
Practical Code RAG at Scale: Task-Aware Retrieval
Design Choices under Compute Budgets

Anonymous Author(s)
Affiliation
Address
email

Abstract

We study retrieval design for code-focused generation tasks under realistic compute1

budgets. Using two complementary tasks from Long Code Arena — code comple-2

tion and bug localization — we systematically compare retrieval configurations3

across various context window sizes along three axes: (i) chunking strategy, (ii)4

similarity scoring, and (iii) splitting granularity. (1) For PL→PL, sparse BM25 with5

word-level splitting is the most effective and practical, significantly outperforming6

dense alternatives while being an order of magnitude faster. (2) For NL→PL,7

proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers,8

however requiring 100x larger latency. (3) Optimal chunk size scales with available9

context: 32–64 line chunks work best at small budgets, and whole-file retrieval10

becomes competitive at 16000 tokens. (4) Simple line-based chunking matches11

syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200×12

across configurations; BPE-based splitting is needlessly slow, and BM25 + word13

splitting offers the best quality–latency trade-off. Thus, we provide evidence-based14

recommendations for implementing effective code-oriented RAG systems based15

on task requirements, model constraints, and computational efficiency.16

1 Introduction17

Large language models (LLMs) have rapidly advanced the state of the art in code intelligence, demon-18

strating impressive capabilities in code synthesis, refactoring, and defect detection –– combining19

both generation and retrieval-based enhancements [Wang et al., 2023, Su et al., 2024, Tan et al.,20

2025b, Zhou et al., 2025]. Despite these advances, even the largest models struggle to internalize21

the long-tail knowledge scattered throughout real-world software projects [Bogomolov et al., 2024,22

Kandpal et al., 2023, Zhou et al., 2024]. Retrieval-augmented generation (RAG) tackles this limitation23

by augmenting the model’s prompt with text retrieved on-the-fly from an external corpus [Lewis24

et al., 2020].25

While RAG has become standard for open-domain question answering, its adaptation to software26

engineering tasks remains insufficiently examined. Source code presents unique challenges compared27

to natural language: it is highly structured, often exceeds typical context windows, and combines28

multiple languages and modalities (e.g., code, comments, issue reports). As a result, text-based RAG29

best practices do not transfer directly to code. Prior work has addressed individual aspects of this30

domain. Sparse lexical methods such as BM25 [Beaulieu et al., 1997, Robertson and Zaragoza, 2009]31

remain strong baselines for code search [Zhang et al., 2023, Zhou et al., 2023], while dense models32

like CodeBERT Feng et al. [2020] and E5 Wang et al. [2022] offer improved cross-modal alignment.33

More specialized retrieval approaches have explored leveraging the semantic and syntactic structure34

of code, including syntax-aware chunking strategies [Su et al., 2024, Zhou et al., 2025] and the use of35

repository-specific dependency graphs [Cheng et al., 2024, Zhang et al., 2025] to guide retrieval. Yet,36

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

to the best of our knowledge, no study has systematically compared these design choices under a37

unified RAG pipeline across multiple code-centric tasks.38

In this paper, we fill that gap by benchmarking a spectrum of RAG configurations on two comple-39

mentary tasks from the Long Code Arena (LCA) benchmark collection Bogomolov et al. [2024]:40

Code completion (CC). The task is to generate the next line of code, conditioned on the preceding41

code context. This task involves programming language to programming language (PL→PL) retrieval.42

Bug localization (BL) Identifying target files required correction based on issue text. This task43

involves natural language to programming language (NL→PL) retrieval.44

Both tasks require accurate retrieval of semantically related and often distant context snippets before45

generation. We then use these tasks to explore mixtures of various approaches coming from three46

orthogonal RAG axes: the chunking strategy — dividing code into whole files, fixed-sized segments,47

or syntax-aware chunks; the similarity scorer — sparse metrics such as BM25 or IoU, dense48

encoders, and repository structure-aware approaches; and the tokenization granularity (for sparse49

retrieval only) — measuring similarity at the level of BPE tokens, words, or lines of code. By jointly50

varying these dimensions, we aim to clarify their individual and combined contributions to retrieval51

effectiveness in code-focused RAG. In addition, our experimental design varies the model context52

window from 128 to 16,000 tokens to study interactions between retrieval granularity and LLM53

capacity. The study yields several actionable insights.54

We find that there is no single retrieval configuration that excels at all code tasks — each requires55

its own optimal approach. For code completion (PL→PL), lightweight, sparse retrieval with BM2556

and word-level splitting stands out, significantly outperforming more complex dense models both57

in accuracy and speed. In contrast, bug localization (NL→PL) benefits far more from advanced58

dense embeddings, which provide much stronger alignment between natural language and code than59

traditional sparse methods. We demonstrate that latency varies by up to 200× between configurations,60

emphasizing the importance of holistic cost-quality trade-offs for practical deployment.61

Chunk size also matters: smaller code chunks (32-64 lines) are best for models with limited context62

windows (≤4,000 tokens), while whole-file retrieval becomes effective as the available context63

grows (up to 16,000 tokens). Surprisingly, simple line-based chunking is consistently as effective as64

syntax-aware approaches, suggesting that elaborate code parsing offers limited benefit.65

Our findings serve as evidence-based guidelines for practitioners who must choose between accuracy,66

speed, and engineering complexity when building RAG systems for software engineering.67

2 Related Work68

While RAG is well studied for open-domain QA, its application to software engineering tasks69

remains relatively underexplored Oche et al. [2025]. Recent work in retrieval for code and software70

engineering tasks demonstrates a rich diversity of approaches, encompassing lexical, dense, hybrid,71

and structure-aware techniques, each balancing quality and latency in distinct ways.72

Dense and sparse similarity scorers remain competitive in code tasks [Robertson and Zaragoza,73

2009, Zhang et al., 2023, Zhou et al., 2023], while dense models such as CodeBERT Feng et al. [2020],74

GraphCodeBERT Guo et al. [2020], UniXcoder Guo et al. [2022], and E5 Wang et al. [2022] improve75

cross-modal alignment. Hybrid search [Lin, 2022] and learned sparse models like SPLADE Formal76

et al. [2021] aim to combine precision, recall, and efficiency. While these approaches have highlighted77

different strengths depending on the retrieval scenario, prior work generally selects one retrieval78

paradigm for a specific setting, lacking systematic benchmarking of retrieval strategies across multiple79

tasks and under various computational constraints.80

Chunking strategies vary from line-based windows, offering language-agnostic simplicity, to81

syntax-aware splitting that preserves structural coherence [Su et al., 2024, Zhou et al., 2025], and82

graph-guided retrieval using dependency or call graphs [Li et al., 2025, Cheng et al., 2024]. While83

some studies show semantic chunking can yield performance gains [Zhang et al., 2025, Singh et al.,84

2025, Chen et al., 2024], others argue that the computational costs associated with semantic chunking85

are not justified by consistent performance gains Qu et al. [2025]. Further, works like Nguyen et al.86

[2025] explore optimal chunk sizes but are limited in scope. Despite these efforts, it remains unclear87

2

how chunking choices interact with retrieval methods and task modalities in realistic code-focused88

RAG pipelines.89

Tokenization granularity for sparse retrieval — as in token-, word-, or line-level splitting — is90

seldom studied systematically and is often treated as an implementation detail. While some recent91

work has compared some granularities for natural language tasks Zhang and Tan [2021], Ogundepo92

et al. [2022] and found token-level splitting performs best, such findings have not been extended to93

code-focused RAG, nor have efficiency implications been explored. We address this gap by explicitly94

evaluating tokenization granularity as a separate axis in our experiments.95

Efficiency–quality trade-offs have been the focus of recent studies, which highlight challenges in96

system latency and resource consumption. Recent works, such as [Shen et al., 2024, Ray et al.,97

2025], provide a thorough analysis, mainly focusing on indexing techniques for dense retrieval. Our98

work complements these directions by systematically benchmarking retrieval design choices for99

code-related RAG tasks, extending the analysis to a broader range of retrieval techniques.100

Task-specific pipelines, such as ReACC, RepoFormer and ProCC [Lu et al., 2022, Wu et al.,101

2024, Tan et al., 2025a] for retrieval-augmented code completion, ReCo Li et al. [2024] for stylistic102

normalization in code search, and CodeRAG Li et al. [2025], which leverages requirement–code103

graphs, demonstrate substantial gains on their respective tasks. These targeted solutions illustrate that104

retrieval choices — including representation, chunking, and the use of code structure — can have105

significant task-dependent impacts.106

Collectively, these works highlight the versatility of retrieval approaches — lexical, dense, hybrid,107

and structure-aware. Each exhibiting distinct quality — latency trade-offs that map onto retrieval108

design axes such as chunking strategy, similarity scoring, and tokenization granularity. However,109

most prior studies assess these factors in isolation or optimize for a single configuration, leaving110

open the question of how these choices interact under realistic compute constraints and varying task111

modalities. Our work addresses this gap by benchmarking diverse retrieval configurations across112

two complementary code tasks under varying context windows and latency constraints, enabling113

evidence-based recommendations for task- and budget-aware code-oriented RAG system design.114

3 Experimental Setup115

3.1 Tasks and Metrics116

Dataset and scope. All experiments are run on the Long Code Arena (LCA) benchmark Bogomolov117

et al. [2024]. Retrieval is restricted to the target repository. We do not train or fine-tune any models.118

Code Completion (CC). The task is to generate the next line of code, conditioned on the preceding119

code context. Target lines are selected to reference code entities — classes or methods — defined120

in other files of the same repository. Primary retrieval metric is an exact match (EM): we record121

EM = 1 if the target line matches the generated one; otherwise, EM = 0. We report the mean EM122

over instances. The retrieval task is to retrieve the code according to the context of the completion123

file of the chunk (PL-PL), without seeing the target line itself. Generation is then performed with124

DEEPSEEK-CODER-1.3B. The tasks are provided for two languages: Kotlin and Python.125

Bug Localization (BL). Given a natural-language issue description, the retrieval task is to rank126

repository files by likelihood of containing the described bug. The ground truth set is unordered127

and may contain several files. Following the LCA work, we evaluate ranking with Normalized128

Discounted Cumulative Gain (NDCG) Järvelin and Kekäläinen [2002]. The tasks are provided for129

three languages: Java, Kotlin, and Python.130

3.2 Retrieval Components131

We factor retrieval into three orthogonal sub-modules.132

Chunker maps each source file to a set of textual chunks to be indexed. We consider (i) whole files,133

a single chunk per file; (ii) fixed-length non-overlapping windows of 8, 16, 32, 64, or 128 lines, and134

(iii) syntax-aware recursive splitter via LANGCHAIN Chase and Contributors [2022] with a target135

length matched to the corresponding fixed-line alternative.136

3

Splitter (applies for sparse retriever only) splits a chunk into a bag of "tokens" consumed by the scorer.137

Options are (i) line-level, each distinct line is a token, (ii) word-level, split on non-alphanumeric138

boundaries; drop punctuation and numerals; no stemming, and (iii) BPE, byte-pair tokens.139

Scorer assigns a similarity score between query and chunk. We test (i) sparse lexical scorers: IoU (nor-140

malized set overlap) and BM25 (Okapi), (ii) dense bi-encoder models: E5-small/base/large Wang et al.141

[2022], Voyager-3/Code/Lite Voyage AI [2025], (iii) Structure-aware: DraCo (dataflow/dependency142

graph) and a path-distance heuristic. DraCo (Dataflow-guided Retrieval Augmentation) Cheng et al.143

[2024] leverages static dataflow analysis to collect the context. Path-distance heuristic retrieves144

context based on how close files are in the directory tree, assuming that files located nearer to each145

other are more likely to be relevant.146

The retrieval configuration is therefore a triplet (chunker, splitter, scorer). Unless noted, dense147

encoders use a 512-token limit; longer documents are truncated from right.148

3.3 Packing and budgets149

Query construction CC: the query is the last chunk from the completion file with the target line150

removed. BL: the query is the issue text.151

Ranking and packing For each query, we rank candidate chunks/files. We then greedily pack the152

top-ranked items into the prompt until a token budget is reached, preserving rank order and discarding153

overflows. Budgets for CC are 128, 4,096, 8,192, and 16,384 tokens. BL is evaluated as a ranking154

task over files (NDCG) and does not use a packing budget.155

Hybrids and reranking Structure-aware lists (DraCo) are combined with the best-performing156

sparse/dense retriever by prepending the structure-aware candidates and backfilling with BM25-157

ranked items to fill the budget. If the structure-aware method returns fewer candidates than needed,158

we continue with BM25 order.159

3.4 Hyper-parameter Search160

A full grid over all axes would require an excessive number of runs, so we adopt a staged search:161

Stage 1 scorer×splitter. Using the whole file as a chunk, we benchmark every (scorer, splitter)162

pair and select the best per task. Results select BM25 + word for CC; E5-large and Voyger-3163

for BL.164

Stage 2 chunk size. Fixing the chosen at Step 1 scorer and splitter, we sweep chunk line windows165

∈ {8, 16, 32, 64, 128} and whole files. We measure EM (@CC) for each candidate at four166

LLM context budgets: 128, 4 096, 8 192, 16 384 tokens.167

Stage 3 chunker type Compare the best fixed-line window from Stage 2 to syntax-aware recursive168

splitting with matched average lengths.169

Stage 4 hybrid rerankers. Evaluate dataflow graph-based DraCo and path distance combined with170

the best sparse/dense retriever.171

The code completion task is sensitive to context size, so we report scores across a range of context172

lengths (128–16,000 tokens) and analyze how performance depends on context size and other factors.173

This progressive refinement methodology allowed us to systematically narrow the search space while174

identifying the most effective configuration components at each stage of the optimization process.175

3.5 Implementation notes176

Source files are indexed as-is (comments and strings retained). Word-level splitting removes punctu-177

ation and numerals; no stemming or identifier de-camelization is applied. We use dense encoders178

off-the-shelf. All latency measurements reported later are wall-clock times.179

4

Figure 1: Exact match scores for various combinations of splitters and scorers.

4 Results and Analysis180

4.1 Code Completion Task181

4.1.1 Optimal Scorers and Splitters182

In this experiment, we fix the chunker to whole-file retrieval and sweep scorer–splitter pairs across183

context budgets. For sparse scorers (BM25, IoU), we evaluate line-, word-, and BPE-level splitters.184

Dense encoder (E5-large) operates on raw text and ignores the splitter choice. Retrieved files are185

packed greedily in rank order up to the context budget. Figure 1 summarizes the results for the186

evaluated splitter–scorer pairs. Three consistent trends emerge:187

BM25 dominates in accuracy. BM25 achieves the highest exact-match rate, outperforming both188

IoU and dense embeddings by ≈ 10 p.p. on average for medium and large context lengths (> 2 000),189

where lexical overlap remains informative.190

Word splitter is more efficient than BPE, while showing same quality. Using BPE tokens or plain191

words with BM25 yields statistically indistinguishable EM; however, the word splitter is 9× faster to192

build. We therefore adopt the BM25 scorer with word splitter as our default sparse configuration.193

Dense encoders plateau early. E5-large trails BM25, making sparse methods the pragmatic choice194

for PL→PL retrieval, particularly for longer documents, which require more resources to encode.195

IoU with line splitting sits in the middle ground, cheaper than BM25 but also ≈ 4 p.p. worse on196

EM, making it attractive only for latency-critical deployments.197

4.1.2 Optimal Chunking198

We study chunk-size choice under the best sparse configuration from the previous subsection: BM25199

with word-level splitting. We vary two knobs:200

Index chunk size Li {8, 16, 32, 64, 128, inf}. For every file, including the completion file, we index201

non-overlapping windows of a Li lines; inf denotes whole-file indexing.202

Query window size Lq {8, 16, 32, 64, 128}. For completion file, query consists of the last Lq lines203

preceding the target line. Retrieved chunks are greedily packed in rank order up to the budget tokens.204

The results (Figure 2) revealed a clear relationship between optimal chunk size and the model’s205

context window length. Small chunks (8-16 lines) consistently underperformed across all context206

lengths, likely because they contained insufficient information to establish meaningful relevance.207

For models with shorter context windows (less than 4,000 tokens), moderate chunks of 32-64 lines208

provide the best performance and saturate faster. For models with longer context windows (> 8,000209

tokens), larger completion chunk sizes of 128 lines or more yielded superior results at large context,210

but saturate more slowly with context size. Ultimately, when models had access to extensive context211

windows (16,000 tokens), the whole file approach performed on par with chunked alternatives. This212

suggests that smaller contexts benefit from more granular retrieval units that can precisely match the213

5

Figure 2: Exact match scores for various completion file sizes and chunk size

Figure 3: Exact match scores of benchmarked retrievers.

query, while longer contexts benefit from having more comprehensive code segments that preserve214

broader structural and contextual information.215

Line splitting demonstrated a slight but consistent performance advantage over code structure-aware216

splitting across all parameters. This surprising result suggests that simple line-based chunking may217

preserve sufficient code coherence.218

These findings provide valuable guidance for RAG system implementation. They suggest that chunk219

sizes should be dynamically adjusted based on the underlying generation model’s context window220

length rather than using a one-size-fits-all approach. Additionally, results demonstrate that line221

splitting performs on par with a more sophisticated structure-aware chunking approach. It offers222

implementation simplicity and a language-agnostic application, making it a robust choice for general223

code retrieval systems.224

4.1.3 Structure-Aware Code Retrieval225

We evaluated the dataflow-guided DraCo retriever, leveraging the import dependency graph structure226

to identify files directly relevant to the completion target file as well as path-distance retriever. We227

augment DraCo’s selections with additional files identified through BM25 ranking, as DraCo returns228

only limited number of files.229

The results (Figure 3) indicate that chunking-based retrieval provides superior accuracy for medium230

contexts (< 8,000 tokens). However, as context length increases, the DraCo and chunking approaches231

converge towards similar performance levels. Path distance retrieval remains consistently lower-232

performing, suggesting that directory structure alone is insufficient for optimal context selection for233

the code completion task.234

6

Figure 4: NDCG scores for various combinations of splitters and scorers for sparse retrieval

Table 1: NDCG scores for various models on the bug localization task.

Model
Embed

dim
Context
length

Time,
s/1M symb* NDCG

java kotlin python mean
Voyager-3-code 512 1,024 512 19 0.712 0.701 0.738 0.717
Voyager-3-code 1,024 32,000 110** 0.708 0.676 0.705 0.696
Voyager-3 1,024 32,000 32 0.660 0.697 0.651 0.670
Voyager-3-lite 512 32,000 17 0.647 0.637 0.625 0.636
BM25, word splitter — ∞ 0.07 0.541 0.547 0.635 0.574
BM25, token splitter — ∞ 1.2 0.573 0.538 0.614 0.575
E5 large 560M 1,024 514 2.8 0.596 0.569 0.606 0.590
E5-base 278M 768 514 1.1 0.446 0.478 0.467 0.464
E5-small 117M 384 514 0.7 0.409 0.511 0.491 0.470

*retrieval time includes encoding the whole repository for each data point. Symbols are counted all - even
truncated ones, which were not used in the encoder.
**retrieval time for Voyager-3-code is exceedingly high because we have to set batch_size=2 due to the limit of
120,000 tokens per request.

4.2 Bug Localization Task235

We evaluate bug localization as NL→PL file ranking with NDCG. Sparse methods (BM25, IoU)236

use line-, word-, or BPE-level splitting. Dense encoders (E5 small/base/large and Voyager-3 family)237

operate on raw text with model-specific input limits; overlength files were truncated from the right.238

Figure 4 summarizes sparse variants. BM25 consistently outperforms IoU across Java, Kotlin, and239

Python, reflecting the limits of exact-overlap signals in cross-modal queries. Table 1 extends the240

comparison to dense encoders and shows that dense retrieval is stronger on average: E5-large reaches241

a mean NDCG of 0.59 versus 0.57 for BM25 with a word splitter, despite the 512-token limit.242

Proprietary Voyager embeddings are substantially higher, with Voyager-3-Code at 0.72 mean NDCG.243

Language-wise, the gap narrows for Python: BM25+word attains 0.64 versus 0.61 for E5-large,244

suggesting that repositories with richer natural-language artifacts in code and comments reduce the245

advantage of semantic encoders.246

Efficiency varies greatly with splitting strategy. BM25 with a word splitter is the fastest (0.07 s per247

1M symbols), while BM25 with BPE/token splitting is 16× slower (1.15 s) without quality gains248

and can even lag behind lighter dense encoders (E5-small/base) due to larger context size. E5-large249

requires 2.8 s, while Voyager-3-Code (512) is substantially slower at 19 s; the 32000-token Voyager250

variants are even slower due to technical token-budget constraints at the time of experiments. These251

findings show that, for NL→PL ranking on large repositories (here roughly 20% of files exceed 15000252

tokens), dense models offer better accuracy even with truncation, but sparse BM25 with word-level253

splitting remains an excellent latency–quality baseline. When accuracy is paramount and cost permits,254

Voyager-3-Code leads by a wide margin; when latency or budget is critical, BM25+word is the255

pragmatic choice.256

7

Table 2: Retrieval latency and EM scores (the best setup) for different approaches for the code
completion task.

Scorer Splitter Time, s/1M repo symbols EM at 4K / 16K context
Path distance – 0.0005 0.37 / 0.55
IoU line 0.02 0.46 / 0.57
IoU word 0.1 0.44 / 0.51
BM25 word 0.2 0.55 / 0.60
IoU token 1.5 0.40 / 0.55
BM25 token 2.0 0.50 / 0.59
Dense (E5-large, 512) – 3.3 0.39 / 0.52

4.3 Latency Analysis257

We assess end-to-end retrieval latency normalized by repository size, including query tokenization,258

splitting and similarity scoring. For sparse methods, we use prebuilt inverted indices; for dense259

encoders, we report query-time document encoding plus similarity computation, which makes the260

dense figures an upper bound for deployments that could precompute embeddings.261

Table 2 summarizes results on the code completion setup. The path-distance heuristic is effectively262

free because it ignores content and operates only on directory metadata. Among content-based263

methods, IoU with line-level splitting is the fastest at 0.02 s/1M symbols; moving to word-level264

splitting raises cost to 0.1 s due to a larger token inventory per document. BM25 with word-level265

splitting remains reasonably efficient at 0.2 s and, as shown earlier, offers the best quality–latency266

balance for PL→PL. BPE/token-level pipelines are an order of magnitude slower (IoU 1.5 s; BM25267

2.0 s) without accuracy gains, reflecting tokenizer overhead and much larger posting lists. Dense268

retrieval with E5-large is the slowest at 3 s/1M symbols because it requires a forward pass over all269

candidate chunks.270

For a representative repository of 2.3 million symbols, these rates translate to approximately 1.2 ms271

for path distance, 0.04 s for IoU-line, 0.5 s for BM25-word, 3.5 s for IoU-token, 4.5 s for BM25-token,272

and 7.5 s for E5-large. Thus, the spread between the fastest practical content-based scorer (IoU-line)273

and a dense encoder is about 180×, and between BM25-word and E5-large about 14×, in line with274

the “orders of magnitude” difference noted earlier.275

The bug localization task presents a tougher efficiency–effectiveness trade-off. We recommend276

BM25-based retrieval over E5-large: it offers similar performance but is about 40× faster. Proprietary277

Voyage models achieve higher scores, but with much greater latency and cost. Ultimately, the choice278

is yours: use BM25 if speed and cost are paramount, or choose Voyage if you prioritize accuracy279

despite higher latency and expense.280

5 Limitations and Future Work281

For the retrieval part, we have not tested deduplication techniques to remove redundant information282

from retrieved contexts or context compression methods to maximize the utility of limited context283

windows. This could transform context window constraints, enabling even small-context models to284

effectively process information from larger code segments. However, context compression will come285

at some additional latency cost.286

This study focuses on two LCA tasks — single-line code completion (PL→PL) and bug localization287

(NL→PL) — across Java, Kotlin, and Python with repository-local retrieval. While these tasks are288

representative, the scope limits external validity: results may differ for multi-line completion/repair or289

long-form generation. We evaluated generation with a single small model (DeepSeek-Coder-1.3B) to290

isolate retrieval effects; preliminary checks with a larger variant showed similar trends. We anticipate291

that the core principles would remain consistent with our findings on this narrow set of tasks.292

Integrating additional code-specific structural information could enhance retrieval effectiveness,293

particularly for more complex tasks than code completion.294

8

6 Conclusions and Recommendations295

We systematically evaluated retrieval design choices for code-oriented RAG on two complementary296

tasks – PL→PL code completion and NL→PL bug localization. By varying chunking, similarity297

scoring, and splitting granularity across different context budgets, we provide critical insights to298

guide the implementation of effective RAG systems for software engineering.299

Sparse vs Dense. For code completion tasks involving PL-PL retrieval, sparse retrieval methods —300

particularly BM25 with word-level splitting — consistently delivered superior results with reasonable301

computational efficiency. In contrast, bug localization tasks that involve NL-PL retrieval showed302

markedly different behaviour. Dense retrieval methods using neural embeddings mostly outperformed303

sparse retrieval approaches, with models like E5-large marginally higher NDCG scores than BM25,304

and Voyager-3-Code, achieving ≈ 0.72 NDCG score compared to ≈ 0.57 achieved by BM25.305

These results reflect a modality-driven divide. In PL→PL code completion, substantial lexical overlap306

between the query and target makes sparse lexical scoring (e.g., BM25 with word-level splitting) a307

natural fit. In contrast, NL→PL bug localization benefits from dense encoders that capture semantic308

correspondence, bridging the gap between natural-language issue text and code implementations.309

Chunking. There is an important relationship between optimal chunk size and available context310

window. Moderate windows (32–64 lines) are best for small budgets (≤ 4000 tokens), larger windows311

(64–128 lines) help as budgets grow, and whole-file retrieval becomes competitive at 16000 tokens.312

This scaling relationship underscores the importance of aligning retrieval granularity with model313

capacity — smaller contexts benefit from precise, focused chunks that maximize the relevance density,314

while larger contexts leverage broader context to better understand complex code relationships.315

Sophisticated chunking. Line-based chunking matched or slightly exceeded syntax-aware splitting316

across budgets. We attribute this result to the fact that code completion relies more heavily on317

identifying semantically similar fragments rather than hierarchically related parent code structures in318

the codebase. This suggests that syntactic structure preservation may not be as critical as previously319

assumed for effective code retrieval, at least for the tasks evaluated in this study. This finding aligns320

with similar results reported for natural language tasks Qu et al. [2025].321

Latency. From a practical implementation perspective, our latency analysis revealed dramatic322

efficiency differences between retrieval approaches, with up to 180× speed differences between323

the fastest meaningful (IoU-line) and slowest (dense) methods. This emphasize the importance of324

balancing retrieval quality with computational efficiency, particularly for interactive applications325

where response time is critical.326

Based on these results, we offer the following recommendations for code RAG systems:327

1. Match the retrieval strategy to the task nature. Use BM25 with word splitting for code-to-328

code retrieval tasks and dense embedding methods for natural language-to-code retrieval329

scenarios. The additional computational cost of dense retrieval is justified by its superior330

performance in cross-modal scenarios.331

2. Align chunk granularity with model context capacity. As model context windows expand,332

increase chunk sizes accordingly. For models with shorter context window (≤ 4000 tokens),333

use 32-64 line chunks; for medium-length models (4000-8000 tokens), use 64-128 line334

chunks; and for models with long context windows (≥ 16000 tokens), consider retrieving335

entire files when appropriate. This applies to both index chunk size and query windowing.336

3. Prioritize implementation efficiency through strategic choices. The word splitter offers nearly337

identical performance to tokenizer-based approaches at a fraction of the computational cost.338

For applications with strict latency requirements, consider using IoU with line splitting,339

which delivers reasonable performance with minimal computational overhead.340

4. Complexity does not necessarily improve quality. As we show for the code completion341

task, structural information did not enhance performance. However, for bug localization,342

including file paths and import statements in the context significantly improved performance.343

5. Consider the entire retrieval pipeline holistically. The most effective RAG systems will344

likely combine multiple retrieval strategies with the specific configuration tailored to the345

task requirements, codebase characteristics, and computational constraints.346

9

References347

Micheline Beaulieu, Mike Gatford, Xiangji Huang, Stephen Robertson, Steve Walker, and P Williams.348

Okapi at trec-5. Nist Special Publication SP, pages 143–166, 1997.349

Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin,350

Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, and351

Timofey Bryksin. Long code arena: a set of benchmarks for long-context code models, 2024. URL352

https://arxiv.org/abs/2406.11612.353

Harrison Chase and LangChain Contributors. Langchain. https://github.com/langchain-ai/354

langchain, 2022. Accessed: 2025-08-19.355

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,356

and Dong Yu. Dense X retrieval: What retrieval granularity should we use? In Yaser Al-Onaizan,357

Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024 Conference on Empirical358

Methods in Natural Language Processing, pages 15159–15177, Miami, Florida, USA, November359

2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.845. URL360

https://aclanthology.org/2024.emnlp-main.845/.361

Wei Cheng, Yuhan Wu, and Wei Hu. Dataflow-guided retrieval augmentation for repository-level code362

completion. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd363

Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages364

7957–7977, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:365

10.18653/v1/2024.acl-long.431. URL https://aclanthology.org/2024.acl-long.431/.366

Zhangyin Feng, Daya Guo, Duyu Tang, and et al. CodeBERT: A pre-trained model for programming367

and natural languages. In Findings of EMNLP, pages 1536–1547, 2020.368

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. Splade v2: Sparse369

lexical and expansion model for information retrieval, 2021. URL https://arxiv.org/abs/370

2109.10086.371

Daya Guo, Shuo Ren, Shuai Lu, and et al. GraphCodeBERT: Pre-training code representations with372

data flow. arXiv preprint arXiv:2009.08366, 2020.373

Daya Guo, Shuo Ren, Shuai Lu, and et al. UniXcoder: Unified cross-modal pre-training for code374

representation. In Proceedings of EMNLP, pages 2715–2725, 2022.375

Kalervo Järvelin and Jaana Kekäläinen. Cumulated gain-based evaluation of ir techniques. ACM376

Trans. Inf. Syst., 20(4):422–446, October 2002. ISSN 1046-8188. doi: 10.1145/582415.582418.377

URL https://doi.org/10.1145/582415.582418.378

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language379

models struggle to learn long-tail knowledge. In Proceedings of the 40th International Conference380

on Machine Learning, ICML’23. JMLR.org, 2023.381

Patrick Lewis, Ethan Perez, Aleksandra Piktus, and et al. Retrieval-augmented generation for382

knowledge-intensive NLP tasks. In Advances in Neural Information Processing Systems (NeurIPS),383

2020.384

Haochen Li, Xin Zhou, and Zhiqi Shen. Rewriting the code: A simple method for large lan-385

guage model augmented code search. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,386

editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-387

guistics (Volume 1: Long Papers), pages 1371–1389, Bangkok, Thailand, August 2024. As-388

sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.75. URL https:389

//aclanthology.org/2024.acl-long.75/.390

Jia Li, Xianjie Shi, Kechi Zhang, Lei Li, Ge Li, Zhengwei Tao, Jia Li, Fang Liu, Chongyang Tao, and391

Zhi Jin. Coderag: Supportive code retrieval on bigraph for real-world code generation, 2025. URL392

https://arxiv.org/abs/2504.10046.393

10

https://arxiv.org/abs/2406.11612
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://aclanthology.org/2024.emnlp-main.845/
https://aclanthology.org/2024.acl-long.431/
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://doi.org/10.1145/582415.582418
https://aclanthology.org/2024.acl-long.75/
https://aclanthology.org/2024.acl-long.75/
https://aclanthology.org/2024.acl-long.75/
https://arxiv.org/abs/2504.10046

Jimmy Lin. A proposed conceptual framework for a representational approach to information394

retrieval. SIGIR Forum, 55(2), March 2022. ISSN 0163-5840. doi: 10.1145/3527546.3527552.395

URL https://doi.org/10.1145/3527546.3527552.396

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. ReACC:397

A retrieval-augmented code completion framework. In Smaranda Muresan, Preslav Nakov, and398

Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for399

Computational Linguistics (Volume 1: Long Papers), pages 6227–6240, Dublin, Ireland, May400

2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.431. URL401

https://aclanthology.org/2022.acl-long.431/.402

Hai-Toan Nguyen, Tien-Dat Nguyen, and Viet-Ha Nguyen. Enhancing retrieval augmented generation403

with hierarchical text segmentation chunking. In Wray Buntine, Morten Fjeld, Truyen Tran, Minh-404

Triet Tran, Binh Huynh Thi Thanh, and Takumi Miyoshi, editors, Information and Communication405

Technology, pages 209–220, Singapore, 2025. Springer Nature Singapore.406

Agada Joseph Oche, Ademola Glory Folashade, Tirthankar Ghosal, and Arpan Biswas. A systematic407

review of key retrieval-augmented generation (rag) systems: Progress, gaps, and future directions,408

2025. URL https://arxiv.org/abs/2507.18910.409

Odunayo Ogundepo, Xinyu Zhang, and Jimmy Lin. Better than whitespace: Information retrieval for410

languages without custom tokenizers, 2022. URL https://arxiv.org/abs/2210.05481.411

Renyi Qu, Ruixuan Tu, and Forrest Sheng Bao. Is semantic chunking worth the computational cost?412

In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Findings of the Association for Computational413

Linguistics: NAACL 2025, pages 2155–2177, Albuquerque, New Mexico, April 2025. Association414

for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.415

114. URL https://aclanthology.org/2025.findings-naacl.114/.416

Siddhant Ray, Rui Pan, Zhuohan Gu, Kuntai Du, Shaoting Feng, Ganesh Ananthanarayanan, Ravi417

Netravali, and Junchen Jiang. Metis: Fast quality-aware rag systems with configuration adaptation,418

2025. URL https://arxiv.org/abs/2412.10543.419

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and beyond.420

Foundations and Trends in Information Retrieval, 3(4):333–389, 2009. doi: 10.1561/1500000019.421

Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta. Towards422

understanding systems trade-offs in retrieval-augmented generation model inference, 2024. URL423

https://arxiv.org/abs/2412.11854.424

Ishneet Sukhvinder Singh, Ritvik Aggarwal, Ibrahim Allahverdiyev, Muhammad Taha, Aslihan425

Akalin, Kevin Zhu, and Sean O’Brien. Chunkrag: Novel llm-chunk filtering method for rag426

systems, 2025. URL https://arxiv.org/abs/2410.19572.427

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao428

Yu. EvoR: Evolving retrieval for code generation. In Yaser Al-Onaizan, Mohit Bansal, and429

Yun-Nung Chen, editors, Findings of the Association for Computational Linguistics: EMNLP430

2024, pages 2538–2554, Miami, Florida, USA, November 2024. Association for Computational431

Linguistics. doi: 10.18653/v1/2024.findings-emnlp.143. URL https://aclanthology.org/432

2024.findings-emnlp.143/.433

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing Li, Haotian Zhang, and Yuqun Zhang.434

Prompt-based code completion via multi-retrieval augmented generation. ACM Trans. Softw. Eng.435

Methodol., March 2025a. ISSN 1049-331X. doi: 10.1145/3725812. URL https://doi.org/10.436

1145/3725812. Just Accepted.437

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing Li, Haotian Zhang, and Yuqun Zhang.438

Prompt-based code completion via multi-retrieval augmented generation. ACM Trans. Softw. Eng.439

Methodol., March 2025b. ISSN 1049-331X. doi: 10.1145/3725812. URL https://doi.org/440

10.1145/3725812. Just Accepted.441

Voyage AI. Voyage ai documentation. https://docs.voyageai.com/, 2025. Accessed: 2025-08-442

19.443

11

https://doi.org/10.1145/3527546.3527552
https://aclanthology.org/2022.acl-long.431/
https://arxiv.org/abs/2507.18910
https://arxiv.org/abs/2210.05481
https://aclanthology.org/2025.findings-naacl.114/
https://arxiv.org/abs/2412.10543
https://arxiv.org/abs/2412.11854
https://arxiv.org/abs/2410.19572
https://aclanthology.org/2024.findings-emnlp.143/
https://aclanthology.org/2024.findings-emnlp.143/
https://aclanthology.org/2024.findings-emnlp.143/
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://docs.voyageai.com/

Sheng Wang, Yichao Liu, Zhihong Sun, and et al. Text embeddings by weakly-supervised contrastive444

learning. In Findings of ACL, pages 5110–5122, 2022.445

Weishi Wang, Yue Wang, Shafiq Joty, and Steven C.H. Hoi. Rap-gen: Retrieval-augmented446

patch generation with codet5 for automatic program repair. In Proceedings of the 31st ACM447

Joint European Software Engineering Conference and Symposium on the Foundations of Soft-448

ware Engineering, ESEC/FSE 2023, page 146–158, New York, NY, USA, 2023. Association449

for Computing Machinery. ISBN 9798400703270. doi: 10.1145/3611643.3616256. URL450

https://doi.org/10.1145/3611643.3616256.451

Di Wu, Wasi Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and Xi-452

aofei Ma. Repoformer: Selective retrieval for repository-level code com-453

pletion. 2024. URL https://www.amazon.science/publications/454

repoformer-selective-retrieval-for-repository-level-code-completion.455

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang456

Lou, and Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval457

and generation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023458

Conference on Empirical Methods in Natural Language Processing, pages 2471–2484, Singapore,459

December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.460

151. URL https://aclanthology.org/2023.emnlp-main.151/.461

Hang Zhang and Liling Tan. Textual representations for crosslingual information retrieval. In462

Shervin Malmasi, Surya Kallumadi, Nicola Ueffing, Oleg Rokhlenko, Eugene Agichtein, and Ido463

Guy, editors, Proceedings of the 4th Workshop on e-Commerce and NLP, pages 116–122, Online,464

August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.ecnlp-1.14. URL465

https://aclanthology.org/2021.ecnlp-1.14/.466

Yilin Zhang, Xinran Zhao, Zora Zhiruo Wang, Chenyang Yang, Jiayi Wei, and Tongshuang Wu. cast:467

Enhancing code retrieval-augmented generation with structural chunking via abstract syntax tree,468

2025. URL https://arxiv.org/abs/2506.15655.469

Chunying Zhou, Xiaoyuan Xie, Gong Chen, Peng He, and Bing Li. Multi-view adaptive contrastive470

learning for information retrieval based fault localization, 2025. URL https://arxiv.org/abs/471

2409.12519.472

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-473

erating code by retrieving the docs. In The Eleventh International Conference on Learning474

Representations, 2023. URL https://openreview.net/forum?id=ZTCxT2t2Ru.475

Xin Zhou, Kisub Kim, Bowen Xu, Jiakun Liu, DongGyun Han, and David Lo. The devil is in the476

tails: How long-tailed code distributions impact large language models. In Proceedings of the477

38th IEEE/ACM International Conference on Automated Software Engineering, ASE ’23, page478

40–52. IEEE Press, 2024. ISBN 9798350329964. doi: 10.1109/ASE56229.2023.00157. URL479

https://doi.org/10.1109/ASE56229.2023.00157.480

12

https://doi.org/10.1145/3611643.3616256
https://www.amazon.science/publications/repoformer-selective-retrieval-for-repository-level-code-completion
https://www.amazon.science/publications/repoformer-selective-retrieval-for-repository-level-code-completion
https://www.amazon.science/publications/repoformer-selective-retrieval-for-repository-level-code-completion
https://aclanthology.org/2023.emnlp-main.151/
https://aclanthology.org/2021.ecnlp-1.14/
https://arxiv.org/abs/2506.15655
https://arxiv.org/abs/2409.12519
https://arxiv.org/abs/2409.12519
https://arxiv.org/abs/2409.12519
https://openreview.net/forum?id=ZTCxT2t2Ru
https://doi.org/10.1109/ASE56229.2023.00157

	Introduction
	Related Work
	Experimental Setup
	Tasks and Metrics
	Retrieval Components
	Packing and budgets
	Hyper-parameter Search
	Implementation notes

	Results and Analysis
	Code Completion Task
	Optimal Scorers and Splitters
	Optimal Chunking
	Structure-Aware Code Retrieval

	Bug Localization Task
	Latency Analysis

	Limitations and Future Work
	Conclusions and Recommendations

