

�(w)  �2

1
(T ) + · · ·+ �2

r(T ). (10)
Moreover, if ( w,j)j2[r] and ( 0

w,j)j2[r] are the leading r left and right singular functions of T ,
respectively, then both equalities in (10) hold. Finally, if the operator T is Hilbert-Schmidt, �r(T ) >
�r+1(T ) and � > 0, then the “only if” relation is satisfied up to unitary equivalence.

This result establishes that the relaxed score is a tight lower bound, in the optimization sense, for (7).
More precisely, in general |S�(w)�P�(w)| is arbitrarily small for small enough R(w), while on the
feasible set in (4) both scores coincide. For instance, for a deterministic linear system this happens as

2Here,  w,j and  0
w,j are the j-th component of  w and  0

w, respectively.

5



Algorithm 1 DPNets Training

Input: Data D; metric loss parameter �; DNNs  w, 0

w : X ! Rr; optimizer U ; # of steps k.
1: Initialize DNN weights to w1.
2: for j = 1 to k do;
3: Ĉ

wj

X , Ĉ
wj

X0 , Ĉ
wj

XX0  Covariances for  wj and  0

wj
from a mini-batch of m  n samples.

4: F (wj)  � bS�
m(wj) from (9) and the covariances in Step 3.

5: wj+1  U(wj ,rF (wj)) where rF (wj) is computed using backpropagation.
6: end for
7: return representations  wK ,  0

wK
.

soon as the classes of features  w and  0

w include linear functions. In general, we can appeal to the
universal approximation properties of DNN (Cybenko, 1989) to fulfill the hypotheses of Theorem 1.

Generator learning We now consider how to learn the representation of continuous time-
homogeneous processes arising from stochastic differential equations (SDE) of the form

dXt = A(Xt) dt+B(Xt) dWt, (11)

where A and B are the drift and diffusion terms, respectively, and Wt is a Wiener process. The solution
of (11) is a stochastic process that is time-reversal invariant w.r.t. its invariant distribution ⇡, (Arnold,
1974). To show that solving (5) leads to learning the leading invariant subspace of L, we restrict to
the case L = L

⇤ and consider the partial trace of L w.r.t. to the subspace Hw := span( w,j)j2[r] ✓

W 1,2
⇡ (X ) as our objective function. Being L self-adjoint, we can relax the compactness assumption

of Thm. 1, requiring only the much weaker condition that L has the largest eigenvalues separated
from the essential spectrum (Kato, 1976). In particular, it holds tr (PHw LPHw) = tr

�
(Cw

X)†C w
X@

�
,

where C w
X@ = E[ w(X) d w(X)>] is the continuous version of the cross-covariance and d w(·) is

given by the Itō formula (see e.g. (Arnold, 1974; Klus et al., 2020; Hou et al., 2023))

d w,i(x) :=E[r w,i(X)>dX/dt+ 1

2
(dX/dt)>r2 w,i(X)(dX/dt) |X = x] (12)

=r w,i(x)
>A(X) + 1

2
tr(B(x)>r2 w,i(x)B(x)). (13)

The following result, the proof of which is given in App. E, then justifies our continuous DPNets.
Theorem 2. If Hw ✓ W 1,2

⇡ (X ), and �1(L) � · · · � �r+1(L) are eigenvalues of L above its
essential spectrum, then for every � � 0 it holds

P
�
@ (w) := tr

�
(Cw

X)†C w
X@

�
� �R(Cw

X)  �1(L) + · · ·+ �r(L), (14)

and the equality is achieved when  w,j is the eigenfunction of L corresponding to �j(L), for j 2 [r].

Notice how tr
�
(Cw

X)†C w
X@

�
in Eq. (14) is the sum of the (finite) eigenvalues of the symmetric

eigenvalue problem C w
X@ � �C

w
X . Thus, in non-pathological cases, its value and gradient can be

computed efficiently in a numerically stable way, see e.g. (Andrew and Tan, 1998).

4 METHODS

Learning the representation To optimize a DPNet representation one needs to replace the population
covariances and cross-covariance in Eqs (7), (9) and (14) with their empirical counterparts. In
practice, given  w, 0

w : X ! Rr and a dataset D = (xi, x0

i)i2[n] consisting of samples from the
joint distribution of (X,X 0) one estimates the needed covariances Cw

X , Cw
X0 and C w

XX0 as

bCw
X = 1

n

X

i2[n]

 w(xi) w(xi)
>, bCw

X0 = 1

n

X

i2[n]

 0

w(x
0

i) 
0

w(x
0

i)
> and bC w

XX0 = 1

n

X

i2[n]

 w(xi) 
0

w(x
0

i)
>.

In App. D.1 we prove that the empirical scores bP�
n : W ! R and bS�

n : W ! R, that is the scores
computed using empirical covariances, concentrate around the true ones with high probability for
any fixed w. Obtaining uniform guarantees over w requires advanced tools from empirical processes
and regularity assumptions on the representations which could be the subject of future work. The
difficulties arising from the estimation of P� during optimization are also addressed.
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In Alg. 1 we report the training procedure for DPNets-relaxed (using score (9)), which can also be
applied to (7) and (14) suitably modifying step 4. When using mini-batch SGD methods to compute
r bP�

m(w) orr bS�
m(w), the batch size m should be taken sufficiently large to mitigate the impact of

biased stochastic estimators. The time complexity of the training algorithm is addressed in App. D.4.
Operator regression Once a representation  w is learned, it can be used within the framework of
operator regression, see Fig. 1. Following the reasoning in (Kostic et al., 2022) one sees that any
model bTw : Hw ! Hw of the transfer operator T acts on functions in Hw as

hz :=  w(·)
>z 7! bTwhz :=  w(·)

> bTz, z 2 Rr, (15)

where bT 2 Rr⇥r is a matrix in the representation space. For example, denoting the data matrices
b w = [ w(x1) | · · · | w(xn)], b 0

w = [ w(x0

1
) | · · · | w(x0

n)] 2 Rr⇥n, the ordinary least square
estimator (OLS) minimizes the empirical risk

��b 0

w �
bT> b w

��2
HS

, yielding bT := (b >

w)
†b 0>

w .

Downstream tasks Once bT is obtained, it can be used predict the next expected state of the dynamics
given the initial one, compute the modal decomposition of an observable (Kutz et al., 2016), estimate
the spectrum of the transfer operator (Kostic et al., 2023) or controlling the dynamics (Proctor et al.,
2016). Indeed, recalling that X 0 is the one step ahead evolution of X , we can use (15) to approximate
E[hz(X 0) |X = x] as  w(x)> bTz. Moreover, relying on the reproducing property of Hw, the
predictions can be extended to functions f : X ! R` as E[f(X 0) |X = x] ⇡  w(x)>(b >

w)
† bF 0,

where bF 0 = [f(x0

1
) | . . . | f(x0

n)]
>
2 Rn⇥` is the matrix of the observations of the evolved data.

Clearly, when the observable is the state itself (i.e. f(x) = x), we obtain one step ahead predictions.

Next, observe that eigenvalue decomposition of the matrix bT leads to the eigenvalue decomposition
of the operator bT . Namely, let (b�i, bui, bvi) 2 C⇥Cd

⇥Cd be an eigen-triplet made of eigenvalue, left
eigenvector and right eigenvector of bT , that is bTbvi = b�ibvi, bu⇤

i
bT = b�ibu⇤

i and bu⇤

i bvk = �i,k, i, k 2 [r],
we directly obtain, using (15), the spectral decomposition

bTw =
P

i2[r]
b�i bfi ⌦ bgi, where bfi(x) :=  w(x)>bvi and bgi(x) := (bui)⇤ w(x). (16)

Finally, we can use the spectral decomposition of bT to efficiently forecast observables for several
time-steps in the future via E[hz(Xt) |X0 = x] ⇡

P
i2[r]

b�ti hbgi, hziHw

bfi(x), which is known as
the extended dynamic mode decomposition (EDMD), see e.g. (Brunton et al., 2022). Noticing that
hbgi, hziHw

= (bui)⇤z = (bui)⇤ bTz/b�i, when b�i 6= 0, and, again, using the reproducing property, we
can extend this approximation to vector-valued observables f : X ! R` as

E[f(Xt) |X0 = x] ⇡
P

i2[r]
b�t�1

i

�
 w(x)>bvi

� �
bu⇤

i (b >

w)
† bF 0

�
2 R`. (17)

5 EXPERIMENTS

In this experimental section we show that DPNets (i) learn reliable representations of non-normal
dynamical systems, (ii) can be used in its continuous-dynamics form (14) to approximate the eigen-
values of a Langevin generator, and (iii) outperforms kernel methods and auto-encoders in large-scale
and/or structured (e.g. graphs and images) data settings. To have a fair comparison, every neural
network model in these experiments has been trained on the same data splits, batch sizes, number
of epochs, architectures and seeds. The learning rate, however, has been optimized for each one
separately. We defer every technical detail, as well as additional results to App. F. The code to
reproduce the examples can be found at https://pietronvll.github.io/DPNets/, and
it heavily depends on Kooplearn https://kooplearn.readthedocs.io/.

Baselines We compared our methods DPNets (P�) and DPNets-relaxed (S�), where appropriate,
with the following baselines: Dynamic AE (DAE) of (Lusch et al., 2018), Consistent AE of (Azencot
et al., 2020), DMD of (Schmid, 2010), KernelDMD and ExtendedDMD of (Williams et al., 2015a;b),
and VAMPNets of (Mardt et al., 2018).

Logistic Map We study the dynamical system Xt+1 = (4Xt(1�Xt) + ⇠t) mod 1, for X = [0, 1)
and ⇠t being i.i.d. trigonometric noise (Ostruszka et al., 2000) . The associated transfer operator T is
non-normal, making the learning of its spectral decomposition particularly challenging (Kostic et al.,
2023). Since T can be computed exactly, we can sidestep the problem of operator regression (see
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Representation Spectral Error Optimality Gap

DPNets 0.28 (0.03) 0.64 (0.01)
DPNets-relaxed 0.06 (0.05) 1.19 (0.04)

VAMPNets 0.21 (0.09) 0.97 (0.22)
Cheby-T 0.20 1.24

NoiseKernel 0.19 2.17

Table 1: Logistic Map. Comparison of DPNets to
relevant baselines. Mean and standard deviation
are over 20 independent runs. We used r = 7.

Model P Transition Enthalpy �H

DPNets 12.84 17.59 ns -1.97 kcal/mol
Nys-PCR 7.02 5.27 ns -1.76 kcal/mol
Nys-RRR 2.22 0.89 ns -1.44 kcal/mol

Reference - 40 ns -6.1 kcal/mol

Table 2: Chignolin. Comparison between DP-
Nets and kernel methods with Nyström sampling
(Meanti et al., 2023).

Fig. 1), and focus directly on evaluating the quality of the representation encoded by Hw. We evaluate
DPNets on two different metrics: (i) the optimality gap

Pr
i=1

�2

i (T )�P
0(w) for r = 3 and (ii) the

spectral error, given by maxi minj |�i(PHT|H)� �j(T )|. While (i) informs on how close one is to
solve (4), (ii) measures how well the true eigenvalues of T can be recovered within the representation
space Hw. In Tab. 1 we compare the DPNets representation against VAMPNets, ExtendedDMD with
a feature map of Chebyshev polynomials and the feature defining the trigonometric noise Ostruszka
et al. (2000) of the process itself. Notice that in this challenging setting recovering eigenvalues
via singular vectors is generally problematic, so a moderate optimality gap may lead to a larger
spectral error. In Fig. 2 we report the evolution of the spectral error during training for DPNets and
VAMPNets, while we defer to App. F.1 an in-depth analysis of the role of the feature dimension.
Notice that DPNets and DPNets-relaxed excel in both metrics.
Continuous dynamics We investigate a one-dimensional continuous SDE describing the stochastic
motion of a particle into the Schwantes potential (Schwantes and Pande, 2015). The invariant
distribution for this process is the Boltzmann distribution ⇡(dx) / e��V (x)dx, where V (x) is the
potential at state x. The non-null eigenvalues of L hold physical significance, as their absolute value
represents the average rate at which particles cross one of the system’s potential barriers (Kramers,
1940); our objective is to accurately estimate them. Here Xt is sampled non-uniformly according to a
geometric law. In the lower panel of Fig. 2 we report the estimated transition rates, of L along the
DPNets training loop. Notice that the embedding  w progressively improves eigenvalue estimation,
indicating that the invariant subspaces of the generator L are well captured.
Ordered MNIST Following Kostic et al. (2022), we create a stochastic dynamical system by
randomly sampling images from the MNIST dataset according to the rule that Xt should be an image
of the digit t (mod 5) for all t 2 N0. Given an image from the dataset with label c, a model for the
transfer operator T of this system should then be able to produce an MNIST-alike image of the next
digit in the cycle. In the upper panel of Fig. 3 we thus evaluate DPNets and a number of baselines by
how accurate is an “oracle” supervised MNIST classifier (test accuracy for in-distribution � 99%) in
predicting the correct label c+ t (mod 5) after t steps of evolution. DPNets consistently retain an
accuracy above 95%, while for every other method it degrades. The “reference” line corresponds
to random guessing, while the “Oracle-Feature” baseline is an operator regression model (EDMD)
using, as the dictionary of functions, the output logits of the oracle, and despite having been trained
with the true labels, its performance degrades drastically after t � 5.
Fluid dynamics We study the classical problem of the transport of a passive scalar field by a 2D
fluid flow past a cylinder (Raissi et al., 2020). Each data point comprises a regular 2D grid that
encompasses fluid variables, including velocity, pressure, and scalar field concentration at each
grid point. This system is non-stationary and is also known to exhibit non-normal dynamics (see
Trefethen and Embree, 2020). We evaluate each trained baseline by feeding to it the last snapshot
of the train trajectory and evaluating the relative RMSE (that is, the RMSE normalized by the data
variance) between the forecasts and the subsequent test snapshots. In this experiment, we also have
a physics-informed (PINN) baseline not related to transfer operator learning, which is however the
model for which this dataset was created in the first place. Remarkably, the forecasting error of
DPNets does not grow sensibly with time as it does for every other method.
The Metastable states of Chignolin In our last experiment, we study the dynamics of Chignolin, a
folding protein, from a 106µs long molecular dynamics simulation sampled every 200 ps, totalling
over 500, 000 data points (Lindorff-Larsen et al., 2011). We focus on the leading eigenfunctions of
the transfer operator, which are known (Schütte et al., 2001) to provide a simple characterization of
the slowest (and usually most important) physical processes occurring along the dynamics. From
the leading left eigenfunctions of bT , one can indeed construct the free energy surface (see Fig. 4),
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Figure 2: Eigenvalue error
decays during training. Up-
per: spectral error for the lo-
gistic map. Lower: DPNets-
estimated eigenvalues of L for
the Langevin dynamics.

Figure 3: Forecasting with
DPNets. Upper: classification
accuracy over time for ordered
MNIST. Lower: forecasting
RMSE over time for fluid dy-
namic example.

Figure 4: Free energy sur-
face of the 2 slowest modes
of Chignolin,estimated by DP-
Nets and Nystr̈om PCR. To
be compared with Bonati et al.
(2021).

whose local minima identify the metastable states of the system. The free energy surface, indeed, is
proportional to the negative log-pdf of finding the system in a given state while at thermodynamic
equilibrium, meaning that a state of low free energy is highly probable, hence metastable. For
Chignolin, the metastable states have been thoroughly studied (see e.g. Novelli et al., 2022). The
leading left eigenfunction of bT encodes the folding-unfolding transition and the typical transition time
is the implied timescale (Mardt et al., 2019) associated with its eigenvalue. The difference between
the local minima of the free energy surface encodes the enthalpy �H of the transition. In Tab. 2
we compare these quantities to the reference values reported in Lindorff-Larsen et al. (2011). We
trained a GNN-based DPNet-relaxed, as both DPNets unrelaxed and VAMPNets failed to converge,
possibly due to the large scale of the data. We compared it to a KernelDMD estimator trained with the
recent Nyström sketching technique (Meanti et al., 2023) as classical kernel methods are completely
intractable at this scale3. Notice that DPNets succeed in finding additional meta-stable states of the
system, which match the analysis of (Bonati et al., 2021); see App. F for more discussion.

6 CONCLUSIONS

We propose a framework for learning a representation of dynamical systems, based on orthogonal
projections in data-spaces. It captures a leading invariant subspace of the transfer operator and can be
applied to both discrete and continuous dynamical systems. In the discrete case, the representation is
learned through the optimization of a smooth and numerically well conditioned objective function.
Extensive numerical experiments demonstrate the effectiveness and generality of DPNets in various
settings, suggesting that they are a promising tool for data-driven dynamical systems. A limitation of
this work is that the score functional for the continuous systems might be unstable since it leverages
covariance matrix inversion. Moreover, a future direction would be to study the statistical learning
properties of the algorithm presented here.

3A back-of-the-envelope calculation shows that 450 GBs would be needed just to store kernel matrices in
single precision.
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