
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

LEARNING TO SOLVE DIFFERENTIAL EQUATION
CONSTRAINED OPTIMIZATION PROBLEMS

Anonymous authors
Paper under double-blind review

ABSTRACT

Differential equations (DE) constrained optimization plays a critical role in nu-
merous scientific and engineering fields, including energy systems, aerospace en-
gineering, ecology, and finance, where optimal configurations or control strategies
must be determined for systems governed by ordinary or stochastic differential
equations. Despite its significance, the computational challenges associated with
these problems have limited their practical use. To address these limitations, this
paper introduces a learning-based approach to DE-constrained optimization that
combines techniques from proxy optimization (Kotary et al., 2021) and neural
differential equations (Chen et al., 2018). The proposed approach uses a dual-
network architecture, with one approximating the control strategies, focusing on
steady-state constraints, and another solving the associated DEs. This combina-
tion enables the approximation of optimal strategies while accounting for dynamic
constraints in near real-time. Experiments across problems in energy optimiza-
tion and finance modeling show that this method provides full compliance with
dynamic constraints and it produces results up to 25 times more precise than other
methods which do not explicitly model the system’s dynamic equations.

1 INTRODUCTION

In a wide array of scientific and engineering applications, differential equations (DEs) serve as a
fundamental tool to model dynamic phenomena where precise predictions and optimal control are
crucial. These applications range from energy optimization, where generator dynamics are required
to assess system stability, to aerospace engineering, relying on trajectory optimization, and finance,
where asset price prediction hinges on stochastic processes. Central to these applications is the op-
timization of systems constrained by Ordinary (ODEs) or Stochastic (SDEs) Differential Equations,
referred to as DE-constrained optimization problems. These problems entail not only solving the
DEs but also optimizing decision variables subject to the dynamics dictated by these equations.

This dual requirement, however, poses significant computational challenges. Traditional approaches,
such as shooting methods (Gerdts, 2003), collocation methods (Fairweather & Meade, 2020), and
discretization techniques (Betts & Campbell, 2005), are known to struggle with scalability and pre-
cision, especially on high-dimensional and nonlinear systems, which are of interest in this paper.
To address these challenges, this paper introduces a novel learning-based DE-optimization proxy
that integrates advancements from two key methodologies: proxy optimizers (Kotary et al., 2021)
and neural differential equations (neural-DEs) (Kidger, 2022). In our approach, a neural network
serves as a proxy optimizer, approximating solutions to the decision problem while simultaneously
leveraging another neural network to solve the underlying DEs. This novel dual-network architec-
ture exploits a primal-dual method to ensure that both the dynamics dictated by the DEs and the
optimization objectives are concurrently learned and respected. Importantly, this integration allows
for end-to-end differentiation enabling efficient gradient-based optimization.

The proposed method is validated across two domains: energy systems and financial modeling and
optimization. The experimental results show the ability to directly handle DE in the optimization
surrogate, which allows our method to produce solutions that are up to 25 times more precise than
standard proxy optimization techniques, while also adhering to system dynamics. This precision
improvement is important and opens new avenues for research and application in fields that demand
high-fidelity dynamic modeling and optimal decision-making at low computational budgets.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

Contributions. The paper makes the following contributions: (1) It introduces a novel learning-
based method to efficiently approximate solutions of DE-constrained optimization problems. Our
approach is a unique integration of neural-DE models to capture the system dynamics and proxy
optimizers to approximate the problem decision variables. These components are sinergistically
integrated into model training via a primal-dual method. (2) It empirically demonstrates the impor-
tance of incorporating the system dynamics into an optimization framework, by showing that proxy
optimizers methods who neglect these dynamic behaviors systematically violate the DE require-
ments. (3) It shows that capturing the system dynamics with neural differential surrogate models,
leads up to 25 times higher solution quality compared to other learning-based approaches capturing
the dynamics such as PINN (Raissi et al., 2019) or LSTM (Yu et al., 2019).

2 RELATED WORKS

A key technique in process control is Model Predictive Control (MPC) (Mayne et al., 2000), which
predicts future states over a time horizon to select optimal control actions that minimize a cost
function while satisfying constraints. This typically involves solving an optimization problem over
the time horizon using predicted states. DAE-constrained optimization (Blajer & Kołodziejczyk,
2004) offers an alternative approach by directly incorporating the differential and algebraic equations
governing system dynamics into the optimization problem through discretization, reformulating the
continuous problem into a finite-dimensional one. While preserving dependence on independent
variables, this increases problem dimensionality. The nonlinearities in both the optimization and
system dynamics components discussed in this paper, combined with the aim of addressing real-
time DE-constrained problems, make these approaches impractical in the setting considered.

In recent years, there has been growing interest in leveraging neural network architectures to approx-
imate solutions for challenging constrained optimization problems. Termed proxy optimizers, these
methods create fast surrogate models by learning mappings from optimization problem parameters
to optimal solutions (Kotary et al., 2021). Some approaches use supervised learning, requiring pre-
computed optimal decisions and problem parameters for training (Fioretto et al., 2020), while others
adopt self-supervised strategies, relying solely on the problem’s structure and parameter instances
(Park & Van Hentenryck, 2023). A key challenge in this setting is ensuring that these learned so-
lutions satisfy optimization constraints, often addressed by penalty-based methods (Fioretto et al.,
2020) or through implicit layers that incorporate constraints within the model architecture (Donti
et al., 2020). Residual constraint violations can also be corrected post-inference via efficient pro-
jection techniques (Kotary et al., 2024). Additionally, various methods have been developed to ap-
proximate solutions of differential equations with neural networks. In particular, Physics-Informed
Neural Networks (PINNs) (Raissi et al., 2019) encode and solve differential equations within their
architecture, integrating physical laws as prior knowledge. However, they are notoriously hard to
train (Wang et al., 2020) and suffer from limited generalization capabilities (Kovachki et al., 2024).
Another approach is neural differential equations (Chen et al., 2018; Kidger, 2022), which param-
eterize the hidden state derivatives in a neural network to model system dynamics. These models
often capture the underlying dynamics with high fidelity using only data observations.

Our work builds on these areas for surrogate modeling and introduces a learning-based approach to
solve, for the first time to our knowledge, DE-constrained optimization problems in near real-time.

3 SETTINGS AND GOALS

Consider an optimization problem constrained by a system of ordinary differential equations1:

Minimize
u

J (u,y(t))︷ ︸︸ ︷
L(u,y(T)) +

∫ T

t=0

Φ(u,y(t), t) dt (1a)

s.t. dy(t) = F (u,y(t), t)dt (1b)
y(0) = I(u) (1c)
g(u,y(t)) ≤ 0; h(u,y(t)) = 0, (1d)

1to ease notation the paper focuses on ODEs, and refers the reader to Appendix A for an extension to SDE

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

where u = (u1, . . . , un) represents the vector of decision variables and y(t) = (y1(t), . . . , ym(t))
denotes the state variables, each governed by a differential equation dyi(t) = Fi(y(t),u, t)dt. Here
each Fi describes the dynamic behavior of the system through ODEs. The set of all such ODEs
is captured by F , as defined in Constraint (1b). Note that these DEs are parametrized by decision
variables u, rendering the coupling between the control strategy and the system’s dynamic response
highly interdependent. The objective function J (1a) aims to minimize a combination of the running
cost Φ, which varies with the state and decision variables over time, and the terminal cost L, which
depends on the final state y(T) and the decision variables u. The time horizon T defines the period
over which the optimization takes place. Constraint (1c) sets the initial conditions for the state
variables based on the decision variables u. Additional constraints (1d) enforce sets of inequality
and equality conditions on the state and decision variables, ensuring that the system constraints are
met throughout the decision process.

200 MW 140 MW

360 MW40 MW

-400 MW

-340 MW

200 MW 140 MW

360 MW40 MW

-400 MW

-340 MW

200 MW 140 MW

360 MW40 MW

-400 MW

-340 MW

200 MW 140 MW

360 MW40 MW

-400 MW

-340 MW

u1

u2
y2

time

time

y1

Figure 1: Decision variables u represent genera-
tors outputs, which are influenced by state vari-
ables y describing rotor angles and speed.

Energy system example. For example, in the
context of power system optimization, decision
variables u capture generators’ power outputs,
and state variables y(t) describe generator ro-
tor angles and speeds, which are key for sys-
tem stability. The system dynamics in F , cap-
ture the electro-mechanical interactions in the
power network, and their initial conditions, as
determined by (1c), are set based on the deci-
sion variables. The objective function J aims
to minimize immediate operational costs like
fuel consumption (Φ) and address long-term
costs (L) over a specific time horizon T . Optimizing the generator outputs is finally subject to
engineering operational limits and physics constraints (Constraints (1d) , e.g. Ohm’s and Kirkhoff’s
laws). An illustration is provided in Figure 1 and the problem description in Appendix B.

CHALLENGES

While being fundamental for many applications, Problem (1) presents three key challenges:
1. Finding optimal solutions to Problem (1) is computationally intractable. Even without the differ-

ential equation constraints, the decision version of the problem alone is NP-hard in general.
2. Achieving high-quality approximations of the system dynamics (Equations 1b) and (1c) in near

real-time, poses the second significant challenge. The high dimensionality and non-linearity of
these dynamics further complicate the task.

3. Finally, the integration of the system dynamics into the decision-making process for solving Prob-
lem (1) poses another challenge. Indeed, including differential equations (1b) in the optimization
framework renders traditional numerical methods impractical for real-time applications.

The next section focuses on providing a solution to each of these challenges.

4 DE-OPTIMIZATION PROXY

To address the challenges outlined above, the paper introduces DE-Optimization Proxy (DE-OP): a
fully differentiable DE-optimization surrogate. In a nutshell, DE-OP defines a dual-network archi-
tecture, where one neural network, named Fω , approximates the optimal decision variables u∗, and
another, denoted as Nθ, approximates the associated state variables y(t), based on the concept of
neural differential equations. Here ω and θ represents the models’ Fω and Nθ trainable parame-
ters, respectively. An illustration of the overall framework and the resulting interaction of the dual
network is provided in Figure 2. The subsequent discussion first describes these two components
individually and then shows their integration by exploiting a primal-dual learning framework.

Optimizing over distribution of instances. To enable a learnable mechanism for addressing DE-
constrained optimization, DE-OP operates over a distribution Π of problem instances induced by
problem parameters ζ, and aims to train a model across this distribution. The learning framework
takes problem parameters ζ as inputs and generates outputs û, representing an approximation of the
optimal decision variables while adhering to the constraint functions (1b)–(1d). With reference to

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

Optimization  
parameters

Estimated

decisions

ζ

DE-OP loss

Predicted
state 

variablesPredicted initial state

variables

Figure 2: DE-OP uses a dual network architecture consisting of a proxy optimization model Fω to
estimate the decision variables û and a neural-DE model Nθ to estimate the state-variables ŷ(t),
with the objective function J (Fω(ζ),Nθ (Fω(ζ), t) ; ζ) capturing the overall loss.

(1a), the formal learning objective is:

Minimize
ω,θ

Eζ∼Π [J (Fω(ζ),Nθ(Fω(ζ), t); ζ)] (2a)

s.t. (1b)–(1d), (2b)

where û=Fω(ζ) and the state variables estimate is denoted as ŷ(t) =Nθ(Fω(ζ), t). Here, ζ pa-
rameterizes each problem instance, representing constants such as customer demands in the power
system example. Although the problem structure remains consistent across instances, each one
involves a distinct decision problem, leading to unique state variable trajectories. Given the com-
plexity of solving Problem (2), the goal is to develop a fast and accurate neural DE optimization
surrogate. This approach uses the concept of proxy optimizers, which is detailed next.

4.1 NEURAL OPTIMIZATION SURROGATE

The first objective is to establish a neural network-based mapping F : Π → U that transforms pa-
rameters ζ ∼ Π from a DE-constrained optimization problem (1) into optimal decisions u⋆(ζ) ∈ U ,
operating under the restriction that T = 0, (i.e. the dynamics of the system are absent). Practically,
this mapping is modeled as a neural network Fωwhich learns to predict the optimal decision vari-
ables from the problem parameters. The model training uses a dataset D = {(ζi,u⋆

i)}Ni=1, of N
samples, with each sample (ζi,u

⋆
i) including the observed problem parameters ζi and the corre-

sponding (steady-state) optimal decision variables u⋆
i . The training objective is to refine Fω such

that it closely approximates the ideal mapping F . Several approaches have been proposed to build
such surrogate optimization solvers, many of which leverage mathematical optimization principles
(Fioretto et al., 2020; Park & Van Hentenryck, 2023) and implicit layers (Donti et al., 2020), to
encourage or ensure constraint satisfaction (see Appendix C.1 for an in-depth discussion of such
methods). Once trained, the model Fω can be used to generate near-optimal solutions at low in-
ference times. We leverage this idea to learn the mapping F . As shown in Figure 2, the estimated
optimal decisions û = Fω(ζ) are then feeded to a neural-DE model, which will be discussed next.

4.2 NEURAL ESTIMATION OF THE STATE VARIABLES

The second objective of DE-OP involves to efficiently capture the system dynamics of DE-
constrained optimization problems. This is achieved by developing neural DE models Nθ to learn
solutions of a parametric family of differential equations (Kidger, 2022). Since these DE-surrogates
are fully differentiable, they are particularly suitable for integration with the optimization surrogate
introduced in the previous section, aligning with our goal defined in Equation (2).

The optimization proxy estimated solutions û determine the initial state variables y(0) through
the function I: ŷ(0) = I(û). As shown in Figure 2, given a solution û, a neural-DE model Nθ

generates an estimate ŷ of the state variables that satisfies:

dŷ(t) = Nθ(û, t)dt (3a)
ŷ(0) = I(û). (3b)

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

The remainder of this section details the methods by which the state variables are precisely estimated
using a Neural Differential Equation model.

Model initialization and training. Given that the neural-DE modelNθ takes as input the estimated
decision variables û provided by the DE-OP’s optimization proxy Fω , where û = Fω(ζ), it is
practical to initialize (or hot-start) the neural-DE model effectively. To achieve this, we construct a
dataset D = {(u′

i,y
⋆
i (t))}Ni=1, where each u′

i is a near-optimal decision sampled within the bounds
specified by constraints g (e.g., u′

j ∼ U(aj , bj) if uj’s bound is defined by aj and bj). The corre-
sponding state trajectories y⋆

i (t) are obtained by numerically solving the differential equations with
initial condition y(0) = I(u′

i). The neural-DE model is trained by minimizing the loss:

Minimize
θ

E(x,y)∼D

[
∥Nθ(x, t)− y(t)∥2

]
, (4)

where x = u′ and ŷ(t) = Nθ(x, t).

Since Fω approximates u⋆, it may introduce errors. To mitigate this, the dataset D is constructed
using near-optimal decisions u′ sampled from the feasible bounds g, ensuring that Nθ is trained on
a distribution Πu′ ≈ Πû. This approach does not require exact optimal decisions and assumes only
small estimation errors from Fω , which is typically valid in practice.

Once trained, the neural-DE model Nθ can accurately estimate state variables ŷ(t) for decisions û
produced by Fω . This integration enables end-to-end training of the DE-OP framework, ensuring
that both decision and state variables are optimized cohesively. While other learning-based methods,
such as Physics-Informed Neural Networks (PINN) (Raissi et al., 2019) and Long Short-Term Mem-
ory (LSTM) models (Yu et al., 2019), can be used to efficiently estimate the state variables, due to a
generalization bias (PINN), and lack of dynamic modeling (LSTM), they produce substantially less
precise predictions than neural-DEs. For a comparison of neural-DE models with these approaches
across the experimental tasks described in Section 5, we refer to Appendices D.1 and E.1.

4.3 HANDLING STATIC AND DYNAMICS CONSTRAINTS JOINTLY

To integrate the neural-DE models within the decision process, this paper proposes a Lagrangian
Dual (LD) learning approach, which is inspired by the generalized augmented Lagrangian relaxation
technique (Hestenes, 1969) adopted in classic optimization. In Lagrangian relaxation, some or all the
problem constraints are relaxed into the objective function using Lagrangian multipliers to capture
the penalty induced by violating them. The proposed formulation leverages Lagrangian duality to
integrate trainable regularization terms that encapsulates both the static and dynamic constraints
violations. When all the constraints are relaxed, the violation-based Lagrangian of problem (1) is

Minimize
u

J (u,y(t)) + λ⊤
h′ |h′(u,y(t))|+ λ⊤

g max(0, g(u,y(t))),

where J , g are defined in (1a), and (1d), respectively, and h′ is defined as follows,

h′(u,y(t)) =

[
dy(t)− F (u,y(t), t)dt

y(0)− I(u)
h(u,y(t)).

]
(5)

It denotes the set of all equality constraints of problem (1), thus extending the constraints h in (1d),
with the system dynamics (1b) and the initial conditions equations (1c) written in an implicit form as
above. Therein, λh′ and λg are the vectors of Lagrange multipliers associated with functions h′ and
g, e.g. λi

h′ , λj
g are associated with the i-th equality h′

i in h′ and j-th inequality gj in g, respectively.
The key advantage of expressing the system dynamics (1b) and initial conditions (1c) in the same
implicit form as the equality constraints h, (as shown in (5)), is treating the system dynamics in the
same manner as the constraint functions h. This enables us to satisfy the system dynamics and the
static set of constraints ensuring that they are incorporated seamlessly into the optimization process.

The proposed primal-dual learning method uses an iterative approach to find good values of the
primal ω, θ and dual λh′ ,λg variables; it uses an augmented modified Lagrangian as a loss function
to train the prediction û, ŷ(t) as employed

LDE-OP(û,u⋆, ŷ(t)) = ∥û− u⋆∥2 + λ⊤
h′ |h′(û, ŷ(t))|+ λ⊤

g max(0, g(û, ŷ(t))), (6)

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

Algorithm 1 Primal Dual Learning for DE-Constrained Optimization

1: Input: DatasetD = {(ζi,u⋆
i)}Ni=1; optimizer method, learning rate η and Lagrange step size ρ.

2: Initialize Lagrange multipliers λ0
h′ = 0, λ0

g = 0.
3: For each epoch k = 0, 1, 2, . . .
4: For each (ζi,u

⋆
i) ∈ D

5: ûi ← Fωk(ζi), ŷi(t)← Nθk (Fωk(ζi), t)
6: Compute loss function: LDE-OP(ûi,u

⋆
i , ŷi(t)) using (6)

7: Update DE-OP model parameters:

ωk+1 ← ωk − η∇ωLDE-OP
(
Fλk

ωk (ζ),u
⋆,Nλk

θk

(
Fλk

ωk (ζ), t
))

θk+1 ← θk − η∇θLDE-OP
(
Fλk

ωk (ζ),u
⋆,Nλk

θk

(
Fλk

ωk (ζ), t
))

8: Update Lagrange multipliers:

λk+1
h′ ← λk

h′ + ρ|h′(û, ŷ(t))|, λk+1
g ← λk

g + ρmax(0, g(û, ŷ(t))).

where ∥û − u⋆∥2 represents the decision error, with respect to steady-state optimal decision u⋆,
while λ⊤

h′ |h′(û, ŷ(t))| and λ⊤
g max(0, g(û, ŷ(t))) measures the constraint violations incurred by

prediction û = Fω(ζ) and ŷ(t) = Nθ(Fω(ζ), t). The loss function in (6) combines a mean squared
error term to ensure proximity to near-optimal solutions u⋆ with a weighted penalty on violations
of the constraint functions h′, g. This accounts for the contribution of both networks F ,N during
training, which is balanced via iterative updates of the Lagrange multipliers in (6) based on the
amount of violation of the associated constraint function. To ease notation, in (6) the dependency
from parameters ζ is omitted. At iteration k+1, finding the optimal parameters ω, θ requires solving

ωk+1, θk+1 = argmin
ω,θ

E(ζ,u⋆)∼D

[
LDE-OP

(
Fλk

ω (ζ),u⋆,Nλk

θ

(
Fλk

ω (ζ), t
))]

,

where Fλk

ω andN λk

θ denote the DE-OP’s optimization and predictor models Fω andNθ, at iteration
k, with λk = [λk

h′ λk
g]

⊤. This step is approximated using a stochastic gradient descent method

ωk+1 = ωk − η∇ωLDE-OP
(
Fλk

ωk (ζ),u
⋆,Nλk

θk

(
Fλk

ωk (ζ), t
))

θk+1 = θk − η∇θLDE-OP
(
Fλk

ωk (ζ),u
⋆,Nλk

θk

(
Fλk

ωk (ζ), t
))

,

where η denotes the learning rate and ∇ωL and ∇θL represent the gradients of the loss function
L with respect to the parameters ω and θ, respectively, at the current iteration k. At each iteration,
the gradient updates alternate between the two networks: first, the optimization network Fω updates
while holding the neural-DE model Nθ parameters fixed, followed by an update of the neural-DE
network while keeping the optimization model fixed. This alternating gradient descent procedure
might lead to synchronization issues between these two networks; although in practice we did not
observe this issue, they could be mitigated by adopting techniques such as gradient accumulation
(Hermans et al., 2017) and adaptive learning rates to balance updates based on gradient magnitudes.
Finally, the Lagrange multipliers are updated as

λk+1
h′ = λk

h′ + ρ|h′(û, ŷ(t))|
λk+1
g = λk

g + ρmax (0, g(û, ŷ(t))) ,

where ρ denotes the Lagrange step size. The overall training scheme is presented in Algorithm 1. It
takes as input the training datasetD = {(ζi,u⋆

i)}Ni=1, the learning rate η > 0, and the Lagrange step
size ρ > 0. The Lagrange multipliers are initialized in line 2. As shown in Figure 2, for each sample
in the dataset (line 4), the DE-OP’s optimization model Fωk computes the predicted decisions ûi,
while Nθ computes an estimate of the state variables ŷi(t) (line 5). The loss function LDE-OP is
computed (line 6) incorporating both the objective and the constraints and using the predicted values
û, ŷ(t) and the Lagrange multipliers λk

h′ and λk
g .The weights ω, θ of the DE-OP models Fω,Nθ are

then updated using stochastic gradient descent (SGD) (line 7). Finally, at the end of the epoch, the
Lagrange multipliers are updated based on the respective constraint violations (line 8).

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

While the DE-OP model training algorithm is described extending the Lagrangian Dual Learning
approach (Fioretto et al., 2020), the flexibility of DE-OP allows to leverage other proxy optimizer
methods, such as the self-supervised Primal-Dual Learning (Park & Van Hentenryck, 2023), which
could similarly be extended to integrate the system dynamics via neural-DE modeling within the DE-
OP framework, as the experiments will show. When near-optimal solutions u⋆ are not available, the
term ∥û− u⋆∥2 in (6) can be replaced with J (u,y(t)) to facilitate self-supervised learning.

5 EXPERIMENTAL SETTING

This section evaluates the DE-OP model financial modeling and energy optimization tasks. Given
the absence of other methods capable of meeting the stringent time requirements for solving DE-
constrained optimization problems, we compare several proxy optimizer methods as baselines.
However, these baselines focus on the “steady-state” aspects of the problem by omitting the sys-
tem dynamic components, such as the objective term Φ and the system dynamic constraints (1b) and
(1c) from Problem (1). They aim to approximate the optimal decision variables û to u∗ that could
be obtained if the system was at a steady-state. We evaluate the Lagrangian Dual approach (LD) of
Fioretto et al. (2020), which uses a penalty-based method for constraint satisfaction, Deep Constraint
Completion and Correction (DC3) from Donti et al. (2020) that enforces constraint satisfaction
through a completion-correction technique, self-supervised learning (PDL) of Park & Van Henten-
ryck (2023) using an augmented Lagrangian loss function, and a method (MSE) that minimizes the
mean squared error between the predicted solutions û and the pre-computed (steady-state) solutions
u∗. A comprehensive description of these methods is provided in Appendix C.1.

Furthermore, the comparison includes various learning-based DE-surrogate solvers in place of the
network Nθ in our framework, including neural-differential equations Kidger (2022), PINNs Raissi
et al. (2019), and LSTM networks. The experiments focus on two main aspects: (1) comparing
DE-OP with proxy optimizers that capture only the steady-state problems, focusing on the system
dynamics violations, and (2) assessing the effectiveness of the various surrogate DE-solver methods.

5.1 DYNAMIC PORTFOLIO OPTIMIZATION

The classical Markowitz Portfolio Optimization (Rubinstein, 2002), described by (9a)-(9c), consists
of determining the investment allocations within a portfolio to maximize a balance of return and risk.
The paper extends this task by incorporating the stochastic dynamic (9d) of the asset prices, based
on a simplified Black-Scholes model (Capiński & Kopp, 2012). This model represents a real-world
scenario where asset prices fluctuates, and investment decisions are made in advance, such as at the
market’s opening, based on the final asset prices forecast. The task defines as:

Minimize
u

E
[
−y(T)⊤u+ u⊤Σu

]
(9a)

s.t. 1⊤u = 1 (9b)
ui ≥ 0 ∀i ∈ [n] (9c)
dyi(t) = µiyi(t)dt+ σiyi(t)dWi(t) ∀i ∈ [n] (9d)
yi(0) = ζi ∀i ∈ [n], (9e)

where y(t) ∈ Rn represents the asset prices trend and y(T) denotes the asset prices at time hori-
zon T in (9a). The asset price dynamics described by (9d) follow a stochastic differential equation
with drift µi, volatility σi, and Wiener process Wi(t) (Rudzis, 2017). Decisions u ∈ Rn rep-
resent fractional portfolio allocations. The objective minimizes J(u,y(t)) = L(u,y(T)) with
Φ(u,y(t), t) = 0, balancing risk via covariance matrix Σ and expected return y(T)⊤u.

Datasets and methods. The drift and volatility factors µi ∼ U(0.5, 1) and σi ∼ U(0.05, 0.1) in
(9d) are sampled from uniform distributions. Following (Sambharya et al., 2022), initial asset prices
{ζi}ni=1 are obtained from the Nasdaq database (Nasdaq, 2022) to form initial vectors {ζj}10,000j=1 ,
split into 80% training, 10% validation, and 10% test sets. Asset price trends y(t) are generated
using an SDE solver with Itô integration (Kloeden & Platen, 2023). Given y(T), the convex solver
cvxpy (Diamond & Boyd, 2016) computes the optimal decision u⋆ for supervision during training.

We evaluate the role of asset price predictors using three models: a neural-SDE model, an LSTM,
and a 2-layer Feed Forward ReLU network, each compared to a numerical SDE solver, which is

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

discussed in Appendix E, Figure 8. Each model estimates final asset prices ŷ(T), which inform
the DE-OP model Fω to estimate optimal decision allocations û = Fω(ŷ(T)). A “static” baseline
method uses only proxy optimizers (Lagrangian Dual, DC3, or PDL) to approximate decisions based
on initial prices y(0) = ζi. Detailed comparisons of these approaches are in Appendix E.2.

Results. A comparison between the DE-OP and the baseline methods is provided in Figure 3.
The figure reports experiments for n = 50 variable, while additional experiments are relegated to
the Appendix E.2. The x-axis categorizes the methods based on the type of asset price predictor
used, or the lack of thereof, and reports the average optimality gap (in percentage) on the test set,
defined as |L(u⋆(y(T)),y(T))−L(û(ŷ(T)),y(T))|

|L(u⋆(y(T)),y(T))| × 100. It measures the sub-optimality of the predicted
solutions û with respect to ground truth final asset price y(T), across different methods.

Nµ =n-SDE Nµ =LSTM Nµ =FFrwrd Nµ = ;
510

20

50

130

O
pt

.
ga

p
(%

) DE-OP

Static-only (DC3)

Static-only (LD)

Static-only (PDL)

Figure 3: Average Opt. gap with n = 50 asset prices.

The figure highlights the substantial perfor-
mance difference between the dynamic DE-
OP models and the static-only proxy optimizer
methods, marked in the last column, denoted by
Nθ = ∅. These static methods (DC3, LD, and
PDL) fail to incorporate asset price dynamics,
resulting in notably higher optimality gaps (ex-
ceeding 100%). Notably, their predictions can
be over twice as suboptimal as the optimal so-
lutions derived from dynamic modeling.

In contrast, DE-OP models that incorporate
SDE models significantly outperform static methods. In particular, using neural-SDE predictors
to model asset price dynamics results in much higher decision quality compared to both LSTM and
Feed Forward models. Specifically, DE-OP with neural-SDE achieves the lowest optimality gap at
9.11%, successfully capturing the dynamics through an explicit modeling of the asset prices’ gov-
erning equations. In contrast, the LSTM model results in a notably higher optimality gap of 21.17%,
approximately 2.5 times greater than that of DE-OP with neural-SDE, attributable to its lack of dy-
namic modeling. The Feed Forward model performs significantly worse with an optimality gap of
102.45% for LD, indicating its inability to capture the time-dependent nature of asset pricing data.

The dynamic forecasting results in Appendix E.1 display different levels of precision of the final
asset prices predictions among the dynamic predictors considered, which ultimately led to different
decision quality. In particular, DE-OP with a neural-SDE model performs consistently better than
the LSTM model and produces up to 25× better decisions (measured in terms of optimality gap)
than any static-only proxy optimizer method. This stark contrast underscores the effectiveness of
DE-OP models in leveraging dynamic asset price predictors to improve decision quality.

5.2 STABILITY-CONSTRAINED AC-OPTIMAL POWER FLOW

We now turn on studying a real world problem in power systems, which arises from integration of
Synchronous Generator Dynamics with the Alternating Current Optimal Power Flow (AC OPF)
problem. The AC OPF, detailed in Appendix Model (1), is foundational in power systems for
finding cost-effective generator dispatches that meet demand while complying with physical and
engineering constraints. Traditionally addressed as a steady-state snapshot, the AC OPF problem
requires frequent resolution (e.g., every 10-15 minutes) due to fluctuating loads, posing challenges
in maintaining operational continuity and system stability (Hatziargyriou et al., 2021). Given the
non-convexity, high dimensionality, and computational demands of this problem, proxy optimizers
have emerged as a viable alternative to traditional numerical solvers. However, as shown later in this
section, existing approaches such as those in Donti et al. (2020) and Fioretto et al. (2020), which
focus on the steady-state aspect, fail to address the dynamic system requirements adequately.

The integration of the generator dynamics and related stability constraints into the steady-state AC-
OPF formulation leads to the stability-constrained AC-OPF problem, which is detailed in Appendix
B.3. Here, the decision variables u, comprising generator power outputs and bus voltages, influence
the state variables y(t), representing generator rotor angles and speeds. This coupling renders the
problem particularly challenging. The objective is to optimize power dispatch costs, while satisfying
demand, network constraints, and ensuring system stability as described by (1d). DE-OP enables,

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

0 10 20 30 40 50
Epoch

0

2

4

6

8

10

12

14

U
n

st
ab

le
d

yn
am

ic
s

(%
)

DE-OP

DC3

LD

MSE

Figure 4: WSCC 9-bus system. Percentage of
unstable dynamics at training time for different
methods based on 40 trials.

0 10 20 30 40 50
Epoch

0

2

4

6

8

10

12

14

U
n

st
ab

le
d

yn
am

ic
s

(%
)

DE-OP

DC3

LD

MSE

Figure 5: IEEE 57-bus system. Percentage of
unstable dynamics at training time for different
methods based on 40 trials.

Models Metrics

Fω Nθ Stability Vio. Flow Vio.
×10−3

Boundary Vio.
×10−4

Optimality gap∗

(at steady-state) %

DE-OP (ours) 0.00 9.15± 0.442 0.25± 0.172 0.22± 0.02
MSE ∅ 23.30± 0.206 12.65± 2.281 6.44± 1.434 0.17± 0.02
LD ∅ 23.10± 0.219 6.23± 0.125 0.00 0.17± 0.01
DC3 ∅ 28.60± 0.232 0.00 0.00 0.16± 0.01

Table 1: Average and standard deviation of constraint violations and (steady-state) optimality gap
on the IEEE 57-bus system for different approaches based on 40 independent runs.

for the first time to our knowledge, the integration of generator dynamics within the optimization
process. This integration is key for system stability. Our implementation uses neural-ODE (Chen
et al., 2018) models Nθ, assigned individually to each generator. A comparative analysis of neural-
ODEs, PINNs and a numerical solver for modeling these dynamics is available in Appendix D.1.

Datasets. DE-OP is evaluated on two key power networks, the WSCC 9 and IEEE 57 bus-systems
(Babaeinejadsarookolaee et al., 2021), under various operational settings, following (Fioretto et al.,
2020). This assessment benchmarks DE-OP against three leading proxy optimizer methods for AC-
OPF, which operate under a “steady-state” assumption and thus cannot cope with constraints (1b)
and (1c) of the DE-constrained problem. These methods are LD (Fioretto et al., 2020), DC3 (Donti
et al., 2020), and MSE Zamzam & Baker (2020), introduced in details in Appendix C.1.

Furthermore, discretizing the DE system through methods like direct collocation (Betts, 2010), or
iteratively optimizing over the time horizon adopting Model Predictive Control-based techniques,
becomes highly impractical for real-time applications due to the high number of variables and non-
linear system dynamics associated with each generator in the system. In contrast, all methods used
for comparison (including our DE-OP) produce estimates of the optimal decision variables within
milliseconds, as shown in Appendix, Table 6. Additionally, we note that only fast inference times
are of interest in the area of proxy optimizers, as once trained, these methods can be applied to
various related but distinct problem instances. Crucially, as the generator dynamics are captured by
separate neural-DE models, their computation is fully parallelized and suggests potential for DE-OP
in large-scale networks, where proxy optimizers have shown promising results (Mak et al., 2023).

For both the benchmark systems, DE-OP and each proxy optimizer model are trained on a dataset
D = {(ζi,u⋆

i)}
10,000
i=1 , where ζi representing a load demand and u⋆

i the corresponding optimal,
steady-state decision, using an 80/10/10 split. The jth load of the i-th sample ζj

i is generated
by applying a random perturbation of ±20% to the corresponding nominal load. The AC-OPF
models are implemented in Julia and solved using IPOPT (Wächter & Biegler, 2006). By leveraging
knowledge of the decision variables’ bounds (see Appendix, Model 2) each neural-ODE model Nθ

is trained to learn the generator dynamics on a dataset of near-optimal decisions Πu′ as described in
Section 4.2. We refer to Appendix B.3 for additional details on the neural-ODE models training.

Results. Figures 4 and 5 show the percentage of estimated decisions violating the stability con-
straints during the first 50 epochs of training, across all methods and test cases. On the WSCC

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

9-bus system (Figure 4) DE-OP learns rapidly to meet the dynamic constraints, which violations
approaches zero level after epoch 10 of training, whereas, all the baseline methods lacking dynamic
modeling, consistently produce unstable dynamics, which results in violation of the stability require-
ments. In contrast, by integrating generator dynamics within its training model, DE-OP begins to
satisfy these requirements early in training, as depicted in both figures (blue curves). DE-OP shows
a rapid adjustment on both systems within the first few epochs, and bringing the violations to near
zero. In contrast, all baseline methods continue to exhibit 4% to 8% unstable dynamics throughout
the training, even for a much higher number of training epochs. As we will show later, these will
reflect also in large stability constraints violations, when evaluated on the test set.

Table 1 displays the test-set results for DE-OP and the baseline methods on the IEEE 57-bus system.
For a detailed discussion on the results of each method on the WSCC-9 bus system, please see
Appendix D and Table 5. These tables reports the following metrics:

• Static and Stability Constraint Violations: These are quantified for each test instance. The j-
th static equality and the k-th inequality violation are calculated as 1

ntest

∑ntest
i=1 |h′

j(û
i, ŷi(t))| and

1
ntest

∑ntest
i=1 max(0, gk(û

i, ŷi(t))) respectively, where ntest is the test-set size. Detailed descriptions
of the problem constraints can be found in Appendices B.1 and B.3.

• Optimality gap (at steady-state): This metric is defined as |L(u⋆(ζ),y⋆(T))−L(û(ζ),ŷ(T))|
|L(u⋆(ζ),y⋆(T))| × 100. It

measures the gap incurred by the predictions û, ŷ(t) against the decisions u⋆ which are computed
under the assumption that the generators are in a steady-state condition. This assumption is crucial
for evaluating how closely each solution approximates the AC-OPF optimal results, though it
does not necessarily reflect the results relative to the stability-constrained AC-OPF problem, our
main focus, but which is highly intractable. Given the non-linearity of both the dynamics and
optimization in the stability-constrained AC-OPF, computing exact optimal decisions u⋆ with
traditional methods is not feasible. Consequently, while our method may show slightly higher
steady-state optimality gaps, these should not be interpreted in the context of the dynamic problem.

Firstly, note that all methods report comparable static constraint violations and steady-state opti-
mality gaps, with errors within the 10−3 to 10−4 range. Although DE-OP exhibits slightly higher
steady-state optimality gaps, approximately 0.05% higher than the best performing baseline, it’s im-
portant to recall that this metric does not reflect the stability-constrained AC-OPF optimality gap,
but rather that of the problem addressed by the baselines, placing DE-OP at a seeming disadvantage.
The higher objective costs observed with DE-OP is intuitively attributed to a restricted feasible space
resulting from the integration of generator stability constraints within the AC OPF problem.

Crucially, all baseline methods fail to meet stability requirements, highlighting how prediction er-
rors on decisions parameterizing system dynamics have cascading effects on constraint violations.
In contrast, DE-OP achieves full compliance with these requirements, reporting zero violations con-
sistently. These findings emphasize the critical importance of dynamic requirements in AC-OPF
problems for achieving accurate and stable solutions. They underscore DE-OP’s effectiveness in
adjusting unstable set points, as further detailed in Appendix D.2, and demonstrate its superiority in
ensuring system stability compared to traditional methods that focus on steady-state optimality.

6 CONCLUSION

This work was motivated by the efficiency requirements associated with solving differential equa-
tions (DE)-constrained optimization problems. It introduced a novel learning-based framework,
DE-OP, which incorporate differential equation constraints into optimization tasks for near real-
time application. The approach uses a dual-network architecture, with one approximating the con-
trol strategies, focusing on steady-state constraints, and another solving the associated DEs. This
architecture exploits a primal-dual method to ensure that both the dynamics dictated by the DEs
and the optimization objectives are concurrently learned and respected. This integration allows for
end-to-end differentiation enabling efficient gradient-based optimization, and, for the first time to
our knowledge, solving DE-constrained optimization problems in near real-time. Empirical eval-
uations across financial modeling and energy optimization tasks, illustrated DE-OP’s capability to
adeptly address these complex challenges. The results demonstrate not only the effectiveness of our
approach but also its broad potential applicability across various scientific and engineering domains
where system dynamics are crucial to optimization or control processes.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

REFERENCES

Sogol Babaeinejadsarookolaee, Adam Birchfield, Richard D. Christie, Carleton Coffrin, Christopher
DeMarco, Ruisheng Diao, Michael Ferris, Stephane Fliscounakis, Scott Greene, Renke Huang,
Cedric Josz, Roman Korab, Bernard Lesieutre, Jean Maeght, Terrence W. K. Mak, Daniel K.
Molzahn, Thomas J. Overbye, Patrick Panciatici, Byungkwon Park, Jonathan Snodgrass, Ahmad
Tbaileh, Pascal Van Hentenryck, and Ray Zimmerman. The power grid library for benchmarking
ac optimal power flow algorithms, 2021.

John T Betts. Practical methods for optimal control and estimation using nonlinear programming.
SIAM, 2010.

John T Betts and Stephen L Campbell. Discretize then optimize. Mathematics for industry: chal-
lenges and frontiers, pp. 140–157, 2005.

Wojciech Blajer and Krzysztof Kołodziejczyk. A geometric approach to solving problems of control
constraints: theory and a dae framework. Multibody System Dynamics, 11(4):343–364, 2004.

Stephen Boyd, Neal Parikh, Eric Chu, Borja Peleato, and Jonathan Eckstein. Distributed optimiza-
tion and statistical learning via the alternating direction method of multipliers. Foundations and
Trends in Machine Learning, 3(1):1–122, 2011.

Marek Capiński and Ekkehard Kopp. The Black–Scholes Model. Cambridge University Press, 2012.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David Duvenaud. Neural ordinary dif-
ferential equations. In Proceedings of the 32nd International Conference on Neural Information
Processing Systems, NIPS’18, pp. 6572–6583. Curran Associates Inc., 2018.

Steven Diamond and Stephen Boyd. Cvxpy: A python-embedded modeling language for convex
optimization. The Journal of Machine Learning Research, 17(1):2909–2913, 2016.

Priya L Donti, David Rolnick, and J Zico Kolter. Dc3: A learning method for optimization with
hard constraints. In ICLR, 2020.

Graeme Fairweather and Daniel Meade. A survey of spline collocation methods for the numerical
solution of differential equations. In Mathematics for large scale computing, pp. 297–341. CRC
Press, 2020.

Ferdinando Fioretto, Pascal Van Hentenryck, Terrence WK Mak, Cuong Tran, Federico Baldo, and
Michele Lombardi. Lagrangian duality for constrained deep learning. In Joint European Con-
ference on Machine Learning and Knowledge Discovery in Databases, pp. 118–135. Springer,
2020.

Matthias Gerdts. Direct shooting method for the numerical solution of higher-index dae optimal
control problems. Journal of Optimization Theory and Applications, 117:267–294, 2003.

Nikos Hatziargyriou, Jovica Milanovic, Claudia Rahmann, Venkataramana Ajjarapu, Claudio
Canizares, Istvan Erlich, David Hill, Ian Hiskens, Innocent Kamwa, Bikash Pal, Pouyan Pourbeik,
Juan Sanchez-Gasca, Aleksandar Stankovic, Thierry Van Cutsem, Vijay Vittal, and Costas Vour-
nas. Definition and classification of power system stability – revisited & extended. IEEE Trans-
actions on Power Systems, 36(4):3271–3281, 2021. doi: 10.1109/TPWRS.2020.3041774.

Joeri R Hermans, Gerasimos Spanakis, and Rico Möckel. Accumulated gradient normalization. In
Asian Conference on Machine Learning, pp. 439–454. PMLR, 2017.

Magnus R. Hestenes. Multiplier and gradient methods. Journal of Optimization Theory and Appli-
cations, 4:303–320, 1969.

Liangjian Hu, Xiaoyue Li, and Xuerong Mao. Convergence rate and stability of the truncated euler–
maruyama method for stochastic differential equations. Journal of Computational and Applied
Mathematics, 337:274–289, 2018.

Patrick Kidger. On neural differential equations, 2022.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

Patrick Kidger, James Foster, Xuechen Li, Harald Oberhauser, and Terry Lyons. Neural sdes as
infinite-dimensional gans, 2021. URL https://arxiv.org/abs/2102.03657.

Peter E. Kloeden and Eckhard Platen. Numerical Solution of Stochastic Differential Equations.
Springer, 2023. ISBN 978-3-662-12616-5. doi: 10.1007/978-3-662-12616-5.

James Kotary, Ferdinando Fioretto, Pascal Van Hentenryck, and Bryan Wilder. End-to-end con-
strained optimization learning: A survey. In Proceedings of the Thirtieth International Joint Con-
ference on Artificial Intelligence, IJCAI-21, pp. 4475–4482, 2021. doi: 10.24963/ijcai.2021/610.
URL https://doi.org/10.24963/ijcai.2021/610.

James Kotary, Vincenzo Di Vito, Jacob Cristopher, Pascal Van Hentenryck, and Ferdinando Fioretto.
Learning joint models of prediction and optimization, 2024. URL https://arxiv.org/
abs/2409.04898.

Nikola Kovachki, Zongyi Li, Burigede Liu, Kamyar Azizzadenesheli, Kaushik Bhattacharya, An-
drew Stuart, and Anima Anandkumar. Neural operator: Learning maps between function spaces,
2024. URL https://arxiv.org/abs/2108.08481.

Peijie Li, Junjian Qi, Jianhui Wang, Hua Wei, Xiaoqing Bai, and Feng Qiu. An SQP Method Com-
bined with Gradient Sampling for Small-Signal Stability Constrained OPF. IEEE Transactions
on Power Systems, 32, 07 2016. doi: 10.1109/TPWRS.2016.2598266.

Terrence W. K. Mak, Minas Chatzos, Mathieu Tanneau, and Pascal Van Hentenryck. Learning
regionally decentralized ac optimal power flows with admm, 2023. URL https://arxiv.
org/abs/2205.03787.

David Q Mayne, James B Rawlings, CV Rao, and PO Scokaert. Constrained model predictive
control: Stability and optimality. Automatica, 36(6):789–814, 2000.

George S. Misyris, Andreas Venzke, and Spyros Chatzivasileiadis. Physics-informed neural net-
works for power systems. 2020 IEEE Power & Energy Society General Meeting (PESGM), pp.
1–5, 2019.

Nasdaq. Nasdaq end of day us stock prices. https://data.nasdaq.com/databases/
EOD/documentation, 2022. Accessed: 2023-08-15.

Seonho Park and Pascal Van Hentenryck. Self-supervised primal-dual learning for constrained op-
timization. In Proceedings of the AAAI Conference on Artificial Intelligence, volume 37, pp.
4052–4060, 2023.

M. Raissi, P. Perdikaris, and G. E. Karniadakis. Physics-informed neural networks: A deep learn-
ing framework for solving forward and inverse problems involving nonlinear partial differential
equations. Journal of Computational Physics, 378:686–707, Feb 2019. doi: 10.1016/j.jcp.2018.
10.045.

Mark Rubinstein. Markowitz’s” portfolio selection”: A fifty-year retrospective. The Journal of
finance, 57(3):1041–1045, 2002.

Peter Rudzis. Brownian motion, 2017.

Rajiv Sambharya, Georgina Hall, Brandon Amos, and Bartolomeo Stellato. End-to-end learning to
warm-start for real-time quadratic optimization, 2022.

Peter W. Sauer and M. A. Pai. Power System Dynamics and Stability. Prentice Hall, Upper Saddle
River, N.J., 1998.

Andreas Wächter and Lorenz T. Biegler. On the implementation of an interior-point filter line-search
algorithm for large-scale nonlinear programming. Mathematical Programming, 106:25–57, 2006.
URL https://api.semanticscholar.org/CorpusID:14183894.

Sifan Wang, Yujun Teng, and Paris Perdikaris. Understanding and mitigating gradient pathologies in
physics-informed neural networks, 2020. URL https://arxiv.org/abs/2001.04536.

12

https://arxiv.org/abs/2102.03657
https://doi.org/10.24963/ijcai.2021/610
https://arxiv.org/abs/2409.04898
https://arxiv.org/abs/2409.04898
https://arxiv.org/abs/2108.08481
https://arxiv.org/abs/2205.03787
https://arxiv.org/abs/2205.03787
https://data.nasdaq.com/databases/EOD/documentation
https://data.nasdaq.com/databases/EOD/documentation
https://api.semanticscholar.org/CorpusID:14183894
https://arxiv.org/abs/2001.04536

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Yong Yu, Xiaosheng Si, Changhua Hu, and Jianxun Zhang. A review of recurrent neural networks:
Lstm cells and network architectures. Neural computation, 31(7):1235–1270, 2019.

Ahmed Zamzam and Kyri Baker. Learning optimal solutions for extremely fast AC optimal power
flow. In IEEE SmartGridComm, Dec. 2020.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

A STOCHASTIC DIFFERENTIAL EQUATION CONSTRAINED OPTIMIZATION

This section extends the problem description (1) presented in Section 3 of the main paper to a
stochastic setting. In presence of stochastic dynamics, the optimization problem constrained by
differential equations (1) becomes

Minimize
u

E

[
L(u,y(T)) +

∫ T

t=0

Φ(u,y(t), t) dt

]
(10a)

s.t. dy(t) = F (u,y(t), t)dt+G(u,y(t), t)dW (t) (10b)
y(0) = I(u) (10c)
g(u,y(t)) ≤ 0 (10d)
h(u,y(t)) = 0. (10e)

The SDE constrained optimization problem (10) involves determining the optimal decision variables
u = (u1, . . . , un) in a system where the state variables y(t) = (y1(t), . . . , ym(t)) evolve according
to stochastic dynamics (10a) and initial conditions dictated by (10b). Each state variable yi(t) is
governed by a stochastic differential equation dyi(t) = Fi(y(t),u, t)dt + Gi(y(t),u, t)dWi(t),
where Fi represents the deterministic part of the dynamics, and Gi captures the stochastic compo-
nent, where Wi(t) is a Wiener process. The set of all such equations is described by F and G,
as defined by (10b). The initial condition for the state variables is set by constraints (10c), where
y(0) = I(u) defines the starting state based on the control variables u. Constraints (10d) and (10e)
enforce inequality and equality constraints, respectively, on the state and control variables, ensuring
that the system behaves within specified bounds throughout the decision process.

The objective (10a) is to minimize the expected value of a combination of the running cost
Φ(u,y(t), t), which varies with the state and decision variables over time, and the terminal cost
L(u,y(T)), which depends on the final state y(T) and the decision variables u. The optimization
is performed over a time horizon T , which defines the period during which the decision-making
process occurs.

B STABILITY CONSTRAINED AC-OPTIMAL POWER FLOW

This section describes the stability constrained AC-Optimal Power Flow problem; it first introduces
the AC-Optimal Power Flow problem and the synchronous generator dynamics, to eventually inte-
grate these two components to form the stability constrained AC-Optimal Power Flow problem.

B.1 AC-OPTIMAL POWER FLOW PROBLEM

The AC-Optimal Power Flow (OPF) problem determines the most cost-effective generator dispatch
that satisfies demand within a power network subject to various physical and engineering power
systems constraints. Typically, the OPF problem involves capturing a snapshot of the power network
parameters and determine the bus voltages and generator set-points based on that fixed state. A
power network can be represented as a graph (N ,L) with the node set N consisting of n buses,
and the edge set L comprises l lines. The set L is defined as a collection of directed arcs, with LR

indicating the arcs in L but in the opposite direction. G ⊂ N represents the set of all synchronous
generators in the system. The power generation and demand at a bus i ∈ N are represented by
complex variables Sr

i = pri + jqri and Sd
i = pdi + jqdi , respectively. The power flow across line ij

is denoted by Sij , and θi symbolizes the phase angles at bus i ∈ N .

The AC power flow equations use complex numbers for current I , voltage V , admittance Y , and
power S, interconnected through various constraints. Kirchhoff’s Current Law (KCL) is represented
by Iri − Idi =

∑
(i,j)∈L∪LR Iij , Ohm’s Law by Iij = Yij(Vi − Vj), and AC power flow is denoted

as Sij = ViI
∗
ij . These principles form the AC Power Flow equations, described by (11f) and (11g),

which formulation is described by Model 1. The goal is to minimize a function (11a) representing
dispatch costs for each generator. Constraints (11b)-(11c) represents voltage operational limits to
bound voltage magnitudes and phase angle differences, while (11d)-(11e) set boundaries for gen-
erator output and line flow. Constraint (11h) sets the reference phase angle. Finally, constraints
(11f) and (11g) enforce KCL and Ohm’s Law, respectively. The classical, steady-state problem,

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

Model 1 The AC Optimal Power Flow Problem (AC-OPF)
Parameters : ζ = (Sd)

decision variables : u = (Sr
i , Vi) ∀i ∈ N , Sij ∀(i, j) ∈ L

Minimize
∑
i∈G

c2i(ℜ(Sr
i))

2 + c1iℜ(Sr
i) + c0i (11a)

s. t.

vli ≤ |Vi| ≤ vui ∀i ∈ N (11b)

− θ∆ij ≤ ∠(ViV
∗
j) ≤ θ∆ij ∀(i, j) ∈ L (11c)

Srl
i ≤ Sr

i ≤ Sru
i ∀i ∈ N (11d)

|Sij | ≤ suij ∀(i, j) ∈ L (11e)

Sr
i − Sd

i =
∑

(i,j)∈L Sij ∀i ∈ N (11f)

Sij = Y ∗
ij |Vi|2 − Y ∗

ijViV
∗
j ∀(i, j) ∈ L (11g)

θref = 0 (11h)

described by Model 1, does not incorporate systems dynamics capturing the behavior of the syn-
chronous generators, and as such, does not guarantee stable operations for a power system. This
paper extends this problem by introducing the Stability-Constrained AC-Optimal Power Flow Prob-
lem, which integrates the generator dynamics and related stability constraints within the AC-OPF
problem (1).

B.2 GENERATOR DYNAMICS

The generator dynamics are modeled using the ”Classical machine model” (12), which is typically
adopted to describe the dynamic behavior of synchronous generators (Sauer & Pai, 1998)

d

dt

[
δg(t)
ωg(t)

]
=

[
ωs(ω

g(t)− ωs)
1

Mg

(
P g
m −Dg(ωg(t)− ωs)−

Eg
q,0vg

Xg
d

sin(δg(t)− θg)
)] (12)

, where δg(t) and ωg(t) represents the rotor angle and angular speed over time t of generator g ∈ G,
ωs the synchronous angular frequency, Mg the machine’s inertia constant, Dg the damping coef-
ficient, P g

m the mechanical power, Xg
d the transient reactance and Eg

q,0 electromotive force. The
initial value of the rotor angle δg0 , and electromotive force Eg

q,0 for each generator g ∈ G are derived
from the active and reactive power equations, assuming the generator dynamical system (12) being
in a steady state condition at time instant t = 0, d

dt [δ
g(t) ωg(t)]

T

t=0
= [0 0]

T :

Eg
q,0vg sin(δ

g
0 − θg)

Xg
d

− prg = 0, (13)

Eg
q,0vg cos(δ

g
0 − θg)− v2g

Xg
d

− qrg = 0. (14)

Following the same assumptions, the initial rotor angular speed is set as

ωg
0 = ωs. (15)

Stability limit To guarantee stability of a synchronous generator g ∈ G, the rotor angle δg(t) is
required to remain below an instability threshold δmax, as defined by SIngle Machine Equivalent
(SIME) model:

δg(t) ≤ δmax ∀t ≥ 0. (17)

Unstable conditions arise when violating the inequality constraint (17), which is the principal bind-
ing constraint that necessitates re-dispatching.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

Model 2 The Stability Constrained AC-OPF Problem
Parameters : ζ = (Sd)

decision variables : u = (Sr
i , Vi) ∀i ∈ N , Sij ∀(i, j) ∈ L

State variables : y(t) = (δg(t),ωg(t)) ∀g ∈ G

Minimize
∑
i∈G

c2i(ℜ(Sr
i))

2 + c1iℜ(Sr
i) + c0i (16a)

s. t.
(11b) – (11h) (16b)

dδg(t)

dt
= ωs(ω

g(t)− ωs) ∀g ∈ G (16c)

dωg(t)

dt
=

1

mg
(pgm − dg(ωg(t)− ωs))

−
e′gq (0)|Vg|
x′g
d mg

sin(δg(t)− θg) ∀g ∈ G (16d)

e′gq (0)|Vg| sin(δg(0)− θg)

x′g
d

− prg = 0 ∀g ∈ G (16e)

e′gq (0)|Vg| cos(δg(0)− θg)− |Vg|2

x′g
d

− qrg = 0 ∀g ∈ G (16f)

ωg(0) = ωs ∀g ∈ G (16g)
δg(t) ≤ δmax ∀g ∈ G. (16h)

(16i)

B.3 STABILITY-CONSTRAINED AC-OPTIMAL POWER FLOW PROBLEM

The generator dynamics (12) and its initial conditions equations (13)-(15), together with the associ-
ated stability constraints (17), are thus integrated within the steady-state AC-OPF Problem 1, giving
rise to the Stability-Constrained AC-OPF problem, which is detailed in Model 2. In this problem,
parameters ζ = Sd represent customer demand, while decision variables x = (Sr,V) are the gen-
erator settings and bus voltages; the state variables y(t) = (δg(t), ωg(t)) ∀g ∈ G represent the rotor
angle and angular speed of the generators.

Training setting of Neural Ordinary Differential Equation Models As the generator dynamics
are described by a system of ODEs, neural-ODE (Chen et al., 2018) models, one for each syn-
chronous generator g ∈ G, are used to capture their dynamics. Each neural-DE modelN g

θ is trained
in a supervised fashion, as described in Section 4.2, to obtain dynamic predictors that are capable
of providing accurate estimate of the state variables yg(t) across a family of instances of the gen-
erator model (12). Specifically, for each generator g ∈ G, the datasets Dg used for training the
generator dynamic predictor N g

θ , consists of pairs (xi,yi(t)) ∼ Dg , where xi = (δg0 , ω
g
0 , |V ′

g |, θ′g)
is the input of the neural-ODE model, and yi(t) = (δg(t), ωg(t), |V ′

g |(t), θ′g(t)) the corresponding
solution of (12) with initial conditions yi(0) = I(xi), represented by (16e)-(16g) and computed
using Dopri5, a numerical algorithm implementing an adaptive Runge-Kutta method. For each in-
put x, the OPF decision variables |V ′

g |, θ′g are sampled from a uniform distribution U(a, b), where a
and b are given by the corresponding operational limits specified by Constraints (11b)-(11c). Note
that each of these variables influences the initial condition of the state variables (δg(0), ωg(0)) via
Equation (13)-(15), as well as the governing equations of the generator. As |V ′

g |, θ′g extend the ac-
tual generator state variables (δg(t), ωg(t)), we are implicitly augmenting the generator model with

these two additional state variables that have no dynamics (e.g.
d|V ′

g |(t)
dt = 0,

dθg(t)
dt = 0) and initial

condition |V ′
g |(0) = |V ′

g |, θ′g(0) = θ′g . This trick allows us to explicitly inform the neural ODE
model of the role played by the voltage magnitude |Vg| and angle θg on the dynamics of each gen-
erator. The generator characteristics parameters of model (12), such as the damping coefficient Dg ,
inertia constant Mg , and mechanical power P g

m are adopted from Li et al. (2016). Each dataset
Dg contains approximately 50% of unstable trajectories and 50% of stable trajectories, generated as
described in Section 4.2. At training time, given a pair (xi,yi(t)) ∼ Dg , the target is constructed as

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

yg
i (t) = yg

i (0),y
g
i (∆t), . . . ,y

g
i (n∆t), with ∆t = 0.001 and the number of points n, is set to 200

at the beginning of the training, and gradually increases up to 1000. This trick allows to avoid local
minima during training (Kidger, 2022). At test time, we set n = 1000.

B.4 DYNAMIC PORTFOLIO OPTIMIZATION

DE-OP uses a neural-SDE (Kidger et al., 2021) model Nθ to capture the asset price dynamics
y(t). The neural-SDE model consists of 2 separate neural network, Nθ = (N f

θ ,N
g
θ) where

N f
θ aims to capture the deterministic component of (9d), µiζ(t)dt and N g

θ the stochastic com-
ponent σiζ(t)dWi(t). N f

θ is a simple linear layer, while N g
θ is a 2-layer ReLU neural network.

Given the initial asset price vector y(0) = ζ, the neural-SDE model Nθ generates an estimate
ŷ(t) = Nθ(y(0), t) of the asset prices trend, from which the final asset price ŷ(T) is obtained.
The LSTM and the Feed Forward model used to estimate the final asset price ŷ(T) as the dynamic
component of the corresponding baseline method are both a 2-layer ReLU neural network. The final
time instant T = 28, 800 seconds which corresponds to 8 hours. Given initial condition yj(0) = ζj ,
the asset price trend yj(t) is obtained by Ito numerical integration of (9d). The neural-SDE model is
trained on a dataset {(ζj ,yj(t))}Nj=1; the LSTM model is trained on a dataset {(yj(t),yj(T))}Nj=1,
where yj(t) = yj(0),yj(∆t), . . . ,y

j(∆tK) is a time series, ∆t = 100 seconds and ∆tK = T−1.
The Feed Forward network is trained on a dataset {(yj(0),yj(T))}Nj=1.

C ADDITIONAL EXPERIMENTAL DETAILS

C.1 PROXY OPTIMIZER METHODS

This subsection describes in brief the proxy optimizer methods adopted in the experiments to esti-
mate the optimal decision variables u⋆, within the operational setting described by (1) or (10). Each
description below assumes a DNN model Fω parameterized by ω, which acts on problem parame-
ters ζ to produce an estimate of the decision variables û := Fω(ζ), so that û ≈ u⋆(ζ). To ease
notation, the dependency from problem parameters ζ is omitted.

Lagrangian Dual Learning (LD). Fioretto et al. (2020) constructs the following modified La-
grangian as a loss function:

LLD(û,y(t)) = ∥û− u⋆(ζ)∥2 + λT [g(û,y(t))]+ + µTh(û,y(t)).

At each iteration of LD training, the model Fω is trained to minimize a balance of constraint vi-
olations and proximity to the precomputed target optima u⋆(ζ). Updates to the multiplier vectors
λ and µ are calculated based on the average constraint violations incurred by the predictions û,
mimicking a dual ascent method (Boyd et al., 2011).

Deep Constraint Completion and Correction (DC3). Donti et al. (2020) uses the loss function

LDC3(û, ŷ(t)) = J (û, ŷ(t)) + λ∥ [g(û, ŷ(t))]+ ∥
2 + µ∥h(û, ŷ(t))∥2

which relies on a completion-correction technique to enforce constraint satisfaction, while maximiz-
ing the empirical objective J in self-supervised training.

Self-Supervised Primal-Dual Learning (PDL). Park & Van Hentenryck (2023) uses an aug-
mented Lagrangian loss function

LPDL(û, ŷ(t)) = J (û,y(t)) + λ̂Tg(û, ŷ(t)) + µ̂Th(û, ŷ(t))+

ρ

2

∑
j

[gj(û, ŷ(t))]+ +
∑
i

|hi(û, ŷ(t))|

 ,

which consists of a primal network to approximate the decision variables, and a dual network to learn
the Lagrangian multipliers update. The method is self-supervised, requiring no precomputation of
target solutions for training.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

MSE. Zamzam & Baker (2020) uses the loss function:

LMSE(û,u⋆) = ∥û− u⋆∥2

which minimizes the MSE between the predicted solution û and the corresponding precomputed
solution u⋆.

C.2 STABILITY CONSTRAINED AC-OPTIMAL POWER FLOW EXPERIMENT

Hyperparameters of the neural-ODE models Each neural-ODE model is a fully connected feed-
forward ReLU neural network with 2 hidden layers, each with 200 units. Each model is trained using
Adam optimizer, with default learning rate η = 10−3 and default hyperparameters.

Hyperparameters of the DE-OP’s optimization model and the proxy optimizer methods The
DE-OP optimization component Fω and each baseline proxy optimizer model is trained with Adam
optimizer and default learning rate η = 10−3. Each proxy optimizer model is a fully connected
FeedFoward ReLU neural network with 5 hidden layers, each with 200 units. The DE-OP’s op-
timization model Fω and Lagrangian Dual proxy model are trained with a Lagrangian step size
ρ = 10−1, while the Lagrangian multipliers λh′ and λg are updated at each epoch. DC3’s proxy
optimizer model is trained with the same set of hyperparameters for OPF, as reported in the original
paper.

C.3 DYNAMIC PORTFOLIO EXPERIMENT

Hyperparameters of the asset prices predictor models The stochastic component of the neural-
SDE, the LSTM and Feed Forward model are each 2-layers ReLU networks, each with 100 units.
The neural-SDE, LSTM and Feed Forward models are all trained using Adam optimizer, with default
learning rate η = 10−3 and hyperparameters.

Hyperparameters of the DE-OP’s optimization model and the proxy optimizer methods The
DE-OP optimization component Fω and each baseline proxy optimizer model is trained with Adam
optimizer and default learning rate η = 10−3. Each proxy optimizer model is a fully connected Feed
Foward ReLU neural network with 2 hidden layers, each with 50 units. The DE-OP’s optimization
model Fω and Lagrangian Dual proxy model are trained with a Lagrangian step size ρ = 10−1,
while the Lagrangian multipliers λh′ and λg are updated each 10 epoch. PDL’s and DC3’s proxy
optimizer model uses the same hyperparameters for the Convex Quadratic task, as reported in the
respective original paper.

D ADDITIONAL EXPERIMENTAL RESULTS: STABILITY CONSTRAINED AC
OPTIMAL POWER FLOW

This section reports additional experimental results of DE-OP model and the baseline methods on
the WSCC 9-bus system and the IEEE 57-bus system. Specifically, we report:

• The inference time (measured in seconds) of neural-ODE which we compare to the com-
putational time of a traditional numerical ODE solver and the precision of state variables’
estimate ŷ(t) (measured as the percentage ℓ2 error) of NODEs and PINNs Raissi et al.
(2019), a different learning-based approach for learning the system dynamics.

• The (steady-state) decision error (MSE) of the OPF variables of DE-OP and each proxy
optimizer method, incurred by the respective approximation û, computed assuming that
the generators are in steady-state.

• The (steady-state) optimality gaps incurred by DE-OP and the baselines proxy optimizers
predictions’ û, and measured as |L(u⋆(ζ),y⋆(T))−L(û(ζ),ŷ(T))|

|L(u⋆(ζ),y⋆(T))| × 100, where L is objective
function (equation 16a).

• The inference time (measured in seconds) of DE-OP and each proxy optimizer model to
generate û.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

Table 2: Average and standard deviation of computational times for numerical solvers vs. neural-
ODE inference time by method

Method Numerical Solver neural-ODE

Dopri5 (default) 0.135± 0.015 (sec) 0.008± 0 (sec)
Bosh3 0.446± 0.039 (sec) 0.017± 0 (sec)

0.0 0.5 1.0 1.5 2.0 2.5 3.0
Time (s)

0

200

400

600

800
δ(t)

ω(t)

δNODE(t)

ωNODE(t)

π/2

0.0 0.2 0.4

0

4

8
Numerical solver computational time

NODE inference time

Figure 6: True and neural-ODE (NODE) solutions of the generator state variables in unstable con-
ditions.

0 2 4 6 8 10
Time (s)

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8

1.0
δ(t)

ω(t)

δNODE(t)

ωNODE(t)

δPINN(t)

ωPINN(t)

Figure 7: True, neural-ODE (NODE) and PINN estimate of the generator state variables in stable
conditions.

D.1 LEARNING THE GENERATOR DYNAMICS

Runtime comparison between neural-ODEs and a traditional ODE solver. Here the goal is to
evaluate the neural-ODE’ inference time to produce the generators’ state variables estimates and to
compare it with the computational time of a traditional ODE solver. Given the synchronous gener-
ator model described by (12), a numerical ODE solver could be adopted to determine the evolution
in time of the state variables δg(t) and ωg(t). However, in case of unstable conditions, the system
response can be as rapid as, or even exceed, the time required for computing the ODE solution with
a numerical solver. This situation is depicted in Figure 6 where unstable conditions arise before a
numerical solution to the system of differential equations (12) is computed. Conversely, the neural
ODE modelN g

ϕ is capable of detecting unstable conditions before the system transitions into an un-
stable state, while also providing a good approximation of the solution. This speed advantage arises

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 3: Average (steady-state) decision errors for the WSCC 9-bus system across different ap-
proaches based on 40 trials.

Models MSE (Mean Squared Error) ×10−4

Fω Nθ pr qr |V | θ

DE-OP (ours) 2.45± 0.253 3.26± 0.127 2.55± 0.354 3.82± 0.924
MSE ∅ 1.90± 0.272 1.63± 0.580 0.32± 0.153 0.43± 0.149
LD ∅ 1.77± 0.163 1.72± 0.284 0.16± 0.099 0.55± 0.051

DC3 ∅ 1.86± 0.217 1.65± 0.262 0.26± 0.195 0.48± 0.343

Table 4: Average (steady-state) decision errors for the IEEE 57-bus system across different ap-
proaches based on 40 trials.

Models MSE (Mean Squared Error) ×10−3

Fω Nθ pr qr |V | θ

DE-OP (ours) 5.05± 0.175 7.42± 1.482 2.99± 0.214 4.43± 0.673
MSE ∅ 3.48± 0.321 3.86± 1.512 0.77± 0.148 1.42± 0.237
LD ∅ 3.97± 0.279 3.52± 2.427 0.34± 0.012 0.95± 0.054

DC3 ∅ 3.31± 0.579 6.74± 0.580 0.51± 0.078 0.64± 0.081

Table 5: Average and standard deviation of constraint violations and (steady-state) optimality gap
on the WSCC 9-bus system for different approaches based on 40 independent runs.

Models Metrics

Fω Nθ Stability Vio. Flow Vio.
×10−3

Boundary Vio.
×10−4

Optimality Gap*
(at steady-state)

DE-OP (ours) 0.00 8.32± 0.596 0.41± 0.243 0.13± 0.02
MSE ∅ 2.26± 0.189 10.45± 2.183 9.72± 4.930 0.13± 0.02
LD ∅ 2.13± 0.175 7.19± 0.425 0.00 0.11± 0.01

DC3 ∅ 2.45± 0.205 0.00 0.00 0.11± 0.01

from the neural-ODE’ vector field approximation of (12), which enables quicker computation of the
forward pass of a numerical ODE solver (Kidger, 2022). Table 2 reports the average and standard
deviation of computational time, for numerical solvers, and inference time, for neural-ODEs, given
2 different numerical algorithms. Neural-ODE models are, on average, about 20 times faster than a
numerical solver which uses the dynamic equations of (12). This aspect makes neural-ODE models
natural candidates as dynamic predictors for the generator model in real-time applications.

Comparison between neural-ODEs and PINNs. Here the goal is to asses the precision of the
neural-ODEs’ estimate of the generator state variables and to compare them with PINNs Misyris
et al. (2019). PINNs are ML-based models that incorporates known physical laws into the learning
process. Instead of relying solely on data, PINNs use physics-based constraints to guide the train-
ing, ensuring that the model’s predictions are consistent with the underlying scientific principles.
Figure 7 shows the neural-ODE and PINNs’ state variables estimates in case of stable conditions.
While a neural-ODEs model produces highly accurate state variables’ predictions, a PINN model
trained on the same dataset Dg but affected by a generalization bias, is incapable of capturing the
generator dynamics across different instances of the generator model (12) and produces poor state
variables estimates. Specifically, the percentage ℓ2 error between the numerical ODE solver solu-
tions δ(t), ω(t) and the neural-ODE (NODE) predictions δNODE(t), ωNODE(t) is 5.17%, while for the
PINN predictions δPINN(t), ωPINN(t) is significantly higher at 69.45%.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

D.2 CONSTRAINT VIOLATIONS AND (STEADY-STATE) DECISION ERRORS

Tables 3 and 4 report the (steady-state) decision error (MSE) at test time of DE-OP and the baseline
PO methods on the WSCC 9-bus and IEEE 57-bus system, respectively. Specifically, the tables re-
ports the MSE of estimated solutions with respect to the ground-truth solutions, with the assumption
that the synchronous generators are in steady-state. The same considerations reported in Section 5.2
regarding the steady-state optimality gaps apply also for the following discussion. In other words,
the ground truth variables used to compute the decision errosr, are obtained from solving the steady-
state ACOPF problem, and as such, the decision errors here reported do not necessarily reflect that
of each method for solving the Stability-Constrained AC OPF problem. Nonetheless, this metric
provides valuable insights on the impact of the decision variables on the dynamics requirements of
Problem 2.

Firstly, note that, for each test case, all the methods achieve similar decision error. Despite that,
as shown in Table 1 of the main paper and Table 5, and Figures 4, 5 of the main paper, DE-OP is
the only method that satisfy exactly the dynamic requirements (17), while all the baseline methods
systematically violate the stability constraint. These results suggest that DE-OP modifies potentially
unstable set points, at a cost of a only slightly higher MSE than the baseline approaches. Note in
particular the MSE error of the OPF variables |V | and θ; these variables directly affect the generator
dynamics in (12), and thus their modification is necessary to satisfy the stability constraint. This
trade-off is crucial for practical applications, where the dynamic requirements must be addressed.
Table 5 shows the violation of the static (flow and boundaries), along with the optimality gap with
the assumption that the generators are in steady-state, for each method on the WSCC-9 bus system.
Similarly to the IEEE 57 test-case discussed in Section 5.2, DC3 is the only method which achieves
steady-state constraint satisfactions. All methods except DC3 generate comparable violations of the
flow balance constraints, which is the most difficult constraint to satisfy due to its non-linear nature
defined by Constraint (11f) and (11g). LD satisfy the boundary constraint by projecting its output
û within the feasible set defined by Constraints (11b)-(11c). Empirically, we found that removing
this projection operation within the DE-OP model Fω , in some cases allows to satisfy the dynamic
requirements. We did not thoroughly investigate this result, but our intuition is that in some cases
the decision variables |V |, θ involved in the stability analysis must assume values close to their
boundaries to satisfy stability constraints. This comes at a cost of minimal boundary constraint vio-
lations from DE-OP. MSE, lacking of a mechanism to encourage constraint satisfactions, produces
solutions violating each constraint function.

D.3 STEADY-STATE OPTIMALITY GAPS

This subsection discusses the sub-optimality of the estimated solution û with respect to the ground
truth u⋆, with the assumption that the generators are in steady-state conditions, given parameters
ζ and measured in terms of objective value (16a), of DE-OP and each baseline method. The same
considerations reported in Section 5.2 regarding the steady-state optimality gaps and how this metric
should be interpreted, apply also for the subsequent discussion. Table 1 in the main paper and Table
5 report the optimality gaps on the WSCC-9 and IEEE-57 bus system, respectively. The tables
report that all the methods achieve comparable gaps on each test case. This is intuitive, since the
optimality gap depends solely on the power generated pr (see objective function (16a)), and all
methods produce similar pr’s prediction error, as displayed in Tables 3 and 4. For the WSCC bus
system, DE-OP produces average optimality gap of 0.13% while preserving system stability, that are
comparable with the best optimality gap - LD with 0.11 and DC3 with 0.11 - which often violates
stability constraints.

D.4 INFERENCE TIME

Finally, we evaluate the average inference time of DE-OP and each baseline proxy optimizer method.
Table 6 shows the inference time of each proxy optimizer method on each test case. On average, DE-
OP produces near-optimal and stable solutions in 1 (ms) and 9 (ms) for the WSCC-9 bus and IEEE
57-bus, respectively, which is slightly higher but comparable with the MSE and LD approaches,
and about 15× faster than the DC3 method. DC3 achieves the highest inference time, due to its
correction and completion procedure, which requires solving a nonlinear system of equations and
the Jacobian matrix computation. While DE-OP can be already used for near real-time applications,

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Table 6: Average and standard deviation of inference times for different OPF learning approaches
in the test cases.

Models WSCC 9-bus IEEE 57-bus

Fω Nθ Inference Time (sec)

DE-OP (ours) 0.001± 0.00 0.009± 0.00
MSE ∅ 0.000± 0.00 0.001± 0.00
LD ∅ 0.000± 0.00 0.001± 0.00

DC3 ∅ 0.025± 0.00 0.089± 0.00

its efficiency could be improved by computing the state variables in parallel, since each dynamic
predictor is independent. This aspect makes DE-OP’ inference time independent from the size of
number of state variables and dynamical systems, suggesting potential for large-scale and complex
systems.

E ADDITIONAL EXPERIMENTAL RESULTS: DYNAMIC PORTFOLIO
OPTIMIZATION

0.0 0.2 0.4 0.6 0.8 1.0
Time (d)

0.0

0.1

0.2

0.3

0.4

0.5

0.6 y0(t)

ŷ0
LSTM(t)

ŷ0
NSDE(t)

Figure 8: Asset prices (blue), LSTM (red) and neural-SDE asset prices estimates.

E.1 LEARNING THE ASSET PRICE DYNAMICS

Comparison between neural-SDE and LSTM. Fig. 8 illustrates the asset price trends given
different initial asset prices ζ0, with estimates ŷ0(t) provided by both a neural-SDE model and an
LSTM model, alongside the true asset prices y0(t) computed with a numerical SDE solver imple-
menting Euler-Maruyama method (Hu et al., 2018). It is evident that, given different initial asset
price ζ0, the neural-SDE model produces more accurate predictions than the LSTM model, by ex-
plicitly capturing the asset pricing dynamic equations. These accurate predictions lead to more
informed and higher quality decision making, as discussed in Section 5.1.

E.2 OPTIMALITY GAPS

This section report additional results of DE-OP and the baseline methods across different proxy
optimizer methods and asset price predictors on the Dynamic Portfolio Optimization task with n =
20 and n = 50. Figures 9 and 10 display the average, percentage optimality gap on the test set,
across different methods, for n = 20 and n = 50, respectively. In both figures, it is evident that
for a given proxy optimizer method (e.g., Lagrangian Dual), by using neural-SDE predictors to
capture the asset prices dynamics, DE-OP yields superior decision quality compared to the baseline
methods. For n = 20, DE-OP achieves the lowest optimality gaps - 12.92% for DC3, 5.23% for

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

Nµ =n-SDE Nµ =LSTM Nµ =FFrwrd Nµ = ;
5

10
20

50

130

O
pt

.
ga

p
(%

)

DE-OP

Static-only (DC3)

Static-only (LD)

Static-only (PDL)

Nµ =n-SDE Nµ =LSTM Nµ =FFrwrd Nµ = ;
5

10
20

50

130

O
pt

.
ga

p
(%

)

DE-OP

Static-only (DC3)

Static-only (LD)

Static-only (PDL)

Figure 9: Average percentage optimality gap
with n = 20 asset prices for each method across
different proxy optimizer methods.

Nµ =n-SDE Nµ =LSTM Nµ =FFrwrd Nµ = ;
5

10
20

50

130

O
pt

.
ga

p
(%

)

DE-OP

Static-only (DC3)

Static-only (LD)

Static-only (PDL)

Nµ =n-SDE Nµ =LSTM Nµ =FFrwrd Nµ = ;
5

10
20

50

130

O
pt

.
ga

p
(%

)

DE-OP

Static-only (DC3)

Static-only (LD)

Static-only (PDL)

Figure 10: Average percentage optimality gap
with n = 50 asset prices for each method across
different proxy optimizer methods.

LD, and 13.45% for PDL - by capturing the asset prices dynamics via explicit modeling of the asset
prices’ dynamics. Predicting the final asset price with LSTM leads to optimality gaps of 8.67%
for LD, and 19.00% for PDL for PDL, performing consistently worse than DE-OP, due to its lack
of explicit dynamic modeling. The Feed Forward model performs significantly worse, leading to
significantly higher gaps - 121.56% for DC3, 100.45% for LD, and 110.33% for PDL - highlighting
its limitations in capturing the time-dependent nature of the data, similarly to the proxy optimizer
methods which ignore the system dynamics, which achieve 103.98% for DC3, 111.63% for LD,
and 115.11% for PDL. Overall, these results follow the trend reported in Figure 3 and discussed
in Section 5.1 of the main paper, concerning the optimization task with n = 50. Among the proxy
optimizer methods considered, Lagrangian Dual consistently outperforms DC3 and PDL, suggesting
that precomputed solutions can enhance the accuracy and robustness of optimization proxies. The
optimality gaps achieved by each method when n = 50, increase with respect to the optimality
gaps achieved by the corresponding method when n = 20, likely due to a higher complexity of the
optimization task. These results highlight the importance of accurate dynamic predictions, which in
turn enable, in a subsequent stage, generating high quality investment allocations.

23

	Introduction
	Related works
	Settings and Goals
	DE-Optimization Proxy
	Neural Optimization Surrogate
	Neural Estimation of the State Variables
	Handling Static and Dynamics Constraints Jointly

	Experimental setting
	Dynamic Portfolio Optimization
	Stability-Constrained AC-Optimal Power Flow

	Conclusion
	Stochastic Differential Equation Constrained Optimization
	Stability Constrained AC-Optimal Power Flow
	AC-Optimal Power Flow problem
	Generator dynamics
	Stability-Constrained AC-Optimal Power Flow Problem
	Dynamic Portfolio Optimization

	Additional Experimental Details
	Proxy optimizer methods
	Stability Constrained AC-Optimal Power Flow experiment
	Dynamic Portfolio Experiment

	Additional experimental results: Stability Constrained AC Optimal Power Flow
	Learning the generator dynamics
	Constraint violations and (steady-state) decision errors
	Steady-state optimality gaps
	Inference time

	Additional experimental results: Dynamic Portfolio Optimization
	Learning the asset price dynamics
	Optimality gaps

