© © N O O A~ W N =

Practical Code RAG at Scale: Task-Aware Retrieval
Design Choices under Compute Budgets

Anonymous Author(s)
Affiliation
Address

email

Abstract

We study retrieval design for code-focused generation tasks under realistic compute
budgets. Using two complementary tasks from Long Code Arena — code comple-
tion and bug localization — we systematically compare retrieval configurations
across various context window sizes along three axes: (i) chunking strategy, (ii)
similarity scoring, and (iii) splitting granularity. (1) For PL—PL, sparse BM25 with
word-level splitting is the most effective and practical, significantly outperforming
dense alternatives while being an order of magnitude faster. (2) For NL—PL,
proprietary dense encoders (Voyager-3 family) consistently beat sparse retrievers,
however requiring 100x larger latency. (3) Optimal chunk size scales with available
context: 32—64 line chunks work best at small budgets, and whole-file retrieval
becomes competitive at 16000 tokens. (4) Simple line-based chunking matches
syntax-aware splitting across budgets. (5) Retrieval latency varies by up to 200x
across configurations; BPE-based splitting is needlessly slow, and BM25 + word
splitting offers the best quality—latency trade-off. Thus, we provide evidence-based
recommendations for implementing effective code-oriented RAG systems based
on task requirements, model constraints, and computational efficiency.

1 Introduction

Large language models (LLMs) have rapidly advanced the state of the art in code intelligence, demon-
strating impressive capabilities in code synthesis, refactoring, and defect detection — combining
both generation and retrieval-based enhancements [Wang et al.| [2023] [Su et al.| 2024/ [Tan et al.,
2025b} [Zhou et al., [2025]. Despite these advances, even the largest models struggle to internalize
the long-tail knowledge scattered throughout real-world software projects [Bogomolov et al., 2024,
Kandpal et al.,2023| Zhou et al.,[2024]]. Retrieval-augmented generation (RAG) tackles this limitation
by augmenting the model’s prompt with text retrieved on-the-fly from an external corpus [Lewis
et al.,[2020].

While RAG has become standard for open-domain question answering, its adaptation to software
engineering tasks remains insufficiently examined. Source code presents unique challenges compared
to natural language: it is highly structured, often exceeds typical context windows, and combines
multiple languages and modalities (e.g., code, comments, issue reports). As a result, text-based RAG
best practices do not transfer directly to code. Prior work has addressed individual aspects of this
domain. Sparse lexical methods such as BM25 [Beaulieu et al.,[1997, Robertson and Zaragoza, 2009]
remain strong baselines for code search [Zhang et al.,[2023| Zhou et al.| [2023]], while dense models
like CodeBERT [Feng et al.| [2020] and E5 [Wang et al.|[2022] offer improved cross-modal alignment.
More specialized retrieval approaches have explored leveraging the semantic and syntactic structure
of code, including syntax-aware chunking strategies [Su et al.| 2024} Zhou et al.| 2025] and the use of
repository-specific dependency graphs [[Cheng et al., 2024, |Zhang et al.|[2025] to guide retrieval. Yet,

Submitted to 39th Conference on Neural Information Processing Systems (NeurIPS 2025). Do not distribute.

37
38

39
40

41
42

43
44

45
46
47
48
49
50
51
52
53
54

55
56
57
58
59
60
61

62
63
64
65

66
67

68

69
70
71
72

73
74
75
76
77
78
79
80

81
82
83
84
85
86
87

to the best of our knowledge, no study has systematically compared these design choices under a
unified RAG pipeline across multiple code-centric tasks.

In this paper, we fill that gap by benchmarking a spectrum of RAG configurations on two comple-
mentary tasks from the Long Code Arena (LCA) benchmark collection Bogomolov et al.[[2024]:

Code completion (CC). The task is to generate the next line of code, conditioned on the preceding
code context. This task involves programming language to programming language (PL—PL) retrieval.

Bug localization (BL) Identifying target files required correction based on issue text. This task
involves natural language to programming language (NL—PL) retrieval.

Both tasks require accurate retrieval of semantically related and often distant context snippets before
generation. We then use these tasks to explore mixtures of various approaches coming from three
orthogonal RAG axes: the chunking strategy — dividing code into whole files, fixed-sized segments,
or syntax-aware chunks; the similarity scorer — sparse metrics such as BM25 or IoU, dense
encoders, and repository structure-aware approaches; and the tokenization granularity (for sparse
retrieval only) — measuring similarity at the level of BPE tokens, words, or lines of code. By jointly
varying these dimensions, we aim to clarify their individual and combined contributions to retrieval
effectiveness in code-focused RAG. In addition, our experimental design varies the model context
window from 128 to 16,000 tokens to study interactions between retrieval granularity and LLM
capacity. The study yields several actionable insights.

We find that there is no single retrieval configuration that excels at all code tasks — each requires
its own optimal approach. For code completion (PL—PL), lightweight, sparse retrieval with BM25
and word-level splitting stands out, significantly outperforming more complex dense models both
in accuracy and speed. In contrast, bug localization (NL—PL) benefits far more from advanced
dense embeddings, which provide much stronger alignment between natural language and code than
traditional sparse methods. We demonstrate that latency varies by up to 200x between configurations,
emphasizing the importance of holistic cost-quality trade-offs for practical deployment.

Chunk size also matters: smaller code chunks (32-64 lines) are best for models with limited context
windows (<4,000 tokens), while whole-file retrieval becomes effective as the available context
grows (up to 16,000 tokens). Surprisingly, simple line-based chunking is consistently as effective as
syntax-aware approaches, suggesting that elaborate code parsing offers limited benefit.

Our findings serve as evidence-based guidelines for practitioners who must choose between accuracy,
speed, and engineering complexity when building RAG systems for software engineering.

2 Related Work

While RAG is well studied for open-domain QA, its application to software engineering tasks
remains relatively underexplored|Oche et al.|[2025]]. Recent work in retrieval for code and software
engineering tasks demonstrates a rich diversity of approaches, encompassing lexical, dense, hybrid,
and structure-aware techniques, each balancing quality and latency in distinct ways.

Dense and sparse similarity scorers remain competitive in code tasks [Robertson and Zaragozal
2009, Zhang et al.,[2023|Zhou et al.,[2023]], while dense models such as CodeBERT [Feng et al.|[2020]],
GraphCodeBERT |Guo et al.|[2020], UniXcoder|Guo et al.|[2022], and ES [Wang et al.|[2022]] improve
cross-modal alignment. Hybrid search [Lin, 2022| and learned sparse models like SPLADE |Formal
et al|[2021]] aim to combine precision, recall, and efficiency. While these approaches have highlighted
different strengths depending on the retrieval scenario, prior work generally selects one retrieval
paradigm for a specific setting, lacking systematic benchmarking of retrieval strategies across multiple
tasks and under various computational constraints.

Chunking strategies vary from line-based windows, offering language-agnostic simplicity, to
syntax-aware splitting that preserves structural coherence [Su et al.| 2024, |Zhou et al.| 2025]], and
graph-guided retrieval using dependency or call graphs [Li et al., 2025} |Cheng et al.,[2024]. While
some studies show semantic chunking can yield performance gains [Zhang et al.l 2025} Singh et al.,
2025, (Chen et al., |2024], others argue that the computational costs associated with semantic chunking
are not justified by consistent performance gains |Qu et al.| [2025]]. Further, works like Nguyen et al.
[2025]] explore optimal chunk sizes but are limited in scope. Despite these efforts, it remains unclear

88
89

90
91
92
93
94
95

96
97
98
99
100

101
102
103
104
105
106

107
108
109
110
111
112
113
114

115

116

17
118

119
120
121
122
123
124
125

126
127
128
129
130

131

132

133
134
135
136

how chunking choices interact with retrieval methods and task modalities in realistic code-focused
RAG pipelines.

Tokenization granularity for sparse retrieval — as in token-, word-, or line-level splitting — is
seldom studied systematically and is often treated as an implementation detail. While some recent
work has compared some granularities for natural language tasks|Zhang and Tan|[2021]],|Ogundepo
et al.|[2022]] and found token-level splitting performs best, such findings have not been extended to
code-focused RAG, nor have efficiency implications been explored. We address this gap by explicitly
evaluating tokenization granularity as a separate axis in our experiments.

Efficiency—quality trade-offs have been the focus of recent studies, which highlight challenges in
system latency and resource consumption. Recent works, such as [Shen et al.l [2024] [Ray et al.,
2025]], provide a thorough analysis, mainly focusing on indexing techniques for dense retrieval. Our
work complements these directions by systematically benchmarking retrieval design choices for
code-related RAG tasks, extending the analysis to a broader range of retrieval techniques.

Task-specific pipelines, such as ReACC, RepoFormer and ProCC [Lu et al., 2022, |Wu et al.
2024, |Tan et al., [2025a]] for retrieval-augmented code completion, ReCo [Li et al.| [2024]] for stylistic
normalization in code search, and CodeRAG [Li et al.| [2025]], which leverages requirement—code
graphs, demonstrate substantial gains on their respective tasks. These targeted solutions illustrate that
retrieval choices — including representation, chunking, and the use of code structure — can have
significant task-dependent impacts.

Collectively, these works highlight the versatility of retrieval approaches — lexical, dense, hybrid,
and structure-aware. Each exhibiting distinct quality — latency trade-offs that map onto retrieval
design axes such as chunking strategy, similarity scoring, and tokenization granularity. However,
most prior studies assess these factors in isolation or optimize for a single configuration, leaving
open the question of how these choices interact under realistic compute constraints and varying task
modalities. Our work addresses this gap by benchmarking diverse retrieval configurations across
two complementary code tasks under varying context windows and latency constraints, enabling
evidence-based recommendations for task- and budget-aware code-oriented RAG system design.

3 Experimental Setup

3.1 Tasks and Metrics

Dataset and scope. All experiments are run on the Long Code Arena (LCA) benchmark Bogomolov
et al.|[2024]]. Retrieval is restricted to the target repository. We do not train or fine-tune any models.

Code Completion (CC). The task is to generate the next line of code, conditioned on the preceding
code context. Target lines are selected to reference code entities — classes or methods — defined
in other files of the same repository. Primary retrieval metric is an exact match (EM): we record
EM = 1 if the target line matches the generated one; otherwise, EM = 0. We report the mean EM
over instances. The retrieval task is to retrieve the code according to the context of the completion
file of the chunk (PL-PL), without seeing the target line itself. Generation is then performed with
DEEPSEEK-CODER-1.3B. The tasks are provided for two languages: Kotlin and Python.

Bug Localization (BL). Given a natural-language issue description, the retrieval task is to rank
repository files by likelihood of containing the described bug. The ground truth set is unordered
and may contain several files. Following the LCA work, we evaluate ranking with Normalized
Discounted Cumulative Gain (NDCG) Jarvelin and Kekaildinen| [2002]. The tasks are provided for
three languages: Java, Kotlin, and Python.

3.2 Retrieval Components

We factor retrieval into three orthogonal sub-modules.

Chunker maps each source file to a set of textual chunks to be indexed. We consider (i) whole files,
a single chunk per file; (ii) fixed-length non-overlapping windows of 8, 16, 32, 64, or 128 lines, and
(iii) syntax-aware recursive splitter via LANGCHAIN |Chase and Contributors| [2022]] with a target
length matched to the corresponding fixed-line alternative.

137
138
139

140
141
142
143
144
145
146

147
148

149

150
151

152
153
154
155

156
157
158
159

160

161

162
163
164

165

167

168
169

170
171

172
173
174
175

176

177
178
179

Splitter (applies for sparse retriever only) splits a chunk into a bag of "tokens" consumed by the scorer.
Options are (i) line-level, each distinct line is a token, (ii) word-level, split on non-alphanumeric
boundaries; drop punctuation and numerals; no stemming, and (iii) BPE, byte-pair tokens.

Scorer assigns a similarity score between query and chunk. We test (i) sparse lexical scorers: IoU (nor-
malized set overlap) and BM25 (Okapi), (ii) dense bi-encoder models: E5-small/base/large Wang et al.
[2022]], Voyager-3/Code/Lite |Voyage Al [20235], (iii) Structure-aware: DraCo (dataflow/dependency
graph) and a path-distance heuristic. DraCo (Dataflow-guided Retrieval Augmentation) |Cheng et al.
[2024] leverages static dataflow analysis to collect the context. Path-distance heuristic retrieves
context based on how close files are in the directory tree, assuming that files located nearer to each
other are more likely to be relevant.

The retrieval configuration is therefore a triplet (chunker, splitter, scorer). Unless noted, dense
encoders use a 512-token limit; longer documents are truncated from right.

3.3 Packing and budgets

Query construction CC: the query is the last chunk from the completion file with the target line
removed. BL: the query is the issue text.

Ranking and packing For each query, we rank candidate chunks/files. We then greedily pack the
top-ranked items into the prompt until a token budget is reached, preserving rank order and discarding
overflows. Budgets for CC are 128, 4,096, 8,192, and 16,384 tokens. BL is evaluated as a ranking
task over files (NDCG) and does not use a packing budget.

Hybrids and reranking Structure-aware lists (DraCo) are combined with the best-performing
sparse/dense retriever by prepending the structure-aware candidates and backfilling with BM25-
ranked items to fill the budget. If the structure-aware method returns fewer candidates than needed,
we continue with BM25 order.

3.4 Hyper-parameter Search

A full grid over all axes would require an excessive number of runs, so we adopt a staged search:

Stage 1 scorer x splitter. Using the whole file as a chunk, we benchmark every (scorer, splitter)
pair and select the best per task. Results select BM25 + word for CC; E5-large and Voyger-3
for BL.

Stage 2 chunk size. Fixing the chosen at Step 1 scorer and splitter, we sweep chunk line windows
€ {8,16, 32,64, 128} and whole files. We measure EM (@CC) for each candidate at four
LLM context budgets: 128,4 096, 8 192, 16 384 tokens.

Stage 3 chunker type Compare the best fixed-line window from Stage 2 to syntax-aware recursive
splitting with matched average lengths.

Stage 4 hybrid rerankers. Evaluate dataflow graph-based DraCo and path distance combined with
the best sparse/dense retriever.

The code completion task is sensitive to context size, so we report scores across a range of context
lengths (128-16,000 tokens) and analyze how performance depends on context size and other factors.
This progressive refinement methodology allowed us to systematically narrow the search space while
identifying the most effective configuration components at each stage of the optimization process.

3.5 Implementation notes

Source files are indexed as-is (comments and strings retained). Word-level splitting removes punctu-
ation and numerals; no stemming or identifier de-camelization is applied. We use dense encoders
off-the-shelf. All latency measurements reported later are wall-clock times.

180

181

182

184
185
186
187

188
189
190

191
192
193

194
195

196
197

198

199
200

201
202

203
204

206
207
208
209
210
211
212
213

Word and line splitters Token splitter

0.64
0.5+
S
g 0.4+
= 0.3 /
& ‘
2 02 BM25 on words 024/ BM25
o1 = IoU on words o1 | — dense
’ = = IoU on lines . — IoU
0 1 1 L] 0 L] L] L
5000 10000 15000 5000 10000 15000
context length context length

Figure 1: Exact match scores for various combinations of splitters and scorers.

4 Results and Analysis

4.1 Code Completion Task
4.1.1 Optimal Scorers and Splitters

In this experiment, we fix the chunker to whole-file retrieval and sweep scorer—splitter pairs across
context budgets. For sparse scorers (BM25, IoU), we evaluate line-, word-, and BPE-level splitters.
Dense encoder (E5-large) operates on raw text and ignores the splitter choice. Retrieved files are
packed greedily in rank order up to the context budget. Figure [I| summarizes the results for the
evaluated splitter—scorer pairs. Three consistent trends emerge:

BM2S5 dominates in accuracy. BM25 achieves the highest exact-match rate, outperforming both
IoU and dense embeddings by ~ 10 p.p. on average for medium and large context lengths (> 2 000),
where lexical overlap remains informative.

Word splitter is more efficient than BPE, while showing same quality. Using BPE tokens or plain
words with BM2S5 yields statistically indistinguishable EM; however, the word splitter is 9x faster to
build. We therefore adopt the BM25 scorer with word splitter as our default sparse configuration.

Dense encoders plateau early. E5-large trails BM25, making sparse methods the pragmatic choice
for PL—PL retrieval, particularly for longer documents, which require more resources to encode.

IoU with line splitting sits in the middle ground, cheaper than BM25 but also ~ 4 p.p. worse on
EM, making it attractive only for latency-critical deployments.

4.1.2 Optimal Chunking

We study chunk-size choice under the best sparse configuration from the previous subsection: BM25
with word-level splitting. We vary two knobs:

Index chunk size L; {8,16,32, 64,128, inf}. For every file, including the completion file, we index
non-overlapping windows of a L; lines; inf denotes whole-file indexing.

Query window size L, {8, 16, 32,64, 128}. For completion file, query consists of the last L, lines
preceding the target line. Retrieved chunks are greedily packed in rank order up to the budget tokens.

The results (Figure [2) revealed a clear relationship between optimal chunk size and the model’s
context window length. Small chunks (8-16 lines) consistently underperformed across all context
lengths, likely because they contained insufficient information to establish meaningful relevance.
For models with shorter context windows (less than 4,000 tokens), moderate chunks of 32-64 lines
provide the best performance and saturate faster. For models with longer context windows (> 8,000
tokens), larger completion chunk sizes of 128 lines or more yielded superior results at large context,
but saturate more slowly with context size. Ultimately, when models had access to extensive context
windows (16,000 tokens), the whole file approach performed on par with chunked alternatives. This
suggests that smaller contexts benefit from more granular retrieval units that can precisely match the

214
215

216
217
218

219
220
221
222
223
224

225

226
227
228
229

230
231
232
233
234

completion size = 16 completion size = 128

0.6 0.6 4
0.5 0.5 4
5
= 04 0.4
E chunk size
g 03 0.3 —128
% - 64
(o]
0.2 0.2 —3
0.1 0.1 16
-8
0 | |] 0 1]]]
5000 10000 15000 5000 10000 15000

context length context length

Figure 2: Exact match scores for various completion file sizes and chunk size

0.6

0.5
0.4
0.3

exact match

02 — DraCo

— BM25 chunks
= Path distance

0.1

T T T
5000 10000 15000

context length

Figure 3: Exact match scores of benchmarked retrievers.

query, while longer contexts benefit from having more comprehensive code segments that preserve
broader structural and contextual information.

Line splitting demonstrated a slight but consistent performance advantage over code structure-aware
splitting across all parameters. This surprising result suggests that simple line-based chunking may
preserve sufficient code coherence.

These findings provide valuable guidance for RAG system implementation. They suggest that chunk
sizes should be dynamically adjusted based on the underlying generation model’s context window
length rather than using a one-size-fits-all approach. Additionally, results demonstrate that line
splitting performs on par with a more sophisticated structure-aware chunking approach. It offers
implementation simplicity and a language-agnostic application, making it a robust choice for general
code retrieval systems.

4.1.3 Structure-Aware Code Retrieval

We evaluated the dataflow-guided DraCo retriever, leveraging the import dependency graph structure
to identify files directly relevant to the completion target file as well as path-distance retriever. We
augment DraCo’s selections with additional files identified through BM25 ranking, as DraCo returns
only limited number of files.

The results (Figure[3) indicate that chunking-based retrieval provides superior accuracy for medium
contexts (< 8,000 tokens). However, as context length increases, the DraCo and chunking approaches
converge towards similar performance levels. Path distance retrieval remains consistently lower-
performing, suggesting that directory structure alone is insufficient for optimal context selection for
the code completion task.

235

237
238

239
240
241
242
243
244
245
246

247
248
249
250
251
252
253
254
255
256

java kotlin python Mean

Score

0.6

0.33 0.35

token

0.5

splitter

0.34 0.34 ~-04

word

-03
bm25 iou bm25 iou bm25 iou bm25 iou
scorer scorer scorer scorer

Figure 4: NDCG scores for various combinations of splitters and scorers for sparse retrieval

Table 1: NDCG scores for various models on the bug localization task.

Embed Context Time,

Model dim length s/1M symb* NDCG

java kotlin python mean
Voyager-3-code 512 1,024 512 19 0.712 0.701 0.738 0.717
Voyager-3-code 1,024 32,000 110%* 0.708 0.676 0.705 0.696
Voyager-3 1,024 32,000 32 0.660 0.697 0.651 0.670
Voyager-3-lite 512 32,000 17 0.647 0.637 0.625 0.636
BM25, word splitter — 00 0.07 0.541 0547 0.635 0.574
BM?25, token splitter — 00 1.2 0.573 0.538 0.614 0.575
ES large 560M 1,024 514 2.8 0.596 0.569 0.606 0.590
E5-base 278M 768 514 1.1 0446 0478 0467 0.464
E5-small 117M 384 514 0.7 0.409 0.511 0491 0470

*retrieval time includes encoding the whole repository for each data point. Symbols are counted all - even
truncated ones, which were not used in the encoder.

**retrieval time for Voyager-3-code is exceedingly high because we have to set batch_size=2 due to the limit of
120,000 tokens per request.

4.2 Bug Localization Task

We evaluate bug localization as NL—PL file ranking with NDCG. Sparse methods (BM25, ToU)
use line-, word-, or BPE-level splitting. Dense encoders (ES small/base/large and Voyager-3 family)
operate on raw text with model-specific input limits; overlength files were truncated from the right.

Figure [d] summarizes sparse variants. BM25 consistently outperforms IoU across Java, Kotlin, and
Python, reflecting the limits of exact-overlap signals in cross-modal queries. Table [T] extends the
comparison to dense encoders and shows that dense retrieval is stronger on average: ES5-large reaches
a mean NDCG of 0.59 versus 0.57 for BM25 with a word splitter, despite the 512-token limit.
Proprietary Voyager embeddings are substantially higher, with Voyager-3-Code at 0.72 mean NDCG.
Language-wise, the gap narrows for Python: BM25+word attains 0.64 versus 0.61 for E5-large,
suggesting that repositories with richer natural-language artifacts in code and comments reduce the
advantage of semantic encoders.

Efficiency varies greatly with splitting strategy. BM25 with a word splitter is the fastest (0.07 s per
IM symbols), while BM25 with BPE/token splitting is 16x slower (1.15 s) without quality gains
and can even lag behind lighter dense encoders (E5-small/base) due to larger context size. ES-large
requires 2.8 s, while Voyager-3-Code (512) is substantially slower at 19 s; the 32000-token Voyager
variants are even slower due to technical token-budget constraints at the time of experiments. These
findings show that, for NL—PL ranking on large repositories (here roughly 20% of files exceed 15000
tokens), dense models offer better accuracy even with truncation, but sparse BM25 with word-level
splitting remains an excellent latency—quality baseline. When accuracy is paramount and cost permits,
Voyager-3-Code leads by a wide margin; when latency or budget is critical, BM25+word is the
pragmatic choice.

257

258
259
260
261

262
263
264
265

267
268
269
270

271
272
273
274
275

276
277
278
279
280

281

282
283
284
285
286

287
288
289

291

292

293
294

Table 2: Retrieval latency and EM scores (the best setup) for different approaches for the code
completion task.

Scorer Splitter Time, s/1M repo symbols EM at 4K/ 16K context
Path distance - 0.0005 0.37/0.55
IoU line 0.02 0.46/0.57
IoU word 0.1 0.44/0.51
BM25 word 0.2 0.55/0.60
IoU token 1.5 0.40/0.55
BM25 token 2.0 0.50/0.59
Dense (E5-large, 512) - 3.3 0.39/0.52

4.3 Latency Analysis

We assess end-to-end retrieval latency normalized by repository size, including query tokenization,
splitting and similarity scoring. For sparse methods, we use prebuilt inverted indices; for dense
encoders, we report query-time document encoding plus similarity computation, which makes the
dense figures an upper bound for deployments that could precompute embeddings.

Table 2] summarizes results on the code completion setup. The path-distance heuristic is effectively
free because it ignores content and operates only on directory metadata. Among content-based
methods, IoU with line-level splitting is the fastest at 0.02 s/IM symbols; moving to word-level
splitting raises cost to 0.1 s due to a larger token inventory per document. BM25 with word-level
splitting remains reasonably efficient at 0.2 s and, as shown earlier, offers the best quality—latency
balance for PL—PL. BPE/token-level pipelines are an order of magnitude slower (IoU 1.5 s; BM25
2.0 s) without accuracy gains, reflecting tokenizer overhead and much larger posting lists. Dense
retrieval with E5-large is the slowest at 3 s/1M symbols because it requires a forward pass over all
candidate chunks.

For a representative repository of 2.3 million symbols, these rates translate to approximately 1.2 ms
for path distance, 0.04 s for [oU-line, 0.5 s for BM25-word, 3.5 s for [oU-token, 4.5 s for BM25-token,
and 7.5 s for ES-large. Thus, the spread between the fastest practical content-based scorer (IoU-line)
and a dense encoder is about 180x%, and between BM25-word and E5-large about 14X, in line with
the “orders of magnitude” difference noted earlier.

The bug localization task presents a tougher efficiency—effectiveness trade-off. We recommend
BM25-based retrieval over E5-large: it offers similar performance but is about 40x faster. Proprietary
Voyage models achieve higher scores, but with much greater latency and cost. Ultimately, the choice
is yours: use BM2S5 if speed and cost are paramount, or choose Voyage if you prioritize accuracy
despite higher latency and expense.

5 Limitations and Future Work

For the retrieval part, we have not tested deduplication techniques to remove redundant information
from retrieved contexts or context compression methods to maximize the utility of limited context
windows. This could transform context window constraints, enabling even small-context models to
effectively process information from larger code segments. However, context compression will come
at some additional latency cost.

This study focuses on two LCA tasks — single-line code completion (PL—PL) and bug localization
(NL—PL) — across Java, Kotlin, and Python with repository-local retrieval. While these tasks are
representative, the scope limits external validity: results may differ for multi-line completion/repair or
long-form generation. We evaluated generation with a single small model (DeepSeek-Coder-1.3B) to
isolate retrieval effects; preliminary checks with a larger variant showed similar trends. We anticipate
that the core principles would remain consistent with our findings on this narrow set of tasks.

Integrating additional code-specific structural information could enhance retrieval effectiveness,
particularly for more complex tasks than code completion.

295

297
298
299

300
301
302
303
304
305

306
307
308
309

311
312
313
314
315

316
317
318
319
320
321

322
323
324
325
326

327

329
330
331

332
333
334
335
336

337
338
339
340

341
342
343

344
345
346

6 Conclusions and Recommendations

We systematically evaluated retrieval design choices for code-oriented RAG on two complementary
tasks — PL—PL code completion and NL—PL bug localization. By varying chunking, similarity
scoring, and splitting granularity across different context budgets, we provide critical insights to
guide the implementation of effective RAG systems for software engineering.

Sparse vs Dense. For code completion tasks involving PL-PL retrieval, sparse retrieval methods —
particularly BM25 with word-level splitting — consistently delivered superior results with reasonable
computational efficiency. In contrast, bug localization tasks that involve NL-PL retrieval showed
markedly different behaviour. Dense retrieval methods using neural embeddings mostly outperformed
sparse retrieval approaches, with models like E5-large marginally higher NDCG scores than BM25,
and Voyager-3-Code, achieving ~ 0.72 NDCG score compared to ~ 0.57 achieved by BM25.

These results reflect a modality-driven divide. In PL—PL code completion, substantial lexical overlap
between the query and target makes sparse lexical scoring (e.g., BM25 with word-level splitting) a
natural fit. In contrast, NL—PL bug localization benefits from dense encoders that capture semantic
correspondence, bridging the gap between natural-language issue text and code implementations.

Chunking. There is an important relationship between optimal chunk size and available context
window. Moderate windows (32—64 lines) are best for small budgets (< 4000 tokens), larger windows
(64-128 lines) help as budgets grow, and whole-file retrieval becomes competitive at 16000 tokens.
This scaling relationship underscores the importance of aligning retrieval granularity with model
capacity — smaller contexts benefit from precise, focused chunks that maximize the relevance density,
while larger contexts leverage broader context to better understand complex code relationships.

Sophisticated chunking. Line-based chunking matched or slightly exceeded syntax-aware splitting
across budgets. We attribute this result to the fact that code completion relies more heavily on
identifying semantically similar fragments rather than hierarchically related parent code structures in
the codebase. This suggests that syntactic structure preservation may not be as critical as previously
assumed for effective code retrieval, at least for the tasks evaluated in this study. This finding aligns
with similar results reported for natural language tasks |Qu et al.| [2025]].

Latency. From a practical implementation perspective, our latency analysis revealed dramatic
efficiency differences between retrieval approaches, with up to 180x speed differences between
the fastest meaningful (IoU-line) and slowest (dense) methods. This emphasize the importance of
balancing retrieval quality with computational efficiency, particularly for interactive applications
where response time is critical.

Based on these results, we offer the following recommendations for code RAG systems:

1. Match the retrieval strategy to the task nature. Use BM25 with word splitting for code-to-
code retrieval tasks and dense embedding methods for natural language-to-code retrieval
scenarios. The additional computational cost of dense retrieval is justified by its superior
performance in cross-modal scenarios.

2. Align chunk granularity with model context capacity. As model context windows expand,
increase chunk sizes accordingly. For models with shorter context window (< 4000 tokens),
use 32-64 line chunks; for medium-length models (4000-8000 tokens), use 64-128 line
chunks; and for models with long context windows (> 16000 tokens), consider retrieving
entire files when appropriate. This applies to both index chunk size and query windowing.

3. Prioritize implementation efficiency through strategic choices. The word splitter offers nearly
identical performance to tokenizer-based approaches at a fraction of the computational cost.
For applications with strict latency requirements, consider using IoU with line splitting,
which delivers reasonable performance with minimal computational overhead.

4. Complexity does not necessarily improve quality. As we show for the code completion
task, structural information did not enhance performance. However, for bug localization,
including file paths and import statements in the context significantly improved performance.

5. Consider the entire retrieval pipeline holistically. The most effective RAG systems will
likely combine multiple retrieval strategies with the specific configuration tailored to the
task requirements, codebase characteristics, and computational constraints.

347

348
349

350
351
352
353

355

356
357
358
359
360
361

362
363

365
366

367
368

369
370
371

372
373

374
375

376

377

379
380
381

384

References

Micheline Beaulieu, Mike Gatford, Xiangji Huang, Stephen Robertson, Steve Walker, and P Williams.
Okapi at trec-5. Nist Special Publication SP, pages 143166, 1997.

Egor Bogomolov, Aleksandra Eliseeva, Timur Galimzyanov, Evgeniy Glukhov, Anton Shapkin,
Maria Tigina, Yaroslav Golubev, Alexander Kovrigin, Arie van Deursen, Maliheh Izadi, and
Timofey Bryksin. Long code arena: a set of benchmarks for long-context code models, 2024. URL
https://arxiv.org/abs/2406.11612.

Harrison Chase and LangChain Contributors. Langchain. https://github.com/langchain-ai/
langchain, 2022. Accessed: 2025-08-19.

Tong Chen, Hongwei Wang, Sihao Chen, Wenhao Yu, Kaixin Ma, Xinran Zhao, Hongming Zhang,
and Dong Yu. Dense X retrieval: What retrieval granularity should we use? In Yaser Al-Onaizan,
Mohit Bansal, and Yun-Nung Chen, editors, Proceedings of the 2024 Conference on Empirical
Methods in Natural Language Processing, pages 15159-15177, Miami, Florida, USA, November
2024. Association for Computational Linguistics. doi: 10.18653/v1/2024.emnlp-main.845. URL
https://aclanthology.org/2024.emnlp-main.845/,

Wei Cheng, Yuhan Wu, and Wei Hu. Dataflow-guided retrieval augmentation for repository-level code
completion. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar, editors, Proceedings of the 62nd
Annual Meeting of the Association for Computational Linguistics (Volume 1: Long Papers), pages
7957-7977, Bangkok, Thailand, August 2024. Association for Computational Linguistics. doi:
10.18653/v1/2024.acl-long.431. URL https://aclanthology.org/2024.acl-long.431/.

Zhangyin Feng, Daya Guo, Duyu Tang, and et al. CodeBERT: A pre-trained model for programming
and natural languages. In Findings of EMNLP, pages 1536-1547, 2020.

Thibault Formal, Carlos Lassance, Benjamin Piwowarski, and Stéphane Clinchant. Splade v2: Sparse
lexical and expansion model for information retrieval, 2021. URL https://arxiv.org/abs/
2109.10086.

Daya Guo, Shuo Ren, Shuai Lu, and et al. GraphCodeBERT: Pre-training code representations with
data flow. arXiv preprint arXiv:2009.08366, 2020.

Daya Guo, Shuo Ren, Shuai Lu, and et al. UniXcoder: Unified cross-modal pre-training for code
representation. In Proceedings of EMNLP, pages 2715-2725, 2022.

Kalervo Jarvelin and Jaana Kekildinen. Cumulated gain-based evaluation of ir techniques. ACM
Trans. Inf. Syst., 20(4):422-446, October 2002. ISSN 1046-8188. doi: 10.1145/582415.582418.
URL https://doi.org/10.1145/582415.582418,

Nikhil Kandpal, Haikang Deng, Adam Roberts, Eric Wallace, and Colin Raffel. Large language
models struggle to learn long-tail knowledge. In Proceedings of the 40th International Conference
on Machine Learning, ICML’23. JMLR.org, 2023.

Patrick Lewis, Ethan Perez, Aleksandra Piktus, and et al. Retrieval-augmented generation for
knowledge-intensive NLP tasks. In Advances in Neural Information Processing Systems (NeurlPS),
2020.

Haochen Li, Xin Zhou, and Zhiqi Shen. Rewriting the code: A simple method for large lan-
guage model augmented code search. In Lun-Wei Ku, Andre Martins, and Vivek Srikumar,
editors, Proceedings of the 62nd Annual Meeting of the Association for Computational Lin-
guistics (Volume 1: Long Papers), pages 1371-1389, Bangkok, Thailand, August 2024. As-
sociation for Computational Linguistics. doi: 10.18653/v1/2024.acl-long.75. URL https:
//aclanthology.org/2024.acl-long.75/.

Jia Li, Xianjie Shi, Kechi Zhang, Lei Li, Ge Li, Zhengwei Tao, Jia Li, Fang Liu, Chongyang Tao, and

Zhi Jin. Coderag: Supportive code retrieval on bigraph for real-world code generation, 2025. URL
https://arxiv.org/abs/2504.10046.

10

https://arxiv.org/abs/2406.11612
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://github.com/langchain-ai/langchain
https://aclanthology.org/2024.emnlp-main.845/
https://aclanthology.org/2024.acl-long.431/
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://arxiv.org/abs/2109.10086
https://doi.org/10.1145/582415.582418
https://aclanthology.org/2024.acl-long.75/
https://aclanthology.org/2024.acl-long.75/
https://aclanthology.org/2024.acl-long.75/
https://arxiv.org/abs/2504.10046

394
395
396

397
398
399

401
402

403
404
405

407
408
409

410
411

412
413
414
415
416

417
418
419

420
421

422
423
424

425
426
427

428
429
430
431
432
433

434

436
437

438
439
440
441

442
443

Jimmy Lin. A proposed conceptual framework for a representational approach to information
retrieval. SIGIR Forum, 55(2), March 2022. ISSN 0163-5840. doi: 10.1145/3527546.3527552.
URL https://doi.org/10.1145/3527546.3527552.

Shuai Lu, Nan Duan, Hojae Han, Daya Guo, Seung-won Hwang, and Alexey Svyatkovskiy. ReACC:
A retrieval-augmented code completion framework. In Smaranda Muresan, Preslav Nakov, and
Aline Villavicencio, editors, Proceedings of the 60th Annual Meeting of the Association for
Computational Linguistics (Volume 1: Long Papers), pages 6227-6240, Dublin, Ireland, May
2022. Association for Computational Linguistics. doi: 10.18653/v1/2022.acl-long.431. URL
https://aclanthology.org/2022.acl-long.431/|

Hai-Toan Nguyen, Tien-Dat Nguyen, and Viet-Ha Nguyen. Enhancing retrieval augmented generation
with hierarchical text segmentation chunking. In Wray Buntine, Morten Fjeld, Truyen Tran, Minh-
Triet Tran, Binh Huynh Thi Thanh, and Takumi Miyoshi, editors, Information and Communication
Technology, pages 209-220, Singapore, 2025. Springer Nature Singapore.

Agada Joseph Oche, Ademola Glory Folashade, Tirthankar Ghosal, and Arpan Biswas. A systematic
review of key retrieval-augmented generation (rag) systems: Progress, gaps, and future directions,
2025. URL https://arxiv.org/abs/2507.18910.

Odunayo Ogundepo, Xinyu Zhang, and Jimmy Lin. Better than whitespace: Information retrieval for
languages without custom tokenizers, 2022. URL https://arxiv.org/abs/2210.05481,

Renyi Qu, Ruixuan Tu, and Forrest Sheng Bao. Is semantic chunking worth the computational cost?
In Luis Chiruzzo, Alan Ritter, and Lu Wang, editors, Findings of the Association for Computational
Linguistics: NAACL 2025, pages 2155-2177, Albuquerque, New Mexico, April 2025. Association
for Computational Linguistics. ISBN 979-8-89176-195-7. doi: 10.18653/v1/2025.findings-naacl.
114. URL https://aclanthology.org/2025.findings-naacl.114/,

Siddhant Ray, Rui Pan, Zhuohan Gu, Kuntai Du, Shaoting Feng, Ganesh Ananthanarayanan, Ravi
Netravali, and Junchen Jiang. Metis: Fast quality-aware rag systems with configuration adaptation,
2025. URL https://arxiv.org/abs/2412.10543|

Stephen Robertson and Hugo Zaragoza. The probabilistic relevance framework: BM25 and beyond.
Foundations and Trends in Information Retrieval, 3(4):333-389, 2009. doi: 10.1561/1500000019.

Michael Shen, Muhammad Umar, Kiwan Maeng, G. Edward Suh, and Udit Gupta. Towards
understanding systems trade-offs in retrieval-augmented generation model inference, 2024. URL
https://arxiv.org/abs/2412.11854.

Ishneet Sukhvinder Singh, Ritvik Aggarwal, Ibrahim Allahverdiyev, Muhammad Taha, Aslihan
Akalin, Kevin Zhu, and Sean O’Brien. Chunkrag: Novel llm-chunk filtering method for rag
systems, 2025. URL https://arxiv.org/abs/2410.19572.

Hongjin Su, Shuyang Jiang, Yuhang Lai, Haoyuan Wu, Boao Shi, Che Liu, Qian Liu, and Tao
Yu. EvoR: Evolving retrieval for code generation. In Yaser Al-Onaizan, Mohit Bansal, and
Yun-Nung Chen, editors, Findings of the Association for Computational Linguistics: EMNLP
2024, pages 2538-2554, Miami, Florida, USA, November 2024. Association for Computational
Linguistics. doi: 10.18653/v1/2024.findings-emnlp.143. URL https://aclanthology.org/
2024 .findings-emnlp. 143/,

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing Li, Haotian Zhang, and Yuqun Zhang.
Prompt-based code completion via multi-retrieval augmented generation. ACM Trans. Softw. Eng.
Methodol., March 2025a. ISSN 1049-331X. doi: 10.1145/3725812. URL https://doi.org/10,
1145/3725812. Just Accepted.

Hanzhuo Tan, Qi Luo, Ling Jiang, Zizheng Zhan, Jing Li, Haotian Zhang, and Yuqun Zhang.
Prompt-based code completion via multi-retrieval augmented generation. ACM Trans. Softw. Eng.
Methodol., March 2025b. ISSN 1049-331X. doi: 10.1145/3725812. URL https://doi.org/
10.1145/3725812, Just Accepted.

Voyage Al. Voyage ai documentation. https://docs.voyageai.com/, 2025. Accessed: 2025-08-
19.

11

https://doi.org/10.1145/3527546.3527552
https://aclanthology.org/2022.acl-long.431/
https://arxiv.org/abs/2507.18910
https://arxiv.org/abs/2210.05481
https://aclanthology.org/2025.findings-naacl.114/
https://arxiv.org/abs/2412.10543
https://arxiv.org/abs/2412.11854
https://arxiv.org/abs/2410.19572
https://aclanthology.org/2024.findings-emnlp.143/
https://aclanthology.org/2024.findings-emnlp.143/
https://aclanthology.org/2024.findings-emnlp.143/
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://doi.org/10.1145/3725812
https://docs.voyageai.com/

444
445

446
447
448
449
450
451

452
453
454

456
457
458
459
460
461

462
463
464
465
466

467
468
469

470
471
472

473
474
475

476
477
478
479
480

Sheng Wang, Yichao Liu, Zhihong Sun, and et al. Text embeddings by weakly-supervised contrastive
learning. In Findings of ACL, pages 5110-5122, 2022.

Weishi Wang, Yue Wang, Shafiq Joty, and Steven C.H. Hoi. Rap-gen: Retrieval-augmented
patch generation with codet5 for automatic program repair. In Proceedings of the 31st ACM
Joint European Software Engineering Conference and Symposium on the Foundations of Soft-
ware Engineering, ESEC/FSE 2023, page 146-158, New York, NY, USA, 2023. Association
for Computing Machinery. ISBN 9798400703270. doi: 10.1145/3611643.3616256. URL
https://doi.org/10.1145/3611643.3616256.

Di Wu, Wasi Ahmad, Dejiao Zhang, Murali Krishna Ramanathan, and Xi-
aofei Ma. Repoformer: Selective retrieval for repository-level code com-
pletion. 2024. URL https://www.amazon.science/publications/
repoformer-selective-retrieval-for-repository-level-code-completion.

Fengji Zhang, Bei Chen, Yue Zhang, Jacky Keung, Jin Liu, Daoguang Zan, Yi Mao, Jian-Guang
Lou, and Weizhu Chen. RepoCoder: Repository-level code completion through iterative retrieval
and generation. In Houda Bouamor, Juan Pino, and Kalika Bali, editors, Proceedings of the 2023
Conference on Empirical Methods in Natural Language Processing, pages 2471-2484, Singapore,
December 2023. Association for Computational Linguistics. doi: 10.18653/v1/2023.emnlp-main.
151. URL https://aclanthology.org/2023.emnlp-main.151/.

Hang Zhang and Liling Tan. Textual representations for crosslingual information retrieval. In
Shervin Malmasi, Surya Kallumadi, Nicola Ueffing, Oleg Rokhlenko, Eugene Agichtein, and Ido
Guy, editors, Proceedings of the 4th Workshop on e-Commerce and NLP, pages 116-122, Online,
August 2021. Association for Computational Linguistics. doi: 10.18653/v1/2021.ecnlp-1.14. URL
https://aclanthology.org/2021.ecnlp-1.14/.

Yilin Zhang, Xinran Zhao, Zora Zhiruo Wang, Chenyang Yang, Jiayi Wei, and Tongshuang Wu. cast:
Enhancing code retrieval-augmented generation with structural chunking via abstract syntax tree,
2025. URL https://arxiv.org/abs/2506.15655.

Chunying Zhou, Xiaoyuan Xie, Gong Chen, Peng He, and Bing Li. Multi-view adaptive contrastive
learning for information retrieval based fault localization, 2025. URL https://arxiv.org/abs/
2409.12519

Shuyan Zhou, Uri Alon, Frank F. Xu, Zhengbao Jiang, and Graham Neubig. Docprompting: Gen-
erating code by retrieving the docs. In The Eleventh International Conference on Learning
Representations, 2023. URL https://openreview.net/forum?id=ZTCxT2t2Ru.

Xin Zhou, Kisub Kim, Bowen Xu, Jiakun Liu, DongGyun Han, and David Lo. The devil is in the
tails: How long-tailed code distributions impact large language models. In Proceedings of the
38th IEEE/ACM International Conference on Automated Software Engineering, ASE °23, page
40-52. IEEE Press, 2024. ISBN 9798350329964. doi: 10.1109/ASE56229.2023.00157. URL
https://doi.org/10.1109/ASE56229.2023.00157,

12

https://doi.org/10.1145/3611643.3616256
https://www.amazon.science/publications/repoformer-selective-retrieval-for-repository-level-code-completion
https://www.amazon.science/publications/repoformer-selective-retrieval-for-repository-level-code-completion
https://www.amazon.science/publications/repoformer-selective-retrieval-for-repository-level-code-completion
https://aclanthology.org/2023.emnlp-main.151/
https://aclanthology.org/2021.ecnlp-1.14/
https://arxiv.org/abs/2506.15655
https://arxiv.org/abs/2409.12519
https://arxiv.org/abs/2409.12519
https://arxiv.org/abs/2409.12519
https://openreview.net/forum?id=ZTCxT2t2Ru
https://doi.org/10.1109/ASE56229.2023.00157

	Introduction
	Related Work
	Experimental Setup
	Tasks and Metrics
	Retrieval Components
	Packing and budgets
	Hyper-parameter Search
	Implementation notes

	Results and Analysis
	Code Completion Task
	Optimal Scorers and Splitters
	Optimal Chunking
	Structure-Aware Code Retrieval

	Bug Localization Task
	Latency Analysis

	Limitations and Future Work
	Conclusions and Recommendations

