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Abstract

Multi-distribution or collaborative learning involves learning a single predictor
that works well across multiple data distributions, using samples from each dur-
ing training. Recent research on multi-distribution learning, focusing on binary
loss and finite VC dimension classes, has shown near-optimal sample complexity
that is achieved with oracle efficient algorithms. That is, these algorithms are
computationally efficient given an efficient ERM for the class. Unlike in classical
PAC learning, where the optimal sample complexity is achieved with deterministic
predictors, current multi-distribution learning algorithms output randomized pre-
dictors. This raises the question: can these algorithms be derandomized to produce
a deterministic predictor for multiple distributions? Through a reduction to dis-
crepancy minimization, we show that derandomizing multi-distribution learning is
computationally hard, even when ERM is computationally efficient. On the positive
side, we identify a structural condition enabling an efficient black-box reduction,
converting existing randomized multi-distribution predictors into deterministic
ones.

1 Introduction

We consider the problem of multi-distribution learning where there are k unknown data distributions
P = {D1, . . . ,Dk} over X × {−1, 1}, where X is an input domain and {−1, 1} are the possible
labels. The goal is to learn a classifier f : X → {−1, 1} that satisfies

erP(f) := max
i

erDi
(f) ≤ min

h∈H
max

i
erDi

(h) + ε, where erDi
(f) = Pr

(x,y)∼Di

[f(x) ̸= y]. (1)

Here H ⊆ {−1, 1}X is the benchmark hypothesis class of VC-dimension d that the learner competes
against, and minh∈H maxi erDi

(h) is the optimal worst-case error that can be achieved with classi-
fiers from H. The framework of multi-distribution learning, introduced by Haghtalab et al. [10], is
a natural generalization of agnostic PAC learning [22, 21, 5], and captures several important appli-
cations such as min-max fairness [12, 18, 15, 8, 20], and group distributionally robust optimization
[16].

In the realizable setting, where minh∈H erP(h) = 0, there is a learning algorithm using Õ((d+k)/ε)
samples to produce such a deterministic classifier f , see e.g., the works [4, 7, 13]. Here, and
throughout the paper, Õ hides terms that are poly ln(dk/(εδ)).

∗This work was primarily done while the author was a FODSI-Simons postdoc at UC Berkeley.
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In the more challenging agnostic setting, where OPT := minh∈H erP(h) is greater than 0, recent
works show that the sample complexity is Õ((d+ k)/ε2) [10, 2, 14, 23]. We refer the reader to Table
1 in [23] for a detailed sample complexity comparison of prior algorithms. Importantly, the guarantee
provided by all existing algorithms is slightly different from the objective (1) above. Concretely, all
previous algorithms do not produce a deterministic classifier f : X → {−1, 1}, but instead output a
distribution F over H, such that

max
i

Ef∼F [erDi(f)] ≤ min
h∈H

max
i

erDi(h) + ε. (2)

Due to the fact that classical PAC bounds, which involve learning from a single distribution, are
achieved using deterministic predictors it is somewhat unsatisfactory to always output a randomized
predictor in the multi-distribution case. Observe that because, as in (2), we want optimal performance
simultaneously for all distributions, even using a randomized algorithm is somewhat problematic.
Indeed, assume that in practice we want to sample a single f̂ according to F and use it as our predictor.
Now, if we seek a guarantee like (1) for f̂ , then the best we can guarantee from (2) is to use Markov’s
inequality and a union bound over all k distributions to ensure that

erDi
(f̂) ≤ 2k

(
min
h∈H

max
i

erDi
(h) + ϵ

)
,

with probability at least 1/2, which is, of course, too conservative. Let us also remark that there
are examples of distributions F for which this is basically tight. Consider e.g. an input domain
X = x1, . . . , xk and k hypotheses h1, . . . , hk such that hi(xi) = −1 and hi(xj) = 1 for j ̸= i.
Let Di be the distribution that returns (xi, 1) with probability 1. Then for the uniform distribution
F = k−1

∑
i hi over classifiers, we have maxi Ef∼F [erDi

(f)] = 1/k, but for any single f in the
support of F , we have erP (f) = maxi erDi

(f) = 1. The example also shows that for every fixed
distribution Di, if we sample an f from F , then with probability 1/k, its error exceeds the expectation
by a factor k for that distribution Di. There may thus be a large gap between the guarantees of a
deterministic and randomized classifier, i.e. the bounds in (1) and (2) are quite different.

The main focus of our work, is on replacing the random classifiers in previous works on agnostic
multi-distribution learning by deterministic classifiers and understanding the inherent complexity of
doing so. In particular, we are interested in understanding any inherent statistical or computational
gaps in multi-distribution learning between deterministic classifiers and randomized classifiers.

Our contributions

Our first contribution is a strong negative result towards derandomizing previous classifiers. Recall
that the complexity class BPP denotes bounded-error probabilistic polynomial time2. That is, problems
that have polynomial time randomized algorithms that are correct with probability at least 2/3 on
every input. It is conjectured that P = BPP and thus most likely BPP ̸= NP. Recall that a set of n
points is shattered if each of the 2n possible labelings of the points can be realized by some h ∈ H.
Our negative result is then the following.
Theorem 1. If BPP ̸= NP, then as n = min{d, k, 1/ε} tends to infinity, for every hypothesis class
H of VC-dimension d for which one can find n points shattered by H in polynomial time, any multi-
distribution learning algorithm for H that on the set of k input distributions P = {D1, . . . ,Dk}
with probability at least 2/3 produces a deterministic classifier f : X → {−1, 1} with erP(f) ≤
minh∈H erP(h) + ε, must have either nω(1) (i.e. super-polynomial) training time, or f has nω(1)

evaluation time.

We remark that this computational hardness result holds even when the class H admits efficient
Empirical Risk Minimization (ERM), and even when the distributions are known to the learning
algorithm. This highlights that the hardness stems not from the need to sample from the underlying
distributions nor from the hardness of ERM, but from the computational problem of deciding which
label to assign the points of the input domain.

Note that the assumption in Theorem 1 that one can find a set of n shattered points in polynomial
time is not restrictive. Finding such points is trivial for many H, i.e., simply choose 0, e1, . . . , ed−1 ∈
Rd−1 = X for linear classifiers with VC-dimension d. More generally, the standard result on the

2We refer to the monograph [19] as a standard reference discussing computational complexity classes.
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class of classifiers induced by positive halfspaces in Rd shows that this class has VC dimension d,
and for any set of points such that at most d of its points are contained on a single hyperplane, any
subset of size d of this set is shattered. Similar properties are also known for the classes induced by
balls in Rp and positive sets in the plane defined by polynomials of degree at most p− 1. See [9] for
a detailed exposition of these examples.

While this might have been the end of the story, our NP-hardness proof fortunately highlights a
path to circumventing the lower bound. In particular, the proof carefully uses data distributions
D1, . . . ,Dk for which Di(y | x) varies between the distributions. Here Di(y | x) denotes the
conditional distribution of the label y of a sample (x, y) given x ∈ X . We thus consider the following
restricted version of collaborative learning in which Di(y | x) = Dj(y | x) for all x, i, j. That is,
the k different distributions may vary arbitrarily over X , but the label y of any x ∈ X follows the
same distribution for all Di. As a particular model of label consistent learning, one may think of
a deterministic labeling setup where it is assumed that there is f⋆ : X → {1,−1} such that across
all distributions y = f⋆(x), while no assumption is made that f⋆ belongs to H. Remarkably, in
terms of sample complexity, in the case of a single distribution, the case of deterministic labeling is
almost as hard as the general agnostic case as shown in [3]. Thus, we believe our label-consistent
multi-distribution learning setup is quite natural and interesting.

Furthermore, this restriction turns out to be sufficient for derandomizing multi-distribution learning
algorithms. In particular, we give a new algorithm, Algorithm 1, that uses a randomized (i.e., an
algorithm that outputs a randomized predictor given the training data) multi-distribution learning
algorithm (like (2)) as a black-box, and produces from it a deterministic classifier, as in (1).
Theorem 2. For any finite domain X , if the data distributions D1, . . . ,Dk are label-consistent,
then given a multi-distribution learning algorithm A that uses m(k, d,OPT, ε, δ) samples and
t(k, d,OPT, ε, δ) training time to produce, with probability 1− δ, a distribution F over classifiers
from H satisfying maxi Ef∼F [erDi

(f)] ≤ OPT+ ε, Algorithm 1 produces with probability 1− δ a
classifier f : X → {−1, 1} with erP(f) ≤ OPT+ ε with the sample complexity

m(k, d,OPT, ε/2, δ/2) +O(k ln2(k/(εδ))/ε2).

Using the additional ideas in Section 3.1, the training time of Algorithm 1 is

t(k, d,OPT, ε/2, δ/2) + Õ(k/ε2 + ln(|X |/δ)).
If the evaluation time of hypotheses in H is bounded by s, then the evaluation time of the classifier f
is bounded by

O(s|F |) + Õ(ln(k/δ) ln(|X |/ε)).

Note that several of the previous randomized multi-distribution learning algorithms are indeed
computationally efficient as long as ERM is efficient over H. This includes the algorithm
in [23] that has a near-optimal sample complexity of m(k, d,OPT, ε, δ) = Õ((d + k)/ε2) with
t(k, d,OPT, ε, δ) = poly(k, d, ε−1, ln(1/δ))tERM and |F | = poly(k, d, ε−1, ln(1/δ)), where
tERM denotes the time complexity of ERM over H. Plugging this into Theorem 2 gives a polynomial
time deterministic multi-distribution learning algorithm.

We view the restriction to finite domains X in Theorem 2 as rather mild, as any realistic imple-
mentation of a learning algorithm requires an input representation that can be stored on a computer.
Moreover, our running time dependency on |X | is only logarithmic. Even so, in Section 3.2 we give
some initially promising directions for extending our algorithm to infinite X .

Discussion of implications. Prior work has shown that in agnostic multi-distribution learning, a
sample complexity of Ω(dk/ϵ2), which is worse than the optimal Õ((d+k)/ϵ2) sample complexity, is
unavoidable with proper learning algorithms, which are algorithms restricted to outputting a classifier
in the class H [23, Theorem 18]. In contrast, our negative result in Theorem 1 implies that there is no
sample-efficient and oracle-efficient multi-distribution learning algorithm that aggregates multiple
ERM predictors in polynomial time. For example, our result rules out the simple majority-vote
aggregation approach (which is feasible in the realizable setting when OPT = 0). Note, however, that
this does not rule out the existence of computationally inefficient aggregation approaches to construct
deterministic predictors. That is, putting computational efficiency aside, it is still an open question
whether there exists a sample-efficient and oracle-efficient multi-distribution learning algorithm that
outputs a deterministic predictor, and we know from the lower bound of Zhang et al. [23, Theorem
18] that this predictor must be improper.
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2 Hardness of derandomization

In this section, we prove that it is NP-hard to derandomize multi-distribution learning in the most
general setup of input distributions Di over X × {−1, 1}. In particular, the hardness proof carefully
exploits that different data distributions may assign different labels to the same x ∈ X .

Our NP-hardness proof goes via a reduction from Discrepancy Minimization. In Discrepancy
Minimization, we are given as input an n× n matrix with 0-1 entries. The goal is to find a “coloring”
z ∈ {−1, 1}n such that every entry of Az is as small as possible in absolute value. Formally, we seek
to minimize ∥Az∥∞. The seminal work by Charikar et al. [6] showed NP-hardness of computing the
best coloring. In full details, their results are as follows.

Theorem 3 ([6]). There is a constant c > 0 such that it is NP-hard to distinguish whether an input
matrix A ∈ {0, 1}n×n has ∥Az∥2 ≥ cn for all z ∈ {−1, 1}n, or whether there exists z ∈ {−1, 1}n
with Az = 0.

Since ∥Az∥∞ ≥ ∥Az∥2/
√
n, this similarly implies that it is NP-hard to distinguish whether all z

have ∥Az∥∞ ≥ c
√
n, or there is a z with Az = 0.

Let us now use Theorem 3 to prove our hardness result, Theorem 1. We remark that NP-hardness is
formally defined in a uniform model of computation where a Turing Machine takes an encoded input
on a tape and decides language membership. As we believe our reduction is clear without going into
such formalities, we have deferred a discussion of how to formalize multi-distribution learning in a
uniform model of computation to Appendix 4.

Proof. Let n = min{d, k/2, c2/(4ε2)} and let H be an arbitrary hypothesis set of VC-dimension d
for which we can find a set of n points that are shattered by H in nO(1) time. This is possible due to
our assumption.

Let A denote an arbitrary deterministic multi-distribution algorithm. Given a matrix A ∈ {0, 1}n×n

such that either ∥Az∥∞ ≥ c
√
n for all z ∈ {−1, 1}n, or there exists a z ∈ {−1, 1}n with Az = 0, we

will now use A to correctly distinguish these two cases with probability at least 2/3, thus concluding
that the running time of A is super-polynomial unless BPP = NP.

Start by computing an arbitrary set x1, . . . , xn of n points that are shattered by H. Now define 2n
distributions D+

1 ,D
−
1 , . . . ,D+

n ,D−
n . Distribution D+

i and D−
i are both defined from the i-th row

of A. If mi denotes the number of ones in the i-th row of A, we let D+
i return the sample (xj , 1)

with probability 1/mi for each j with ai,j = 1. The distribution D−
i similarly returns (xj ,−1) with

probability 1/mi for each j with ai,j = 1. Observe that these distributions can be described using n
bits each.

Now consider running the multi-distribution learning algorithm A on distributions
D+

1 ,D
−
1 , . . . ,D+

n ,D−
n to obtain a deterministic classifier f : X → {−1, 1}. Evaluate f on

x1, . . . , xn and compute erP(f). This can be done trivially in polynomial time using the definitions
of the distributions. If erP(f) < 1/2 + ε, then output that there exists z ∈ {−1, 1}n such that
Az = 0. Otherwise, output that no such z exists. Clearly this runs in polynomial time. It thus
remains to argue correctness.

Consider first the case where there exists z ∈ {−1, 1}n with Az = 0. Since z has inner product 0
with every row of A, it follows that it assigns 1 to precisely half of the non-zero entries of the i-th row
and −1 to the remaining half. The labeling z of x1, . . . , xn thus has erD+

i
(z) = erD−

i
(z) = 1/2 and

erP(z) = 1/2. Furthermore, since x1, . . . , xn are shattered by H, it follows that minh∈H erP(h) ≤
1/2. By correctness of A, it must hold with probability at least 2/3 that we correctly output that there
exists z with Az = 0.
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Consider next the case that every z ∈ {−1, 1}n has ∥Az∥∞ ≥ c
√
n. It follows that there is a row ai

such that the vector v = (f(x1), . . . , f(xn)) has |vTai| ≥ c
√
n. Let σ = sign(vTai). Then

erD−σ
i

(f) =
1

mi

∑
j:ai,j=1

1{f(xj) = σ} =
1

mi

∑
j:ai,j=1

(1/2)(f(xj)σ + 1)

= 1/2 +
1

2mi

∑
j:ai,j=1

f(xj)σ = 1/2 +
σvTai
2mi

= 1/2 +
|vTai|
2mi

≥ 1/2 + c/(2
√
n).

Since we chose n = min{d, k/2, c2/(4ε2)}, we have c/(2
√
n) ≥ ε and thus we return with

probability 1 that all z ∈ {−1, 1}n have ∥Az∥∞ ≥ c
√
n.

Let us end by observing that the distributions used in the above hardness result have OPT ≥ 1/2.
The proof can be modified to prove lower bounds for smaller OPT by adding a dummy point x0

and letting all distributions return (x0, 1) with probability 1 − 2OPT′ and the points in the above
distributions with probability 2OPT′/mi. This reduces the value of OPT to around OPT′. However,
we also need to reduce n to min{d, k/2, (c · OPT′/ε)2}. This agrees well with the fact that for
realizable multi-distribution learning, i.e., OPT = 0, it is in fact possible to compute a deterministic
classifier in polynomial time.

3 Deterministic multi-distribution learner

In this section, we give our algorithm for derandomizing multi-distribution learners for label-
consistent distributions, i.e., we assume Di(y | x) = Dj(y | x) for all i, j, x.

We start by presenting the high level ideas of our algorithm. Recall that we defined OPT =
minh∈H erP(h), where P = {D1, . . . ,Dk}. First, consider running any of the previous ran-
domized multi-distribution learners, producing a distribution F over hypotheses in H satisfying
maxi Ef∼F [erDi(f)] ≤ OPT + ε/2. Consider randomly rounding this distribution to a deter-
ministic classifier f̂ as follows: For every x ∈ X independently (recall that we focus on finite
domains), sample an f ∼ F and let f̂(x) = f(x). For any distribution Di, we clearly have
Ef̂ [erDi

(f̂)] = Ef∼F [erDi
(f)] ≤ OPT + ε/2. However, as also discussed in the introduction, it

is not clear that we can union bound over all k distributions and argue that erDi(f̂) ≤ OPT + ε

for all of them simultaneously. Notice however that the independent choice of f̂(x) for each x

gets us most of the way. Indeed, if we let Zx be a random variable (determined by f̂(x)) giving
Pry∼D(y|x)[f̂(x) ̸= y], then erDi

(f̂) =
∑

x∈X Di(x)Zx, where Di(x) denotes the probability of
x under Di and Di(y | x) gives the conditional distribution of the label y given x. Now notice
that Di(x)Zx is a random variable taking values in {(1/2− |βx|)Di(x), (1/2 + |βx|)Di(x)} where
βx = Pry∼D1(y|x)[y = 1]− 1/2 denotes the bias of the label of x. Furthermore, these random vari-
ables are independent. We also have E[erDi(f̂)] = Ef∼F [erDi(f)]. Thus by Hoeffding’s inequality

Pr[| erDi
(f)− Ef∼F [erDi

(f)]| > ε/2] < 2 exp

(
− ε2

2 ·
∑

x∈X(2βxDi(x))2

)
.

Examining this expression closely, we observe that this probability is small if βxDi(x) is small for
all x ∈ X .

Using this observation, our algorithm then starts by drawing Õ(ε−2) samples from each distribution
Di and collecting all x for which the fraction of 1’s and −1’s is so biased towards either 1 or −1, that
the majority label almost certainly equals sign(βx). We then let f̂(x) equal this majority label for all
such x, and put these x into a set T .

What remains is all x /∈ T . Here we show that these x have so little bias, i.e., βxDi(x) is so small,
that the random rounding strategy above suffices. The full algorithm is shown as Algorithm 1.

Before giving the formal analysis of the algorithm, note that storing the classifier f̂ is quite expensive,
as we need to remember the random choice of f̂(x) for every x ∈ X \ T . This is one place where we
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Algorithm 1: DETERMINISTICLEARNER(P, ε, δ,A)
Input: Distributions P = {D1, . . . ,Dk}. Precision ε > 0, failure probability δ > 0, randomized

multi-distribution learner A.
Result: Classifier f̂ : X → {−1, 1}.

1 Let C > 0 be a large enough constant.
2 Let γ = Ck/(εδ).
3 Let T = ∅.
4 Run A with P = {D1, . . . ,Dk} and H as input, precision ε/2 and failure probability δ/2 to

obtain a distribution F over classifiers in H.
5 for i = 1, . . . , k do
6 Draw m = C ln2(γ)/ε2 samples {(xj , yj)}mj=1 from Di.
7 For every x ∈ X \ T such that ni,x := |{j : xj = x}| > 0, let

ρi,x = (|{j : xj = x ∧ yj = 1}| − |{j : xj = x ∧ yj = −1}|)/ni,x.
8 For every x ∈ X \ T such that ni,x > 0, if |ρi,x| >

√
ln(γ)/ni,x, add x to T and let

f̂(x) = sign(ρi,x).
9 For every x ∈ X \ T , independently draw an f ∼ F and let f̂(x) = f(x).

10 return f̂

use the assumption that X is finite. Note however that even for finite X , storing |X | random choices
to represent the classifier might be infeasible. Furthermore, the sampling of f̂(x) for every x also
adds |X | to the running time, which is again too expensive. We propose a method for reducing the
storage and running time requirement later in this section. For now, we analyse Algorithm 1 without
worrying about |X |.

Analysis. In our analysis, we separately handle x ∈ T and x /∈ T . The two technical results we
need are stated next. First, define the bias βx of an x ∈ X as Pry∼D1(y|x)[y = 1]− 1/2. We say that
an x is heavily biased if

β2
xDi(x) >

ε2

8 · ln(4k/δ)
for at least one i, and lightly biased otherwise. Intuitively, our algorithm ensures that T contains all
heavily biased x and that all predictions made on x ∈ T are correct. This is stated in the following
Lemma 4. It holds with probability at least 1 − δ/4 that every heavily biased x is in T , and
furthermore, for every x ∈ T , we have f̂(x) = sign(βx).

Next, we also show that random rounding outside T suffices.
Lemma 5. Assume every heavily biased x is in T after the for-loop. Then with probability at least
1− δ/4 over the random choice of f̂(x) with x ∈ X \ T , it holds for all i that∣∣∣Ef∼F [E(x,y)∼Di

[1{x /∈ T ∧ f(x) ̸= y}]]− E(x,y)∼Di
[1{x /∈ T ∧ f̂(x) ̸= y}]

∣∣∣ ≤ ε/2.

Before giving the proof of Lemma 4 and Lemma 5, let us use these two results to complete the proof
of Theorem 2.

Proof of Theorem 2. From a union bound and Lemma 4 and Lemma 5, we have with probability
1− δ, that all of the following hold

• The invocation of A in step 1 of Algorithm 1 returns a distribution F with
maxi Ef∼F [erDi

(f)] ≤ OPT+ ε/2.

• For every x ∈ T , we have f̂(x) = sign(βx).

• For every distribution Di,∣∣∣Ef∼F [E(x,y)∼Di
[1{x /∈ T ∧ f(x) ̸= y}]]− E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}]
∣∣∣ ≤ ε/2.
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Assume now that all of the above hold. We rewrite erP(f̂) by splitting the contributions to the error
into x ∈ T and x /∈ T ,

erP(f̂) = max
i

erDi
(f̂)

= max
i

(
E(x,y)∼Di

[1{x ∈ T ∧ f̂(x) ̸= y}] + E(x,y)∼Di
[1{x /∈ T ∧ f̂(x) ̸= y}]

)
.

Using that f̂(x) = sign(βx) for x ∈ T , we have E(x,y)∼Di
[1{x ∈ T ∧ f̂(x) ̸= y}] =

minz∈{−1,1}T [EDi [1{x ∈ T ∧ z(x) ̸= y}]. Thus the above is bounded by

max
i

(
min

z∈{−1,1}T
[EDi

[1{x ∈ T ∧ z(x) ̸= y}] + Ef∼F [EDi
[1{x /∈ T ∧ f(x) ̸= y}]]

)
+ ε/2.

Since every f in the support of F is a deterministic classifier, we have

min
z∈{−1,1}T

[EDi
[1{x ∈ T ∧ z(x) ̸= y}] ≤ Ef∼F [EDi

[1{x ∈ T ∧ f(x) ̸= y}].

We therefore have

erP(f̂) ≤ max
i

(Ef∼F [EDi
[1{x ∈ T ∧ f(x) ̸= y}]] + Ef∼F [EDi

[1{x /∈ T ∧ f(x) ̸= y}]]) + ε/2

= max
i

Ef∼F [erDi(f)] + ε/2

≤ OPT+ ε.

This completes the proof of Theorem 2.

Proof of Lemma 4. We first define the two types of failures that may occur:

• For every i and every x with β2
xDi(x) > ε2/(8 ln(4k/δ)), let E1

i,x denote the event that
ni,x < (C/2)β−2

x ln γ.

• For every i, let E2
i denote the event that there is an x with ni,x > 0 and |βx − ρi,x/2| >√

ln(γ)/(16ni,x).

Assume first that none of the events occur. Consider a heavily biased x. Then there is an i for
which β2

xDi(x) > ε2/(8 ln(4k/δ)). Since E1
i,x does not occur, we have ni,x ≥ (C/2)β−2

x ln γ.
Since E2

i does not occur, we also have |βx − ρi,x/2| ≤
√

ln(γ)/(16ni,x). Hence |ρi,x| ≥ 2|βx| −
2
√

ln(γ)/(16ni,x). But |βx| ≥
√
(C/2) ln(γ)/ni,x and thus |ρi,x| ≥ (

√
2C − 1/2)

√
ln(γ)/ni,x.

For C large enough, this is at least
√
ln(γ)/ni,x, which puts x in T during step 8 of Algorithm 1.

Thus every heavily biased x is in T . Secondly, note that when an x is added to T in iteration i of
the for-loop, we have |ρi,x| >

√
ln(γ)/ni,x. Since E2

i does not occur, we have |βx − ρi,x/2| ≤√
ln(γ)/(16ni,x). But this implies βx ∈ [ρi,x/2 −

√
ln(γ)/(16ni,x), ρi,x/2 +

√
ln(γ)/(16ni,x)].

Since |ρi,x| >
√
ln(γ)/ni,x, every number in this interval has the same sign as ρi,x, i.e. f̂(x) =

sign(ρi,x) = sign(βx). Thus what remains is to bound the probability of these events.

For E1
i,x, fix an i and x with β2

xDi(x) > ε2/(8 ln(4k/δ)), we have

E[ni,x] = Di(x)m > ε2m/(8β2
x ln(4k/δ)) > Cβ−2

x ln γ.

For C large enough, we get from a Chernoff bound that Pr[E1
i,x] = Pr[ni,x < (C/2)β−2

x ln γ] <

γ−2.

For E2
i , let us first condition on an outcome of the values ni,x for all x. Then for every x, we

have that pi,x := |{j : xj = x ∧ yj = 1}| − |{j : xj = x ∧ yj = −1}| is distributed as the sum
of ni,x independent −1/1 random variables taking the value 1 with probability βx + 1/2. Hence
E[pi,x] = 2βxni,x. Since ρi,x = pi,x/ni,x, it follows from Hoeffding’s inequality that

Pr

[
|βx − ρi,x/2| >

√
ln(γ)/ni,x

]
= Pr

[
|2βxni,x − pi,x| > 2

√
ln(γ)ni,x

]
< 2 exp

(
−8 ln(γ)ni,x

4ni,x

)
= 2γ−2.

7



For any fixed values ni,x, there are at most m distinct x with a non-zero ni,x. A union bound over all
of them implies Pr[E2

i | ni,x] ≤ 2mγ−2. Since this upper bound holds for any outcome of the ni,x,
we have also Pr[E2

i ] ≤ 2mγ−2.

We now observe that for every i, there are at most ε−28 ln(4k/δ) distinct x with β2
xDi(x) >

ε2/(8 ln(4k/δ)). Hence Pr[∪xE
1
i,x] ≤ ε−28 ln(4k/δ)γ−2. A union bound over all i finally implies

Pr[(∪i ∪x E1
i,x) ∪ (∪iE

2
i )] ≤ kγ−2

(
ε−28 ln(4k/δ) + 2m

)
Since γ = Ck/(εδ) and m = C ln2(γ)/ε2, we have for large enough C that this probability is
bounded by δ/4.

Proof of Lemma 5. Fix a distribution Di. Observe that for any x ∈ X \ T , we have that the
distribution of f̂(x) is the same as f(x) for f ∼ F . Hence Ef̂ [E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}]] =
Ef∼F [E(x,y)∼Di

[1{x /∈ T ∧ f(x) ̸= y}]]. Denote this expectation by µ. If we let Zx be the random
variable (as a function of f̂(x)) taking the value Pry∼Di(y|x)[f̂(x) ̸= y], then

E(x,y)∼Di
[1{x /∈ T ∧ f̂(x) ̸= y}] =

∑
x∈X\T

Di(x)Zx.

Observe that Zx is either 1/2− |βx| or 1/2 + |βx|, depending on whether f̂(x) = sign(βx) or not.
Hence Di(x)Zx ∈ [Di(x)(1/2− |βx|),Di(x)(1/2+ |βx|)] and the Zx are independent. We thus get
from Hoeffding’s inequality and that x /∈ T are lightly biased that

Pr
f̂

 ∑
x∈X\T

Di(x)Zx > µ+ ε/4

 < exp

(
−2(ε/2)2∑

x∈X\T (2|βx|Di(x))2

)

≤ exp

(
−ε2∑

x∈X\T Di(x)ε2/ ln(4k/δ)

)
≤ exp (− ln(4k/δ)) = δ/(4k).

A union bound over all Di completes the proof.

3.1 Reducing storage and time

The above description of Algorithm 1 requires the storage of an independent random choice of f̂(x)
for every x ∈ X . This is infeasible for large X , both in terms of space usage and the time needed for
making these random choices. Instead, we can reduce the storage requirements by using an r-wise
independent hash function q : X → Y for a sufficiently large output domain Y to make the random
rounding. Recall that an r-wise independent hash function hashes any set of up to r distinct keys
x1, . . . , xr independently and uniformly at random into Y . Such a hash function can be implemented
in space O(r ln(|X ||Y|)) bits and evaluated in time Õ(r ln(|X ||Y|)) by e.g., interpreting an x ∈ X
as an index into [|X |] = {0, . . . , |X | − 1} and letting q(x) =

∑r−1
i=0 αix

i(modp) for a prime
p = |Y| > |X | and the αi independent and uniformly random in [p]. Using fast multiplication
algorithms, q(x) can be evaluated in time Õ(r ln(|X ||Y|)), even when ln(|X ||Y|) bits does not fit
in a machine word. The time to sample the hash function is only O(r ln |X ||Y|) (we just need the
random coefficients of the polynomial).

Instead of storing f̂(x) for every x ∈ X \ T explicitly, the learning algorithm instead stores q

and the distribution F . Given this information, we evaluate f̂(x) by computing q(x) and letting
f̂(x) = 1 if q(x) ≤ Prf∼F [f(x) = 1]|Y| − 1 and −1 otherwise. Since q(x) is uniform over
Y for any x, we have Pr[f̂(x) = 1] = ⌊Prf∼F [f(x) = 1]|Y|⌋/|Y|. This probability satisfies
Prf∼F [f(x) = 1] − 1/|Y| ≤ Prf∼F [f(x) = 1] ≤ Prf∼F [f(x) = 1] and is thus almost the same
rounding probability as in Algorithm 1. Since previous multi-distribution learning algorithms also
store F , this only adds O(r ln(|X ||Y|)) bits to the storage.

What remains is to determine an r and |Y| for which this is sufficient for the guarantees of Algorithm 1.
We will show that r = 2 ln(4k/δ) and |Y| = Θ(ε−3 ln(k/δ)) suffices if we increase the sample
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complexity of Algorithm 1 by a logarithmic factor. Observe that the O(r ln(|X | ln(k/δ)/ε)) extra
bits is only proportional to storing O(ln(k/δ)) samples from X , provided that ln(k/δ)/ε is no larger
than a polynomial in |X |. The space overhead is thus very minor.

We only give an outline of how to modify the proof in the previous section to work with r-wise
independence as it follows the previous proof rather uneventfully. First, redefine the threshold for
being heavily biased to β2

xDi(x) > ε2/(C ′ ln2(4k/δ)) for large enough constant C ′.

For the proof of Lemma 4 to still go through, this requires us to increase m by a C ′ ln γ factor,
i.e. to CC ′ ln3(γ)/ε2, and also increase γ by C ′ to CC ′k/(εδ). Then the only change to the
proof, is that we have an event E1

i,x for every i and every x with β2
xDi(x) > ε2/(C ′ ln2(4k/δ)).

Otherwise, all conditions in the events E1
i,x and E2

i remain the same. Thus the proof still goes
through if we can argue Pr[E1

i,x] ≤ γ−2. So fix an i and x with β2
xDi(x) > ε2/(C ′ ln2(4k/δ)).

Then E[ni,x] = Di(x)m > ε2m/(C ′β2
x ln

2(4k/δ)) > Cβ−2
x ln γ. This is the same lower bound on

E[ni,x] as the previous proof and thus we can complete the steps. Finally, note that we finished the
proof of Lemma 4 by a union bound. Here we needed kγ−2(ε−28 ln(4k/δ) + 2m) < δ/4. This is
still the case for our new m and γ.

Now for the proof of Lemma 5, we used Hoeffding’s inequality. This requires the random rounding
to be independent for different x. With our modified approach, the roundings are only r-wise
independent and thus we need the following variant of Hoeffding’s inequality for r-wise independent
random variables

Theorem 6 ([17]). Let Z1, . . . , Zn be a sequence of r-wise independent random variables for r ≥ 2
with |Zi − E[Zi]| ≤ 1 for all outcomes. Let Z =

∑
i Zi with E[Z] = µ and let σ2(Z) =

∑
i σ

2(Zi)
denote the variance of Z. Then the following holds for even r and any Q ≥ max{r, σ2(Z)}:

Pr[|Z − µ| ≥ T ] ≤
(

rQ

e2/3T 2

)r/2

.

If we repeat the proof of Lemma 5, define Zx as the random variable (as a function of the random
choice of q) taking the value Pry∼Di(y|x)[f̂(x) ̸= y]. Note that Zx ∈ {1/2− |βx|, 1/2 + |βx|}. This
also implies that |Zx − E[Zx]| ≤ 2|βx| for all outcomes of Zx. When all heavily biased x are in T ,
we have β2

xDi(x) ≤ ε2/(C ′ ln2(4k/δ)) for all x /∈ T . This implies |βx| ≤ ε/(ln(4k/δ)
√
C ′Di(x)).

Now let α = 2ε/(ln(4k/δ)
√
C ′). Then

E(x,y)∼Di
[1{x /∈ T ∧ f̂(x) ̸= y}] =

∑
x∈X\T

Di(x)Zx = α
∑

x∈X\T

Di(x)Zx

α
.

The random variable Di(x)Zx/α thus satisfies |Di(x)Zx/α− E[Di(x)Zx/α]| ≤ 2Di(x)|βx|/α ≤√
Di(x) ≤ 1 for all outcomes. This also gives us σ2(Di(x)Zx/α) ≤ Di(x) and thus

σ2

 ∑
x∈X\T

Di(x)Zx

α

 ≤
∑

x∈X\T

Di(x) ≤ 1.

Now consider the expected value (with a± b = [a− b, a+ b])

µ′ = E[
∑

x∈X\T

Di(x)Zx]

=
∑

x∈X\T

Di(x)Eq[ Pr
y∼Di(y|x)

[f̂(x) ̸= y]]

∈
∑

x∈X\T

Di(x)

(
Ef∼F [ Pr

y∼Di(y|x)
[f(x) ̸= y]]± 1/|Y|

)
⊆ Ef∼F [E(x,y)∼Di

[1{x /∈ T ∧ f(x) ̸= y}]]± 1/|Y|.
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Letting µ = Ef∼F [E(x,y)∼Di
[1{x /∈ T ∧ f(x) ̸= y}]], we then have by Theorem 6 with Q = r that

Pr

∣∣∣∣∣∣
∑

x∈X\T

Di(x)Zx − µ

∣∣∣∣∣∣ ≥ αT

 ≤ Pr

∣∣∣∣∣∣
∑

x∈X\T

Di(x)Zx − µ′

∣∣∣∣∣∣ ≥ αT − 1/|Y|


= Pr

∣∣∣∣∣∣
∑

x∈X\T

Di(x)Zx

α
− µ′/α

∣∣∣∣∣∣ ≥ T − α/|Y|


≤
(

r2

e2/3(T − α/|Y|)2

)r/2

.

Inserting T = ε/(2α) and using r = 2 ln(4k/δ), |Y| ≥ 4α2/ε gives (T − α/|Y|) ≥ ε/(4α) and
thus finally implies

Pr
[∣∣∣E(x,y)∼Di

[1{x /∈ T ∧ f̂(x) ̸= y}]− Ef∼F [E(x,y)∼Di
[1{x /∈ T ∧ f(x) ̸= y}]]

∣∣∣ ≥ ε/2
]

≤
(
16r2α2

e2/3ε2

)r/2

=

(
64r2

C ′e2/3 ln2(4k/δ)

)r/2

=

(
256

C ′e2/3

)r/2

≤ e−r/2 = δ/(4k).

Here, the last inequality follows for C ′ large enough. Thus, if we increase the sample complexity
to m(k, d,OPT, ε/2, δ/2) +O(k ln3(k/(εδ))/ε2), then we may sample and store a hash function
using only O(ln(n/δ) ln(|X | ln(k/δ)/ε)) extra bits and O(ln(n/δ) ln(|X | ln(k/δ)/ε)) time.

3.2 Infinite Input Domains

In the above presentation of our algorithm, we have assumed a finite input domain X . While we
believe this is a very reasonable assumption, we here present some initial ideas for how this restrictions
might be circumvented.

Assume that the black-box randomized multi-distribution learner A always outputs a distribution F
over a finite number of classifiers in H. Let m be an upper bound on the size of the support. Then
since H has VC-dimension d, the dual VC-dimension is at most 2d [1]. By Sauer-Shelah, this implies
that the number of distinct ways x ∈ X may be labeled by the support of F is bounded

(
m

2d+1

)
, i.e.

finite. We believe that treating just the distinct ways x is labeled by the hypotheses in the support
should be sufficient to recover our results for finite X .
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4 Uniform Model of Computation

For a fully formalized NP-hardness proof, we technically need to define an input encoding of a
multi-distribution learning problem and argue that the sampling steps may be simulated by a Turing
Machine. Furthermore, details such as whether the hypothesis set H is part of the input or known to
the algorithm also needs to be formalized. In this section, we discuss various choices one could make.
We note that similar discussions and formalizations of learning in a uniform model of computation
has been carefully carried out in classic learning theory books [11].

First, we find it most natural that H is part of the learning problem, i.e. not an input to the algorithm,
but is allowed to be "hard-coded" into the algorithm. This is the best match to standard learning
problems, where e.g. the Support Vector Machine learning algorithm, or Logistic Regression via
gradient descent, knows that we are working with linear models. Similarly, the input domain seems
best modeled by letting it be known to the algorithm. One tweak could be that if the input is d-
dimensional vectors, then d could be part of the input to the algorithm. This again matches how most
natural learning algorithms work for arbitrary d (and our proof needs d to grow for our n to grow).

Now regarding modeling multi-distribution learning, we find that the following uniform computational
model most accurately matches what the community thinks of as multi-distribution learning (here
stated for the input domain being n-dimensional vectors and the hypothesis set being linear models).

A solution to multi-distribution learning with linear models, is a special Turing machine M . M
receives as input a number n on the input tape. In addition to a standard input/output tape and a tape
with random bits, M has a "sample"-tape, a "target distribution"-tape and a special "sample"-state.
When M enters the "sample"-state, the bits on the "target distribution" tape is interpreted as an index
in i and the contents of the "sample"-tape is replaced by a binary description of a fresh sample from a
distribution Di (Di is only accessible through the "sample"-state). A natural assumption here would
be that Di is only supported over points with integer coordinates bounded by n in magnitude. This
gives a natural binary representation of each sample using n log n bits, plus one bit for the label.

M runs until terminating in a special halt state, with the promise that regardless of what n distributions
D1, . . . ,Dn over the input domain that are used for generating samples in the "sample"-state, it holds
with probability at least 2/3 over the samples and the random bits on the tape, that the output tape
contains a binary encoding of a hyperplane with error at most τ +1/n for every distribution Di. A bit
more generally, we could also let it terminate with an encoding of a Turing machine on its output tape.
That Turing machine, upon receiving the encoding of n and an n-dimensional point on its input tape,
outputs a prediction on its tape. This allows more general hypotheses than just outputting something
from H.

The above special states and tapes are introduced to most accurately represent multi-distribution
learning. Now observe that our reduction from discrepancy minimization still goes through. Given
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such a special Turing machine M for multi-distribution learning, observe that we can obtain a
standard (randomized) Turing machine M ′ for discrepancy minimization from it. Concretely, in
discrepancy minimization, the input is the integer n and an n× n binary matrix A. As mentioned
in our reduction, we can easily compute n shattered points for linear models, e.g. just the standard
basis e1, . . . , en. Now do as in our reduction and interpret each row of A as two distributions over
e1, . . . , en. M ′ can now simulate the "sample"-state, "sample"-tape and "target distribution" tape
of M , as it can itself use its random tape to generate samples from the distributions. In this way,
M ′ can simulate M without the need for special tapes and states, and by the guarantees of M (as in
our reduction), it can distinguish whether A has discrepancy 0 or Ω(

√
n) by using the final output

hypothesis of M and evaluating it on e1, . . . , en and computing the error on each of the (known)
distributions Di obtained from the input matrix A.

Note that the reduction would also hold if we rephrased multi-distribution learning such that the
algorithm receives some binary encoding of D1, . . . ,Dn as input. This would make the reduction
even more straight-forward, as we need not worry about samples. However, we feel the above
definition with a special state and tapes for sampling more accurately represent multi-distribution
learning from a learning theoretic perspective. We thus prefer a slightly more complicated reduction
as above to better model the problem.
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of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.
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• While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example
(a) If the contribution is primarily a new algorithm, the paper should make it clear how

to reproduce that algorithm.
(b) If the contribution is primarily a new model architecture, the paper should describe

the architecture clearly and fully.
(c) If the contribution is a new model (e.g., a large language model), then there should

either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the paper.

Guidelines:

• The answer NA means that paper does not include experiments requiring code.
• Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

• While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

• The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

• The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

• The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

• At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

• Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLs to data and code is permitted.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The experimental setting should be presented in the core of the paper to a level of detail

that is necessary to appreciate the results and make sense of them.
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• The full details can be provided either with the code, in appendix, or as supplemental
material.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The authors should answer "Yes" if the results are accompanied by error bars, confi-

dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.

• The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

• The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

• The assumptions made should be given (e.g., Normally distributed errors).
• It should be clear whether the error bar is the standard deviation or the standard error

of the mean.
• It is OK to report 1-sigma error bars, but one should state it. The authors should

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

• For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

• If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.

8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the paper.

Guidelines:

• The answer NA means that the paper does not include experiments.
• The paper should indicate the type of compute workers CPU or GPU, internal cluster,

or cloud provider, including relevant memory and storage.
• The paper should provide the amount of compute required for each of the individual

experimental runs as well as estimate the total compute.
• The paper should disclose whether the full research project required more compute

than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes]

Justification: We see no violations of the NeurIPS Code of Ethics.

Guidelines:

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.
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• If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [NA]
Justification: The result of the paper is theoretical/foundational research, so we have no
experiments, data or code in the paper.
Guidelines:

• The answer NA means that there is no societal impact of the work performed.
• If the authors answer NA or No, they should explain why their work has no societal

impact or why the paper does not address societal impact.
• Examples of negative societal impacts include potential malicious or unintended uses

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

• The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

• The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

• If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: The paper is theoretical, and we have no experiments, data or code in the paper.
Guidelines:

• The answer NA means that the paper poses no such risks.
• Released models that have a high risk for misuse or dual-use should be released with

necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

• Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

• We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
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Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the paper.

Guidelines:

• The answer NA means that the paper does not use existing assets.
• The authors should cite the original paper that produced the code package or dataset.
• The authors should state which version of the asset is used and, if possible, include a

URL.
• The name of the license (e.g., CC-BY 4.0) should be included for each asset.
• For scraped data from a particular source (e.g., website), the copyright and terms of

service of that source should be provided.
• If assets are released, the license, copyright information, and terms of use in the

package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

• For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

• If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the paper.

Guidelines:

• The answer NA means that the paper does not release new assets.
• Researchers should communicate the details of the dataset/code/model as part of their

submissions via structured templates. This includes details about training, license,
limitations, etc.

• The paper should discuss whether and how consent was obtained from people whose
asset is used.

• At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: The paper is theoretical, and we have no experiments, data or code in the paper.

Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
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Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
Answer: [NA]
Justification: The paper is theoretical, and we have no experiments, data or code in the paper.
Guidelines:

• The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

• Depending on the country in which research is conducted, IRB approval (or equivalent)
may be required for any human subjects research. If you obtained IRB approval, you
should clearly state this in the paper.

• We recognize that the procedures for this may vary significantly between institutions
and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
guidelines for their institution.

• For initial submissions, do not include any information that would break anonymity (if
applicable), such as the institution conducting the review.
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