Optimizing Attention with Mirror Descent: Generalized Max-Margin Token Selection

Aaron Alvarado Kristanto Julistiono[∗] Massachusetts Institute of Technology aaron25@mit.edu

Davoud Ataee Tarzanagh[∗] University of Pennsylvania tarzanaq@upenn.edu

Navid Azizan Massachusetts Institute of Technology azizan@mit.edu

Abstract

Attention mechanisms have revolutionized numerous domains of artificial intelligence, including natural language processing and computer vision, by enabling models to selectively focus on relevant parts of the input data. Building on recent results characterizing the optimization dynamics of gradient descent (GD) and the structural properties of its preferred solutions in attention-based models, this paper explores the convergence properties and implicit bias of a family of mirror descent (MD) algorithms designed for softmax attention mechanisms, with the potential function chosen as the p-th power of the ℓ_p -norm. Specifically, we show the directional convergence of these algorithms to a generalized hard-margin SVM with an ℓ_p -norm objective when applied to a classification problem using a one-layer softmax attention model. Our theoretical results demonstrate that these algorithms not only converge directionally to the generalized max-margin solutions but also do so at a rate comparable to that of traditional GD in simpler models, despite the highly nonlinear and nonconvex nature of the present problem. Additionally, we delve into the joint optimization dynamics of the key-query matrix and the decoder, establishing conditions under which this complex joint optimization converges to their respective hard-margin SVM solutions.

1 Introduction

Attention mechanisms [\[4\]](#page-6-0) have transformed natural language processing (NLP) and large language models (LLMs). Initially developed for encoder-decoder recurrent neural networks (RNNs), attention enables the decoder to focus on relevant input segments rather than relying solely on a fixed-length hidden state. This approach became fundamental in transformers [\[60\]](#page-9-0), where attention layers—computing softmax similarities among input tokens—are the architecture's backbone. Transformers have driven rapid advancements in NLP with models like BERT [\[19\]](#page-6-1) and ChatGPT [\[42\]](#page-8-0), and have become the preferred architecture for generative modeling [\[12,](#page-6-2) [46\]](#page-8-1), computer vision [\[20,](#page-7-0) [45\]](#page-8-2), and reinforcement learning [\[21,](#page-7-1) [11\]](#page-6-3). This has led to increased exploration of the mathematical foundations of attention's optimization.

To understand the optimization dynamics of attention mechanisms, [\[53,](#page-8-3) [52\]](#page-8-4) studied the *implicit bias* of gradient descent (GD) in binary classification with a fixed linear decoder. This bias reflects GD's tendency to favor certain weight characteristics when multiple valid solutions exist. For instance, in linear logistic regression on separable data, GD aligns with the max-margin class separator [\[49,](#page-8-5) [31\]](#page-7-2). Similarly, [\[52,](#page-8-4) [53\]](#page-8-3) propose a model akin to a hard-margin Support Vector Machine (SVM)—specifically, $(\ell_p$ [-AttSVM\)](#page-3-0) with $p = 2$ —maximizing the margin between optimal and nonoptimal tokens based on their softmax logits. These studies show that as training progresses, the key-query weights $W(k)$ align with the locally optimal solution W^{α}_{mm} , the minimizer of (ℓ_p [-AttSVM\)](#page-3-0). Expanding on these insights, [\[58\]](#page-9-1) explores global directional convergence and GD's convergence

Mathematics of Modern Machine Learning Workshop at NeurIPS 2024.

[∗]Equal contribution

rate under certain conditions. [\[48\]](#page-8-6) extends this by relaxing assumptions about regularized paths for the (W_K, W_Q) parameterization, showing that gradient flow minimizes the nuclear norm of the key-query weight $W = W_K W_Q^{\top}$.

Contributions. While the aforementioned works provide insights into the implicit bias and token selection properties of attention mechanisms, their analyses are limited to GD. A broader understanding of general descent algorithms, such as the mirror descent ([MD](#page-2-0)) family, and their token selection properties is missing. We address this by examining a family of [MD](#page-2-0) algorithms designed for softmax attention, where the potential function is the p-th power of the ℓ_p -norm, termed ℓ_p [-AttGD](#page-3-1). This generalizes both ℓ_p -GD [\[2,](#page-6-4) [50,](#page-8-7) [51\]](#page-8-8) and attention GD [\[53,](#page-8-3) [52\]](#page-8-4), enabling the exploration of key aspects of attention optimization via ℓ_p [-AttGD](#page-3-1).

Implicit bias of ℓ_p [-AttGD](#page-3-1) *for attention optimization*. Building on [\[52,](#page-8-4) [58,](#page-9-1) [48\]](#page-8-6), we examine a one-layer attention model for binary classification and extend the SVM formulation in [\[52\]](#page-8-4) to $(\ell_p\text{-AtsVM})$, defining a hard-margin SVM with the ℓ_p -norm. The solution W^{α}_{mn} separates locally optimal tokens $(\alpha_i)_{i=1}^n$ with a *generalized* maximum margin. Theorem [3](#page-4-0) shows sufficient conditions for ℓ_p [-AttGD](#page-3-1) to converge directionally to W_{mm}^{α} , while Theorem [2](#page-4-1) demonstrates that $||W(k)||_{p,p}$ diverges as $k \to \infty$.

Convergence rate of ℓ_p [-AttGD](#page-3-1) *to the solution of* $(\ell_p$ [-AttSVM\)](#page-3-0). Theorem [4](#page-4-2) shows that $D_{\psi}(W_{\text{mm}}^{\alpha}/\|W_{\text{mm}}^{\alpha}\|_{p,p},W(k)/\|W(k)\|_{p,p})$ decreases at an inverse poly-log rate, where $W(k)$ are the iterates and $D_{\psi}(\cdot, \cdot)$ denotes the Bregman divergence [\[9\]](#page-6-5). Despite optimizing a nonconvex softmax function, the rate is similar to GD in linear binary classification [\[31,](#page-7-2) Theorem 1.1]. Though slower than the $O(k^{-3/4})$ rate in [\[58,](#page-9-1) Theorem 1], our result applies without assuming token orthogonality.

Generalized Max-Margin Solutions and Joint Optimization of (v, W) . We examine the joint problem under logistic loss with ℓ_p -norm regularization, solving an empirical risk minimization problem [\(ERM\)](#page-1-0) under relaxed ℓ_p -norm constraints. If the attention features $\bar{X}_i = X_i^\top \sigma(X_i W z_i)$ are separable by labels y_i , v acts as a generalized max-margin classifier [\[3\]](#page-6-6). We show that under suitable geometric conditions, W and v converge to their *generalized* max-margin solutions (Theorem [5](#page-28-0) in the appendix).

We also provide experiments showing that mirror descent improves generalization over GD, excelling in optimal token selection and suppressing non-optimal tokens.

2 Preliminaries

Notations. Let $N \geq 1$ and $[N] = \{1, 2, ..., N\}$. Vectors are denoted by lowercase letters (e.g., a), with components a_i , and matrices by uppercase letters (e.g., A). For a vector $v \in \mathbb{R}^d$, the p-norm is $||v||_p = (\sum_{i=1}^d |v_i|^p)^{1/p}$. For a matrix $M \in \mathbb{R}^{d \times d}$, the p, p-norm is $||M||_{p,p} =$ $(\sum_{i=1}^d \sum_{j=1}^d |M_{ij}|^p)^{1/p}$. For any two matrices X, Y of the same dimensions, we define $\langle X, Y \rangle :=$ trace($X^{\top}Y$). Asymptotic notations O and Ω hide constant factors, and all logarithms are natural. For a differentiable function $f : \mathbb{R}^{d \times d} \to \mathbb{R}$, we define $D_f : \mathbb{R}^{d \times d} \times \mathbb{R}^{d \times d} \to \mathbb{R}$ as

 $D_f(W, V) := f(W) - f(V) - \langle \nabla f(V), W - V \rangle.$ (1)

Single-head attention model. Given input sequences $X, Z \in \mathbb{R}^{T \times d}$ with length T and embedding dimension d , the output of a single-head (cross)-attention layer is computed as: softmax($\overline{X}W_QW_K^{\top}Z^{\top}$) XW_V , where $W_Q, W_K \in \mathbb{R}^{d \times d_1}$, $W_V \in \mathbb{R}^{d \times d_2}$ are trainable key, query, value matrices, respectively; softmax($XW_QW_K^{\top}Z^{\top}$) is the attention map; and softmax(·) : $\mathbb{R}^{T\times T}\to$ $\mathbb{R}^{T\times T}$ denotes the row-wise softmax function applied row-wise on $XW_QW_K^{\top}Z^{\top}$. Similar to [\[53,](#page-8-3) [52\]](#page-8-4), we reparameterize the key-query product matrix as $W := W_Q W_K^\top \in \mathbb{R}^{d \times \tilde{d}}$, and subsume the value weights W_V within the prediction head $v \in \mathbb{R}^d$. Suppose the first token of Z, denoted by z, is used for prediction. Then, the attention model can be formulated as

$$
f(X, z) = v^{\top} X^{\top} \sigma(XWz). \tag{2}
$$

where $\sigma(\cdot): \mathbb{R}^T \to \mathbb{R}^T$ is the softmax function for vectors.

Attention-based empirical risk minimization. We consider a one-layer attention model [\(2\)](#page-1-1) for binary classification. Consider the dataset $(X_i, y_i, z_i)_{i=1}^n$, where $X_i \in \mathbb{R}^{T \times d}$ is the input with T tokens each of dimension $d, y_i \in \{\pm 1\}$ is the label, and $z_i \in \mathbb{R}^d$ is the token used for comparison. We use a smooth decreasing loss function $l : \mathbb{R} \to \mathbb{R}$ and study empirical risk minimization (ERM):

$$
\min_{v \in \mathbb{R}^d, W \in \mathbb{R}^{d \times d}} \quad \mathcal{L}(v, W) := \frac{1}{n} \sum_{i=1}^n l\left(y_i v^\top X_i^\top \sigma\left(X_i W z_i\right)\right).
$$
 (ERM)

Throughout, we will use $\mathcal{L}(W)$ to denote the objective of [\(ERM\)](#page-1-0) with fixed v.

Next, we provide an assumption on the loss function necessary to demonstrate the convergence of MD for margin maximization within the attention mechanism.

Assumption A. Within any closed interval, the loss function $l : \mathbb{R} \to \mathbb{R}$ is strictly decreasing and *differentiable, and its derivative* l ′ *is bounded and Lipschitz continuous.*

Assumption [A](#page-2-1) aligns with the assumptions on loss functions in [\[53,](#page-8-3) [52\]](#page-8-4). Commonly used loss functions, such as $\bar{l}(x) = e^{-x}$, $l(x) = -x$, and $l(x) = \log(1 + e^{-x})$, satisfy this assumption.

Preliminaries on mirror descent. We review the mirror descent algorithm [\[7\]](#page-6-7) for solving attentionbased [\(ERM\)](#page-1-0). Mirror descent is defined using a *potential function*. We focus on differentiable and strictly convex potentials ψ defined on the entire domain $\mathbb{R}^{d \times d}$. We call $\nabla \psi$ the *mirror map*. The natural "distance" associated with the potential ψ is given by the Bregman divergence [\[8\]](#page-6-8).

Definition 1 (Bregman Divergence). For a strictly convex function $\psi : \mathbb{R}^{d \times d} \to \mathbb{R}$, the expression $D_{\psi}(\cdot, \cdot)$ *defined in* [\(1\)](#page-1-2) *is called the Bregman divergence.*

For more details, see [\[6\]](#page-6-9). [MD](#page-2-0) with respect to the mirror map ψ is a generalization of GD where the Bregman divergence is used as a measure of distance. Given a stepsize $\eta > 0$, the [MD](#page-2-0) algorithm is as follows:

$$
W(k+1) \leftarrow \arg\min_{W \in \mathbb{R}^{d \times d}} \left\{ \eta^{-1} D_{\psi}(W, W(k)) + \langle \nabla \mathcal{L}(W(k)), W \rangle \right\}.
$$
 (MD)

Equivalently, [MD](#page-2-0) can be written as $\nabla \psi(W(k+1)) = \nabla \psi(W(k)) - \eta \nabla L(W(k))$; see [\[10,](#page-6-10) [34\]](#page-7-3).

A useful fact about the Bregman divergence is that it is always non-negative and $D_{\psi}(W, V) = 0$ if and only if $W = V$. Using this notation, one property we will repeatedly use is the following [\[2\]](#page-6-4):

Lemma 1. For any $W \in \mathbb{R}^{d \times d}$, the following identities hold for [MD](#page-2-0):

$$
D_{\psi}(W, W(k)) = D_{\psi}(W, W(k+1)) + D_{\psi - \eta \mathcal{L}}(W(k+1), W(k)) - \eta \langle \nabla \mathcal{L}(W(k)), W - W(k) \rangle - \eta \mathcal{L}(W(k)) + \eta \mathcal{L}(W(k+1)).
$$
 (3)

Preliminaries on attention SVM. Following [\[53,](#page-8-3) [52\]](#page-8-4), we use the following definition of token scores.

Definition 2 (Token Score). For prediction head $v \in \mathbb{R}^d$, the score of token X_{it} is $\gamma_{it} = y_i v^\top X_{it}$.

It is important to highlight that the score is determined solely based on the *value embeddings* $v^\top X_{it}$ of the tokens. The softmax function $\sigma(\cdot)$ minimizes [\(ERM\)](#page-1-0) by selecting the token with the highest score [\[52,](#page-8-4) Lemma 2]. Using [\(2\)](#page-2-2), [\[52\]](#page-8-4) defines globally optimal tokens $(\text{opt}_i)_{i=1}^n$, with each opt_i maximizing the score for $X_{i_{\text{opt}_i}}$. For our [MD](#page-2-0) analysis, we primarily consider locally optimal tokens, as they are more general than globally optimal ones. Locally optimal tokens are characterized by having scores that surpass those of nearby tokens. We formalize the term nearby tokens later in Definition [3](#page-2-3) for locally optimal tokens and support tokens. Intuitively, these are the tokens that locally minimize [\(ERM\)](#page-1-0) upon selection and can be defined based on *support tokens*. Before presenting the mathematical notion of locally optimal tokens, we provide the formulation of the attention SVM problem. Given a set of (locally) optimal token indices $(\alpha_i)_{i=1}^n$, [\[52\]](#page-8-4) defines the following hardmargin attention SVM problem, which aims to separate, with maximal margin, (locally) optimal tokens from the rest of the tokens for every input sequence:

$$
W_{\text{mm}}^{\alpha} := \arg \min_{W \in \mathbb{R}^{d \times d}} ||W||_F
$$

subj. to $(X_{i\alpha_i} - X_{it})^{\top} W z_i \ge 1$, for all $t \in [T] - {\alpha_i}$, $i \in [n]$. (4)

The constraint $(X_{i\alpha_i} - X_{it})^\top W z_i \ge 1$ indicates that in the softmax probability vector $\sigma(X_i W z_i)$, the α_i component has a significantly higher probability compared to the rest, and so these problems solve for a sort of probability separator that has the lowest norm.

Definition 3 (Globally and Locally Optimal Tokens). *Consider the dataset* $(X_i, y_i, z_i)_{i=1}^n$.

1. The tokens with indices $opt = (opt_i)_{i=1}^n$ are called globally optimal if they have the highest *scores, given by* $\mathfrak{opt}_i \in \arg \max_{t \in [T]} \gamma_{it}$.

 ${\bf 2.}$ Fix token indices $(\alpha_i)_{i=1}^n$ for which [\(4\)](#page-2-4) is feasible to obtain $W^\alpha_{\rm mm}$. Let the support tokens \mathcal{T}_i for *the* i^{th} data be the set of tokens τ such that $(X_{i\alpha_i} - X_{i\tau})^\top W_{\text{mm}}^\alpha z_i = 1$. The tokens with indices $(\alpha_i)_{i=1}^n$ are called locally optimal if, for all $i \in [n]$ and $\tau \in \mathcal{T}_i$, the scores per Def. [2](#page-2-2) obey $\gamma_{i\alpha_i} > \gamma_{i\tau}$.

It is worth noting that token scoring and optimal token identification can help us understand the importance of individual tokens and their impact on the overall objective. A token score measures how much a token contributes to a prediction or classification task, while an optimal token is defined as the token with the highest relevance in the corresponding input sequence [\[53,](#page-8-3) [52\]](#page-8-4).

3 Implicit Bias of Mirror Descent for Optimizing Attention

3.1 Optimizing Attention with Fixed Head v

In this section, we assume that the prediction head is fixed, allowing us to delve into the dynamics of the token selection mechanism driven by the training of the key-query weight matrix W . The analysis will later be expanded in Section [3.2](#page-4-3) to include the joint optimization of both v and W .

We investigate the theoretical properties of the main algorithm of interest, namely [MD](#page-2-0) with $\psi(\cdot)$ = $\frac{1}{p} \|\cdot\|_{p,p}^p$ for $p > 1$ for training [\(ERM\)](#page-1-0) with fixed v. For conciseness, we will refer to this algorithm by the shorthand ℓ_p [-AttGD](#page-3-1). As noted by [\[3\]](#page-6-6), this choice of mirror potential is particularly of practical interest because the mirror map ∇ψ updates become *separable* in coordinates and thus can be implemented *coordinate-wise* independently of other coordinates.

$$
\forall i, j \in [d], \quad \begin{cases} \left[W(k+1)\right]_{ij} \leftarrow \left| [W(k)]_{ij}^+ \right|^{\frac{1}{p-1}} \cdot \text{sign}\left([W(k)]_{ij}^+ \right), \\ \left[W(k)\right]_{ij}^+ := \left| [W(k)]_{ij} \right|^{p-1} \text{sign}\left([W(k)]_{ij} \right) - \eta \left[\nabla L(W(k)) \right]_{ij} . \end{cases} \tag{\ell_p\text{-AttGD}}
$$

In the following, we first identify the conditions that guarantee the convergence of ℓ_p [-AttGD](#page-3-1). The intuition is that, for attention to exhibit implicit bias, the softmax nonlinearity should select the locally optimal token within each input sequence. [\[52\]](#page-8-4) shows that under certain assumptions, training an attention model using GD causes its parameters' direction to converge.

This direction can be found by solving a simpler optimization problem, such as attention SVM [\(4\)](#page-2-4), which selects the locally optimal token. Here, we generalize (4) using the ℓ_p -norm as follows:

Definition 4 (Attention SVM with ℓ_p -norm Objective). *For a dataset* $\{(X_i, y_i, z_i)\}_{i=1}^n$ *with* $y_i \in$ $\{\pm 1\}$, $X_i \in \mathbb{R}^{T \times d}$, and token indices $(\alpha_i)_{i=1}^n$, ℓ_p -based attention SVM is defined as

$$
W_{\text{mm}}^{\alpha} := \arg \min_{W \in \mathbb{R}^{d \times d}} ||W||_{p,p}
$$

subj. to $(X_{i\alpha_i} - X_{it})^{\top} W z_i \ge 1$, for all $t \in [T] - {\alpha_i}$, $i \in [n]$. $(\ell_p\text{-AttSVM})$

Problem $(\ell_p$ [-AttSVM\)](#page-3-0) is strictly convex, so it has unique solutions when feasible. Furthermore, under mild overparameterization, $d \ge \max\{T-1, n\}$, the problem is almost always feasible [\[52,](#page-8-4) Theorem 1]. We assert that the solution to the $(\ell_p$ [-AttSVM\)](#page-3-0) problems determines the direction that the attention model parameters approach as the training progresses.

Theorem 1 (ℓp–norm Regularization Path). *Suppose Assumption [A](#page-2-1) on the loss function holds. Consider the ridge-constrained solutions* $W^{(R)}$ *of* [\(ERM\)](#page-1-0) *defined as*

$$
W^{(R)} := \arg\min_{W \in \mathbb{R}^{d \times d}} \mathcal{L}(W) \quad \text{subj. to} \quad ||W||_{p,p} \le R. \tag{l_p-\text{AttRP}}
$$

Then, $\lim_{R\to\infty}W^{(R)}/R = W_{\text{mm}}^{\text{opt}}/\|W_{\text{mm}}^{\text{opt}}\|_{p,p}$, where $W_{\text{mm}}^{\text{opt}}$ is the solution of $(\ell_p$ [-AttSVM\)](#page-3-0), with α_i *replaced by* opt_{i} .

Theorem [1](#page-3-2) shows that as the regularization strength R increases, the optimal direction $W^{(R)}$ aligns more closely with the max-margin solution W_{mm}^{α} . This theorem, which allows for globally optimal tokens (see Definition [3\)](#page-2-3), does not require any specific initialization for the ℓ_p [-AttRP](#page-3-3) algorithm and demonstrates that max-margin token separation is an essential feature of the attention mechanism.

Next, we provide the convergence of [MD](#page-2-0) applied to [\(ERM\)](#page-1-0). We found that under certain initializations, the parameter's ℓ_p -norm increases to infinity as training progresses, and its direction approaches that of the $(\ell_p$ [-AttSVM\)](#page-3-0) solution. To describe the initialization that allows for these, we define the notion of cone sets.

Definition 5. Given a square matrix $W \in \mathbb{R}^{d \times d}$, $\mu \in (0, 1)$, and some $R > 0$,

$$
S_{p,\mu}(W) := \left\{ W' \in \mathbb{R}^{d \times d} \mid D_{\psi} \left(\frac{W}{\|W\|_{p,p}}, \frac{W'}{\|W'\|_{p,p}} \right) \le \mu \right\},\tag{5a}
$$

$$
C_{p,\mu,R}(W) := S_{\mu}(W) \cap \{W' \mid ||W||_{p,p} \ge R\}.
$$
 (5b)

These sets contain matrices with a similar direction to a reference matrix W , as captured by the inner product in $S_{\mu}(W)$. For $C_{p,\mu,R}(W)$, there is an additional constraint that the matrices must have a sufficiently high norm. We note that $S_{p,\mu}(W)$ and $C_{p,\mu,R}(W)$ reduce to their Euclidean variants as described in [\[53,](#page-8-3) [52\]](#page-8-4). With this definition, we present our first theorem about the norm of the parameter increasing during training.

Theorem 2. Suppose [A](#page-2-1)ssumption A holds. Let $(\alpha_i)_{i=1}^n$ be locally optimal tokens as per Defi*nition* [3.](#page-2-3) Consider the sequence $W(k)$ generated by Algorithm ℓ_p [-AttGD](#page-3-1). For a small enough *stepsize* η , if $W(0) \in C_{p,\mu,R}(W_{\text{mm}}^{\alpha})$ *for some dataset-dependent constants* $\mu, R > 0$, then we have $\lim_{k\to\infty} ||W(k)||_{p,p} = \infty.$

Remark 1. *The condition on the stepsize* η *is that it must be sufficiently small so that* $\psi(\cdot) - \eta \mathcal{L}(\cdot)$ *remains convex for the matrices* W *along the path traced by the iterates* W(k)*. Specifically, there exists an index* k and a real number $r \in [0,1]$ *such that* $\tilde{W} = rW(k) + (1-r)W(k+1)$ *. This restriction applies to all theorems in this paper that require a sufficiently small stepsize* η*.*

This theorem implies that the parameters will increase and diverge to infinity, justifying the need to characterize the convergence of their direction.

Theorem 3 (Convergence of ℓ_p [-AttGD](#page-3-1)). Suppose [A](#page-2-1)ssumption A holds. Let $(\alpha_i)_{i=1}^n$ be locally ϵ *optimal tokens as per Definition [3.](#page-2-3) Consider the sequence* $W(k)$ generated by Algorithm ℓ_p [-AttGD](#page-3-1). *For a small enough* η *, if* $W(0) \in C_{p,\mu,R}(W_{\text{mm}}^{\alpha})$ *for some constants* $\mu > 0, R > \exp(2)$ *, then*

$$
\lim_{k \to \infty} \frac{W(k)}{\|W(k)\|_{p,p}} = \frac{W_{\text{mm}}^{\alpha}}{\|W_{\text{mm}}^{\alpha}\|_{p,p}}.
$$

These theorems show that as the parameters grow large enough and approach a locally optimal direction, they will keep moving toward that direction.

Theorem 4 (Convergence Rate of ℓ_p [-AttGD](#page-3-1)). Suppose [A](#page-2-1)ssumption A holds. Let $(\alpha_i)_{i=1}^n$ be locally *optimal tokens as per Definition* [3.](#page-2-3) Consider the sequence $W(k)$ generated by Algorithm ℓ_p [-AttGD](#page-3-1). For a small enough η , if $W(0) \in C_{p,\mu,R}(W_{\text{mm}}^{\alpha})$ for some constants $\mu > 0, R > \exp(2)$, then

$$
D_{\psi}\left(\frac{W_{\text{mm}}^{\alpha}}{\|W_{\text{mm}}^{\alpha}\|_{p,p}}, \frac{W(k)}{\|W(k)\|_{p,p}}\right) = \mathcal{O}\left(\begin{cases} \frac{\log\log k}{\log k} & \text{if } p > 2, \\ \frac{(\log\log k)^2}{\log k} & \text{if } p = 2, \\ \frac{\log\log k}{(\log k)^{p-1}} & \text{otherwise.} \end{cases}\right). \tag{6}
$$

Despite optimizing a highly nonlinear, nonconvex softmax function, we achieve a convergence rate similar to that of GD in linear binary classification [\[31,](#page-7-2) Theorem 1.1] (up to a $\log \log k$ factor).

3.2 Training Dynamics of Mirror Descent for Joint Optimization of W and v

This section delves into the training dynamics of simultaneously optimizing the prediction head v and the attention weights W . Unlike Section [3.1,](#page-3-4) the main challenge here is the evolving token scores γ influenced by the changing nature of v. This requires additional technical considerations beyond those in Section [3.1,](#page-3-4) which are also addressed in this section. Given stepsizes η_W , $\eta_v > 0$, we consider the following *joint* updates for W and v applied to [\(ERM\)](#page-1-0), respectively: For all $i, j \in [d]$:

$$
\begin{cases}\n[W(k+1)]_{ij} \leftarrow |[W(k)]_{ij}^+|^{\frac{1}{p-1}} \cdot \text{sign}\left([W(k)]_{ij}^+\right), \\
[W(k)]_{ij}^+ := |[W(k)]_{ij}|^{p-1} \text{sign}([W(k)]_{ij}) - \eta_W[\nabla_W L(W(k), v(k))]_{ij}, \\
[v(k+1)]_i \leftarrow |[v(k)]_i^+|^{\frac{1}{p-1}} \cdot \text{sign}([v(k)]_i^+), \\
[v(k)]_i^+ := |[v(k)]_i|^{p-1} \text{sign}([v(k)]_i) - \eta_v[\nabla_v L(W(k), v(k))]_i.\n\end{cases} \tag{\ell_p\text{-JointGD}}
$$

We discuss the implicit bias and convergence for $v(k)$ below. From previous results [\[3\]](#page-6-6), one can expect $v(k)$ to converge to the ℓ_p -SVM solution, i.e., the max-margin classifier separating the set of samples $\{(X_{i\alpha_i}, y_i)\}_{i=1}^n$, where $X_{i\alpha_i}$ denote the (locally) optimal token for each $i \in [n]$. Consequently, we consider the following hard-margin SVM problem,

$$
v_{\text{mm}} = \arg \min_{v \in \mathbb{R}^d} \|v\|_p \quad \text{subj. to} \quad y_i X_{i\alpha_i}^\top v \ge 1 \quad \text{for all} \quad i \in [n]. \tag{\ell_p\text{-}SVM}
$$

In (ℓ_p [-SVM\)](#page-4-4), define the *label margin* as $1/||v_{\text{mm}}||_p$. The label margin quantifies the distance between the separating hyperplane and the nearest data point in the feature space. A larger label margin indicates better generalization performance of the classifier, as it suggests that the classifier has a greater separation between classes. From $(\ell_p\text{-SWM})$ and Definitions [2](#page-2-2) and [3,](#page-2-3) an additional intuition by [\[53\]](#page-8-3) behind optimal tokens is that they maximize the label margin when selected; see Figure [3](#page-32-0) in the appendix for a visualization. Selecting the locally optimal token indices $\alpha = (\alpha_i)_{i=1}^n$ from each input data sequence achieves the largest label margin, meaning that including other tokens will reduce the label margin as defined in (ℓ_p [-SVM\)](#page-4-4). In the Appendix [G,](#page-28-1) we show that W and v generated by ℓ_p [-JointRP](#page-28-2) converge to their respective max-margin solutions under suitable geometric conditions (Theorem 5 in the appendix).

4 Experimental Results

We validate our theorems through numerical simulations in Appendix [H,](#page-31-0) and present real data experiments here. Our results show that training an attention network with mirror descent improves generalization and token selection compared to GD.

Algorithm	Model Size 3	Model Size 4	Model Size 6
$\ell_{1,1}$ -MD	$83.47 \pm 0.09\%$	$83.36 \pm 0.13\%$	$83.65 \pm 0.13\%$
ℓ_2 -MD	$81.66 \pm 0.09\%$	$81.05 \pm 0.17\%$	$82.22 \pm 0.13\%$
ℓ_3 -MD	$82.57 \pm 0.09\%$	$82.40 \pm 0.12\%$	$81.97 \pm 0.10\%$

Table 1: Test accuracies of transformer classification models trained with $\ell_{1,1}$, ℓ_2 , and ℓ_3 -[MD](#page-2-0) on the **Stanford Large Movie Review Dataset**. The model size refers to the number of layers in the transformer model and the number of attention heads per layer. $\ell_{1.1}$ -[MD](#page-2-0) provides superior generalization performance.

We trained a transformer classification model on the Stanford Large Movie Review Dataset [\[39\]](#page-8-9) using [MD](#page-2-0) with $\ell_{1,1}$, ℓ_2 , and ℓ_3 potentials. The models are similar to the one in [\[60\]](#page-9-0), with the last layer being a linear classification layer on the feature representation of the first [CLS] token. Table [1](#page-5-0) summarizes the resulting test accuracy of several variants of that model when trained with the three algorithms, which shows that the $\ell_{1,1}$ potential mirror descent outperforms the other mirror descent algorithms, including the one with the ℓ_2 potential, which is equivalent to the GD.

We also investigate how the model's attention layers select pivotal tokens in simple GPT-4o-generated reviews, focusing on those that determine whether the review is positive or negative. These pivotal tokens were also identified by GPT-4o. We compare the model trained using $\ell_{1,1}$ mirror descent to one trained with GD, with full results in the Appendix (Figure [9\)](#page-36-0), which shows that the $\ell_{1,1}$ mirror descent outperforms GD in token selection.

5 Conclusion

We studied the optimization dynamics of mirror descent algorithms for softmax attention, focusing on ℓ_p [-AttGD](#page-3-1), which generalizes GD using the p-th power of the ℓ_p -norm as the potential function. Our analysis and experiments show that ℓ_p [-AttGD](#page-3-1) converges to the solution of a generalized hard-margin SVM with an ℓ_p -norm objective in classification tasks using a one-layer softmax attention model. This generalized SVM separates optimal from non-optimal tokens via linear constraints on token pairs. We also analyzed the joint problem under logistic loss with ℓ_p -norm regularization and proved convergence of W and v to their generalized max-margin solutions under appropriate conditions. Numerical experiments on synthetic data support our theoretical results.

Acknowledgments

The authors acknowledge the MIT SuperCloud and Lincoln Laboratory Supercomputing Center for providing computing resources that have contributed to the results reported within this paper. This work was supported in part by MathWorks, the MIT-IBM Watson AI Lab, the MIT-Amazon Science Hub, and the MIT-Google Program for Computing Innovation.

References

[1] Sanjeev Arora, Nadav Cohen, Wei Hu, and Yuping Luo. Implicit regularization in deep matrix factorization. *Advances in Neural Information Processing Systems*, 32, 2019.

- [2] Navid Azizan and Babak Hassibi. Stochastic gradient/mirror descent: Minimax optimality and implicit regularization. In *International Conference on Learning Representations*, 2018.
- [3] Navid Azizan, Sahin Lale, and Babak Hassibi. Stochastic mirror descent on overparameterized nonlinear models. *IEEE Transactions on Neural Networks and Learning Systems*, 33(12):7717– 7727, 2021.
- [4] Dzmitry Bahdanau, Kyunghyun Cho, and Yoshua Bengio. Neural machine translation by jointly learning to align and translate. *arXiv preprint arXiv:1409.0473*, 2014.
- [5] Han Bao, Ryuichiro Hataya, and Ryo Karakida. Self-attention networks localize when qkeigenspectrum concentrates. *arXiv preprint arXiv:2402.02098*, 2024.
- [6] Heinz H Bauschke, Jérôme Bolte, and Marc Teboulle. A descent lemma beyond lipschitz gradient continuity: first-order methods revisited and applications. *Mathematics of Operations Research*, 42(2):330–348, 2017.
- [7] Charles Blair. Problem complexity and method efficiency in optimization (a. s. nemirovsky and d. b. yudin). *SIAM Review*, 27(2):264–265, 1985.
- [8] Lev M Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. *USSR computational mathematics and mathematical physics*, 7(3):200–217, 1967.
- [9] L.M. Bregman. The relaxation method of finding the common point of convex sets and its application to the solution of problems in convex programming. *USSR Computational Mathematics and Mathematical Physics*, 7(3):200–217, 1967.
- [10] Sébastien Bubeck et al. Convex optimization: Algorithms and complexity. *Foundations and Trends® in Machine Learning*, 8(3-4):231–357, 2015.
- [11] Lili Chen, Kevin Lu, Aravind Rajeswaran, Kimin Lee, Aditya Grover, Misha Laskin, Pieter Abbeel, Aravind Srinivas, and Igor Mordatch. Decision transformer: Reinforcement learning via sequence modeling. In *Advances in Neural Information Processing Systems*, volume 34, pages 15084–15097, 2021.
- [12] Mark Chen, Jerry Tworek, Heewoo Jun, Qiming Yuan, Henrique Ponde de Oliveira Pinto, Jared Kaplan, Harri Edwards, Yuri Burda, Nicholas Joseph, Greg Brockman, et al. Evaluating large language models trained on code. *arXiv preprint arXiv:2107.03374*, 2021.
- [13] Sitan Chen and Yuanzhi Li. Provably learning a multi-head attention layer. *arXiv preprint arXiv:2402.04084*, 2024.
- [14] Siyu Chen, Heejune Sheen, Tianhao Wang, and Zhuoran Yang. Training dynamics of multihead softmax attention for in-context learning: Emergence, convergence, and optimality. *arXiv preprint arXiv:2402.19442*, 2024.
- [15] Lenaic Chizat and Francis Bach. Implicit bias of gradient descent for wide two-layer neural networks trained with the logistic loss. In *Conference on learning theory*, pages 1305–1338. PMLR, 2020.
- [16] Liam Collins, Advait Parulekar, Aryan Mokhtari, Sujay Sanghavi, and Sanjay Shakkottai. Incontext learning with transformers: Softmax attention adapts to function lipschitzness. *arXiv preprint arXiv:2402.11639*, 2024.
- [17] Yichuan Deng, Zhao Song, Shenghao Xie, and Chiwun Yang. Unmasking transformers: A theoretical approach to data recovery via attention weights. *arXiv preprint arXiv:2310.12462*, 2023.
- [18] Puneesh Deora, Rouzbeh Ghaderi, Hossein Taheri, and Christos Thrampoulidis. On the optimization and generalization of multi-head attention. *arXiv preprint arXiv:2310.12680*, 2023.
- [19] Jacob Devlin, Ming-Wei Chang, Kenton Lee, and Kristina Toutanova. BERT: Pre-training of deep bidirectional transformers for language understanding. In *Proceedings of the 2019 Conference of the North American Chapter of the Association for Computational Linguistics: Human Language Technologies, Volume 1 (Long and Short Papers)*, pages 4171–4186, Minneapolis, Minnesota, June 2019. Association for Computational Linguistics.
- [20] Alexey Dosovitskiy, Lucas Beyer, Alexander Kolesnikov, Dirk Weissenborn, Xiaohua Zhai, Thomas Unterthiner, Mostafa Dehghani, Matthias Minderer, Georg Heigold, Sylvain Gelly, Jakob Uszkoreit, and Neil Houlsby. An image is worth 16x16 words: Transformers for image recognition at scale. In *International Conference on Learning Representations*, 2021.
- [21] Danny Driess, Fei Xia, Mehdi SM Sajjadi, Corey Lynch, Aakanksha Chowdhery, Brian Ichter, Ayzaan Wahid, Jonathan Tompson, Quan Vuong, Tianhe Yu, et al. Palm-e: An embodied multimodal language model. *arXiv preprint arXiv:2303.03378*, 2023.
- [22] Tolga Ergen, Behnam Neyshabur, and Harsh Mehta. Convexifying transformers: Improving optimization and understanding of transformer networks. *arXiv:2211.11052*, 2022.
- [23] Spencer Frei, Gal Vardi, Peter L Bartlett, Nathan Srebro, and Wei Hu. Implicit bias in leaky relu networks trained on high-dimensional data. *arXiv preprint arXiv:2210.07082*, 2022.
- [24] Deqing Fu, Tian-Qi Chen, Robin Jia, and Vatsal Sharan. Transformers learn higher-order optimization methods for in-context learning: A study with linear models. *arXiv preprint arXiv:2310.17086*, 2023.
- [25] Suriya Gunasekar, Jason Lee, Daniel Soudry, and Nathan Srebro. Characterizing implicit bias in terms of optimization geometry. In *International Conference on Machine Learning*, pages 1832–1841. PMLR, 2018.
- [26] Yu Huang, Yuan Cheng, and Yingbin Liang. In-context convergence of transformers. *arXiv preprint arXiv:2310.05249*, 2023.
- [27] M Emrullah Ildiz, Yixiao Huang, Yingcong Li, Ankit Singh Rawat, and Samet Oymak. From self-attention to markov models: Unveiling the dynamics of generative transformers. *arXiv preprint arXiv:2402.13512*, 2024.
- [28] Samy Jelassi, Michael Eli Sander, and Yuanzhi Li. Vision transformers provably learn spatial structure. In Alice H. Oh, Alekh Agarwal, Danielle Belgrave, and Kyunghyun Cho, editors, *Advances in Neural Information Processing Systems*, 2022.
- [29] Hong Jun Jeon, Jason D Lee, Qi Lei, and Benjamin Van Roy. An information-theoretic analysis of in-context learning. *arXiv preprint arXiv:2401.15530*, 2024.
- [30] Ziwei Ji, Nathan Srebro, and Matus Telgarsky. Fast margin maximization via dual acceleration. In *International Conference on Machine Learning*, pages 4860–4869. PMLR, 2021.
- [31] Ziwei Ji and Matus Telgarsky. Risk and parameter convergence of logistic regression. *arXiv preprint arXiv:1803.07300*, 2018.
- [32] Ziwei Ji and Matus Telgarsky. Directional convergence and alignment in deep learning. In H. Larochelle, M. Ranzato, R. Hadsell, M. F. Balcan, and H. Lin, editors, *Advances in Neural Information Processing Systems*, volume 33, pages 17176–17186. Curran Associates, Inc., 2020.
- [33] Ziwei Ji and Matus Telgarsky. Characterizing the implicit bias via a primal-dual analysis. In *Algorithmic Learning Theory*, pages 772–804. PMLR, 2021.
- [34] Anatoli Juditsky and Arkadi Nemirovski. First-order methods for nonsmooth convex large-scale optimization, i: General purpose methods. 2011.
- [35] Hongkang Li, Meng Wang, Sijia Liu, and Pin-Yu Chen. A theoretical understanding of shallow vision transformers: Learning, generalization, and sample complexity. *arXiv preprint arXiv:2302.06015*, 2023.
- [36] Yingcong Li, Yixiao Huang, Muhammed E Ildiz, Ankit Singh Rawat, and Samet Oymak. Mechanics of next token prediction with self-attention. In *International Conference on Artificial Intelligence and Statistics*, pages 685–693. PMLR, 2024.
- [37] Zhiyuan Li, Yuping Luo, and Kaifeng Lyu. Towards resolving the implicit bias of gradient descent for matrix factorization: Greedy low-rank learning. In *International Conference on Learning Representations*, 2020.
- [38] Kaifeng Lyu and Jian Li. Gradient descent maximizes the margin of homogeneous neural networks. *arXiv preprint arXiv:1906.05890*, 2019.
- [39] Andrew L. Maas, Raymond E. Daly, Peter T. Pham, Dan Huang, Andrew Y. Ng, and Christopher Potts. Learning word vectors for sentiment analysis. In *Proceedings of the 49th Annual Meeting of the Association for Computational Linguistics: Human Language Technologies*, pages 142–150, Portland, Oregon, USA, June 2011. Association for Computational Linguistics.
- [40] Ashok Vardhan Makkuva, Marco Bondaschi, Adway Girish, Alliot Nagle, Martin Jaggi, Hyeji Kim, and Michael Gastpar. Attention with markov: A framework for principled analysis of transformers via markov chains. *arXiv preprint arXiv:2402.04161*, 2024.
- [41] Mor Shpigel Nacson, Jason Lee, Suriya Gunasekar, Pedro Henrique Pamplona Savarese, Nathan Srebro, and Daniel Soudry. Convergence of gradient descent on separable data. In *The 22nd International Conference on Artificial Intelligence and Statistics*, pages 3420–3428. PMLR, 2019.
- [42] OpenAI. Gpt-4 technical report. *arXiv preprint arXiv:2303.08774*, 2023.
- [43] Samet Oymak, Ankit Singh Rawat, Mahdi Soltanolkotabi, and Christos Thrampoulidis. On the role of attention in prompt-tuning. In *International Conference on Machine Learning*, 2023.
- [44] Mary Phuong and Christoph H Lampert. The inductive bias of relu networks on orthogonally separable data. In *International Conference on Learning Representations*, 2020.
- [45] Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sastry, Amanda Askell, Pamela Mishkin, Jack Clark, et al. Learning transferable visual models from natural language supervision. In *International conference on machine learning*, pages 8748–8763. PMLR, 2021.
- [46] Aditya Ramesh, Mikhail Pavlov, Gabriel Goh, Scott Gray, Chelsea Voss, Alec Radford, Mark Chen, and Ilya Sutskever. Zero-shot text-to-image generation. In *International Conference on Machine Learning*, pages 8821–8831. PMLR, 2021.
- [47] Arda Sahiner, Tolga Ergen, Batu Ozturkler, John Pauly, Morteza Mardani, and Mert Pilanci. Unraveling attention via convex duality: Analysis and interpretations of vision transformers. In *International Conference on Machine Learning*, pages 19050–19088. PMLR, 2022.
- [48] Heejune Sheen, Siyu Chen, Tianhao Wang, and Harrison H Zhou. Implicit regularization of gradient flow on one-layer softmax attention. *arXiv preprint arXiv:2403.08699*, 2024.
- [49] Daniel Soudry, Elad Hoffer, Mor Shpigel Nacson, Suriya Gunasekar, and Nathan Srebro. The implicit bias of gradient descent on separable data. *The Journal of Machine Learning Research*, 19(1):2822–2878, 2018.
- [50] Haoyuan Sun, Kwangjun Ahn, Christos Thrampoulidis, and Navid Azizan. Mirror descent maximizes generalized margin and can be implemented efficiently. *Advances in Neural Information Processing Systems*, 35:31089–31101, 2022.
- [51] Haoyuan Sun, Khashayar Gatmiry, Kwangjun Ahn, and Navid Azizan. A unified approach to controlling implicit regularization via mirror descent. *Journal of Machine Learning Research*, 24(393):1–58, 2023.
- [52] Davoud Ataee Tarzanagh, Yingcong Li, Christos Thrampoulidis, and Samet Oymak. Transformers as support vector machines. *arXiv preprint arXiv:2308.16898*, 2023.
- [53] Davoud Ataee Tarzanagh, Yingcong Li, Xuechen Zhang, and Samet Oymak. Max-margin token selection in attention mechanism. *Advances in Neural Information Processing Systems*, 36, 2024.
- [54] Yuandong Tian, Yiping Wang, Beidi Chen, and Simon Du. Scan and snap: Understanding training dynamics and token composition in 1-layer transformer. *arXiv:2305.16380*, 2023.
- [55] Yuandong Tian, Yiping Wang, Zhenyu Zhang, Beidi Chen, and Simon Du. Joma: Demystifying multilayer transformers via joint dynamics of mlp and attention. *arXiv preprint arXiv:2310.00535*, 2023.
- [56] Gal Vardi. On the implicit bias in deep-learning algorithms. *Communications of the ACM*, 66(6):86–93, 2023.
- [57] Gal Vardi and Ohad Shamir. Implicit regularization in relu networks with the square loss. In *Conference on Learning Theory*, pages 4224–4258. PMLR, 2021.
- [58] Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. Implicit bias and fast convergence rates for self-attention. *arXiv preprint arXiv:2402.05738*, 2024.
- [59] Bhavya Vasudeva, Deqing Fu, Tianyi Zhou, Elliott Kau, Youqi Huang, and Vatsal Sharan. Simplicity bias of transformers to learn low sensitivity functions. *arXiv preprint arXiv:2403.06925*, 2024.
- [60] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez, Lukasz Kaiser, and Illia Polosukhin. Attention is all you need. *Advances in neural information processing systems*, 30, 2017.
- [61] Junhao Zheng, Shengjie Qiu, and Qianli Ma. Learn or recall? revisiting incremental learning with pre-trained language models. *arXiv preprint arXiv:2312.07887*, 2023.

Contents

A Related Work

Transformers Optimization. Recently, the study of optimization dynamics of attention mechanisms has garnered significant attention [\[18,](#page-6-11) [26,](#page-7-4) [55,](#page-8-10) [24,](#page-7-5) [36,](#page-7-6) [53,](#page-8-3) [52,](#page-8-4) [58,](#page-9-1) [48,](#page-8-6) [17,](#page-6-12) [40,](#page-8-11) [29,](#page-7-7) [61,](#page-9-2) [16,](#page-6-13) [13,](#page-6-14) [35,](#page-7-8) [48,](#page-8-6) [27,](#page-7-9) [59,](#page-9-3) [5,](#page-6-15) [14\]](#page-6-16). We discuss the works most closely related to this paper. Studies such as [\[47,](#page-8-12) [22\]](#page-7-10) investigate the optimization of attention models through convex relaxations. [\[28\]](#page-7-11) demonstrate that Vision Transformers (ViTs) identify spatial patterns in binary classification via gradient methods. [\[35\]](#page-7-8) provide sample complexity bounds and discuss attention sparsity in SGD for ViTs. [\[43\]](#page-8-13) and [\[18\]](#page-6-11) explore optimization dynamics in prompt-attention and multi-head attention models, respectively. [\[54,](#page-8-14) [55\]](#page-8-10) study SGD dynamics and multi-layer transformer training. [\[53,](#page-8-3) [52\]](#page-8-4) explored GD's implicit bias in a binary classification setting with a fixed linear decoder. [\[58\]](#page-9-1) discusses the global directional convergence and convergence rate of GD under specific data conditions. [\[48\]](#page-8-6) notes that gradient flow not only achieves minimal loss but also minimizes the nuclear norm of the key-query weight W. Our work extends these findings and those of [\[53,](#page-8-3) [52\]](#page-8-4), focusing on the implicit bias of the general class of MD algorithms for attention training.

Implicit Bias of First Order Methods. In recent years, significant progress has been made in understanding the implicit bias of gradient descent on separable data, particularly highlighted by the works of [\[49,](#page-8-5) [31\]](#page-7-2). For linear predictors, [\[41,](#page-8-15) [33,](#page-7-12) [30\]](#page-7-13) demonstrated that gradient descent methods rapidly converge to the max-margin predictor. Extending these insights to MLPs, [\[32,](#page-7-14) [38,](#page-7-15) [15\]](#page-6-17) have examined the implicit bias of GD and gradient flow using exponentially-tailed classification losses, and show convergence to the Karush-Kuhn-Tucker (KKT) points of the corresponding max-margin problem, both in finite [\[32,](#page-7-14) [38\]](#page-7-15) and infinite width scenarios [\[15\]](#page-6-17). Further, the implicit bias of GD for training ReLU and Leaky-ReLU networks has been investigated, particularly on orthogonal data [\[44,](#page-8-16) [23\]](#page-7-16). Additionally, the implicit bias towards rank minimization in regression settings with square loss has been explored in [\[57,](#page-8-17) [1,](#page-5-3) [37\]](#page-7-17).

Our work is closely related to the implicit bias of MD [\[25,](#page-7-18) [2\]](#page-6-4) for regression and classification, respectively. Specifically, [\[50\]](#page-8-7) extended the findings of [\[25,](#page-7-18) [2\]](#page-6-4) to classification problems, and developed a class of algorithms exhibiting an implicit bias towards a generalized SVM with ℓ_p norms that effectively separates samples based on their labels; for a survey, we refer to [\[56\]](#page-8-18).

B Auxiliary lemmas

B.1 Additional Notations

We denote the minimum and maximum of scalars a and b as $a \wedge b$ and $a \vee b$, respectively. Consider the following constants for the proofs, depending on the dataset $(X_i, Y_i, z_i)_{i=1}^n$, the parameter v, and the locally optimal token $(\alpha_i)_{i=1}^n$:

$$
\delta' := \frac{1}{2} \min_{i \in [n]} \min_{\tau \in \overline{\mathcal{T}}_i} \left((X_{i\alpha_i} - X_{i\tau})^\top W_{\text{mm}}^\alpha z_i - 1 \right)
$$

\n
$$
\leq \frac{1}{2} \min_{i \in [n]} \min_{t \in \overline{\mathcal{T}}_i, \tau \in \overline{\mathcal{T}}_i} \left((X_{it} - X_{i\tau})^\top W_{\text{mm}}^\alpha z_i \right);
$$

\n
$$
\delta := \min \{ 0.25, \delta' \}. \tag{7b}
$$

When $\bar{\mathcal{T}}_i = \emptyset$ for all $i \in [n]$ (i.e. globally-optimal indices), we set $\delta' = \infty$ as all non-neighbor related terms will disappear. Further, recalling Definition [4](#page-3-6) and using W^{α}_{mm} —i.e., the minimizer of $(\ell_p$ [-AttSVM\)](#page-3-0), we set

$$
A' := \|W_{\text{mm}}^{\alpha}\|_{p,p} \max_{i \in [n], t \in [T]} \|X_{it} z_i^{\top}\|_{p-1, \frac{p}{p-1}};
$$

$$
A := \max\{1, A'\}.
$$
 (8)

Recalling Definition [5,](#page-3-7) we provide the following initial radius $\mu = \mu_0$ which will be used later in Lemma [10:](#page-17-0)

$$
\mu_0 := \begin{cases} \frac{1}{p} \left(\frac{\delta}{8A} \right)^p & \text{if } p \ge 2, \\ \frac{1}{p} \left(\frac{\delta(p-1)}{4Ad^{\frac{2}{p}-1}} \right)^2 & \text{otherwise.} \end{cases}
$$
(9)

Furthermore, define the following sums for W :

$$
S_i(W) := \sum_{t \in \mathcal{T}_i} [\sigma(X_i W z_i)]_t, \quad \text{and} \quad Q_i(W) := \sum_{t \in \mathcal{T}_i} [\sigma(X_i W z_i)]_t.
$$

For the samples i with non-empty supports \mathcal{T}_i , let

$$
\gamma_i^{\text{gap}} := \gamma_{i\alpha_i} - \max_{t \in \mathcal{T}_i} \gamma_{it}, \quad \text{and} \quad \bar{\gamma}_i^{\text{gap}} := \gamma_{i\alpha_i} - \min_{t \in \mathcal{T}_i} \gamma_{it}.
$$
 (10)

Furthermore, we define the *global score gap* as

$$
\Gamma := \sup_{i \in [n], t, \tau \in [T]} |\gamma_{it} - \gamma_{i\tau}|.
$$
\n(11)

B.2 Lemma for Analyzing The ℓ_p -Norm

In this section of the Appendix, we provide some analysis on comparing the ℓ_p -norm, the ℓ_p Bregman divergence, and the ℓ_2 -norm of matrices. Since the ℓ_2 -norm of matrices are much easier to analyze and use, like in the inner product Cauchy-Schwarz inequality, having this comparison is valuable when analyzing the ℓ_p [-AttGD](#page-3-1).

Lemma 2. *For any* $d \times d$ *matrix W*, *let w denote its vectorization. Then,*

$$
||w||_p \in \left[d^{\frac{2}{p}-1} ||w||_2, ||w||_2 \right]
$$

for $p \geq 2$ *, and for* $1 < p \leq 2$ *,* $||w||_p$ *is in a similar interval, with the two ends switched.*

Proof. Let $w_1, w_2, ..., w_{d^2}$ be the entries of w. Therefore, for $p \geq 2$,

$$
||w||_p = \sqrt[p]{\sum_{i=1}^{d^2} |w_i|^p}
$$

=
$$
\sqrt[p]{\sum_{i=1}^{d^2} (|w_i|^2)^{p/2}},
$$

and because $\frac{p}{2} \geq 1$, we would have

$$
\sqrt[p]{\sum_{i=1}^{d^2} (|w_i|^2)^{p/2}} \le \sqrt[p]{\left(\sum_{i=1}^{d^2} |w_i|^2\right)^{p/2}}
$$

$$
= \sqrt[p]{\|w\|_2^p} = \|w\|_2.
$$

Therefore, $||w||_p \le ||w||_2$ whenever $p \ge 2$. A similar argument will get us $||w||_p \ge ||w||_2$ whenever $1 < p \leq 2$, so one end of the interval is solved for each case, now for the other end.

Using the power-mean inequality, we can get that whenever $p \geq 2$,

$$
\sqrt[p]{\frac{1}{d^2} \sum_{i=1}^{d^2} |w_i|^p} \ge \sqrt{\frac{1}{d^2} \sum_{i=1}^{d^2} |w_i|^2},
$$

$$
d^{-\frac{2}{p}} \|w\|_p \ge d^{-1} \|w\|_2,
$$

$$
\|w\|_p \ge d^{\frac{2}{p}-1} \|w\|_2.
$$

$$
\|w\|_p \le d^{\frac{2}{p}-1} \|w\|_2.
$$

 \Box

Similarly, for $1 < p \leq 2$,

Lemma 3. Let $W_1, W_2 \in \mathbb{R}^{d \times d}$ be two matrices such that $||W_1||_{p,p} = ||W_2||_{p,p} = 1$. Then, the *following inequalities hold:*

L1. For $p \geq 2$ *,*

$$
D_{\psi}(W_1, W_2) \ge \frac{1}{p \times 2^p} \|W_1 - W_2\|_{p, p}^p,
$$

L2. For $p \in (1, 2)$ *,*

$$
D_{\psi}(W_1, W_2) \ge \frac{(p-1)^2}{p} ||W_1 - W_2||_{2,2}^2.
$$

Here, $D_{\psi}(\cdot, \cdot)$ *denotes the Bregman divergence given in Definition [1.](#page-2-5)*

Proof. Let $W_1 = (x_{ij})_{i,j \in [d]}$ and $W_2 = (y_{ij})_{i,j \in [d]}$, then from Definition [1,](#page-2-5) we have

$$
D_{\psi}(W_1, W_2) = \frac{1}{p} \sum_{i,j \in [d]} |x_{ij}|^p - \frac{1}{p} \sum_{i,j \in [d]} |y_{ij}|^p - \sum_{i,j \in [d]} |y_{ij}|^{p-1} (x_{ij} - y_{ij}) \operatorname{sign}(y_{ij})
$$

=
$$
\sum_{i,j \in [d]} \left(\frac{1}{p} |x_{ij}|^p + \frac{p-1}{p} |y_{ij}|^p - |y_{ij}|^{p-1} |x_{ij}| \operatorname{sign}(x_{ij} y_{ij}) \right).
$$

Therefore, it is enough to prove that whenever $x, y \in [-1, 1]$, the expression

$$
\frac{1}{p}|x|^p + \frac{p-1}{p}|y|^p - |x||y|^{p-1}\operatorname{sign}(xy)
$$
\n(12)

is at least $\frac{1}{p2^p}|x-y|^p$ if $p \ge 2$, or is at least $\frac{(p-1)^2}{p}|x-y|^2$ if $p \in (1,2)$. We split the argument into two cases, the first is when the signs of x and y are the same, and the second for when they are not.

Case 1: sign(xy) = 1, so both x and y have the same sign, WLOG both are non-negative. Let us fix the value $\Delta \in [-1, 1]$ and find the minimum value of [\(12\)](#page-13-0) when we constraint x and y to be positive and $x - y = \Delta$. Therefore, that expression can be written as

$$
\frac{(y+\Delta)^p+(p-1)y^p}{p}-(y+\Delta)y^{p-1},
$$

the first derivative with respect to y is

$$
(y + \Delta)^{p-1} + (p-1)y^{p-1} - y^{p-1} - (p-1)(y + \Delta)y^{p-2}
$$

= $(y + \Delta)^{p-1} - y^{p-1} - (p-1)\Delta y^{p-2}$.

Since the function $t \mapsto t^{p-1}$ is convex for $p \ge 2$, and concave for $p \in (1, 2)$, then that derivative is always non-negative when $p \ge 2$ and always negative when $p \in (1, 2)$.

Sub-Case 1.1: $p \ge 2$. In this subcase, [\(12\)](#page-13-0) reaches its minimum when $(x, y) = (\Delta, 0)$ or $(0, -\Delta)$, depending on the sign of Δ , plugging them in gets us the minimum, which is $\frac{1}{p}|\Delta|^p$ when $\Delta \geq 0$ or $\frac{p-1}{p}$ |∆|^p otherwise.

Sub-Case 1.2: $p \in (1, 2)$. In this subcase, [\(12\)](#page-13-0) reaches its minimum when $(x, y) = (1, 1 - \Delta)$ if Δ is non-negative or $(1 + \Delta, 1)$ otherwise. When Δ is non-negative, the desired minimum is

$$
\frac{1 + (p-1)(1-\Delta)^p}{p} - (1-\Delta)^{p-1} = \frac{1}{p}(1 - (1-\Delta)^{p-1} - (p-1)\Delta(1-\Delta)^{p-1})
$$

$$
\geq \frac{1}{p}((p-1)\Delta - (p-1)\Delta(1-\Delta)^{p-1})
$$

$$
= \frac{(p-1)\Delta}{p}(1 - (1-\Delta)^{p-1}) \geq \frac{(p-1)^2}{p}\Delta^2.
$$

Combining the results from the subcases, we get that the expression in [\(12\)](#page-13-0) is lower-bounded by $\frac{1}{p}|x-y|^p$ when $p \ge 2$, or $\frac{(p-1)^2}{p}$ $\frac{(-1)^2}{p}|x-y|^2$ otherwise, which sufficiently satisfies the desired bounds for case 1.

Case 2: sign(xy) = -1, so x and y has opposite sign. The expression in [\(12\)](#page-13-0) can be simplified to

$$
\frac{1}{p}|x|^p+\frac{p-1}{p}|y|^p+|x||y|^{p-1},
$$

and we want to prove that it is at least $\frac{1}{p2^p}(|x|+|y|)^p$ when $p\geq 2$, or is at least $\frac{(p-1)^2}{p}(|x|+|y|)^2$ when $p \in (1, 2)$. In the case that $p \ge 2$, one of $|x|$ or $|y|$ is at least $\frac{|x|+|y|}{2}$, so the above is at least

$$
\frac{1}{p} \left(\frac{|x|+|y|}{2} \right)^p = \frac{1}{p^{2p}} (|x|+|y|)^p.
$$
 Otherwise,
\n
$$
\frac{1}{p} |x|^p + \frac{p-1}{p} |y|^p + |x|y|^{p-1} = \frac{|x|(|x|^{p-1} + |y|^{p-1}) + (p-1)|y|^{p-1}(|x|+|y|)}{p}
$$
\n
$$
\geq \frac{(|x|+|y|)(|x|+(p-1)|y|^{p-1})}{p}
$$
\n
$$
\geq \frac{(|x|+|y|)((p-1)|x|+(p-1)|y|)}{p}
$$
\n
$$
= \frac{p-1}{p} (|x|+|y|)^2 \geq \frac{(p-1)^2}{p} (|x|+|y|)^2.
$$

Therefore, we have proven the bound for this case.

Lemma 4. *For any* $x \ge y \ge 0$ *, we we have*

$$
\frac{p-1}{p}x^p - \frac{p-1}{p}y^p \ge y(x^{p-1} - y^{p-1}).
$$

Proof.

$$
\frac{d}{dx}\left(\frac{p-1}{p}x^p - \frac{p-1}{p}y^p\right) = (p-1)x^{p-1},
$$

$$
\frac{d}{dx}y(x^{p-1} - y^{p-1}) = (p-1)x^{p-2}y \le (p-1)x^{p-1},
$$

so as we increase x, the left side grows faster than the right side, so we simply need to prove that the inequality holds at $x = y$, which is trivially true. inequality holds at $x = y$, which is trivially true.

Lemma 5. *For any* $x \ge y \ge 0$ *, we we have that if* $q \ge 1$

$$
x^q - y^q \le qx^{q-1}(x - y),
$$

 $x^q - y^q \leq q y^{q-1}(x - y)$

and if $0 < q < 1$ *,*

Proof.

$$
\frac{d}{dx}(x^q - y^q) = qx^{q-1},
$$

$$
\frac{d}{dx}qx^{q-1}(x - y) = q(q - 1)x^{q-2}(x - y) + qx^{q-1},
$$
 and

$$
\frac{d}{dx}qy^{q-1}(x - y) = qy^{q-1}.
$$

When $q \geq 1$,

$$
\frac{d}{dx}(x^q - y^q) \ge \frac{d}{dx}qx^{q-1}(x - y),
$$

so because we have

$$
x^q - y^q = qx^{q-1}(x - y) = 0
$$

when $x = y$, then

$$
x^q - y^q \ge qx^{q-1}(x - y)
$$

when $x \ge y \ge 0$ if $q \ge 1$. We can use a similar argument for the $0 < q < 1$ case.

 \Box

 \Box

B.3 Lemma for Analyzing ERM Objective and Its Gradient

In this section of the Appendix, we analyze the objective function. We especially want to know about its gradient and the inner product of this gradient with the matrices of the cone set, as was mentioned before in the main body of the paper. The first one bounds the loss objective,

Lemma 6. *Under Assumption [A,](#page-2-1)* $\mathcal{L}(W)$ *is bounded from above by* \mathcal{L}_{max} *and below by* \mathcal{L}_{min} *for some dataset-dependent constants* \mathcal{L}_{max} *and* \mathcal{L}_{min} *that are finite.*

Proof. It is enough to show the same thing for each of the loss contributions of each sample, $l_i(y_i v^\top X_i^\top \sigma(X_i \overline{W} z_i))$. By Assumption [A,](#page-2-1) we simply need to show that $y_i v^\top X_i^\top \sigma(X_i W z_i)$ is bounded by dataset-dependent bounds. However, W only affects the softmax, so the above expression is bounded above by $\max_{t \in [T]} \gamma_{it}$ and bounded below by $\min_{t \in [T]} \gamma_{it}$, which are dataset dependent. □

Lemma 7. *If we denote* $h_i := X_i W z_i$ *and* $l'_i := l'(\gamma_i^T \sigma(h_i))$ *, then*

$$
\nabla \mathcal{L}(W) = \frac{1}{n} \sum_{i=1}^n l_i' X_i^{\top} (\text{diag}(\sigma(h_i)) - \sigma(h_i)\sigma(h_i)^{\top}) \gamma_i z_i^{\top},
$$

where $\mathcal{L}(W)$ *denotes the objective of* [\(ERM\)](#page-1-0) *with fixed v.*

Proof. We first calculate the derivatives of each term in the sum of $\mathcal{L}(W)$. The derivative of the *i*-th term for the $W_{j_1j_2}$ component is

$$
\frac{\partial}{\partial W_{j_1 j_2}} l(y_i v^\top X_i^\top \sigma(X_i W z_i)) = l'_i \gamma_i^\top \frac{\partial}{\partial W_{j_1 j_2}} \sigma(X_i W z_i)
$$
\n
$$
= l'_i \gamma_i^\top \nabla \sigma(h_i) X_{i, : , j_1}^\top z_{ij_2}
$$
\n
$$
= l'_i X_{i, : , j_1} \nabla \sigma(h_i)^\top \gamma_i z_{ij_2}.
$$

Therefore, the derivative for the j_2 -th row of W is

$$
l_i' X_i^{\top} \nabla \sigma(h_i)^{\top} \gamma_i z_{ij_2}.
$$

Next, the full gradient for the i -th term equals

$$
l_i' X_i^{\top} \nabla \sigma(h_i)^{\top} \gamma_i z_i^{\top}.
$$

To finish the proof, we calculate the derivative of $\sigma(h_i)$. The derivative of the j_1 -th component of $\sigma(h_i)$ with respect to h_{ij_2} is

$$
\frac{\partial}{\partial h_{ij_2}} \left(\frac{e^{h_{ij_1}}}{\sum_{l=1}^T e^{h_{il}}} \right) = \frac{e^{h_{ij_1}} 1_{j_1 = j_2}}{\sum_{l=1}^T e^{h_{il}}} - \frac{e^{h_{ij_1}} e^{h_{ij_2}}}{\left(\sum_{l=1}^T e^{h_{il}}\right)^2}
$$

$$
= \sigma(h_i)_{j_1} 1_{j_1 = j_2} - \sigma(h_i)_{j_1} \sigma(h_i)_{j_2}.
$$

Thus, the derivative of $\sigma(h_i)$ is a matrix in $\mathbb{R}^{T \times T}$ defined as

$$
\mathrm{diag}(\sigma(h_i)) - \sigma(h_i)\sigma(h_i)^\top.
$$

Therefore, the full gradient is

$$
\frac{1}{n} \sum_{i=1}^n l_i' X_i^{\top} (\text{diag}(\sigma(h_i)) - \sigma(h_i)\sigma(h_i)^{\top}) \gamma_i z_i^{\top}.
$$

Lemma 8. *Under Assumption [A,](#page-2-1)* $\|\nabla \mathcal{L}(W)\|_{p,p}$ *is bounded by a dataset-dependent constant L.*

Proof. Using the expression in Lemma [7,](#page-15-1) since l' is bounded and the entries in $\sigma(h_i)$ is always between 0 and 1, then the entries of $\nabla \mathcal{L}(W)$ is bounded by a dataset-dependent bounded, which directly implies this lemma statement. □

 \Box

In the following lemma, we analyze the behaviors of the (ℓ_p [-AttSVM\)](#page-3-0) constraint $(X_{it} - X_{i\tau})^{\top} W z_i$ for all $W \in S_{p,\mu_0}(W^{\alpha}_{\text{mm}})$ satisfying $\|W\|_{p,p} = \|W^{\alpha}_{\text{mm}}\|_{p,p}$, the result of which is a generalization of [\[52,](#page-8-4) Equation 64] for a general ℓ_p norm.

Lemma 9. Let $\alpha = (\alpha_i)_{i=1}^n$ be locally optimal tokens as per Definition [3,](#page-2-3) and let W_{mm}^{α} be the $(\ell_p\text{-AttSVM})$ solution. Let $(\mathcal{T}_i)_{i=1}^n$ be the index set of all support tokens per Definition [3.](#page-2-3) Let $\overline{\mathcal{T}}_i = [T] - \mathcal{T}_i - \{\alpha_i\}$. For any $W \in S_{p,\mu_0}(W^{\alpha}_{\text{mm}})$ with μ_0 defined in [\(9\)](#page-11-2) and $||W||_{p,p} = ||W^{\alpha}_{\text{mm}}||_{p,p}$ *we have*

$$
(X_{it} - X_{i\tau})^{\top} W z_i \ge \frac{3}{2}\delta > 0,\tag{13a}
$$

$$
(X_{i\alpha_i} - X_{i\tau})^\top W z_i \ge 1 + \frac{3}{2}\delta,\tag{13b}
$$

$$
1 + \frac{1}{2}\delta \ge (X_{i\alpha_i} - X_{it})^\top W z_i \ge 1 - \frac{1}{2}\delta,\tag{13c}
$$

for all $t \in \mathcal{T}_i$ *and* $\tau \in \bar{\mathcal{T}}_i$

Proof. Let

$$
\bar{W}:=\frac{W}{\|W\|_{p,p}} \quad \text{and} \quad \bar{W}^{\alpha}_{\text{mm}}:=\frac{W^{\alpha}_{\text{mm}}}{\|W^{\alpha}_{\text{mm}}\|_{p,p}}.
$$

Using Lemma [3](#page-12-1) and the definition of $S_{p,\mu_0}(W_{\text{mm}}^{\alpha})$ in [\(5a\)](#page-3-8), when $p \ge 2$,

$$
\begin{aligned} \|\bar{W} - \bar{W}_{\text{mm}}^{\alpha}\|_{p,p}^p &\leq 2^p p D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}) \\ &\leq 2^p p \mu_0 \\ &= \left(\frac{\delta}{4A}\right)^p, \end{aligned}
$$

which implies that

$$
\|\bar{W} - \bar{W}_{\text{mm}}^{\alpha}\|_{p,p} \le \frac{\delta}{4A}.
$$

When $p \in (1, 2)$ $p \in (1, 2)$ $p \in (1, 2)$, we can also use Lemmas 2 and [3](#page-12-1) to obtain

$$
\begin{aligned} \|\bar{W} - \bar{W}_{\text{mm}}^{\alpha}\|_{p,p} &\leq d^{\frac{2}{p}-1} \|\bar{W} - \bar{W}_{\text{mm}}^{\alpha}\|_{2,2} \\ &\leq d^{\frac{2}{p}-1} \frac{\sqrt{p}}{p-1} \sqrt{D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W})} \\ &\leq d^{\frac{2}{p}-1} \frac{\sqrt{p}}{p-1} \sqrt{\mu_0} = \frac{\delta}{4A}, \end{aligned}
$$

where the last inequality uses the definition of $S_{p,\mu_0}(W_{\text{mm}}^{\alpha})$ in [\(5a\)](#page-3-8).

Therefore, either way, we have

$$
||W - W_{\mathit{mm}}^{\alpha}||_{p,p} \leq \frac{\delta}{4A}||W_{\mathit{mm}}^{\alpha}||_{p,p}.
$$

We will proceed to show a bound on $(X_{it_1} - X_{it_2})^{\top} (W - W_{mm}^{\alpha}) z_i$ for any $i \in [n]$ and any token indices $t_1, t_2 \in [T]$. To do that, let us focus on the term $X_{it_1}^{\top}(W - W_{mm}^{\alpha})z_i$ first,

$$
\begin{aligned} \left| X_{it_1}^{\top} (W - W_{\text{mm}}^{\alpha}) z_i \right| &= \left| \langle W - W_{\text{mm}}^{\alpha}, X_{it_1} z_i^{\top} \rangle \right| \\ &\leq \| W - W_{\text{mm}}^{\alpha} \|_{p,p} \cdot \| X_{it_1} z_i^{\top} \|_{\frac{p}{p-1}, \frac{p}{p-1}} \\ &\leq \frac{\delta}{4A} \| W_{\text{mm}}^{\alpha} \|_{p,p} \cdot \| X_{it_1} z_i^{\top} \|_{\frac{p}{p-1}, \frac{p}{p-1}} \\ &\leq \frac{\delta}{4A} \cdot A \\ &= \frac{\delta}{4}. \end{aligned}
$$

The first inequality above uses Hölder's Inequality. We now have

$$
|(X_{it_1} - X_{it_2})^{\top} (W - W_{mm}^{\alpha}) z_i| \leq \frac{1}{2} \delta.
$$

To obtain the first inequality of the lemma in [\(13a\)](#page-16-0), for all $t \in \mathcal{T}_i$ and $\tau \in \bar{\mathcal{T}}_i$, we have

$$
(X_{it} - X_{i\tau})^{\top} W z_i \ge (X_{it} - X_{i\tau})^{\top} W_{mm}^{\alpha} z_i + (X_{it} - X_{i\tau})^{\top} (W - W_{mm}^{\alpha}) z_i
$$

$$
\ge 2\delta' - \frac{1}{2}\delta \ge \frac{3}{2}\delta.
$$

To get the second inequality in [\(13b\)](#page-16-1), for all $\tau \in \overline{\mathcal{T}}_i$, we have

$$
(X_{i\alpha_i} - X_{i\tau})^\top W z_i \ge (X_{i\alpha_i} - X_{i\tau})^\top W_{mm}^\alpha z_i + (X_{i\alpha_i} - X_{i\tau})^\top (W - W_{mm}^\alpha) z_i
$$

$$
\ge 1 + 2\delta' - \frac{1}{2}\delta \ge 1 + \frac{3}{2}\delta.
$$

Finally, to get the last inequality in [\(13c\)](#page-16-2), for all $t \in \mathcal{T}_i$, we have

$$
\left| (X_{i\alpha_i} - X_{it})^\top W z_i - 1 \right| = \left| (X_{i\alpha_i} - X_{it})^\top W_{mm}^\alpha z_i + (X_{i\alpha_i} - X_{it})^\top (W - W_{mm}^\alpha) z_i - 1 \right|
$$

= $|(X_{i\alpha_i} - X_{it})^\top (W - W_{mm}^\alpha) z_i| \le \frac{1}{2} \delta$,

which implies that

$$
1 + \frac{1}{2}\delta \ge (X_{i\alpha_i} - X_{it})^\top W z_i \ge 1 - \frac{1}{2}\delta.
$$

The following two lemmas aim at bounding the correlation between the gradient and the attention matrix parameter, each of which is a generalization of [\[52,](#page-8-4) Lemmas 13 and 14] for the generalized ℓ_p norm.

Lemma 10. *Suppose [A](#page-2-1)ssumption A holds.* Let $\alpha = (\alpha_i)_{i=1}^n$ be locally optimal tokens as per *Definition* [3,](#page-2-3) and let W_{mm}^{α} be the solution to $(\ell_p$ [-AttSVM\)](#page-3-0). There exists a dataset-dependent constant $R_{\delta} = \mathcal{O}(1/\delta)$ *such that for all* $W, V \in C_{p,\mu_0,R_{\delta}}(W_{\min}^{\alpha})$ *with* $||V||_{p,p} = ||W_{\min}^{\alpha}||_{p,p}$, δ *and* μ_0 *defined in* [\(7\)](#page-11-3) *and* [\(9\)](#page-11-2)*, respectively,*

$$
-\langle\nabla \mathcal{L}(W),V\rangle=\Omega\left(e^{-\frac{\|W\|_{p,p}}{\|W^{\alpha}_{\min}\|_{p,p}}(1+\frac{1}{2}\delta)}\right)>0.
$$

Proof. Let

$$
h_i := X_i W z_i, \quad \tilde{h}_i := X_i V z_i, \quad l'_i := l'(\gamma_i^{\top} \sigma(h_i)), \quad \text{and} \quad s_i = \sigma(h_i).
$$

Therefore,

$$
\langle \nabla \mathcal{L}(W), V \rangle = \frac{1}{n} \sum_{i=1}^{n} l_i' \langle X_i^{\top} (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i z_i^{\top}, V \rangle
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{n} l_i' \langle (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i, X_i V z_i \rangle
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{n} l_i' \langle (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i, \tilde{h}_i \rangle
$$

\n
$$
= \frac{1}{n} \sum_{i=1}^{n} l_i' \tilde{h}_i^{\top} (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i,
$$

\n
$$
-\langle \nabla \mathcal{L}(W), V \rangle = \frac{1}{n} \sum_{i=1}^{n} (-l_i') \tilde{h}_i^{\top} (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i.
$$
 (14)

The value $\gamma_i^{\top} \sigma(h_i)$ for any $i \in [n]$ must be bounded, and the bound is only dataset-dependent, so by Assumption [A,](#page-2-1) l'_i is bounded for any $i \in [n]$ by some bound that is dataset-dependent. Furthermore, because l is decreasing, $-l'$ is always non-negative, so an easier approach is to lower-bound the following for each $i \in [n]$,

$$
\tilde{h}_i^{\top} s_i s_i^{\top} \gamma_i - \tilde{h}_i^{\top} \operatorname{diag}(s_i) \gamma_i.
$$

Next, we can get for all $i \in [n]$ and $t \in [T]$ that

$$
\tilde{h}_{it} = X_{it}^{\top} V z_i = \langle X_{it} z_i^{\top}, V \rangle
$$

\n
$$
\leq ||V||_{p,p} ||X_{it} z_i^{\top}||_{\frac{p}{p-1}}
$$

\n
$$
\leq A,
$$

where A is defined in (8) .

 \mathbf{I}

Therefore, if we drop the *i* notation and let $\alpha_i = 1$, and use [\[52,](#page-8-4) Lemma 7],

$$
\left| \tilde{h}^\top s s^\top \gamma - \tilde{h}^\top \operatorname{diag}(s) \gamma - \sum_{t=2}^T (\tilde{h}_1 - \tilde{h}_t) s_t (\gamma_1 - \gamma_t) \right| \le 2\Gamma A (1 - s_1)^2.
$$

Let us attempt to remove the non-support tokens from the sum above by bounding the sum of the term for the non-supports,

 $\overline{1}$

$$
\left|\sum_{t\in\tilde{\mathcal{T}}}(\tilde{h}_1-\tilde{h}_t)s_t(\gamma_1-\gamma_t)\right|\leq 2\max_{t\in[T]}{\{\tilde{h}_t|\}}Q(W)\Gamma\leq 2AQ(W)\Gamma.
$$

Therefore,

$$
\left| \tilde{h}^\top s s^\top \gamma - \tilde{h}^\top \operatorname{diag}(s) \gamma - \sum_{t \in \mathcal{T}} (\tilde{h}_1 - \tilde{h}_t) s_t (\gamma_1 - \gamma_t) \right| \leq 2\Gamma A((1 - s_1)^2 + Q(W)),
$$

which implies that

$$
\tilde{h}^{\top} s s^{\top} \gamma - \tilde{h}^{\top} \operatorname{diag}(s) \gamma \ge \sum_{t \in \mathcal{T}} (\tilde{h}_1 - \tilde{h}_t) s_t(\gamma_1 - \gamma_t) - 2\Gamma A((1 - s_1)^2 + Q(W)).
$$

Using Lemma [9,](#page-16-3) we have

$$
\tilde{h}^{\top} s s^{\top} \gamma - \tilde{h}^{\top} \operatorname{diag}(s) \gamma \ge \left(1 - \frac{1}{2} \delta\right) \sum_{t \in \mathcal{T}} s_t (\gamma_1 - \gamma_t) - 2\Gamma A((1 - s_1)^2 + Q(W)).\tag{15}
$$

To proceed, we can upper-bound $1 - s_1$ and $Q(W)$. For bounding $1 - s_1$, let $\tau > 1$ be some index that maximizes $X_{\tau}^{\top}Wz$, so

$$
1 - s_1 = \frac{\sum_{t=2}^{T} e^{X_t^{\top} W z}}{\sum_{t=1}^{T} e^{X_t^{\top} W z}} \leq \frac{(T-1)e^{X_\tau^{\top} W z}}{(T-1)e^{X_\tau^{\top} W z} + e^{X_1^{\top} W z}}
$$

\n
$$
\leq \frac{T}{T + e^{(X_1 - X_\tau)^{\top} W z}}
$$

\n
$$
\leq \frac{T}{T + e^{\frac{||W||_{p,p}}{||W_{\text{mm}}^{\top}||_{p,p}}(1 - \frac{1}{2}\delta)}}
$$

\n
$$
\leq \frac{T}{e^{\frac{||W||_{p,p}}{||W_{\text{mm}}^{\top}||_{p,p}}(1 - \frac{1}{2}\delta)}},
$$

with the last inequality using the third inequality Lemma [9.](#page-16-3)

For ease of notation, denote

$$
R' := \frac{\|W\|_{p,p}}{\|W^{\alpha}_{\text{mm}}\|_{p,p}}.\tag{16}
$$

To upper bound $Q(W)$, we use a method similar to that for $1-s₁$, but we utilize the second inequality of Lemma [9](#page-16-3) instead of the first. This gives:

$$
Q(W) \le \frac{T}{T + e^{(1 + \frac{3}{2}\delta)R'}} \le \frac{T}{e^{(1 + \frac{3}{2}\delta)R'}}.
$$

Therefore, we have

$$
2\Gamma A((1-s_1)^2 + Q(W)) \le 2\Gamma A \left(\frac{T^2}{e^{(2-\delta)R'}} + \frac{T}{e^{(1+\frac{3}{2}\delta)R'}}\right) \le \frac{2\Gamma A T (T+1)}{e^{(1+\frac{3}{2}\delta)R'}}.
$$
\n(17)

Now it is time to lower-bound the sum on the right side of Equation [\(15\)](#page-18-0). When the set of supports is empty, that sum is zero. However, if it is not empty,

$$
\sum_{t \in \mathcal{T}} s_t(\gamma_1 - \gamma_t) \geq S(W) \gamma^{\text{gap}}.
$$

If we let $\tau \in \mathcal{T}$ be the support index that minimizes $X_{\tau}^{\top} W z$, then

$$
S(W) = \frac{\sum_{t \in \mathcal{T}} e^{X_t^{\top} W z}}{\sum_{t=1}^T e^{X_t^{\top} W z}} \ge \frac{e^{X_\tau^{\top} W z}}{T e^{X_1^{\top} W z}} = \frac{1}{T e^{(X_1 - X_\tau)^{\top} W z}}
$$

$$
\ge \frac{1}{T e^{(1 + \frac{1}{2}\delta) R'}},
$$

with the last inequality coming from the third inequality of Lemma [9.](#page-16-3) Therefore,

$$
\sum_{t \in \mathcal{T}} s_t(\gamma_1 - \gamma_t) \ge \frac{\gamma^{\text{gap}}}{Te^{(1 + \frac{1}{2}\delta)R'}} > 0.
$$

Using Equation [\(15\)](#page-18-0), we get that if the support index set is empty,

$$
\tilde{h}^{\top} s s^{\top} \gamma - \tilde{h}^{\top} \operatorname{diag}(s) \gamma \geq -\frac{2\Gamma AT(T+1)}{e^{(1+\frac{3}{2}\delta)R'}},
$$

otherwise,

$$
\tilde{h}^\top s s^\top \gamma - \tilde{h}^\top \operatorname{diag}(s) \gamma \geq \frac{\gamma^{\mathrm{gap}}}{Te^{(1+\frac{1}{2}\delta)R'}} \left(1-\frac{1}{2}\delta\right) - \frac{2\Gamma AT(T+1)}{e^{(1+\frac{3}{2}\delta)R'}}.
$$

Plugging everything back into Equation [\(14\)](#page-17-1), and considering that some samples will have non-empty support index sets, we have:

$$
-\langle \mathcal{L}(W), V \rangle \ge -\frac{\min_{i \in \mathcal{T}_i} \{ \gamma_i^{\text{gap}} \}}{nTe^{(1 + \frac{1}{2}\delta)R'}} \left(1 - \frac{1}{2}\delta \right) \max_{i=1}^n \{l'_i\} + \frac{2\Gamma AT(T+1)}{e^{(1 + \frac{3}{2}\delta)R'}} \sum_{i=1}^n l'_i = \Omega \left(e^{-(1 + \frac{1}{2}\delta)R'} \right). \tag{18}
$$

Let

$$
\bar{L} := \frac{\sum_{i=1}^{n} l'_i}{\max_{i=1}^{n} \{l'_i\}}.
$$
\n(19)

Note that using Assumption [A,](#page-2-1) \bar{L} is positive. Hence, using [\(19\)](#page-19-0) and [\(18\)](#page-19-1), the term $-\langle \mathcal{L}(W), V \rangle$ is positive when

$$
R' \ge \frac{1}{\delta} \log \left(\frac{2\Gamma \bar{L}AT^2(T+1)n}{\min_{i \in \mathcal{T}_i} \{ \gamma_i^{\text{gap}} \} (1 - \frac{1}{2}\delta)} \right),
$$

or equivalently, from (16) , we have

$$
||W||_{p,p} \ge \frac{||W^{\alpha}_{\min}||_{p,p}}{\delta} \log \left(\frac{2\Gamma \bar{L}AT^2(T+1)}{\min_{i \in \mathcal{T}_i} {\{\gamma_i^{\text{gap}}\} (1 - \frac{1}{2}\delta)}} \right).
$$

Finally, we introduce the following lemma to help understand the correlation between the gradient of the objective and the parameter.

Lemma 11. *Suppose [A](#page-2-1)ssumption A holds.* Let $\alpha = (\alpha_i)_{i=1}^n$ be locally optimal tokens as per *Definition* [3,](#page-2-3) let $\hat{W}_{\text{mm}}^{\alpha}$ be the $(\ell_p$ [-AttSVM\)](#page-3-0) solution, and let \hat{R}_{δ} be the constant from Lemma [10.](#page-17-0) For a *ny choice of* $\pi \in (0,1)$ *, there exists* R_{π} *that depends on* π *defined as*

$$
R_{\pi} := \max \left\{ R_{\delta}, \mathcal{O} \left(\frac{1}{\pi \delta} \log \frac{\delta}{\pi} \right) \right\},\
$$

such that for all $W \in C_{p,\mu_0,R_{\pi}}(W^{\alpha}_{\text{mm}})$,

$$
\left\langle \nabla \mathcal{L}(W), \frac{W}{\|W\|_{p,p}} \right\rangle \ge (1+\pi) \left\langle \nabla \mathcal{L}(W), \frac{W_{\text{mm}}^{\alpha}}{\|W_{\text{mm}}^{\alpha}\|_{p,p}} \right\rangle.
$$

Proof. Let

$$
h_i := X_i W z_i, \quad \tilde{h}_i := X_i W_{mm}^{\alpha} z_i, \quad l'_i := l'(\gamma_i^{\top} \sigma(h_i)),
$$

$$
s_i := \sigma(h_i), \quad \bar{W} := \frac{\|W_{mm}^{\alpha}\|_{p,p} W}{\|W\|_{p,p}}, \quad \text{and} \quad \bar{h}_i := X_i \bar{W} z_i.
$$
 (20)

By decomposing $\mathcal{L}(W)$ into its sum and using Lemma [7,](#page-15-1) the main inequality is equivalent to the following,

$$
\sum_{i=1}^{n} (-l_i') \langle X_i^{\top} (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i z_i^{\top}, \overline{W} \rangle
$$

$$
\leq (1 + \pi) \sum_{i=1}^{n} (-l_i') \langle X_i^{\top} (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i z_i^{\top}, W_{\text{mm}}^{\alpha} \rangle,
$$

which implies that

$$
\sum_{i=1}^{n} (-l'_i) \langle (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i, X_i \overline{W} z_i \rangle
$$

$$
\leq (1 + \pi) \sum_{i=1}^{n} (-l'_i) \langle (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i, X_i W_{\text{mm}}^{\alpha} z_i \rangle.
$$

Using (20) , we get

$$
\sum_{i=1}^n (-l'_i) \langle (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i, \bar{h}_i \rangle \le (1+\pi) \sum_{i=1}^n (-l'_i) \langle (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i, \tilde{h}_i \rangle,
$$

which gives

$$
\sum_{i=1}^{n} (-l'_i) \overline{h}_i^{\top} (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i \le (1 + \pi) \sum_{i=1}^{n} (-l'_i) \overline{h}_i^{\top} (\text{diag}(s_i) - s_i s_i^{\top}) \gamma_i.
$$

Hence,

$$
\sum_{i=1}^n (-l'_i) \left[(1+\pi) \left(\tilde{h}_i^{\top} \text{ diag}(s_i) \gamma_i - \tilde{h}_i^{\top} s_i s_i^{\top} \gamma_i \right) - \left(\bar{h}_i^{\top} \text{ diag}(s_i) \gamma_i - \bar{h}_i^{\top} s_i s_i^{\top} \gamma_i \right) \right] \geq 0.
$$

Using a similar technique as the one we used to prove Lemma [10,](#page-17-0)

$$
\left| \tilde{h}_i^{\top} \text{diag}(s_i) \gamma_i - \tilde{h}_i^{\top} s_i s_i^{\top} \gamma_i - \sum_{t \in \mathcal{T}_i} (\tilde{h}_{i\alpha_i} - \tilde{h}_{it}) s_{it} (\gamma_{i\alpha_i} - \gamma_{it}) \right|
$$

$$
\leq 2\Gamma A((1 - s_{i\alpha_i})^2 + Q_i(W)).
$$

Similarly,

$$
\left| \bar{h}_i^{\top} \text{diag}(s_i) \gamma_i - \bar{h}_i^{\top} s_i s_i^{\top} \gamma_i - \sum_{t \in \mathcal{T}_i} (\bar{h}_{i\alpha_i} - \bar{h}_{it}) s_{it} (\gamma_{i\alpha_i} - \gamma_{it}) \right|
$$

$$
\leq 2\Gamma A((1 - s_{i\alpha_i})^2 + Q_i(W)).
$$

Therefore, it is enough to prove that

$$
\sum_{i=1}^{n}(-l'_{i})\left((1+\pi)\left(\sum_{t\in\mathcal{T}_{i}}(\tilde{h}_{i\alpha_{i}}-\tilde{h}_{it})s_{it}(\gamma_{i\alpha_{i}}-\gamma_{it})-2\Gamma A((1-s_{i\alpha_{i}})^{2}+Q_{i}(W))\right)-\left(\sum_{t\in\mathcal{T}_{i}}(\bar{h}_{i\alpha_{i}}-\bar{h}_{it})s_{it}(\gamma_{i\alpha_{i}}-\gamma_{it})+2\Gamma A((1-s_{i\alpha_{i}})^{2}+Q_{i}(W))\right)\right),
$$
\n(21)

Using the fact that $\pi < 1$ and using Equation [\(17\)](#page-19-2), we get another lower-bound

$$
\sum_{i=1}^{n} \sum_{t \in \mathcal{T}_i} (-l'_i)(1 + \pi - (\bar{h}_{i\alpha_i} - \bar{h}_{it})) s_{it}(\gamma_{i\alpha_i} - \gamma_{it}) + \frac{6\Gamma AT(T+1)}{e^{(1 + \frac{3}{2}\delta)R'}} \sum_{i=1}^{n} l'_i,
$$
 (22)

with R' again being $\frac{\|W\|_{p,p}}{\|W_{\min}^{\alpha}\|_{p,p}}$. Next, we analyze the softmax probability s_{it} , and lower and upperbound them in terms of R' and $\bar{h}_{i\alpha_i} - \bar{h}_{it}$. For the lower-bound,

$$
s_{it} = \frac{e^{\bar{h}_{it}R'}}{\sum_{\tau \in [T]} e^{\bar{h}_{i\tau}R'}} \ge \frac{e^{\bar{h}_{it}R'}}{Te^{\bar{h}_{i\alpha_i}R'}}
$$

$$
= \frac{1}{T}e^{-(\bar{h}_{i\alpha_i} - \bar{h}_{it})R'}.
$$

For the upper-bound,

$$
s_{it} = \frac{e^{\bar{h}_{it}R'}}{\sum_{\tau \in [T]} e^{\bar{h}_{i\tau}R'}} \leq \frac{e^{\bar{h}_{it}R'}}{e^{\bar{h}_{i\alpha_i}R'}}
$$

$$
= e^{-(\bar{h}_{i\alpha_i} - \bar{h}_{it})R'}.
$$

In both bounds, the main inequality derivation stems from the fact that $\bar{h}_{i\alpha_i} > \bar{h}_{i\tau}$ for all $\tau \in [T]$, which we obtain from Lemma [9.](#page-16-3) Now, we analyze the left double-summation in Equation [\(22\)](#page-21-0). To analyze the sum, let $\mathcal I$ be the subset of $[n] \times [T]$ that contains all (i, t) such that $t \in \mathcal T_i$. Furthermore, let

$$
\mathcal{I}_1 := \left\{ (i, t) \in \mathcal{I} \mid \bar{h}_{i\alpha_i} - \bar{h}_{it} \le 1 \right\}, \n\mathcal{I}_2 := \left\{ (i, t) \in \mathcal{I} \mid 1 < \bar{h}_{i\alpha_i} - \bar{h}_{it} \le 1 + \pi \right\}, \n\mathcal{I}_3 := \left\{ (i, t) \in \mathcal{I} \mid \bar{h}_{i\alpha_i} - \bar{h}_{it} > 1 + \pi \right\}.
$$

Therefore, we can split the sum above into the sum over \mathcal{I}_1 , \mathcal{I}_2 , and \mathcal{I}_3 . The set \mathcal{I}_1 in particular must be non-empty because $\|\bar{W}\|_{p,p} = \|W_{\text{mm}}^{\alpha}\|_{p,p}$, meaning that one of the constraints in the ℓ_p [-AttSVM](#page-3-0) problem must either be fulfilled exactly or violated.

The sum over \mathcal{I}_1 must be positive and is at least

$$
-\frac{\pi}{T} \min_{i \in \mathcal{I}_1} {\{\gamma_i^{gap}\}} e^{-R'} \max_{i=1}^n \{l'_i\}.
$$

The sum over \mathcal{I}_2 must be non-negative, and the sum over \mathcal{I}_3 is negative can be bounded from below using Lemma [9](#page-16-3)

$$
\frac{1}{2}\delta \max_{i\in\mathcal{I}_3}\{\bar{\gamma}_i^{gap}\}Te^{-(1+\pi)R'}\sum_{i=1}^nl_i'.
$$

Putting things together into Equation [\(22\)](#page-21-0), we get that we want the following to be non-negative

$$
-\frac{\pi}{T} \min_{i \in \mathcal{I}_1} \{ \gamma_i^{gap} \} e^{-R'} \max_{i=1}^n \{ l'_i \} + \frac{1}{2} \delta \max_{i \in \mathcal{I}_3} \{ \bar{\gamma}_i^{gap} \} T e^{-(1+\pi)R'} \sum_{i=1}^n l'_i
$$

$$
+ 6\Gamma AT(T+1) e^{-(1+\frac{3}{2}\delta)R'} \sum_{i=1}^n l'_i.
$$

This can be achieved when

$$
R' \ge \frac{1}{\min\{\pi, \frac{3}{2}\delta\}} \log \left(\frac{\frac{1}{2}\delta \max_{i \in \mathcal{I}_3} \{ \bar{\gamma}_i^{gap} \} T^2 + 6\Gamma A T^2 (T+1)}{\pi \min_{i \in \mathcal{I}_1} \{ \gamma_i^{gap} \} \max_{i=1}^n \{l'_i\}} \sum_{i=1}^n l'_i \right),
$$

or equivalently,

$$
||W||_{p,p} \ge \frac{||W^{\alpha}_{\min}||_{p,p}}{\min\{\pi, \frac{3}{2}\delta\}} \log \left(\frac{\frac{1}{2}\delta \max_{i \in \mathcal{I}_3} {\{\tilde{\gamma}_i^{gap}\}} T^2 + 6\Gamma AT^2(T+1)}{\pi \min_{i \in \mathcal{I}_1} {\{\gamma_i^{gap}\}} \max_{i=1}^n \{l'_i\}} \sum_{i=1}^n l'_i \right),
$$

which means that such dataset dependent R_{π} exists.

B.4 Lemma for Analyzing ℓ_p [-AttGD](#page-3-1)

We introduce the lemmas for analyzing ℓ_p [-AttGD](#page-3-1). The first we prove is Lemma [12,](#page-22-1) which describes the lower bound of the W parameter at every iterate.

Lemma 12. *Suppose [A](#page-2-1)ssumption A holds. For the sequence* $\{W(k)\}_{k\geq0}$ *generated by* ℓ_p [-AttGD](#page-3-1), *we have*

$$
||W(k+1)||_{p,p}^{p-1} \ge ||W(k)||_{p,p}^{p-1} + \frac{\eta}{||W(k)||_{p,p}} \langle -\nabla \mathcal{L}(W(k)), W(k) \rangle.
$$

Proof. With $\psi(W) = \frac{1}{p} ||W||_{p,p}$, the derivative $\nabla \psi(\cdot)$ is computed as follows:

$$
\nabla \psi(W) = (\text{sign}(W_{ij})|W_{ij}|^{p-1})_{1 \le i,j \le d}.
$$

Thus, we have

$$
\langle \nabla \psi(W), W \rangle = \sum_{i,j} \text{sign}(W_{ij}) |W_{ij}|^{p-1} W_{ij} = ||W||_{p,p}^p.
$$

Using this fact, we take the inner product of both sides of [\(3\)](#page-2-6) with $W(k)$:

$$
\langle \nabla \psi(W(k+1)), W(k) \rangle = \langle \nabla \psi(W(k)), W(k) \rangle + \eta \langle -\nabla \mathcal{L}(W(k)), W(k) \rangle,
$$

$$
\langle \nabla \psi(W(k+1)), W(k) \rangle = \|W(k)\|^p + \eta \langle -\nabla \mathcal{L}(W(k)), W(k) \rangle.
$$

$$
\langle \nabla \psi(W(k+1)), W(k) \rangle = ||W(k)||_{p,p}^p + \eta \langle -\nabla \mathcal{L}(W(k)), W(k) \rangle. \tag{23}
$$

The left side of the above equation is upper-bounded by

$$
\sum_{i,j} \text{sign}(W_{ij}(k+1))|W_{ij}(k+1)|^{p-1}W_{ij}(k) \le \sum_{i,j} |W_{ij}(k+1)|^{p-1}|W_{ij}(k)|.
$$

Using Hölder's inequality:

$$
\sum_{i,j} |W_{ij}(k+1)|^{p-1} |W_{ij}(k)| \leq \left(\sum_{i,j} (|W_{ij}(k+1)|^{p-1})^{\frac{p}{p-1}}\right)^{\frac{p-1}{p}} \left(\sum_{i,j} |W_{ij}(k)|^p\right)^{\frac{1}{p}}
$$

$$
= ||W(k+1)||_{p,p}^{p-1} ||W(k)||_{p,p}.
$$

Combining this result with [\(23\)](#page-22-2), we get:

$$
||W(k+1)||_{p,p}^{p-1} \ge ||W(k)||_{p,p}^{p-1} + \frac{\eta}{||W(k)||_{p,p}} \langle -\nabla \mathcal{L}(W(k)), W(k) \rangle.
$$

 \Box

 \Box

Next, we show several tools for analyzing the algorithm further and for analyzing the Bregman divergence. The following two specifically are from [\[50,](#page-8-7) Lemma 18, 3], and so the proofs are ommitted.

Lemma 13. *Suppose [A](#page-2-1)ssumptions A hold and* η *is small enough. For the sequence* $\{W(k)\}_{k>0}$ *generated by* ℓ_p [-AttGD](#page-3-1), we have

$$
\frac{p-1}{p} \|W(k+1)\|_{p,p}^p - \frac{p-1}{p} \|W(k)\|_{p,p}^p + \eta \mathcal{L}(W(k+1)) - \eta \mathcal{L}(W(k))
$$
\n
$$
\leq \langle -\eta \nabla \mathcal{L}(W(k)), W(k) \rangle.
$$
\n(24)

Lemma 14. *Suppose Assumptions [A](#page-2-1) hold. Consider the sequence* W(k) *generated by Algorithm* ℓ_p [-AttGD](#page-3-1). Given that the step size η is sufficiently small, then the ERM objective $\mathcal{L}(W(k))$ is *decreasing in* k*.*

This following is a well-known lemma, so the proof is omitted.

Lemma 15 (Bregman Divergences Cosine Law). *For any* w, w′ , w′′ *that are all vectors or matrices with the same dimensionalities, we have*

$$
D_{\psi}(w, w') = D_{\psi}(w, w'') + D_{\psi}(w'', w') - \langle \nabla \psi(w') - \nabla \psi(w''), w - w'' \rangle.
$$

The following is adapted from [\[50,](#page-8-7) Equation 12] for the case of our attention model. Our proof is quite similar, except that we use our version of the gradient correlation lemma.

Lemma 16. *Suppose Assumptions [A](#page-2-1) hold. Consider the sequence* W(k) *generated by Algorithm* ℓ_p – AttGD. For any $\pi \in (0,1)$, if $W(k) \in C_{p,\mu_0,R_\pi}(W^\alpha_{\text{mm}})$, with R_π being the constant from Lemma *[11,](#page-20-1) then for a small enough step size* η*,*

$$
\langle \nabla \psi(W(k+1)) - \nabla \psi(W(k)), \bar{W}_{mm}^{\alpha} \rangle \ge \frac{1}{1+\pi} (\|W(k+1)\|_{p,p}^{p-1} - \|W(k)\|_{p,p}^{p-1}) + \frac{\eta}{\|W(k)\|_{p,p}} (\mathcal{L}(W(k+1)) - \mathcal{L}(W(k))).
$$
\n(25)

Proof. Let $\bar{W}_{\text{mm}}^{\alpha} = \frac{W_{\text{mm}}^{\alpha}}{\|W_{\text{mm}}^{\alpha}\|_{p,p}}$. Using the ℓ_p [-AttGD](#page-3-1) algorithm equation,

$$
\langle \nabla \psi(W(k+1)) - \nabla \psi(W(k)), \bar{W}_{mm}^{\alpha} \rangle = \langle -\eta \nabla \mathcal{L}(W(k)), \bar{W}_{mm}^{\alpha} \rangle.
$$

Then, using Lemma [11,](#page-20-1) we get that

$$
\langle -\eta \nabla \mathcal{L}(W(k)), \bar{W}^\alpha_{\text{mm}} \rangle \geq \frac{1}{(1+\pi)\|W(k)\|_{p,p}} \langle -\eta \nabla \mathcal{L}(W(k)), W(k) \rangle,
$$

and using Lemma [13,](#page-23-0) we get that this is lower-bounded by

$$
\frac{p-1}{p(1+\pi)\|W(k)\|_{p,p}}(\|W(k+1)\|_{p,p}^p-\|W(k)\|_{p,p}^p)+\frac{\eta}{(1+\pi)\|W(k)\|_{p,p}}(\mathcal L(W(k+1))-\mathcal L(W(k))).
$$

By Lemma [10,](#page-17-0) $\langle -\eta \nabla \mathcal{L}(W(k)), W(k) \rangle > 0$, so by Lemma [12,](#page-22-1) $||W(k+1)||_{p,p} \ge ||W(k)||_{p,p}$. Therefore, we can use Lemma [4](#page-14-0) to get that the above is lower-bounded by

$$
\frac{1}{1+\pi}(\|W(k+1)\|_{p,p}^{p-1}-\|W(k)\|_{p,p}^{p-1})+\frac{\eta}{(1+\pi)\|W(k)\|_{p,p}}(\mathcal{L}(W(k+1))-\mathcal{L}(W(k))).
$$

From Lemma [14,](#page-23-1) we get that we can lower-bound the above further using the right hand side of [\(25\)](#page-23-2). \Box

With all these lemmas in hand, we provide the following Lemma [17.](#page-23-3)

Lemma 17. *Suppose Assumptions [A](#page-2-1) holds and that the step size* η *is sufficiently small. For any* $\mu \in (0, \mu_0]$ and any locally optimal tokens $(\alpha_i)_{i=1}^n$ as per Definition [3,](#page-2-3) there exists constants R_μ and $\mu'\in(0,\mu]$ that depends on the dataset and μ such that if C_1 is the wider cone $C_{p,\mu,R_\mu}(W^\alpha_{\rm mm})$ and C_2 is the thinner cone $C_{p,\mu',R_\mu}(W^\alpha_{\text{mm}})$, then if $W(0) \in C_2$, then $W(k) \in C_1$ for all positive indices k*.*

Figure 1: Illustration of Lemma [17.](#page-23-3) $W(k)$ for all positive indices k are within the larger set.

Proof. Let π be some positive real number that we determine later, and let R_{π} be as described in Lemma [11.](#page-20-1)

For the proof, we use induction with the assumption that $W(k) \in C_{p,\mu,R_{\pi}}(W_{\text{mm}}^{\alpha})$ for all $k =$ $0, \ldots, K-1$. We aim to find the correct μ' and $\hat{R_{\mu}}$ such that $W(K) \in C_{p,\mu,R_{\pi}}^{r}(\hat{W}_{mm}^{\alpha})$.

Denote
$$
\bar{W}(k) := \frac{W(k)}{\|W(k)\|_{p,p}}
$$
, so
\n
$$
D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(k)) = \frac{1}{p} \|\bar{W}_{\text{mm}}^{\alpha}\|_{p,p} - \frac{1}{p} \|\bar{W}(k)\|_{p,p} - \langle \nabla \psi(\bar{W}(k)), \bar{W}_{\text{mm}}^{\alpha} - \bar{W}(k) \rangle
$$
\n
$$
= 1 - \langle \nabla \psi(\bar{W}(k)), \bar{W}_{\text{mm}}^{\alpha} \rangle.
$$

So now, let us analyze the term $\langle \nabla \psi(\bar{W}(K)), \bar{W}_{mm}^{\alpha} \rangle$ using the inductive hypothesis on $k =$ $0, 1, \ldots, K - 1$. Lemma [16](#page-23-4) tells us that

$$
\langle \nabla \psi(W(k+1)) - \nabla \psi(W(k)), \bar{W}_{mm}^{\alpha} \rangle \ge \frac{\|W(k+1)\|_{p,p}^{p-1} - \|W(k)\|_{p,p}^{p-1}}{(1+\pi)} + \frac{\eta}{\|W(k)\|_{p,p}} (\mathcal{L}(W(k+1)) - \mathcal{L}(W(k))).
$$
\n(26)

Since this is true for all $k = 0, 1, ..., K - 1$, and since $||W(k)||_{p,p}$ is increasing in k, we can sum all the above inequalities and get the following,

$$
\langle \nabla \psi(W(K)) - \nabla \psi(W(0)), \bar{W}_{mm}^{\alpha} \rangle \ge \frac{\|W(K)\|_{p,p}^{p-1} - \|W(0)\|_{p,p}^{p-1}}{(1+\pi)} + \frac{\eta}{\|W(0)\|_{p,p}} (\mathcal{L}(W(K)) - \mathcal{L}(W(0))).
$$

Rearranging this, we get

$$
||W(K)||_{p,p}^{p-1} - \langle \nabla \psi(W(K)), \bar{W}_{mm}^{\alpha} \rangle \le ||W(0)||_{p,p}^{p-1} - \langle \nabla \psi(W(0)), \bar{W}_{mm}^{\alpha} \rangle + \frac{\pi}{1+\pi} (||W(K)||_{p,p}^{p-1} - ||W(0)||_{p,p}^{p-1}) + \frac{\eta}{||W(0)||_{p,p}} (\mathcal{L}(W(0)) - \mathcal{L}(W(K))).
$$

Dividing by $||W(K)||_{p,p}^{p-1}$, we get

$$
D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(K)) \leq \frac{\|W(0)\|_{p,p}^{p-1}}{\|W(K)\|_{p,p}^{p-1}} D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(0)) + \frac{\pi}{1+\pi} \left(1 - \frac{\|W(0)\|_{p,p}^{p-1}}{\|W(K)\|_{p,p}^{p-1}}\right) + \frac{\eta}{\|W(K)\|_{p,p}^{p-1}\|W(0)\|_{p,p}} (\mathcal{L}(W(0)) - \mathcal{L}(W(K)))
$$
\n
$$
\leq \mu' + \pi + \frac{\eta(\mathcal{L}(W(0)) - \mathcal{L}(W(K)))}{R_{\mu}^{p}}.
$$
\n(27)

Therefore, we can simply choose $\mu' = \frac{1}{3}\mu$, π be any real number below $\frac{1}{3}\mu$, and have R_{μ} big enough so that $\frac{\eta(\mathcal{L}(W(0)) - \mathcal{L}(W(K)))}{R_\mu^p} \leq \frac{1}{3}\mu$ and $R_\mu \geq R_\pi$, such R_μ exists because \mathcal{L} is bounded.

B.5 Lemma for Analyzing Rate of Convergence

Lemma 18. *Suppose Assumptions [A](#page-2-1) holds. Let* R^δ *be from Lemma [10,](#page-17-0) let* c *be from Lemma [16,](#page-23-4) let* µ ′ and R_μ be from Lemma [17](#page-23-3) when $\mu = \mu_0$, and let $R := \max\{R_\mu, R_\delta, e^{1/c}\}$. If the initialization $W(0)$ is in $C_{p,\mu',R}(W^\alpha_{\rm mm})$, then for a sufficiently small step size η , the sequence $\{W(k)\}_{k\geq 0}$ generated by ℓp[-AttGD](#page-3-1) *satisfies*

$$
D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(k)) = \begin{cases} \mathcal{O}\left(\frac{\log ||W(k)||_{p,p}}{||W(k)||_{p,p}}\right) & \text{if } p > 2, \\ \mathcal{O}\left(\frac{(\log ||W(k)||_{p,p})^2}{||W(k)||_{p,p}}\right) & \text{if } p = 2, \\ \mathcal{O}\left(\frac{1}{||W(k)||_{p,p}^{-1}}\right) & \text{otherwise.} \end{cases}
$$
(28)

Proof. Using Lemma [11,](#page-20-1) setting c as the dataset dependent constant hidden by the $\mathcal O$ notation for R_{π} , we can get that by setting $\pi = \min\{\frac{c \log ||W(k)||_{p,p}}{\delta ||W(k)||_{p,p}}\}$ $\frac{\log \|W(k)\|_{p,p}}{\delta \|W(k)\|_{p,p}}, 1$, we can use the result of Lemma [16](#page-23-4) on k, so rearranging that result, we get

$$
||W(k+1)||_{p,p}^{p-1} - \langle \nabla \psi(W(k+1)), \bar{W}_{mm}^{\alpha} \rangle \le ||W(k)||_{p,p}^{p-1} - \langle \nabla \psi(W(k)), \bar{W}_{mm}^{\alpha} \rangle + \frac{\pi}{1+\pi} (||W(k+1)||_{p,p}^{p-1} - ||W(k)||_{p,p}^{p-1}) + \frac{\eta}{||W(k)||_{p,p}} (\mathcal{L}(W(k)) - \mathcal{L}(W(k+1))).
$$

From Lemma [10](#page-17-0) and Lemma [12,](#page-22-1) $||W(k)||_{p,p}$ is increasing, so focusing on the second line, we can use Lemma [5](#page-14-1) and get

$$
\frac{\pi}{1+\pi}(\|W(k+1)\|_{p,p}^{p-1} - \|W(k)\|_{p,p}^{p-1}) \le \pi(\|W(k+1)\|_{p,p}^{p-1} - \|W(k)\|_{p,p}^{p-1})
$$
\n
$$
\le \frac{cp}{\delta \|W(k)\|_{p,p}} \max\{\|W(k)\|_{p,p}^{p-2}, \|W(k+1)\|_{p,p}^{p-2}\}
$$
\n
$$
\times \log \|W(k)\|_{p,p}
$$
\n
$$
\times (\|W(k+1)\|_{p,p} - \|W(k)\|_{p,p}).
$$

From Lemma [8,](#page-15-2) we know that for all index k ,

$$
||W(k+1)||_{p,p} \le ||W(k)||_{p,p} + \eta L,\tag{29}
$$

so we can use integral approximation when bounding the sums of $\Delta(k)$'s. Let

$$
\Delta(k) = \frac{cp}{\delta ||W(k)||_{p,p}} \max{\{||W(k)||_{p,p}^{p-2}, ||W(k+1)||_{p,p}^{p-2}\}} \log ||W(k)||_{p,p} \times (||W(k+1)||_{p,p} - ||W(k)||_{p,p}),
$$

so we can get that

$$
||W(K)||_{p,p}^{p-1} - \langle \nabla \psi(W(K)), \overline{W}_{mm}^{\alpha} \rangle \le ||W(0)||_{p,p}^{p-1} - \langle \nabla \psi(W(0)), \overline{W}_{mm}^{\alpha} \rangle
$$

+
$$
\sum_{k=0}^{k-1} \Delta(k) + \frac{\eta}{c} (\mathcal{L}(W(0)) - \mathcal{L}(W(K))),
$$

$$
||W(K)||_{p,p}^{p-1}D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(K)) \le ||W(0)||_{p,p}^{p-1}D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(0)) + \sum_{k=0}^{k-1} \Delta(k) + \frac{\eta}{c}(\mathcal{L}(W(0)) - \mathcal{L}(W(K))).
$$
\n(30)

When $p > 2$, we have

$$
\Delta(k) = \frac{cp}{\delta ||W(k)||_{p,p}} (||W(k)||_{p,p} + \eta L)^{p-2} \log ||W(k)||_{p,p} (||W(k+1)||_{p,p} - ||W(k)||_{p,p}).
$$

We can see that

$$
\frac{d}{dx}(x+\eta L)^{p-2}(\log x - \log c) > \frac{p-2}{x}(x+\eta L)^{p-2}\log x
$$

for all $x > 0$, so from Equation [\(29\)](#page-25-1), we can get that

$$
\sum_{k=0}^{K-1} \Delta(k) = O(||W(K)||^{p-2} \log ||W(K)||_{p,p}).
$$

When $p = 2$, we have

$$
\Delta(k) = \frac{cp}{\|W(k)\|_{p,p}} \log \|W(k)\|_{p,p} (\|W(k+1)\|_{p,p} - \|W(k)\|_{p,p}).
$$

We can see that

$$
\frac{d}{dx}(\log x)^2 > \frac{2}{x}(\log x)
$$

for all $x \ge c$, so from Equation [\(29\)](#page-25-1), we can get that

$$
\sum_{k=0}^{K-1} \Delta(k) = O((\log \|W(K)\|_{p,p})^2).
$$

When $p < 2$, we have

$$
\Delta(k)=cp\|W(k)\|_{p,p}^{p-3}\log\|W(k)\|_{p,p}(\|W(k+1)\|_{p,p}-\|W(k)\|_{p,p}).
$$

From Equation [\(29\)](#page-25-1), we can get that

$$
\sum_{k=0}^{K-1} \Delta(k) = O(1).
$$

Combining the above cases with Equation [\(30\)](#page-25-2), we get that

$$
||W(K)||_{p,p}^{p-1}D_{\psi}(\bar{W}_{\text{mm}}^{\alpha},\bar{W}(K)) = \begin{cases} O(||W(K)||_{p,p}^{p-2} \log ||W(K)||_{p,p}) & \text{if } p > 2, \\ O((\log ||W(K)||_{p,p})^2) & \text{if } p = 2, \\ O(1) & \text{otherwise} \end{cases}
$$

Dividing both sides by $||W(K)||_{p,p}^{p-1}$ gives [\(28\)](#page-25-3).

Lemma 19. Suppose [A](#page-2-1)ssumptions A holds. Let μ' be that from Lemma [17](#page-23-3) if $\mu = \mu_0$, and let R the *maximum of the* R_μ *from [17](#page-23-3) and* R_δ *[10.](#page-17-0) Let* $\{W(k)\}_{k\geq 0}$ *be the sequence generated by* ℓ_p *[-AttGD](#page-3-1). If the initialization* $W(0)$ *is in* $C_{p,\mu',R}(W^{\alpha}_{\text{mm}})$ *, then with a small enough step size* η *, we have the following for each* $k \geq 0$ *,*

$$
||W(k)||_{p,p} = \Omega(\log k).
$$

Proof. For each $k \geq 0$, Lemma [12](#page-22-1) gives

$$
||W(k+1)||_{p,p}^{p-1} \ge ||W(k)||_{p,p}^{p-1} + \frac{\eta}{||W(k)||_{p,p}} \langle -\nabla \mathcal{L}(W(k)), W(k) \rangle.
$$

Lemma [17](#page-23-3) gives us that $W(k) \in C_{p,\mu,R}(W^{\alpha}_{mn})$ for each $k \ge 0$, so by Lemma [10,](#page-17-0)

$$
\frac{\eta}{\|W(k)\|_{p,p}}\langle-\nabla\mathcal{L}(W(k)),W(k)\rangle=\Omega\left(e^{-\frac{\|W(k)\|_{p,p}}{\|W_{\text{mm}}^\alpha\|_{p,p}}(1+\frac{1}{2}\delta)}\right),\,
$$

so there exists dataset dependent constants $R_1, R_2 > 0$ such that

$$
\frac{\eta}{\|W(k)\|_{p,p}}\langle -\nabla \mathcal{L}(W(k)), W(k)\rangle \geq R_1 e^{-R_2 \|W(k)\|_{p,p}},
$$

 \Box

so for each $k \geq 0$,

$$
||W(k+1)||_{p,p}^{p-1} \ge ||W(k)||_{p,p}^{p-1} + R_1 e^{-R_2||W(k)||_{p,p}}.
$$

Set $k_0 = 0$, and let k_{i+1} be the lowest indices such that $||W(k_{i+1})||_{p,p} \ge ||W(k_i)||_{p,p} + 1$ for all index $i \geq 0$. Therefore,

$$
k_{i+1} - k_i \le \frac{(\|W(k_i)\|_{p,p} + 1)^{p-1} - \|W(k_i)\|_{p,p}^{p-1}}{R_1 e^{-R_2(\|W(k_i)\|_{p,p}+1)}} = e^{O(\|W(k_i)\|_{p,p})}.
$$

Therefore,

$$
||W(k)||_{p,p} = \Omega(\log k).
$$

C Proof of Theorem [1](#page-3-2)

Proof. The proof is similar to the proof of [\[53,](#page-8-3) Theorem 1]. Specifically, we need to show that $f(X) = v^\top X^\top \sigma(XW)$ satisfies the assumptions of [\[53,](#page-8-3) Lemma 14], where the nonlinear head is replaced by the linear term v . This holds independently of the choice of algorithm or the attention SVM solution. Thus, we omit the details and refer to the proof of [\[53,](#page-8-3) Theorem 1]. \Box

D Proof of Theorem [2](#page-4-1)

Proof. It is enough to show the existence of such constants μ , $R > 0$ such that if $W(0)$ is in $C_{p,\mu,R}(W_{\text{mm}}^{\alpha})$, then the norm diverges to infinity. As discussed in Lemma [12,](#page-22-1) for any timestep k,

$$
||W(k+1)||_p^{p-1} \ge ||W(k)||_p^{p-1} - \frac{\eta}{||W(k)||_p} \langle \nabla \mathcal{L}(W(k)), W(k) \rangle.
$$
 (31)

Let R_1 be the R from Lemma [10,](#page-17-0) set μ and R_2 to be the μ' and R for $\mu = \mu_0$ of Lemma [17,](#page-23-3) and set $R := \max\{R_1, R_2\}$. From Lemma [17,](#page-23-3) we know that $W(k) \in C_{p,\mu_0,R}(W_\alpha^{\text{mm}})$ for any timestep k, so from Lemma [10,](#page-17-0)

$$
\langle \nabla \mathcal{L}(W(k)), W(k) \rangle < 0,
$$

for all timesteps k .

Therefore, the l_p -norm is always increasing, but this does not immediately imply that the l_p -norm will approach infinity; it could converge to a finite value. However, if $||W(k)||_p$ converges to a finite value, then again by Lemma [10,](#page-17-0) we get a lower bound for $-\frac{\eta}{\|W(k)\|_p} \langle \nabla \mathcal{L}(W(k)), \tilde{W}(k) \rangle$ at any timestep k . Therefore, by Equation (31) ,

$$
\lim_{k \to \infty} ||W(k)||_p^{p-1} = \infty,
$$

a contradiction, so $||W(k)||_p$ converges to infinity.

E Proof of Theorem [3](#page-4-0)

Proof. This is a direct consequence of Theorem [4.](#page-4-2)

F Proof of Theorem [4](#page-4-2)

Proof. Let R be the one from Lemma [18.](#page-25-4) Given $W(0) \in C_{p,\mu,R}(W^{\alpha}_{\text{mm}})$, by Lemma [18,](#page-25-4) we have

$$
D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(k)) = \begin{cases} \mathcal{O}\left(\frac{\log \|W(k)\|_{p,p}}{\|W(k)\|_{p,p}}\right) & \text{if } p > 2, \\ \mathcal{O}\left(\frac{(\log \|W(k)\|_{p,p})^2}{\|W(k)\|_{p,p}}\right) & \text{if } p = 2, \\ \mathcal{O}\left(\frac{1}{\|W(k)\|_{p,p}^{p-1}}\right) & \text{otherwise.} \end{cases}
$$

 \Box

 \Box

 \Box

From Lemma [19,](#page-26-0) we know that

$$
||W(k)||_{p,p} = \Omega(\log k).
$$

The derivative $\frac{d}{dx} \left(\frac{\log x}{x} \right) = \frac{1 - \log x}{x^2}$ is negative when $x > e$, so $\frac{\log x}{x}$ is decreasing when $x > e$. Similarly, $\frac{(\log x)^2}{x}$ $\frac{f(x,y)^2}{x}$ is decreasing when $x > e^2$.

Thus when $p > 2$, for a large enough k,

$$
D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(k)) = O\left(\frac{\log \log k}{\log k}\right). \tag{32a}
$$

Similarly, when $p = 2$, for a large enough k,

$$
D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(k)) = O\left(\frac{(\log \log k)^2}{\log k}\right). \tag{32b}
$$

Finally, when $1 < p < 2$,

$$
D_{\psi}(\bar{W}_{\text{mm}}^{\alpha}, \bar{W}(k)) = O\left(\frac{1}{(\log k)^{p-1}}\right). \tag{32c}
$$

 \Box

G On the Convergence of the ℓ_p Regularization Path for Joint W and v

In this section, we extend the results of Theorem [1](#page-3-2) to the case of joint optimization of head v and attention weights W using a logistic loss function.

Assumption B. Let $\Gamma, \Gamma' > 0$ denote the label margins when solving $(\ell_p\text{-SVM})$ with $X_{i\alpha_i}$ and its *replacement with* $X_i^{\top} \sigma(X_i W z_i)$, for all $i \in [n]$, respectively. There exists $\nu > 0$ such that for all $i \in [n]$ and $W \in \mathbb{R}^{d \times d}$,

$$
\Gamma - \Gamma' \ge \nu \cdot (1 - s_{i\alpha_i}),
$$
 where $s_{i\alpha_i} = [\sigma(X_i W z_i)]_{\alpha_i}.$

Assumption \overline{B} \overline{B} \overline{B} is similar to [\[53\]](#page-8-3) and highlights that selecting optimal tokens is key to maximizing the classifier's label margin. When attention features, a weighted combination of all tokens, are used, the label margin shrinks based on how much attention is given to the optimal tokens. The term $v \cdot (1 - s_{i\alpha_i})$ quantifies this minimum shrinkage. If the attention mechanism fails to focus on these tokens (i.e., low $s_{i\alpha_i}$), the margin decreases, reducing generalization. This assumption implies that optimal performance is achieved when attention converges on the most important tokens, aligning with the max-margin attention SVM solution.

Similar to how we provided the characterization of convergence for the regularization path of ℓ_p [-AttGD](#page-3-1), we offer a similar characterization here for ℓ_p [-JointGD](#page-4-5).

Theorem 5 (Joint ℓ_p –norm Regularization Path). *Consider* [\(ERM\)](#page-1-0) *with a logistic loss* $l(x)$ = $log(1+e^{-x})$, and define

$$
(v^{(r)}, W^{(R)}) := \arg\min_{(v, W)} \mathcal{L}(v, W) \quad \text{subj. to} \quad ||W||_{p, p} \le R \text{ and } ||v||_p \le r. \quad (\ell_p\text{-JointRP})
$$

Suppose there are token indices $\alpha = (\alpha_i)_{i=1}^m$ *for which* W_{mm}^{α} *of* $(\ell_p$ [-AttSVM\)](#page-3-0) *exists and Assumption [B](#page-28-3) holds for some* $\Gamma, \nu > 0$ *. Then,*

$$
\lim_{(r,R)\to(\infty,\infty)}\left(\frac{v^{(r)}}{r},\frac{W^{(R)}}{R}\right) = \left(\frac{v_{\text{mm}}}{\|v_{\text{mm}}\|_p},\frac{W_{\text{mm}}^{\alpha}}{\|W_{\text{mm}}^{\alpha}\|_{p,p}}\right). \tag{33}
$$

Here, v_{mm} *and* W_{mm}^{α} *are the solution of* $(\ell_p\text{-SWM})$ *and* $(\ell_p\text{-AttSWM})$ *, respectively.*

Proof. The proof is similar to the proof of [\[53,](#page-8-3) Theorem 5]. We provide the revised version for the generalized attention SVM, tracking the required changes. Without loss of generality, we set $\alpha_i = 1$ for all $i \in [n]$, and we use W_{mm} instead of W_{mm}^{α} . Suppose the claim is incorrect, meaning either $W^{(R)}/R$ or $v^{(r)}/r$ fails to converge as R and r grow. Define

$$
\Xi = \frac{1}{\|\bar{W}_{\text{mm}}\|_{p,p}}, \qquad \Gamma = \frac{1}{\|v_{\text{mm}}\|_p},
$$

$$
\bar{W}_{\text{mm}} := R \Xi W_{\text{mm}}, \qquad \bar{v}_{\text{mm}} := r \Gamma v_{\text{mm}}
$$
(34)

Our strategy is to show that $(\bar{v}_{\rm mm}, \bar{W}_{\rm mm})$ is a strictly better solution compared to $(v^{(r)}, W^{(R)})$ for large R and r , leading to a contradiction.

• Case 1: $W^{(R)}/R$ does not converge to \bar{W}_{mm}/R . In this case, there exists $\delta, \gamma = \gamma(\delta) > 0$ such that we can find arbitrarily large R with

$$
||W^{(R)}/R - \bar{W}_{\text{mm}}/R|| \ge \delta
$$

and the margin induced by $W^{(R)}/R$ is at most $\Xi(1-\gamma)$.

We bound the amount of non-optimality q_i^* of \bar{W}_{mm} :

$$
q_i^* := \frac{\sum_{t \neq \alpha_i} \exp(X_{it}^\top \bar{W}_{\text{mm}} z_i)}{\sum_{t \in [T]} \exp(X_{it}^\top \bar{W}_{\text{mm}} z_i)} \leq \frac{\sum_{t \neq \alpha_i} \exp(X_{it}^\top \bar{W}_{\text{mm}} z_i)}{\exp(X_{i\alpha_i}^\top \bar{W}_{\text{mm}} z_i)} \leq T \exp(-\Xi R).
$$

Thus,

$$
q_{\max}^* := \max_{i \in [n]} q_i^* \le T \exp(-\Xi R). \tag{35a}
$$

Next, assume without loss of generality that the first margin constraint is γ -violated by $W^{(R)}$, meaning

$$
\min_{t \neq \alpha_1} (X_{1\alpha_1} - X_{1t})^{\top} W^{(R)} z_1 \leq \Xi R (1 - \gamma).
$$

Denoting the amount of non-optimality of the first input of $W^{(R)}$ as \hat{q}_1 , we find

$$
\hat{q}_1 := \frac{\sum_{t \neq \alpha_1} \exp(X_{1t}^\top W^{(R)} z_1)}{\sum_{t \in [T]} \exp(X_{1t}^\top W^{(R)} z_1)} \geq \frac{1}{T} \frac{\sum_{t \neq \alpha_1} \exp(X_{1t}^\top W^{(R)} z_1)}{\exp(X_{1\alpha_1}^\top W^{(R)} z_1)} \geq T^{-1} \exp(-(1 - \gamma)R\Xi).
$$

This implies that

$$
\hat{q}_{\max} := \max_{i \in [n]} q_i^* \ge T^{-1} \exp(-\Xi R (1 - \gamma)).
$$
\n(35b)

We similarly have

$$
q_{\text{max}}^* \ge T^{-1} \exp(-\Xi R). \tag{35c}
$$

Thus, [\(35\)](#page-29-0) gives the following relationship between the upper and lower bounds on non-optimality:

$$
-(1 - \gamma)\Xi R - \log T \le \log(\hat{q}_{\text{max}}),
$$

-
$$
-\Xi R - \log T \le \log(q_{\text{max}}^*) \le -\Xi R + \log T.
$$
 (36)

In other words, \bar{W}_{mm} has exponentially less non-optimality compared to $W^{(R)}$ as R grows. To proceed, we need to upper and lower bound the logistic loss of $(\bar{v}_{\rm mm}, \bar{W}_{\rm mm})$ and $(v^{(r)}, W^{(R)})$ respectively, to establish a contradiction.

• Sub-Case 1.1: Upper bound for $\mathcal{L}(\bar{v}_{\rm mm}, \bar{W}_{\rm mm})$. We now bound the logistic loss for the limiting solution. Set $\bar{r}_i = \hat{X}_i^{\top} \sigma(X_i \bar{W}_{\text{mm}} z_i)$. If $\|\bar{r}_i - \bar{X}_{i1}\|_p \le \epsilon_i$, then v_{mm} satisfies the SVM constraints on \bar{r}_i with $Y_i \cdot \bar{r}_i^{\top} v_{\text{mm}} \geq 1 - \epsilon_i/\Gamma$. Setting $\epsilon_{\text{max}} = \sup_{i \in [n]} \epsilon_i$, v_{mm} achieves a label-margin of $\Gamma - \epsilon_{\max}$ on the dataset $(Y_i, \bar{r}_i)_{i \in [n]}$. Let $M = \sup_{i \in [n], t, \tau \in [T]} ||X_{it} - X_{i\tau}||_p$. Recalling [\(36\)](#page-29-1), the worst-case perturbation is

$$
\epsilon_{\max} \le M \exp(-\Xi R + \log T) = MT \exp(-\Xi R).
$$

This implies the upper bound on the logistic loss:

$$
\mathcal{L}(\bar{v}_{\text{mm}}, \bar{W}_{\text{mm}}) \leq \max_{i \in [n]} \log(1 + \exp(-Y_i \bar{r}_i^{\top} \bar{v}_{\text{mm}}))
$$

\n
$$
\leq \max_{i \in [n]} \exp(-Y_i \bar{r}_i^{\top} \bar{v}_{\text{mm}})
$$

\n
$$
\leq \exp(-r\Gamma + r\epsilon_{\text{max}})
$$

\n
$$
\leq e^{rMT \exp(-\Xi R)} e^{-r\Gamma}.
$$
 (37)

.

• Sub-Case 1.2: Lower bound for $\mathcal{L}(v^{(r)}, W^{(R)})$. We now bound the logistic loss for the finite solution. Set $\bar{r}_i = X_i^{\top} \sigma(X_i W^{(R)} z_i)$. Using Assumption [B,](#page-28-3) solving $(\ell_p\text{-SVM})$ on $(y_i, \bar{r}_i)_{i \in [n]}$ achieves at most $\Gamma - \nu e^{-(1-\gamma)\Xi R}/T$ margin. Consequently, we have:

$$
\mathcal{L}(v^{(r)}, W^{(R)}) \ge \frac{1}{n} \max_{i \in [n]} \log(1 + \exp(-Y_i \overline{r}_i^{\top} v^{(r)}))
$$

\n
$$
\ge \left(\frac{1}{2n} \max_{i \in [n]} \exp(-Y_i \overline{r}_i^{\top} v^{(r)})\right) \wedge \log 2
$$

\n
$$
\ge \left(\frac{1}{2n} \exp(-r(\Gamma - \nu e^{-(1-\gamma)\Xi R}/T))\right) \wedge \log 2
$$

\n
$$
\ge \left(\frac{1}{2n} e^{r(\nu/T) \exp(-(1-\gamma)\Xi R)} e^{-r\Gamma}\right) \wedge \log 2.
$$

Observe that this lower bound dominates the upper bound from (37) when R is large, specifically when (ignoring the multiplier $1/2n$ for simplicity):

$$
(\nu/T)e^{-(1-\gamma)\Xi R} \geq MTe^{-\Xi R} \implies R \geq \frac{1}{\gamma \Xi} \log \left(\frac{MT^2}{\nu}\right)
$$

Thus, we obtain the desired contradiction since such a large R is guaranteed to exist when $W^{(R)}/R \nrightarrow$ \overline{W}_{mm} . Therefore, $W^{(R)}/R$ must converge to \overline{W}_{mm}/R .

• Case 2: Suppose $v^{(r)}/r$ does not converge. In this case, there exists $\delta > 0$ such that we can find arbitrarily large r obeying dist $(v^{(r)}/r, \bar{v}_{\rm mm}/r) \ge \delta$. If dist $(W^{(R)}/R, \Xi W_{\rm mm}) \not\rightarrow 0$, then "Case 1" applies. Otherwise, we have dist $(W^{(R)}/R, \Xi W_{\text{mm}}) \rightarrow 0$, thus we can assume $dist(W^{(R)}/R, \Xi W_{\text{mm}}) \leq \epsilon$ for an arbitrary choice of $\epsilon > 0$.

On the other hand, due to the strong convexity of $(\ell_p$ [-AttSVM\)](#page-3-0), for some $\gamma := \gamma(\delta) > 0$, $v^{(r)}$ achieves a margin of at most $(1 - \gamma)\Gamma r$ on the dataset $(Y_i, X_{i1})_{i \in [n]}$, where X_{i1} denotes the optimal token for each $i \in [n]$. Additionally, since dist $(W^{(R)}/R, \Xi W_{\text{mm}}) \leq \epsilon$, $W^{(R)}$ strictly separates all optimal tokens (for small enough $\epsilon > 0$) and $\hat{q}_{\text{max}} := f(\epsilon) \to 0$ as $R \to \infty$. Note that $f(\epsilon)$ quantifies the non-optimality of $W^{(R)}$ compared to $W_{\rm mm}$; as $\epsilon \to 0$, meaning $W^{(R)}/R$ converges to $\Xi W_{\rm mm}/R$, $f(\epsilon) \to 0$. Consequently, setting $r_i = X_i^\top \sigma(X_i W^{(R)} z_i)$, for sufficiently large $R > 0$ and setting $M = \sup_{i \in [n], t \in [T]} ||X_{it}||$, we have that

$$
\min_{i \in [n]} \quad y_i(v^{(r)})^\top r_i \le \min_{i \in [n]} \quad y_i(v^{(r)})^\top X_{i1} + \sup_{i \in [n]} |(v^{(r)})^\top (X_{it} - X_{i1})|
$$
\n
$$
\le (1 - \gamma) \Gamma r + M f(\epsilon) r
$$
\n
$$
\le (1 - \gamma/2) \Gamma r. \tag{38}
$$

This in turn implies that logistic loss is lower bounded by

$$
\mathcal{L}(v^{(r)}, W^{(R)}) \ge \left(\frac{1}{2n} e^{\gamma \Gamma r/2} e^{-\Gamma r} \right) \wedge \log 2.
$$

Going back to [\(37\)](#page-30-0), this exponentially dominates the upper bound of $(\bar{W}_{\text{mm}}, \bar{v}_{\text{mm}})$ whenever $rMT \exp(-\Xi R) < r\gamma \Gamma/2$ (that is, whenever R, r are sufficiently large), again concluding the proof.

 \Box

H Implementation Details

The experiments were run on an Intel i7 core and a single V100 GPU using the pytorch and huggingface libraries. They should be runnable on any generic laptop. The GitHub repository can be found [here.](https://github.com/aaronk2002/AttentionMD/tree/master)

H.1 Illustrating Optimal Tokens

Example 1. *Consider the matrices* $X_1 = \begin{bmatrix} 5 & 0 \\ 0 & 0 \\ 1 \end{bmatrix}$ *and* $X_2 = \begin{bmatrix} -5 & 0 \\ 0 & 0 \\ 0 & -1 \end{bmatrix}$ *with* $y_1 = -y_2 = 1$. *Let* x_{i1} *be the optimal token and* x_{it} *be the others. Problem* (ℓ_p [-AttSVM\)](#page-3-0) *with* $p = 3$ *and* $z_i = X_{i1}$ $yields$ $W_{\text{mm}}^{\alpha} = W_{mm} = [0.03846, 0; -0.00769, 0]$ *. Figure* 2 *illustrates how the optimal tokens* X_{11} *and* X_{21} *are separated by the dashed lines (orthogonal to* $W_{mm}z_i$) for each sequence.

Figure 2: Visualization of Problem (ℓ_p [-AttSVM\)](#page-3-0) with $p = 3$.

H.2 Synthetic Data Experiment

We describe the setup of the experiments for ℓ_p [-AttGD](#page-3-1) and ℓ_p [-JointGD](#page-4-5) and their results.

 ℓ_p [-AttGD](#page-3-1) Experiment. To measure the directional distance between W_α^{mm} ((ℓ_p [-AttSVM\)](#page-3-0) solution) and $W(k)$ (output of ℓ_p [-AttGD](#page-3-1)), we use a directional Bregman divergence, defined for $W, V \in \mathbb{R}^{d \times d}$ as $D_{\psi}(W/\|W\|_{p,p}, V/\|V\|_{p,p})$. We compare the $(\ell_p$ [-AttSVM\)](#page-3-0) solution with the ℓ_q optimization path for all $p, q \in \{1.75, 2, 3\}$ for synthetically generated data. The experiment is repeated 100 times, and the average directional Bregman divergence is reported. A closer look at one sample trial is also provided.

The dataset $(X_i, Y_i, z_i)_{i=1}^n$ used for the experiment is generated randomly: X_i and z_i are sampled from the unit sphere, and Y_i is uniformly sampled from $\{\pm 1\}$. Additionally, v is randomly selected from the unit sphere. We use $n = 6$ samples, $T = 8$ tokens per sample, and $d = 10$ dimensions per token, fulfilling the overparameterized condition for the ℓ_p [-AttSVM](#page-3-0) problem to be almost always feasible.

The model parameter is initialized near the origin, and it is trained using Algorithms ℓ_p [-AttGD](#page-3-1) with $p = 1.\overline{7}5, 2$, and 3, and a learning rate of 0.1. Training lasted for 1,500 epochs for $p = 1.75$, 2, 000 epochs for $p = 2$, and 20, 000 epochs for $p = 3$. Gradients are normalized to accelerate convergence without altering results significantly. We refer to the parameter histories as the $\ell_{1.75}, \ell_2$, and ℓ_3 optimization paths. We compute the chosen tokens $(\alpha_i)_{i=1}^n$ for the $(\ell_p$ [-AttSVM\)](#page-3-0) problem by selecting the token with the highest softmax probability for each sample. This process is repeated for $p = 1.75, 2,$ and 3.

Figure [4](#page-32-1) shows the directional Bregman divergence between the $(\ell_p$ [-AttSVM\)](#page-3-0) solution and the ℓ_q optimization path for each pair $p, q \in \{1.75, 2, 3\}$. In Figure [4a,](#page-32-1) the divergence converges to 0 only for the (ℓ_p [-AttSVM\)](#page-3-0) ($p = 1.75$) solution, indicating that the $\ell_{1.75}$ path does not converge to the $p = 2$ or 3 solutions. The shrinking standard deviation shows consistent behavior. Similarly, Figures [4b](#page-32-1) and [4c](#page-32-1) show the divergence converging to 0 for the corresponding (ℓ_p [-AttSVM\)](#page-3-0) solution, demonstrating that the ℓ_p optimization path converges to the (ℓ_p [-AttSVM\)](#page-3-0) solution, with the direction of convergence changing with p .

Figure 3: Visualizing the effect of token selection on margin size in $(\ell_p\text{-SWM})$ for Example [1.](#page-31-4) The first plot illustrates the largest class margin, indicating the optimality of tokens X_{11} and X_{21} . In subsequent plots, as different tokens are used, the class margin (light blue shaded area) decreases, reflecting suboptimal class separation.

(a) $\ell_{1.75}$ Convergence Rate (b) ℓ_2 Convergence Rate (c)

)
$$
\ell_3
$$
 Convergence Rate

Figure 4: Average directional Bregman divergence between the (a) $\ell_{1.75}$, (b) ℓ_2 , and (c) ℓ_3 optimization paths and the (ℓ_p [-AttSVM\)](#page-3-0) solutions for $p = 1.75, 2$, and 3 at each training iteration from 100 trials. The shaded area represents the standard deviation of the directional Bregman divergence.

Using this same synthetic data, we can also observe the convergence in direction for one of the trials directly by plotting how two of the entries of W change during training simultaneously and plotting it on a Cartesian graph, then showing that the path it follows converges to the direction of the (ℓ_p [-AttSVM\)](#page-3-0) solution. As we can see in Figure [5,](#page-33-0) each of the ℓ_p optimization paths follows the direction of the corresponding $(\ell_p\text{-AttSVM})$ solution.

 ℓ_p [-JointGD](#page-4-5) Experiment. We use the data from the following to train a model using ℓ_p -JointGD for $p = 1.75, 2$, and 3.

Example 2. *Let* $n = 2$, $T = 3$, $d = 2$. *Let* $y_1 = 1$, $y_2 = -1$. *Let*:

$$
X_1 = \begin{pmatrix} X_{11} \\ X_{12} \\ X_{13} \end{pmatrix} = \begin{pmatrix} -5.4 & 2.4 \\ 2.8 & 4.2 \\ 2.6 & -0.2 \end{pmatrix}, \text{ and } X_2 = \begin{pmatrix} X_{21} \\ X_{22} \\ X_{23} \end{pmatrix} = \begin{pmatrix} 0.8 & -4.4 \\ -2.2 & -0.8 \\ 1.8 & 0.2 \end{pmatrix}.
$$
 (39)

Let $z_1 = X_{11}$, $z_2 = X_{21}$.

We use learning rates 0.1 and we trained the model for 1,500 epochs for when $p = 1.75, 2,000$ epochs for $p = 2$, and 20,000 epochs for $p = 3$. As it was done in the previous experiment, we obtain the parameter history for each p, and compute the optimal token for the $(\ell_p$ [-AttSVM\)](#page-3-0) and ℓ_p [-SVM](#page-4-4) problems.

The comparison between the iterates and the SVM solutions in Figure [6](#page-33-1) shows that the iterates of W and v converge to the ℓ_p [-AttSVM](#page-3-0) and ℓ_p [-SVM](#page-4-4) directions, respectively, for each of $p = 1.75, 2$, and 3. These convergence are similar to Theorem [5,](#page-28-0) as in both this experiment and that theorem, we get that the iterates converge to the SVM problem solutions. In addition to these iterates, we record the evolution of the average softmax probability of the optimal token, along with the average logistic probability of the model, which we define to be $1/n \sum_{i=1}^{n} 1/(1 + e^{-\gamma_i \alpha_i}).$

As we can see in Figure [7,](#page-33-2) each of the average softmax probability converges to 1, indicating that the attention mechanism produces a softmax probability vector that converges to a one-hot vector for the different ℓ_p [-JointGD](#page-4-5) training. Furthermore, the average logistic probability also converges to 1, indicating that the model's prediction converges to a 100% accuracy.

Figure 5: Direction of change of two entries of W updated by ℓ_p [-AttGD](#page-3-1) with $p = 1.75$, $p = 2$, and $p = 3$ for one trial, shown in (a), (b), and (c). Each axis represents a different entry. The orange line shows the direction of $(\ell_p$ [-AttSVM\)](#page-3-0).

Figure 6: Iterates of the W and v parameters of the model as they are trained using ℓ_p [-JointGD](#page-4-5) for $p = 1.75, 2$, and 3, along with the corresponding ℓ_p [-AttSVM](#page-3-0) and ℓ_p [-SVM](#page-4-4) directions.

Figure 7: Softmax probability evolution of the optimal token and logistic probability evolution for $p = 1.75, 2,$ and 3.

H.3 Additional Real Experiments

We collect the training weights from the resulting models trained by $\ell_{1,1}$ mirror descent and the gradient descent and plot a histogram of their absolute values in Figure [8.](#page-34-1) Specifically, we take the histogram of the weights responsible for determining the softmax within the model and the value matrices. The figures shows us that the resulting model that was trained using $\ell_{1,1}$ mirror descent is sparser than the one trained using gradient descent, which could hint at a potential explanation as to why $\ell_{1,1}$ mirror descent can outperform the standard gradient descent algorithm when it is used to train attention-based models.

Figure 8: Histogram of the absolute values of the W_K, W_Q , and W_V components of transformer models trained with $\ell_{1,1}$ and ℓ_2 -MD on the **Stanford Large Movie Review Dataset**. Only large parameters (≥ 0.06) are shown, with the maximum magnitude component marked by a red dot. The $\ell_{1.1}$ -MD model has 18, 206 components in W_K , 13, 964 in W_Q , and 7, 643 in W_V with magnitudes ≥ 0.06 , while the ℓ_2 -MD model has 27, 224 in W_K , 14, 654 in W_Q , and 10, 127 in W_V with such magnitudes. These results imply that the $\ell_{1.1}$ -MD algorithm yields sparser parameters and that it would have a stronger token selection ability.

Finally, the following figures show the full attention maps.

Figure 9: The attention map generated by the resulting models that were trained using $\ell_{1,1}$ mirror descent and gradient descent for five sample sentences. For three out of five of the sample sentences, the model trained using $\ell_{1,1}$ mirror descent selects the optimal token better than the model trained using gradient descent.