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Abstract

Attention mechanisms have revolutionized numerous domains of artificial intelli-1
gence, including natural language processing and computer vision, by enabling2

models to selectively focus on relevant parts of the input data. Building on recent3

results characterizing the optimization dynamics of gradient descent (GD) and the4

structural properties of its preferred solutions in attention-based models, this paper5

explores the convergence properties and implicit bias of a family of mirror descent6

(MD) algorithms designed for softmax attention mechanisms, with the potential7

function chosen as the p-th power of the ℓp-norm. Specifically, we show the direc-8

tional convergence of these algorithms to a generalized hard-margin SVM with9

an ℓp-norm objective when applied to a classification problem using a one-layer10

softmax attention model. Our theoretical results demonstrate that these algorithms11

not only converge directionally to the generalized max-margin solutions but also12

do so at a rate comparable to that of traditional GD in simpler models, despite the13

highly nonlinear and nonconvex nature of the present problem. Additionally, we14

delve into the joint optimization dynamics of the key-query matrix and the decoder,15

establishing conditions under which this complex joint optimization converges to16

their respective hard-margin SVM solutions.17

1 Introduction18

Attention mechanisms [4] have transformed natural language processing (NLP) and large language19

models (LLMs). Initially developed for encoder-decoder recurrent neural networks (RNNs), at-20

tention enables the decoder to focus on relevant input segments rather than relying solely on a21

fixed-length hidden state. This approach became fundamental in transformers [60], where attention22

layers—computing softmax similarities among input tokens—are the architecture’s backbone. Trans-23

formers have driven rapid advancements in NLP with models like BERT [19] and ChatGPT [42], and24

have become the preferred architecture for generative modeling [12, 46], computer vision [20, 45],25

and reinforcement learning [21, 11]. This has led to increased exploration of the mathematical26

foundations of attention’s optimization.27

To understand the optimization dynamics of attention mechanisms, [53, 52] studied the implicit28

bias of gradient descent (GD) in binary classification with a fixed linear decoder. This bias reflects29

GD’s tendency to favor certain weight characteristics when multiple valid solutions exist. For30

instance, in linear logistic regression on separable data, GD aligns with the max-margin class31

separator [49, 31]. Similarly, [52, 53] propose a model akin to a hard-margin Support Vector Machine32

(SVM)—specifically, (ℓp-AttSVM) with p = 2—maximizing the margin between optimal and non-33

optimal tokens based on their softmax logits. These studies show that as training progresses, the34

key-query weightsW (k) align with the locally optimal solutionWα
mm, the minimizer of (ℓp-AttSVM).35

Expanding on these insights, [58] explores global directional convergence and GD’s convergence36

rate under certain conditions. [48] extends this by relaxing assumptions about regularized paths37

for the (WK ,WQ) parameterization, showing that gradient flow minimizes the nuclear norm of the38

key-query weight W =WKW
⊤
Q .39
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Contributions. While the above aforementioned works provide insights into the implicit bias and40

token selection properties of attention mechanisms, their analyses are limited to GD. A broader41

understanding of general descent algorithms, including the mirror descent (MD) family and their token42

selection properties, is essential. We address this by examining a family of MD algorithms designed for43

softmax attention, where the potential function is the p-th power of the ℓp-norm, termed ℓp-AttGD.44

This generalizes both ℓp-GD [2, 50, 51] and attention GD [53, 52], enabling the exploration of key45

aspects of attention optimization via ℓp-AttGD.46

Implicit bias of ℓp-AttGD for attention optimization. Building on [52, 58, 48], we examine a one-layer47

attention model for binary classification, and extend the SVM formulation in [52] to (ℓp-AttSVM),48

defining a hard-margin SVM with the ℓp-norm. The solution Wα
mm separates locally optimal tokens49

(αi)
n
i=1 with a generalized maximum margin. Theorem 3 shows sufficient conditions for ℓp-AttGD to50

converge directionally to Wα
mm, while Theorem 2 demonstrates that ∥W (k)∥p,p diverges as k →∞.51

Convergence rate of ℓp-AttGD to the solution of (ℓp-AttSVM). Theorem 4 shows that the iterates52

W (k) satisfy that Dψ (Wα
mm/∥Wα

mm∥p,p,W (k)/∥W (k)∥p,p) decreases at an inverse poly-log rate,53

where Dψ(·, ·) denotes the Bregman divergence [9]. Despite optimizing a nonconvex softmax54

function, the rate is similar to GD in linear binary classification [31, Theorem 1.1]. Though slower55

than the O(k−3/4) rate in [58, Theorem 1], our result applies without assuming token orthogonality.56

Generalized Max-Margin Solutions and Joint Optimization of (v,W ). We examine the joint problem57

under logistic loss with ℓp-norm regularization, solving (ERM) under relaxed ℓp-norm constraints.58

If the attention features X̄i = X⊤
i σ(XiWzi) are separable by labels yi, v acts as a generalized59

max-margin classifier [3]. We show that under suitable geometric conditions, W and v converge to60

their generalized max-margin solutions (Theorem 5).61

We also provide experiments showing mirror descent improves generalization over GD, excelling in62

optimal token selection and suppressing non-optimal tokens.63

2 Preliminaries64

Notations. Let N ≥ 1 and [N ] = {1, 2, . . . , N}. Vectors are denoted by lowercase letters65

(e.g., a), with components ai, and matrices by uppercase letters (e.g., A). For a vector v ∈ Rd,66

the p-norm is ∥v∥p = (
∑d
i=1 |vi|p)1/p. For a matrix M ∈ Rd×d, the p, p-norm is ∥M∥p,p =67

(
∑d
i=1

∑d
j=1 |Mij |p)1/p. For any two matrices X,Y of the same dimensions, we define ⟨X,Y ⟩ :=68

trace(X⊤Y ). Asymptotic notations O and Ω hide constant factors, and all logarithms are natural.69

For a differentiable function f : Rd×d → R, we define Df : Rd×d × Rd×d → R as70

Df (W,V ) := f(W )− f(V )− ⟨∇f(V ),W − V ⟩. (1)

Single-head attention model. Given input sequencesX,Z ∈ RT×d with length T and embedding di-71

mension d, the output of a single-head (cross)-attention layer is computed as: σ(XWQW
⊤
KZ

⊤)XWV ,72

where WQ,WK ∈ Rd×d1 , WV ∈ Rd×d2 are trainable key, query, value matrices, respectively;73

σ(XWQW
⊤
KZ

⊤) is the attention map; and σ(·) : RT×T → RT×T denotes the row-wise softmax74

function applied row-wise on XWQW
⊤
KZ

⊤. Similar to [53, 52], we reparameterize the key-query75

product matrix as W :=WQW
⊤
K ∈ Rd×d, and subsume the value weights WV within the prediction76

head v ∈ Rd. Suppose the first token of Z, denoted by z, is used for prediction. Then, the attention77

model can be formulated as78

f(X, z) = v⊤X⊤σ(XWz). (2)

Attention-based empirical risk minimization. We consider a one-layer attention model (2) for79

binary classification. Consider the dataset (Xi, yi, zi)
n
i=1, where Xi ∈ RT×d is the input with T80

tokens each of dimension d, yi ∈ {±1} is the label, and zi ∈ Rd is the token used for comparison.81

We use a smooth decreasing loss function l : R→ R and study empirical risk minimization (ERM):82

min
v∈Rd,W∈Rd×d

L(v,W ) :=
1

n

n∑
i=1

l
(
yiv

⊤X⊤
i σ (XiWzi)

)
. (ERM)

Throughout, we will use L(W ) to denote the objective of (ERM) with fixed v.83

Next, we provide an assumption on the loss function necessary to demonstrate the convergence of84

MD for margin maximization within the attention mechanism.85
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Assumption A. Within any closed interval, the loss function l : R→ R is strictly decreasing and86

differentiable, and its derivative l′ is bounded and Lipschitz continuous.87

Assumption A aligns with the assumptions on loss functions in [53, 52]. Commonly used loss88

functions, such as l(x) = e−x, l(x) = −x, and l(x) = log(1 + e−x), satisfy this assumption.89
90

Preliminaries on mirror descent. We review the mirror descent algorithm [7] for solving attention-91

based (ERM). Mirror descent is defined using a potential function. We focus on differentiable and92

strictly convex potentials ψ defined on the entire domain Rd×d. We call ∇ψ the mirror map. The93

natural “distance” associated with the potential ψ is given by the Bregman divergence [8].94

Definition 1 (Bregman Divergence). For a strictly convex function ψ : Rd×d → R, the expression95

Dψ(·, ·) defined in (1) is called the Bregman divergence.96

For more details, see [6]. MD with respect to the mirror map ψ is a generalization of GD where the97

Bregman divergence is used as a measure of distance. Given a stepsize η > 0, the MD algorithm is as98

follows:99

W (k + 1)← argminW∈Rd×d

{
η−1Dψ(W,W (k)) + ⟨∇L(W (k)),W ⟩

}
. (MD)

Equivalently, MD can be written as∇ψ(W (k + 1)) = ∇ψ(W (k))− η∇L(W (k)); see [10, 34].100

A useful fact about the Bregman divergence is that it is always non-negative and Dψ(W,V ) = 0 if101

and only if W = V . Using this notation, one property we will repeatedly use is the following [2]:102

Lemma 1. For any W ∈ Rd×d, the following identities hold for MD:103

Dψ(W,W (k)) = Dψ(W,W (k + 1)) +Dψ−ηL(W (k + 1),W (k))

− η⟨∇L(W (k)),W −W (k)⟩ − ηL(W (k)) + ηL(W (k + 1)). (3)

Preliminaries on attention SVM. Following [53, 52], we use the following definition of token104
scores.105

Definition 2 (Token Score). For prediction head v ∈ Rd, the score of token Xit is γit = yiv
⊤Xit.106

It is important to highlight that the score is determined solely based on the value embeddings v⊤Xit107

of the tokens. The softmax function σ(·) minimizes (ERM) by selecting the token with the highest108

score [52, Lemma 2]. Using (2), [52] defines globally optimal tokens (opti)
n
i=1, with each opti109

maximizing the score for Xiopti . For our MD analysis, we primarily consider locally optimal tokens,110

as they are more general than globally optimal ones. Locally optimal tokens are characterized111

by having scores that surpass those of nearby tokens. Intuitively, these are the tokens that locally112

minimize (ERM) upon selection and can be defined based on support tokens. Before presenting the113

mathematical notion of locally optimal tokens, we provide the formulation of the attention SVM114

problem. Given a set of (locally) optimal token indices (αi)
n
i=1, [52] defines the following hard-115

margin attention SVM problem, which aims to separate, with maximal margin, (locally) optimal116

tokens from the rest of the tokens for every input sequence:117

Wα
mm := argminW∈Rd×d ∥W∥F

subj. to (Xiαi
−Xit)

⊤Wzi ≥ 1, for all t ∈ [T ]− {αi}, i ∈ [n].
(4)

The constraint (Xiαi −Xit)
⊤Wzi ≥ 1 indicates that in the softmax probability vector σ(XiWzi),118

the αi component has a significantly higher probability compared to the rest, and so these problems119

solve for a sort of probability separator that has the lowest norm.120

Definition 3 (Globally and Locally Optimal Tokens). Consider the dataset (Xi, yi, zi)
n
i=1.121

1. The tokens with indices opt = (opti)
n
i=1 are called globally optimal if they have the highest122

scores, given by opti ∈ argmaxt∈[T ] γit.123

2. Fix token indices (αi)ni=1 for which (4) is feasible to obtain Wα
mm. Let the support tokens Ti for124

the ith data be the set of tokens τ such that (Xiαi
−Xiτ )

⊤Wα
mmzi = 1. The tokens with indices125

(αi)
n
i=1 are called locally optimal if, for all i ∈ [n] and τ ∈ Ti, the scores per Def. 2 obey γiαi

> γiτ .126

It is worth noting that token scoring and optimal token identification can help us understand the127

importance of individual tokens and their impact on the overall objective. A token score measures128

how much a token contributes to a prediction or classification task, while an optimal token is defined129

as the token with the highest relevance in the corresponding input sequence [53, 52].130
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3 Implicit Bias of Mirror Descent for Optimizing Attention131

3.1 Optimizing Attention with Fixed Head v132

In this section, we assume that the prediction head is fixed, allowing us to delve into the dynamics133

of the token selection mechanism driven by the training of the key-query weight matrix W . The134

analysis will later be expanded in Section 3.2 to include the joint optimization of both v and W .135

We investigate the theoretical properties of the main algorithm of interest, namely MD with ψ(·) =136
1
p∥ · ∥

p
p,p for p > 1 for training (ERM) with fixed v. For conciseness, we will refer to this algorithm137

by the shorthand ℓp-AttGD. As noted by [3], this choice of mirror potential is particularly of practical138

interest because the mirror map ∇ψ updates become separable in coordinates and thus can be139

implemented coordinate-wise independently of other coordinates.140

∀ i, j ∈ [d],

[W (k + 1)]ij ←
∣∣[W (k)]+ij

∣∣ 1
p−1 · sign

(
[W (k)]+ij

)
,

[W (k)]+ij := |[W (k)]ij |p−1sign([W (k)]ij)− η[∇L(W (k))]ij .
(ℓp-AttGD)

In the following, we first identify the conditions that guarantee the convergence of ℓp-AttGD. The141

intuition is that, for attention to exhibit implicit bias, the softmax nonlinearity should select the locally142

optimal token within each input sequence. [52] shows that under certain assumptions, training an143

attention model using GD causes its parameters’ direction to converge.144

This direction can be found by solving a simpler optimization problem, such as attention SVM (4),145

which selects the locally optimal token. Here, we generalize (4) using the ℓp-norm as follows:146

Definition 4 (Attention SVM with ℓp–norm Objective). For a dataset {(Xi, yi, zi)}ni=1 with yi ∈147

{±1}, Xi ∈ RT×d, and token indices (αi)ni=1, ℓp-based attention SVM is defined as148

Wα
mm := argminW∈Rd×d ∥W∥p,p

subj. to (Xiαi
−Xit)

⊤Wzi ≥ 1, for all t ∈ [T ]− {αi}, i ∈ [n].
(ℓp-AttSVM)

Problem (ℓp-AttSVM) is strictly convex, so it has unique solutions when feasible. Furthermore,149

under mild overparameterization, d ≥ max{T − 1, n}, the problem is almost always feasible [52,150

Theorem 1]. We assert that the solution to the (ℓp-AttSVM) problems determines the direction that151

the attention model parameters approach as the training progresses.152

Theorem 1 (ℓp–norm Regularization Path). Suppose Assumption A on the loss function holds.153

Consider the ridge-constrained solutions W (R) of (ERM) defined as154

W (R) := argminW∈Rd×d L(W ) subj. to ∥W∥p,p ≤ R. (ℓp-AttRP)

Then, limR→∞W (R)/R =W opt
mm/∥W opt

mm∥p,p, where W opt
mm is the solution of (ℓp-AttSVM), with αi155

replaced by opti.156

Theorem 1 shows that as the regularization strength R increases, the optimal direction W (R) aligns157

more closely with the max-margin solution Wα
mm. This theorem, which allows for globally optimal158

tokens (see Definition 3), does not require any specific initialization for the ℓp-AttRP algorithm and159

demonstrates that max-margin token separation is an essential feature of the attention mechanism.160

Next, we provide the convergence of MD applied to (ERM). We found that under certain initializations,161

the parameter’s ℓp-norm increases to infinity as training progresses, and its direction approaches that162

of the (ℓp-AttSVM) solution. To describe the initialization that allows for these, we define the notion163

of cone sets.164

Definition 5. Given a square matrix W ∈ Rd×d, µ ∈ (0, 1), and some R > 0,165

Sp,µ(W ) :=

{
W ′ ∈ Rd×d | Dψ

(
W

∥W∥p,p
,

W ′

∥W ′∥p,p

)
≤ µ

}
, (5a)

Cp,µ,R(W ) := Sµ(W ) ∩ {W ′ | ∥W∥p,p ≥ R} . (5b)

These sets contain matrices with a similar direction to a reference matrix W , as captured by the inner166

product in Sµ(W ). For Cp,µ,R(W ), there is an additional constraint that the matrices must have a167

sufficiently high norm. We note that Sp,µ(W ) and Cp,µ,R(W ) reduce to their Euclidean variants168

as described in [53, 52]. With this definition, we present our first theorem about the norm of the169

parameter increasing during training.170
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Theorem 2. Suppose Assumption A holds. Let (αi)ni=1 be locally optimal tokens as per Defi-171

nition 3. Consider the sequence W (k) generated by Algorithm ℓp-AttGD. For a small enough172

stepsize η, if W (0) ∈ Cp,µ,R(Wα
mm) for some dataset-dependent constants µ,R > 0, then we have173

limk→∞ ∥W (k)∥p,p =∞.174

Remark 1. The condition on the stepsize η is that it must be sufficiently small so that ψ(·)− ηL(·)175

remains convex for the matrices W along the path traced by the iterates W (k). Specifically, there176

exists an index k and a real number r ∈ [0, 1] such that W = rW (k) + (1 − r)W (k + 1). This177

restriction applies to all theorems in this paper that require a sufficiently small stepsize η.178

This theorem implies that the parameters will increase and diverge to infinity, justifying the need to179

characterize the convergence of their direction.180

Theorem 3 (Convergence of ℓp-AttGD). Suppose Assumption A holds. Let (αi)ni=1 be locally181

optimal tokens as per Definition 3. Consider the sequence W (k) generated by Algorithm ℓp-AttGD.182

For a small enough η, if W (0) ∈ Cp,µ,R(Wα
mm) for some constants µ > 0, R > exp(2), then183

lim
k→∞

W (k)

∥W (k)∥p,p
=

Wα
mm

∥Wα
mm∥p,p

.

These theorems show that as the parameters grow large enough and approach a locally optimal184

direction, they will keep moving toward that direction.185

Theorem 4 (Convergence Rate of ℓp-AttGD). Suppose Assumption A holds. Let (αi)ni=1 be locally186

optimal tokens as per Definition 3. Consider the sequence W (k) generated by Algorithm ℓp-AttGD.187

For a small enough η, if W (0) ∈ Cp,µ,R(Wα
mm) for some constants µ > 0, R > exp(2), then188

Dψ

(
Wα

mm

∥Wα
mm∥p,p

,
W (k)

∥W (k)∥p,p

)
= O




log log k
log k if p > 2,

(log log k)2

log k if p = 2,
1

(log k)p−1 otherwise.

 . (6)

Despite optimizing a highly nonlinear, nonconvex softmax function, we achieve a convergence rate189

similar to that of GD in linear binary classification [31, Theorem 1.1] (up to a log log k factor).190

3.2 Training Dynamics of Mirror Descent for Joint Optimization of W and v191

This section delves into the training dynamics of simultaneously optimizing the prediction head v192

and the attention weights W . Unlike Section 3.1, the main challenge here is the evolving token193

scores γ influenced by the changing nature of v. This requires additional technical considerations194

beyond those in Section 3.1, which are also addressed in this section. Given stepsizes ηW , ηv > 0, we195

consider the following joint updates for W and v applied to (ERM), respectively: For all i, j ∈ [d]:196 

[W (k + 1)]ij ←
∣∣[W (k)]+ij

∣∣ 1
p−1 · sign

(
[W (k)]+ij

)
,

[W (k)]+ij := |[W (k)]ij |p−1sign([W (k)]ij)− ηW [∇WL(W (k), v(k))]ij ,

[v(k + 1)]i ←
∣∣[v(k)]+i ∣∣ 1

p−1 · sign([v(k)]+i ),

[v(k)]+i := |[v(k)]i|p−1sign([v(k)]i)− ηv[∇vL(W (k), v(k))]i.

(ℓp-JointGD)

We discuss the implicit bias and convergence for v(k) below. From previous results [3], one can expect197

v(k) to converge to the ℓp-SVM solution, i.e., the max-margin classifier separating the set of samples198

{(Xiαi
, yi)}ni=1, where Xiαi

denote the (locally) optimal token for each i ∈ [n]. Consequently, we199

consider the following hard-margin SVM problem,200

vmm = arg min
v∈Rd

∥v∥p subj. to yiX
⊤
iαi
v ≥ 1 for all i ∈ [n]. (ℓp-SVM)

In (ℓp-SVM), define the label margin as 1/∥vmm∥p. The label margin quantifies the distance between201

the separating hyperplane and the nearest data point in the feature space. A larger label margin202

indicates better generalization performance of the classifier, as it suggests that the classifier has a203

greater separation between classes. From (ℓp-SVM) and Definitions 2 and 3, an additional intuition204
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Figure 1: The attention map generated by the resulting models that were trained using ℓ1.1 mirror
descent and GD for five sample sentences. For three out of five of the sample sentences, the model
trained using ℓ1.1 mirror descent selects the optimal token better than the model trained using GD.

by [53] behind optimal tokens is that they maximize the label margin when selected; see Figure 4 in205

the appendix for a visualization. Selecting the locally optimal token indices α = (αi)
n
i=1 from each206

input data sequence achieves the largest label margin, meaning that including other tokens will reduce207

the label margin as defined in (ℓp-SVM). In the Appendix G, we show that W and v generated by208

ℓp-JointRP converge to their respective max-margin solutions under suitable geometric conditions209

(Theorem 5 in the appendix).210

4 Experimental Results211

We validate our theorems through numerical simulations in Appendix I, and present real data212

experiments here. Our results show that training an attention network with mirror descent improves213

generalization and token selection compared to GD.214

Algorithm Model Size 3 Model Size 4 Model Size 6

ℓ1.1-MD 83.47 ± 0.09% 83.36 ± 0.13% 83.65 ± 0.13%
ℓ2-MD 81.66± 0.09% 81.05± 0.17% 82.22± 0.13%

ℓ3-MD 82.57± 0.09% 82.40± 0.12% 81.97± 0.10%

Table 1: Test accuracies of transformer classification models trained with ℓ1.1, ℓ2, and ℓ3-MD on
the Stanford Large Movie Review Dataset. The model sizes refers to the number of layers in
the transformer model and the number of attention heads per layer. ℓ1.1-MD provides superior
generalization performance.

We trained a transformer classification model on the Stanford Large Movie Review Dataset [39] using215

MD with ℓ1.1, ℓ2, and ℓ3 potentials. The models are similar to the one in [60], with the last layer being216

a linear classification layer on the feature representation of the first [CLS] token. Table 1 summarizes217

the resulting test accuracy of several variants of that model when trained with the three algorithms,218

which shows that the ℓ1.1 potential mirror descent outperforms the other mirror descent algorithms,219

including the one with the ℓ2 potential, which is equivalent to the GD.220

We investigate how the model’s attention layers select pivotal tokens in simple GPT-4o-generated221

reviews, focusing on those that determine whether the review is positive or negative. These pivotal222

tokens were also identified by GPT-4o. We compare the model trained using ℓ1.1 mirror descent to223

one trained with GD, with full results in the Appendix ( Figure 1 shows five examples). The ℓ1.1224

mirror descent outperforms GD in token selection.225

5 Conclusion226

We studied the optimization dynamics of mirror descent algorithms for softmax attention, focusing on227

ℓp-AttGD, which generalizes GD using the p-th power of the ℓp-norm as the potential function. Our228

analysis and experiments show that ℓp-AttGD converges to the solution of a generalized hard-margin229

SVM with an ℓp-norm objective in classification tasks using a one-layer softmax attention model.230

This generalized SVM separates optimal from non-optimal tokens via linear constraints on token231

pairs. We also analyzed the joint problem under logistic loss with ℓp-norm regularization and proved232

convergence of W and v to their generalized max-margin solutions under appropriate conditions.233

Numerical experiments on synthetic data support our theoretical results.234
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A Related Work425

Transformers Optimization. Recently, the study of optimization dynamics of attention mechanisms426

has garnered significant attention [18, 26, 55, 24, 36, 53, 52, 58, 48, 17, 40, 29, 61, 16, 13, 35, 48,427

27, 59, 5, 14]. We discuss the works most closely related to this paper. Studies such as [47, 22]428

investigate the optimization of attention models through convex relaxations. [28] demonstrate that429

Vision Transformers (ViTs) identify spatial patterns in binary classification via gradient methods.430

[35] provide sample complexity bounds and discuss attention sparsity in SGD for ViTs. [43] and [18]431

explore optimization dynamics in prompt-attention and multi-head attention models, respectively.432

[54, 55] study SGD dynamics and multi-layer transformer training. [53, 52] explored GD’s implicit433

bias in a binary classification setting with a fixed linear decoder. [58] discusses the global directional434

convergence and convergence rate of GD under specific data conditions. [48] notes that gradient flow435
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not only achieves minimal loss but also minimizes the nuclear norm of the key-query weight W . Our436

work extends these findings and those of [53, 52], focusing on the implicit bias of the general class of437

MD algorithms for attention training.438
439

Implicit Bias of First Order Methods. In recent years, significant progress has been made in440

understanding the implicit bias of gradient descent on separable data, particularly highlighted by the441

works of [49, 31]. For linear predictors, [41, 33, 30] demonstrated that gradient descent methods442

rapidly converge to the max-margin predictor. Extending these insights to MLPs, [32, 38, 15] have443

examined the implicit bias of GD and gradient flow using exponentially-tailed classification losses,444

and show convergence to the Karush-Kuhn-Tucker (KKT) points of the corresponding max-margin445

problem, both in finite [32, 38] and infinite width scenarios [15]. Further, the implicit bias of GD446

for training ReLU and Leaky-ReLU networks has been investigated, particularly on orthogonal data447

[44, 23]. Additionally, the implicit bias towards rank minimization in regression settings with square448

loss has been explored in [57, 1, 37].449

Our work is closely related to the implicit bias of MD [25, 2] for regression and classification,450

respectively. Specifically, [50] extended the findings of [25, 2] to classification problems, and451

developed a class of algorithms exhibiting an implicit bias towards a generalized SVM with ℓp norms452

that effectively separates samples based on their labels; for a survey, we refer to [56].453

B Auxiliary lemmas454

B.1 Additional Notations455

We denote the minimum and maximum of scalars a and b as a ∧ b and a ∨ b, respectively. Consider456

the following constants for the proofs, depending on the dataset (Xi, Yi, zi)
n
i=1, the parameter v, and457

the locally optimal token (αi)
n
i=1:458

δ′ :=
1

2
min
i∈[n]

min
τ∈T̄i

(
(Xiαi −Xiτ )

⊤Wα
mmzi − 1

)
≤ 1

2
min
i∈[n]

min
t∈Ti,τ∈T̄i

(
(Xit −Xiτ )

⊤Wα
mmzi

)
; (7a)

δ := min{0.25, δ′}. (7b)

When T̄i = ∅ for all i ∈ [n] (i.e. globally-optimal indices), we set δ′ = ∞ as all non-neighbor459

related terms will disappear. Further, recalling Definition 4 and using Wα
mm—i.e., the minimizer of460

(ℓp-AttSVM), we set461

A′ := ∥Wα
mm∥p,p max

i∈[n],t∈[T ]
∥Xitz

⊤
i ∥ p

p−1 ,
p

p−1
;

A := max{1, A′}. (8)

Recalling Definition 5, we provide the following initial radius µ = µ0 which will be used later in462

Lemma 10:463

µ0 :=


1

p

(
δ

8A

)p
if p ≥ 2,

1

p

(
δ(p− 1)

4Ad
2
p−1

)2

otherwise.

(9)

Furthermore, define the following sums for W :464

Si(W ) :=
∑
t∈Ti

[σ(XiWzi)]t, and Qi(W ) :=
∑
t∈T̄i

[σ(XiWzi)]t.

For the samples i with non-empty supports Ti, let465

γgap
i := γiαi −max

t∈Ti

γit, and γ̄gap
i := γiαi −min

t∈Ti

γit. (10)

Furthermore, we define the global score gap as466

Γ := sup
i∈[n],t,τ∈[T ]

|γit − γiτ |. (11)
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B.2 Lemma for Analyzing The ℓp-Norm467

In this section of the Appendix, we provide some analysis on comparing the ℓp-norm, the ℓp Bregman468

divergence, and the ℓ2-norm of matrices. Since the ℓ2-norm of matrices are much easier to analyze469

and use, like in the inner product Cauchy-Schwarz inequality, having this comparison is valuable470

when analyzing the ℓp-AttGD.471

Lemma 2. For any d× d matrix W , let w denote its vectorization. Then,472

∥w∥p ∈
[
d

2
p−1∥w∥2, ∥w∥2

]
for p ≥ 2, and for 1 < p ≤ 2, ∥w∥p is in a similar interval, with the two ends switched.473

Proof. Let w1, w2, ..., wd2 be the entries of w. Therefore, for p ≥ 2,474

∥w∥p = p

√√√√ d2∑
i=1

|wi|p

= p

√√√√ d2∑
i=1

(|wi|2)p/2,

and because p
2 ≥ 1, we would have475

p

√√√√ d2∑
i=1

(|wi|2)p/2 ≤
p

√√√√√( d2∑
i=1

|wi|2
)p/2

= p

√
∥w∥p2 = ∥w∥2.

Therefore, ∥w∥p ≤ ∥w∥2 whenever p ≥ 2. A similar argument will get us ∥w∥p ≥ ∥w∥2 whenever476

1 < p ≤ 2, so one end of the interval is solved for each case, now for the other end.477

Using the power-mean inequality, we can get that whenever p ≥ 2,478

p

√√√√ 1

d2

d2∑
i=1

|wi|p ≥

√√√√ 1

d2

d2∑
i=1

|wi|2,

479

d−
2
p ∥w∥p ≥ d−1∥w∥2,

480

∥w∥p ≥ d
2
p−1∥w∥2.

Similarly, for 1 < p ≤ 2,481

∥w∥p ≤ d
2
p−1∥w∥2.

482

Lemma 3. Let W1,W2 ∈ Rd×d be two matrices such that ∥W1∥p,p = ∥W2∥p,p = 1. Then, the483

following inequalities hold:484

L1. For p ≥ 2,485

Dψ(W1,W2) ≥
1

p× 2p
∥W1 −W2∥pp,p,

L2. For p ∈ (1, 2),486

Dψ(W1,W2) ≥
(p− 1)2

p
∥W1 −W2∥22,2.

Here, Dψ(·, ·) denotes the Bregman divergence given in Definition 1.487
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Proof. Let W1 = (xij)i,j∈[d] and W2 = (yij)i,j∈[d], then from Definition 1, we have488

Dψ(W1,W2) =
1

p

∑
i,j∈[d]

|xij |p −
1

p

∑
i,j∈[d]

|yij |p −
∑
i,j∈[d]

|yij |p−1(xij − yij) sign(yij)

=
∑
i,j∈[d]

(
1

p
|xij |p +

p− 1

p
|yij |p − |yij |p−1|xij | sign(xijyij)

)
.

Therefore, it is enough to prove that whenever x, y ∈ [−1, 1], the expression489

1

p
|x|p + p− 1

p
|y|p − |x∥y|p−1 sign(xy) (12)

is at least 1
p2p |x− y|

p if p ≥ 2, or is at least (p−1)2

p |x− y|2 if p ∈ (1, 2). We split the argument into490

two cases, the first is when the signs of x and y are the same, and the second for when they are not.491

Case 1: sign(xy) = 1, so both x and y have the same sign, WLOG both are non-negative. Let us fix492

the value ∆ ∈ [−1, 1] and find the minimum value of (12) when we constraint x and y to be positive493

and x− y = ∆. Therefore, that expression can be written as494

(y +∆)p + (p− 1)yp

p
− (y +∆)yp−1,

the first derivative with respect to y is495

(y +∆)p−1 + (p− 1)yp−1 − yp−1 − (p− 1)(y +∆)yp−2

= (y +∆)p−1 − yp−1 − (p− 1)∆yp−2.

Since the function t 7→ tp−1 is convex for p ≥ 2, and concave for p ∈ (1, 2), then that derivative is496

always non-negative when p ≥ 2 and always negative when p ∈ (1, 2).497

Sub-Case 1.1: p ≥ 2. In this subcase, (12) reaches its minimum when (x, y) = (∆, 0) or (0,−∆),498

depending on the sign of ∆, plugging them in gets us the minimum, which is 1
p |∆|

p when ∆ ≥ 0 or499

p−1
p |∆|

p otherwise.500

Sub-Case 1.2: p ∈ (1, 2). In this subcase, (12) reaches its minimum when (x, y) = (1, 1−∆) if ∆501

is non-negative or (1 + ∆, 1) otherwise. When ∆ is non-negative, the desired minimum is502

1 + (p− 1)(1−∆)p

p
− (1−∆)p−1 =

1

p
(1− (1−∆)p−1 − (p− 1)∆(1−∆)p−1)

≥ 1

p
((p− 1)∆− (p− 1)∆(1−∆)p−1)

=
(p− 1)∆

p
(1− (1−∆)p−1) ≥ (p− 1)2

p
∆2.

Combining the results from the subcases, we get that the expression in (12) is lower-bounded by503

1
p |x− y|

p when p ≥ 2, or (p−1)2

p |x− y|2 otherwise, which sufficiently satisfies the desired bounds504

for case 1.505

506

Case 2: sign(xy) = −1, so x and y has opposite sign. The expression in (12) can be simplified to507

1

p
|x|p + p− 1

p
|y|p + |x||y|p−1,

and we want to prove that it is at least 1
p2p (|x|+ |y|)

p when p ≥ 2, or is at least (p−1)2

p (|x|+ |y|)2508

when p ∈ (1, 2). In the case that p ≥ 2, one of |x| or |y| is at least |x|+|y|
2 , so the above is at least509
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1
p

(
|x|+|y|

2

)p
= 1

p2p (|x|+ |y|)
p. Otherwise,510

1

p
|x|p + p− 1

p
|y|p + |x|y|p−1 =

|x|(|x|p−1 + |y|p−1) + (p− 1)|y|p−1(|x|+ |y|)
p

≥ (|x|+ |y|)(|x|+ (p− 1)|y|p−1)

p

≥ (|x|+ |y|)((p− 1)|x|+ (p− 1)|y|)
p

=
p− 1

p
(|x|+ |y|)2 ≥ (p− 1)2

p
(|x|+ |y|)2.

Therefore, we have proven the bound for this case.511

Lemma 4. For any x ≥ y ≥ 0, we we have512

p− 1

p
xp − p− 1

p
yp ≥ y(xp−1 − yp−1).

Proof.
d

dx

(
p− 1

p
xp − p− 1

p
yp
)

= (p− 1)xp−1,

513

d

dx
y(xp−1 − yp−1) = (p− 1)xp−2y ≤ (p− 1)xp−1,

so as we increase x, the left side grows faster than the right side, so we simply need to prove that the514

inequality holds at x = y, which is trivially true.515

Lemma 5. For any x ≥ y ≥ 0, we we have that if q ≥ 1516

xq − yq ≤ qxq−1(x− y),

and if 0 < q < 1,517

xq − yq ≤ qyq−1(x− y)

Proof.
d

dx
(xq − yq) = qxq−1,

518

d

dx
qxq−1(x− y) = q(q − 1)xq−2(x− y) + qxq−1, and

519

d

dx
qyq−1(x− y) = qyq−1.

When q ≥ 1,520

d

dx
(xq − yq) ≥ d

dx
qxq−1(x− y),

so because we have521

xq − yq = qxq−1(x− y) = 0

when x = y, then522

xq − yq ≥ qxq−1(x− y)

when x ≥ y ≥ 0 if q ≥ 1. We can use a similar argument for the 0 < q < 1 case.523
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B.3 Lemma for Analyzing ERM Objective and Its Gradient524

In this section of the Appendix, we analyze the objective function. We especially want to know about525

its gradient and the inner product of this gradient with the matrices of the cone set, as was mentioned526

before in the main body of the paper. The first one bounds the loss objective,527

Lemma 6. Under Assumption A, L(W ) is bounded from above by Lmax and below by Lmin for528

some dataset-dependent constants Lmax and Lmin that are finite.529

Proof. It is enough to show the same thing for each of the loss contributions of each sample,530

li(yiv
⊤X⊤

i σ(XiWzi)). By Assumption A, we simply need to show that yiv⊤X⊤
i σ(XiWzi) is531

bounded by dataset-dependent bounds. However, W only affects the softmax, so the above expression532

is bounded above by maxt∈[T ] γit and bounded below by mint∈[T ] γit, which are dataset dependent.533

534

Lemma 7. If we denote hi := XiWzi and l′i := l′(γ⊤i σ(hi)), then535

∇L(W ) =
1

n

n∑
i=1

l′iX
⊤
i (diag(σ(hi))− σ(hi)σ(hi)⊤)γiz⊤i ,

where L(W ) denotes the objective of (ERM) with fixed v.536

Proof. We first calculate the derivatives of each term in the sum of L(W ). The derivative of the i-th537

term for the Wj1j2 component is538

∂

∂Wj1j2

l(yiv
⊤X⊤

i σ(XiWzi)) = l′iγ
⊤
i

∂

∂Wj1j2

σ(XiWzi)

= l′iγ
⊤
i ∇σ(hi)X⊤

i,:,j1zij2

= l′iXi,:,j1∇σ(hi)⊤γizij2 .

Therefore, the derivative for the j2-th row of W is539

l′iX
⊤
i ∇σ(hi)⊤γizij2 .

Next, the full gradient for the i-th term equals540

l′iX
⊤
i ∇σ(hi)⊤γiz⊤i .

To finish the proof, we calculate the derivative of σ(hi). The derivative of the j1-th component of541

σ(hi) with respect to hij2 is542

∂

∂hij2

(
ehij1∑T
l=1 e

hil

)
=
ehij11j1=j2∑T

l=1 e
hil

− ehij1 ehij2(∑T
l=1 e

hil

)2
= σ(hi)j11j1=j2 − σ(hi)j1σ(hi)j2 .

Thus, the derivative of σ(hi) is a matrix in RT×T defined as543

diag(σ(hi))− σ(hi)σ(hi)⊤.

Therefore, the full gradient is544

1

n

n∑
i=1

l′iX
⊤
i (diag(σ(hi))− σ(hi)σ(hi)⊤)γiz⊤i .

545

Lemma 8. Under Assumption A, ∥∇L(W )∥p,p is bounded by a dataset-dependent constant L.546

Proof. Using the expression in Lemma 7, since l′ is bounded and the entries in σ(hi) is always547

between 0 and 1, then the entries of ∇L(W ) is bounded by a dataset-dependent bounded, which548

directly implies this lemma statement.549
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In the following lemma, we analyze the behaviors of the (ℓp-AttSVM) constraint (Xit −Xiτ )
⊤Wzi550

for all W ∈ Sp,µ0
(Wα

mm) satisfying ∥W∥p,p = ∥Wα
mm∥p,p, the result of which is a generalization of551

[52, Equation 64] for a general ℓp norm.552

Lemma 9. Let α = (αi)
n
i=1 be locally optimal tokens as per Definition 3, and let Wα

mm be the553

(ℓp-AttSVM) solution. Let (Ti)ni=1 be the index set of all support tokens per Definition 3. Let554

T̄i = [T ]−Ti − {αi}. For any W ∈ Sp,µ0
(Wα

mm) with µ0 defined in (9) and ∥W∥p,p = ∥Wα
mm∥p,p,555

we have556

(Xit −Xiτ )
⊤Wzi ≥

3

2
δ > 0, (13a)

(Xiαi
−Xiτ )

⊤Wzi ≥ 1 +
3

2
δ, (13b)

1 +
1

2
δ ≥ (Xiαi

−Xit)
⊤Wzi ≥ 1− 1

2
δ, (13c)

for all t ∈ Ti and τ ∈ T̄i557

Proof. Let558

W̄ :=
W

∥W∥p,p
and W̄α

mm :=
Wα

mm

∥Wα
mm∥p,p

.

Using Lemma 3 and the definition of Sp,µ0
(Wα

mm) in (5a), when p ≥ 2,559

∥W̄ − W̄α
mm∥pp,p ≤ 2ppDψ(W̄

α
mm, W̄ )

≤ 2ppµ0

=

(
δ

4A

)p
,

which implies that560

∥W̄ − W̄α
mm∥p,p ≤

δ

4A
.

When p ∈ (1, 2), we can also use Lemmas 2 and 3 to obtain561

∥W̄ − W̄α
mm∥p,p ≤ d

2
p−1∥W̄ − W̄α

mm∥2,2

≤ d
2
p−1

√
p

p− 1

√
Dψ(W̄α

mm, W̄ )

≤ d
2
p−1

√
p

p− 1

√
µ0 =

δ

4A
,

where the last inequality uses the definition of Sp,µ0
(Wα

mm) in (5a).562

Therefore, either way, we have563

∥W −Wα
mm∥p,p ≤

δ

4A
∥Wα

mm∥p,p.

We will proceed to show a bound on (Xit1 −Xit2)
⊤(W −Wα

mm)zi for any i ∈ [n] and any token564

indices t1, t2 ∈ [T ]. To do that, let us focus on the term X⊤
it1

(W −Wα
mm)zi first,565 ∣∣X⊤

it1(W −W
α
mm)zi

∣∣ = ∣∣⟨W −Wα
mm, Xit1z

⊤
i ⟩
∣∣

≤ ∥W −Wα
mm∥p,p · ∥Xit1z

⊤
i ∥ p

p−1 ,
p

p−1

≤ δ

4A
∥Wα

mm∥p,p · ∥Xit1z
⊤
i ∥ p

p−1 ,
p

p−1

≤ δ

4A
·A

=
δ

4
.
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The first inequality above uses Hölder’s Inequality. We now have566 ∣∣(Xit1 −Xit2)
⊤(W −Wα

mm)zi
∣∣ ≤ 1

2
δ.

To obtain the first inequality of the lemma in (13a), for all t ∈ Ti and τ ∈ T̄i, we have567

(Xit −Xiτ )
⊤Wzi ≥ (Xit −Xiτ )

⊤Wα
mmzi + (Xit −Xiτ )

⊤(W −Wα
mm)zi

≥ 2δ′ − 1

2
δ ≥ 3

2
δ.

To get the second inequality in (13b), for all τ ∈ T̄i, we have568

(Xiαi
−Xiτ )

⊤Wzi ≥ (Xiαi
−Xiτ )

⊤Wα
mmzi + (Xiαi

−Xiτ )
⊤(W −Wα

mm)zi

≥ 1 + 2δ′ − 1

2
δ ≥ 1 +

3

2
δ.

Finally, to get the last inequality in (13c), for all t ∈ Ti, we have569 ∣∣(Xiαi −Xit)
⊤Wzi − 1

∣∣ = ∣∣(Xiαi −Xit)
⊤Wα

mmzi + (Xiαi −Xit)
⊤(W −Wα

mm)zi − 1
∣∣

= |(Xiαi
−Xit)

⊤(W −Wα
mm)zi| ≤

1

2
δ,

which implies that570

1 +
1

2
δ ≥ (Xiαi

−Xit)
⊤Wzi ≥ 1− 1

2
δ.

571

The following two lemmas aim at bounding the correlation between the gradient and the attention572

matrix parameter, each of which is a generalization of [52, Lemmas 13 and 14] for the generalized ℓp573
norm.574

Lemma 10. Suppose Assumption A holds. Let α = (αi)
n
i=1 be locally optimal tokens as per575

Definition 3, and let Wα
mm be the solution to (ℓp-AttSVM). There exists a dataset-dependent constant576

Rδ = O(1/δ) such that for all W,V ∈ Cp,µ0,Rδ
(Wα

mm) with ∥V ∥p,p = ∥Wα
mm∥p,p, δ and µ0577

defined in (7) and (9), respectively,578

−⟨∇L(W ), V ⟩ = Ω

(
e
− ∥W∥p,p

∥Wα
mm∥p,p

(1+ 1
2 δ)
)
> 0.

Proof. Let579

hi := XiWzi, h̃i := XiV zi, l
′
i := l′(γ⊤i σ(hi)), and si = σ(hi).

Therefore,580

⟨∇L(W ), V ⟩ = 1

n

n∑
i=1

l′i⟨X⊤
i (diag(si)− sis⊤i )γiz⊤i , V ⟩

=
1

n

n∑
i=1

l′i⟨(diag(si)− sis⊤i )γi, XiV zi⟩

=
1

n

n∑
i=1

l′i⟨(diag(si)− sis⊤i )γi, h̃i⟩

=
1

n

n∑
i=1

l′ih̃
⊤
i (diag(si)− sis⊤i )γi,

581

−⟨∇L(W ), V ⟩ = 1

n

n∑
i=1

(−l′i)h̃⊤i (diag(si)− sis⊤i )γi. (14)
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The value γ⊤i σ(hi) for any i ∈ [n] must be bounded, and the bound is only dataset-dependent, so by582

Assumption A, l′i is bounded for any i ∈ [n] by some bound that is dataset-dependent. Furthermore,583

because l is decreasing, −l′ is always non-negative, so an easier approach is to lower-bound the584

following for each i ∈ [n],585

h̃⊤i sis
⊤
i γi − h̃⊤i diag(si)γi.

Next, we can get for all i ∈ [n] and t ∈ [T ] that586

h̃it = X⊤
itV zi = ⟨Xitz

⊤
i , V ⟩

≤ ∥V ∥p,p∥Xitz
⊤
i ∥ p

p−1

≤ A,

where A is defined in (8).587

Therefore, if we drop the i notation and let αi = 1, and use [52, Lemma 7],588 ∣∣∣∣∣h̃⊤ss⊤γ − h̃⊤ diag(s)γ −
T∑
t=2

(h̃1 − h̃t)st(γ1 − γt)

∣∣∣∣∣ ≤ 2ΓA(1− s1)2.

Let us attempt to remove the non-support tokens from the sum above by bounding the sum of the589

term for the non-supports,590 ∣∣∣∣∣∣
∑
t∈T̄

(h̃1 − h̃t)st(γ1 − γt)

∣∣∣∣∣∣ ≤ 2max
t∈[T ]
{|h̃t|}Q(W )Γ ≤ 2AQ(W )Γ.

Therefore,591 ∣∣∣∣∣h̃⊤ss⊤γ − h̃⊤ diag(s)γ −
∑
t∈T

(h̃1 − h̃t)st(γ1 − γt)

∣∣∣∣∣ ≤ 2ΓA((1− s1)2 +Q(W )),

which implies that592

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥
∑
t∈T

(h̃1 − h̃t)st(γ1 − γt)− 2ΓA((1− s1)2 +Q(W )).

Using Lemma 9, we have593

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥
(
1− 1

2
δ

)∑
t∈T

st(γ1 − γt)− 2ΓA((1− s1)2 +Q(W )). (15)

To proceed, we can upper-bound 1− s1 and Q(W ). For bounding 1− s1, let τ > 1 be some index594

that maximizes X⊤
τ Wz, so595

1− s1 =

∑T
t=2 e

X⊤
t Wz∑T

t=1 e
X⊤

t Wz
≤ (T − 1)eX

⊤
τ Wz

(T − 1)eX
⊤
τ Wz + eX

⊤
1 Wz

≤ T

T + e(X1−Xτ )⊤Wz

≤ T

T + e
∥W∥p,p

∥Wα
mm∥p,p

(1− 1
2 δ)

≤ T

e
∥W∥p,p

∥Wα
mm∥p,p

(1− 1
2 δ)

,

with the last inequality using the third inequality Lemma 9.596

For ease of notation, denote597

R′ :=
∥W∥p,p
∥Wα

mm∥p,p
. (16)
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To upper boundQ(W ), we use a method similar to that for 1−s1, but we utilize the second inequality598

of Lemma 9 instead of the first. This gives:599

Q(W ) ≤ T

T + e(1+
3
2 δ)R

′ ≤
T

e(1+
3
2 δ)R

′ .

Therefore, we have600

2ΓA((1− s1)2 +Q(W )) ≤ 2ΓA

(
T 2

e(2−δ)R′ +
T

e(1+
3
2 δ)R

′

)
≤ 2ΓAT (T + 1)

e(1+
3
2 δ)R

′ . (17)

Now it is time to lower-bound the sum on the right side of Equation (15). When the set of supports is601

empty, that sum is zero. However, if it is not empty,602 ∑
t∈T

st(γ1 − γt) ≥ S(W )γgap.

If we let τ ∈ T be the support index that minimizes X⊤
τ Wz, then603

S(W ) =

∑
t∈T e

X⊤
t Wz∑T

t=1 e
X⊤

t Wz
≥ eX

⊤
τ Wz

TeX
⊤
1 Wz

=
1

Te(X1−Xτ )⊤Wz

≥ 1

Te(1+
1
2 δ)R

′ ,

with the last inequality coming from the third inequality of Lemma 9.604

Therefore,605 ∑
t∈T

st(γ1 − γt) ≥
γgap

Te(1+
1
2 δ)R

′ > 0.

Using Equation (15), we get that if the support index set is empty,606

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥ −2ΓAT (T + 1)

e(1+
3
2 δ)R

′ ,

otherwise,607

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥ γgap

Te(1+
1
2 δ)R

′

(
1− 1

2
δ

)
− 2ΓAT (T + 1)

e(1+
3
2 δ)R

′ .

Plugging everything back into Equation (14), and considering that some samples will have non-empty608

support index sets, we have:609

−⟨L(W ), V ⟩ ≥ −mini∈Ti
{γgap
i }

nTe(1+
1
2 δ)R

′

(
1− 1

2
δ

)
n

max
i=1
{l′i}

+
2ΓAT (T + 1)

e(1+
3
2 δ)R

′

n∑
i=1

l′i = Ω
(
e−(1+ 1

2 δ)R
′
)
. (18)

Let610

L̄ :=

∑n
i=1 l

′
i

maxni=1{l′i}
. (19)

Note that using Assumption A, L̄ is positive. Hence, using (19) and (18), the term −⟨L(W ), V ⟩ is611

positive when612

R′ ≥ 1

δ
log

(
2ΓL̄AT 2(T + 1)n

mini∈Ti
{γgap
i }

(
1− 1

2δ
)) ,

or equivalently, from (16), we have613

∥W∥p,p ≥
∥Wα

mm∥p,p
δ

log

(
2ΓL̄AT 2(T + 1)

mini∈Ti{γ
gap
i }

(
1− 1

2δ
)) .

614
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Finally, we introduce the following lemma to help understand the correlation between the gradient of615

the objective and the parameter.616

Lemma 11. Suppose Assumption A holds. Let α = (αi)
n
i=1 be locally optimal tokens as per617

Definition 3, let Wα
mm be the (ℓp-AttSVM) solution, and let Rδ be the constant from Lemma 10. For618

any choice of π ∈ (0, 1), there exists Rπ that depends on π defined as619

Rπ := max

{
Rδ,O

(
1

πδ
log

δ

π

)}
,

such that for all W ∈ Cp,µ0,Rπ (W
α
mm),620 〈

∇L(W ),
W

∥W∥p,p

〉
≥ (1 + π)

〈
∇L(W ),

Wα
mm

∥Wα
mm∥p,p

〉
.

Proof. Let621

hi := XiWzi, h̃i := XiW
α
mmzi, l′i := l′(γ⊤i σ(hi)),

si := σ(hi), W̄ :=
∥Wα

mm∥p,pW
∥W∥p,p

, and h̄i := XiW̄zi.
(20)

By decomposing L(W ) into its sum and using Lemma 7, the main inequality is equivalent to the622

following,623

n∑
i=1

(−l′i)⟨X⊤
i (diag(si)− sis⊤i )γiz⊤i , W̄ ⟩

≤ (1 + π)

n∑
i=1

(−l′i)⟨X⊤
i (diag(si)− sis⊤i )γiz⊤i ,Wα

mm⟩,

which implies that624

n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, XiW̄zi⟩

≤ (1 + π)

n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, XiW
α
mmzi⟩.

Using (20), we get625

n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, h̄i⟩ ≤ (1 + π)

n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, h̃i⟩,

which gives626

n∑
i=1

(−l′i)h̄⊤i (diag(si)− sis⊤i )γi ≤ (1 + π)

n∑
i=1

(−l′i)h̃⊤i (diag(si)− sis⊤i )γi.

Hence,627

n∑
i=1

(−l′i)
[
(1 + π)

(
h̃⊤i diag(si)γi − h̃⊤i sis⊤i γi

)
−
(
h̄⊤i diag(si)γi − h̄⊤i sis⊤i γi

)]
≥ 0.

Using a similar technique as the one we used to prove Lemma 10,628 ∣∣∣h̃⊤i diag(si)γi − h̃⊤i sis⊤i γi −
∑
t∈Ti

(h̃iαi − h̃it)sit(γiαi − γit)
∣∣∣

≤ 2ΓA((1− siαi
)2 +Qi(W )).
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Similarly,629 ∣∣∣h̄⊤i diag(si)γi − h̄⊤i sis⊤i γi −
∑
t∈Ti

(h̄iαi − h̄it)sit(γiαi − γit)
∣∣∣

≤ 2ΓA((1− siαi)
2 +Qi(W )).

Therefore, it is enough to prove that630

n∑
i=1

(−l′i)

(
(1 + π)

(∑
t∈Ti

(h̃iαi
− h̃it)sit(γiαi

− γit)− 2ΓA((1− siαi
)2 +Qi(W ))

)

−

(∑
t∈Ti

(h̄iαi
− h̄it)sit(γiαi

− γit) + 2ΓA((1− siαi
)2 +Qi(W ))

))
,

(21)

Using the fact that π < 1 and using Equation (17), we get another lower-bound631

n∑
i=1

∑
t∈Ti

(−l′i)(1 + π − (h̄iαi
− h̄it))sit(γiαi

− γit) +
6ΓAT (T + 1)

e(1+
3
2 δ)R

′

n∑
i=1

l′i, (22)

with R′ again being ∥W∥p,p

∥Wα
mm∥p,p

. Next, we analyze the softmax probability sit, and lower and upper-632

bound them in terms of R′ and h̄iαi
− h̄it. For the lower-bound,633

sit =
eh̄itR

′∑
τ∈[T ] e

h̄iτR′ ≥
eh̄itR

′

Teh̄iαi
R′

=
1

T
e−(h̄iαi

−h̄it)R
′
.

For the upper-bound,634

sit =
eh̄itR

′∑
τ∈[T ] e

h̄iτR′ ≤
eh̄itR

′

eh̄iαi
R′

= e−(h̄iαi
−h̄it)R

′
.

In both bounds, the main inequality derivation stems from the fact that h̄iαi
> h̄iτ for all τ ∈ [T ],635

which we obtain from Lemma 9. Now, we analyze the left double-summation in Equation (22). To636

analyze the sum, let I be the subset of [n]× [T ] that contains all (i, t) such that t ∈ Ti. Furthermore,637

let638

I1 :=
{
(i, t) ∈ I | h̄iαi − h̄it ≤ 1

}
,

I2 :=
{
(i, t) ∈ I | 1 < h̄iαi

− h̄it ≤ 1 + π
}
,

I3 :=
{
(i, t) ∈ I | h̄iαi

− h̄it > 1 + π
}
.

Therefore, we can split the sum above into the sum over I1, I2, and I3. The set I1 in particular must639

be non-empty because ∥W̄∥p,p = ∥Wα
mm∥p,p, meaning that one of the constraints in the ℓp-AttSVM640

problem must either be fulfilled exactly or violated.641

The sum over I1 must be positive and is at least642

− π
T

min
i∈I1

{γgapi }e
−R′ n

max
i=1
{l′i}.

The sum over I2 must be non-negative, and the sum over I3 is negative can be bounded from below643

using Lemma 9644

1

2
δmax
i∈I3

{γ̄gapi }Te
−(1+π)R′

n∑
i=1

l′i.
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Putting things together into Equation (22), we get that we want the following to be non-negative645

− π
T

min
i∈I1

{γgapi }e
−R′ n

max
i=1
{l′i}+

1

2
δmax
i∈I3

{γ̄gapi }Te
−(1+π)R′

n∑
i=1

l′i

+ 6ΓAT (T + 1)e−(1+ 3
2 δ)R

′
n∑
i=1

l′i.

This can be achieved when646

R′ ≥ 1

min{π, 32δ}
log

(
1
2δmaxi∈I3

{γ̄gapi }T 2 + 6ΓAT 2(T + 1)

πmini∈I1
{γgapi }maxni=1{l′i}

n∑
i=1

l′i

)
,

or equivalently,647

∥W∥p,p ≥
∥Wα

mm∥p,p
min{π, 32δ}

log

(
1
2δmaxi∈I3

{γ̄gapi }T 2 + 6ΓAT 2(T + 1)

πmini∈I1{γ
gap
i }maxni=1{l′i}

n∑
i=1

l′i

)
,

which means that such dataset dependent Rπ exists.648

B.4 Lemma for Analyzing ℓp-AttGD649

We introduce the lemmas for analyzing ℓp-AttGD. The first we prove is Lemma 12, which describes650

the lower bound of the W parameter at every iterate.651

Lemma 12. Suppose Assumption A holds. For the sequence {W (k)}k≥0 generated by ℓp-AttGD,652

we have653

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +
η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩.

Proof. With ψ(W ) = 1
p∥W∥p,p, the derivative∇ψ(·) is computed as follows:654

∇ψ(W ) = (sign(Wij)|Wij |p−1)1≤i,j≤d.

Thus, we have655

⟨∇ψ(W ),W ⟩ =
∑
i,j

sign(Wij)|Wij |p−1Wij = ∥W∥pp,p.

Using this fact, we take the inner product of both sides of (3) with W (k):656

⟨∇ψ(W (k + 1)),W (k)⟩ = ⟨∇ψ(W (k)),W (k)⟩+ η⟨−∇L(W (k)),W (k)⟩,
657

⟨∇ψ(W (k + 1)),W (k)⟩ = ∥W (k)∥pp,p + η⟨−∇L(W (k)),W (k)⟩. (23)

The left side of the above equation is upper-bounded by658 ∑
i,j

sign(Wij(k + 1))|Wij(k + 1)|p−1Wij(k) ≤
∑
i,j

|Wij(k + 1)|p−1|Wij(k)|.

Using Hölder’s inequality:659 ∑
i,j

|Wij(k + 1)|p−1|Wij(k)| ≤
(∑
i,j

(|Wij(k + 1)|p−1)
p

p−1

) p−1
p
(∑
i,j

|Wij(k)|p
) 1

p

= ∥W (k + 1)∥p−1
p,p ∥W (k)∥p,p.

Combining this result with (23), we get:660

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +
η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩.

661
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Next, we show several tools for analyzing the algorithm further and for analyzing the Bregman662

divergence. The following two specifically are from [50, Lemma 18, 3], and so the proofs are663

ommitted.664

Lemma 13. Suppose Assumptions A hold and η is small enough. For the sequence {W (k)}k≥0665

generated by ℓp-AttGD, we have666

p− 1

p
∥W (k + 1)∥pp,p −

p− 1

p
∥W (k)∥pp,p + ηL(W (k + 1))− ηL(W (k))

≤ ⟨−η∇L(W (k)),W (k)⟩. (24)

Lemma 14. Suppose Assumptions A hold. Consider the sequence W (k) generated by Algorithm667

ℓp-AttGD. Given that the step size η is sufficiently small, then the ERM objective L(W (k)) is668

decreasing in k.669

This following is a well-known lemma, so the proof is omitted.670

Lemma 15 (Bregman Divergences Cosine Law). For any w,w′, w′′ that are all vectors or matrices671

with the same dimensionalities, we have672

Dψ(w,w
′) = Dψ(w,w

′′) +Dψ(w
′′, w′)− ⟨∇ψ(w′)−∇ψ(w′′), w − w′′⟩.

The following is adapted from [50, Equation 12] for the case of our attention model. Our proof is673

quite similar, except that we use our version of the gradient correlation lemma.674

Lemma 16. Suppose Assumptions A hold. Consider the sequence W (k) generated by Algorithm675

ℓp-AttGD. For any π ∈ (0, 1), if W (k) ∈ Cp,µ0,Rπ
(Wα

mm), with Rπ being the constant from Lemma676

11, then for a small enough step size η,677

⟨∇ψ(W (k + 1))−∇ψ(W (k)), W̄α
mm⟩ ≥

1

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p )

+
η

∥W (k)∥p,p
(L(W (k + 1))− L(W (k))).

(25)

Proof. Let W̄α
mm =

Wα
mm

∥Wα
mm∥p,p

. Using the ℓp-AttGD algorithm equation,678

⟨∇ψ(W (k + 1))−∇ψ(W (k)), W̄α
mm⟩ = ⟨−η∇L(W (k)), W̄α

mm⟩.
Then, using Lemma 11, we get that679

⟨−η∇L(W (k)), W̄α
mm⟩ ≥

1

(1 + π)∥W (k)∥p,p
⟨−η∇L(W (k)),W (k)⟩,

and using Lemma 13, we get that this is lower-bounded by680

p− 1

p(1 + π)∥W (k)∥p,p
(∥W (k+1)∥pp,p−∥W (k)∥pp,p)+

η

(1 + π)∥W (k)∥p,p
(L(W (k+1))−L(W (k))).

By Lemma 10, ⟨−η∇L(W (k)),W (k)⟩ > 0, so by Lemma 12, ∥W (k + 1)∥p,p ≥ ∥W (k)∥p,p.681

Therefore, we can use Lemma 4 to get that the above is lower-bounded by682

1

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p ) +

η

(1 + π)∥W (k)∥p,p
(L(W (k + 1))− L(W (k))).

From Lemma 14, we get that we can lower-bound the above further using the right hand side of683

(25).684

𝑊𝛼
mm

𝑊(0)
𝑊(1)

𝑊(3)

𝑅

𝑊(2)

Figure 2: Illustration of Lemma 17.
W (k) for all positive indices k are
within the larger set.

With all these lemmas in hand, we provide the following685

Lemma 17.686

Lemma 17. Suppose Assumptions A holds and that the687

step size η is sufficiently small. For any µ ∈ (0, µ0]688

and any locally optimal tokens (αi)
n
i=1 as per Defini-689

tion 3, there exists constants Rµ and µ′ ∈ (0, µ] that690

depends on the dataset and µ such that if C1 is the691

wider cone Cp,µ,Rµ
(Wα

mm) and C2 is the thinner cone692

Cp,µ′,Rµ
(Wα

mm), then if W (0) ∈ C2, then W (k) ∈ C1693

for all positive indices k.694
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Proof. Let π be some positive real number that we deter-695

mine later, and let Rπ be as described in Lemma 11.696

For the proof, we use induction with the assumption that697

W (k) ∈ Cp,µ,Rπ
(Wα

mm) for all k = 0, . . . ,K − 1. We698

aim to find the correct µ′ and Rµ such that W (K) ∈699

Cp,µ,Rπ (W
α
mm).700

Denote W̄ (k) := W (k)
∥W (k)∥p,p

, so701

Dψ(W̄
α
mm, W̄ (k)) =

1

p
∥W̄α

mm∥p,p −
1

p
∥W̄ (k)∥p,p − ⟨∇ψ(W̄ (k)), W̄α

mm − W̄ (k)⟩

= 1− ⟨∇ψ(W̄ (k)), W̄α
mm⟩.

So now, let us analyze the term ⟨∇ψ(W̄ (K)), W̄α
mm⟩ using the inductive hypothesis on k =702

0, 1, ...,K − 1. Lemma 16 tells us that703

⟨∇ψ(W (k + 1))−∇ψ(W (k)), W̄α
mm⟩ ≥

∥W (k + 1)∥p−1
p,p − ∥W (k)∥p−1

p,p

(1 + π)

+
η

∥W (k)∥p,p
(L(W (k + 1))− L(W (k))).

(26)

Since this is true for all k = 0, 1, ...,K − 1, and since ∥W (k)∥p,p is increasing in k, we can sum all704

the above inequalities and get the following,705

⟨∇ψ(W (K))−∇ψ(W (0)), W̄α
mm⟩ ≥

∥W (K)∥p−1
p,p − ∥W (0)∥p−1

p,p

(1 + π)

+
η

∥W (0)∥p,p
(L(W (K))− L(W (0))).

Rearranging this, we get706

∥W (K)∥p−1
p,p − ⟨∇ψ(W (K)), W̄α

mm⟩ ≤ ∥W (0)∥p−1
p,p − ⟨∇ψ(W (0)), W̄α

mm⟩

+
π

1 + π
(∥W (K)∥p−1

p,p − ∥W (0)∥p−1
p,p )

+
η

∥W (0)∥p,p
(L(W (0))− L(W (K))).

Dividing by ∥W (K)∥p−1
p,p , we get707

Dψ(W̄
α
mm, W̄ (K)) ≤

∥W (0)∥p−1
p,p

∥W (K)∥p−1
p,p

Dψ(W̄
α
mm, W̄ (0)) +

π

1 + π

(
1−

∥W (0)∥p−1
p,p

∥W (K)∥p−1
p,p

)
+

η

∥W (K)∥p−1
p,p ∥W (0)∥p,p

(L(W (0))− L(W (K)))

≤ µ′ + π +
η(L(W (0))− L(W (K)))

Rpµ
.

(27)

Therefore, we can simply choose µ′ = 1
3µ, π be any real number below 1

3µ, and have Rµ big enough708

so that η(L(W (0))−L(W (K)))
Rp

µ
≤ 1

3µ and Rµ ≥ Rπ , such Rµ exists because L is bounded.709

B.5 Lemma for Analyzing Rate of Convergence710

Lemma 18. Suppose Assumptions A holds. Let Rδ be from Lemma 10, let c be from Lemma 16, let µ′711

andRµ be from Lemma 17 when µ = µ0, and letR := max{Rµ, Rδ, e1/c}. If the initializationW (0)712

is in Cp,µ′,R(W
α
mm), then for a sufficiently small step size η, the sequence {W (k)}k≥0 generated by713
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ℓp-AttGD satisfies714

Dψ(W̄
α
mm, W̄ (k)) =



O
(
log ∥W (k)∥p,p
∥W (k)∥p,p

)
if p > 2,

O
(
(log ∥W (k)∥p,p)2

∥W (k)∥p,p

)
if p = 2,

O
(

1

∥W (k)∥p−1
p,p

)
otherwise.

(28)

Proof. Using Lemma 11, setting c as the dataset dependent constant hidden by the O notation for715

Rπ , we can get that by setting π = min{ c log ∥W (k)∥p,p

δ∥W (k)∥p,p
, 1}, we can use the result of Lemma 16 on k,716

so rearranging that result, we get717

∥W (k + 1)∥p−1
p,p − ⟨∇ψ(W (k + 1)), W̄α

mm⟩ ≤ ∥W (k)∥p−1
p,p − ⟨∇ψ(W (k)), W̄α

mm⟩

+
π

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p )

+
η

∥W (k)∥p,p
(L(W (k))− L(W (k + 1))).

From Lemma 10 and Lemma 12, ∥W (k)∥p,p is increasing, so focusing on the second line, we can718

use Lemma 5 and get719

π

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p ) ≤ π(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p )

≤ cp

δ∥W (k)∥p,p
max{∥W (k)∥p−2

p,p , ∥W (k + 1)∥p−2
p,p }

× log ∥W (k)∥p,p
× (∥W (k + 1)∥p,p − ∥W (k)∥p,p).

From Lemma 8, we know that for all index k,720

∥W (k + 1)∥p,p ≤ ∥W (k)∥p,p + ηL, (29)

so we can use integral approximation when bounding the sums of ∆(k)’s. Let721

∆(k) =
cp

δ∥W (k)∥p,p
max{∥W (k)∥p−2

p,p , ∥W (k + 1)∥p−2
p,p } log ∥W (k)∥p,p

× (∥W (k + 1)∥p,p − ∥W (k)∥p,p),

so we can get that722

∥W (K)∥p−1
p,p − ⟨∇ψ(W (K)), W̄α

mm⟩ ≤ ∥W (0)∥p−1
p,p − ⟨∇ψ(W (0)), W̄α

mm⟩

+

k−1∑
k=0

∆(k) +
η

c
(L(W (0))− L(W (K))),

723

∥W (K)∥p−1
p,p Dψ(W̄

α
mm, W̄ (K)) ≤ ∥W (0)∥p−1

p,p Dψ(W̄
α
mm, W̄ (0))

+

k−1∑
k=0

∆(k) +
η

c
(L(W (0))− L(W (K))).

(30)

When p > 2, we have724

∆(k) =
cp

δ∥W (k)∥p,p
(∥W (k)∥p,p + ηL)p−2 log ∥W (k)∥p,p(∥W (k + 1)∥p,p − ∥W (k)∥p,p).

We can see that725

d

dx
(x+ ηL)p−2(log x− log c) >

p− 2

x
(x+ ηL)p−2 log x
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for all x > 0, so from Equation (29), we can get that726

K−1∑
k=0

∆(k) = O(∥W (K)∥p−2 log ∥W (K)∥p,p).

When p = 2, we have727

∆(k) =
cp

∥W (k)∥p,p
log ∥W (k)∥p,p(∥W (k + 1)∥p,p − ∥W (k)∥p,p).

We can see that728
d

dx
(log x)2 >

2

x
(log x)

for all x ≥ c, so from Equation (29), we can get that729

K−1∑
k=0

∆(k) = O((log ∥W (K)∥p,p)2).

When p < 2, we have730

∆(k) = cp∥W (k)∥p−3
p,p log ∥W (k)∥p,p(∥W (k + 1)∥p,p − ∥W (k)∥p,p).

From Equation (29), we can get that731

K−1∑
k=0

∆(k) = O(1).

Combining the above cases with Equation (30), we get that732

∥W (K)∥p−1
p,p Dψ(W̄

α
mm, W̄ (K)) =


O(∥W (K)∥p−2

p,p log ∥W (K)∥p,p) if p > 2,

O((log ∥W (K)∥p,p)2) if p = 2,

O(1) otherwise
,

Dividing both sides by ∥W (K)∥p−1
p,p gives (28).733

Lemma 19. Suppose Assumptions A holds. Let µ′ be that from Lemma 17 if µ = µ0, and let R the734

maximum of the Rµ from 17 and Rδ 10. Let {W (k)}k≥0 be the sequence generated by ℓp-AttGD.735

If the initialization W (0) is in Cp,µ′,R(W
α
mm), then with a small enough step size η, we have the736

following for each k ≥ 0,737

∥W (k)∥p,p = Ω(log k).

Proof. For each k ≥ 0, Lemma 12 gives738

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +
η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩.

Lemma 17 gives us that W (k) ∈ Cp,µ,R(Wα
mm) for each k ≥ 0, so by Lemma 10,739

η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩ = Ω

(
e
− ∥W (k)∥p,p

∥Wα
mm∥p,p

(1+ 1
2 δ)
)
,

so there exists dataset dependent constants R1, R2 > 0 such that740

η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩ ≥ R1e

−R2∥W (k)∥p,p ,

so for each k ≥ 0,741

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +R1e
−R2∥W (k)∥p,p .

Set k0 = 0, and let ki+1 be the lowest indices such that ∥W (ki+1)∥p,p ≥ ∥W (ki)∥p,p + 1 for all742

index i ≥ 0. Therefore,743

ki+1 − ki ≤
(∥W (ki)∥p,p + 1)p−1 − ∥W (ki)∥p−1

p,p

R1e−R2(∥W (ki)∥p,p+1)
= eO(∥W (ki)∥p,p).

Therefore,744

∥W (k)∥p,p = Ω(log k).

745
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C Proof of Theorem 1746

Proof. The proof is similar to the proof of [53, Theorem 1]. Specifically, we need to show that747

f(X) = v⊤X⊤σ(XW ) satisfies the assumptions of [53, Lemma 14], where the nonlinear head is748

replaced by the linear term v. This holds independently of the choice of algorithm or the attention749

SVM solution. Thus, we omit the details and refer to the proof of [53, Theorem 1].750

D Proof of Theorem 2751

Proof. It is enough to show the existence of such constants µ,R > 0 such that if W (0) is in752

Cp,µ,R(W
α
mm), then the norm diverges to infinity. As discussed in Lemma 12, for any timestep k,753

∥W (k + 1)∥p−1
p ≥ ∥W (k)∥p−1

p − η

∥W (k)∥p
⟨∇L(W (k)),W (k)⟩. (31)

Let R1 be the R from Lemma 10, set µ and R2 to be the µ′ and R for µ = µ0 of Lemma 17, and set754

R := max{R1, R2}. From Lemma 17, we know that W (k) ∈ Cp,µ0,R(W
mm
α ) for any timestep k,755

so from Lemma 10,756

⟨∇L(W (k)),W (k)⟩ < 0,

for all timesteps k.757

Therefore, the lp-norm is always increasing, but this does not immediately imply that the lp-norm758

will approach infinity; it could converge to a finite value. However, if ∥W (k)∥p converges to a finite759

value, then again by Lemma 10, we get a lower bound for − η
∥W (k)∥p

⟨∇L(W (k)),W (k)⟩ at any760

timestep k. Therefore, by Equation (31),761

lim
k→∞

∥W (k)∥p−1
p =∞,

a contradiction, so ∥W (k)∥p converges to infinity.762

E Proof of Theorem 3763

Proof. This is a direct consequence of Theorem 4.764

F Proof of Theorem 4765

Proof. Let R be the one from Lemma 18. Given W (0) ∈ Cp,µ,R(Wα
mm), by Lemma 18, we have766

Dψ(W̄
α
mm, W̄ (k)) =



O
(
log ∥W (k)∥p,p
∥W (k)∥p,p

)
if p > 2,

O
(
(log ∥W (k)∥p,p)2

∥W (k)∥p,p

)
if p = 2,

O
(

1

∥W (k)∥p−1
p,p

)
otherwise.

From Lemma 19, we know that767

∥W (k)∥p,p = Ω(log k).

The derivative d
dx

(
log x
x

)
= 1−log x

x2 is negative when x > e, so log x
x is decreasing when x > e.768

Similarly, (log x)2

x is decreasing when x > e2.769

Thus when p > 2, for a large enough k,770

Dψ(W̄
α
mm, W̄ (k)) = O

(
log log k

log k

)
. (32a)
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Similarly, when p = 2, for a large enough k,771

Dψ(W̄
α
mm, W̄ (k)) = O

(
(log log k)2

log k

)
. (32b)

Finally, when 1 < p < 2,772

Dψ(W̄
α
mm, W̄ (k)) = O

(
1

(log k)p−1

)
. (32c)

773

G On the Convergence of the ℓp Regularization Path for Joint W and v774

Assumption B. Let Γ,Γ′ > 0 denote the label margins when solving (ℓp-SVM) with Xiαi and its775

replacement with X⊤
i σ(XiWzi), for all i ∈ [n], respectively. There exists ν > 0 such that for all776

i ∈ [n] and W ∈ Rd×d,777

Γ− Γ′ ≥ ν · (1− siαi), where siαi = [σ(XiWzi)]αi .

Assumption B is similar to [53] and highlights that selecting optimal tokens is key to maximizing778

the classifier’s label margin. When attention features, a weighted combination of all tokens, are779

used, the label margin shrinks based on how much attention is given to the optimal tokens. The term780

ν · (1− siαi
) quantifies this minimum shrinkage. If the attention mechanism fails to focus on these781

tokens (i.e., low siαi), the margin decreases, reducing generalization. This assumption implies that782

optimal performance is achieved when attention converges on the most important tokens, aligning783

with the max-margin attention SVM solution.784

Similar to how we provided the characterization of convergence for the regularization path of785

ℓp-AttGD, we offer a similar characterization here for ℓp-JointGD.786

Theorem 5 (Joint ℓp–norm Regularization Path). Consider (ERM) with a logistic loss l(x) =787

log(1 + e−x), and define788

(v(r),W (R)) := argmin(v,W ) L(v,W ) subj. to ∥W∥p,p ≤ R and ∥v∥p ≤ r. (ℓp-JointRP)

Suppose there are token indices α = (αi)
m
i=1 for which Wα

mm of (ℓp-AttSVM) exists and Assump-789

tion B holds for some Γ, ν > 0. Then,790

lim
(r,R)→(∞,∞)

(
v(r)

r
,
W (R)

R

)
=

(
vmm

∥vmm∥p
,

Wα
mm

∥Wα
mm∥p,p

)
. (33)

Here, vmm and Wα
mm are the solution of (ℓp-SVM) and (ℓp-AttSVM), respectively.791

Theorem 5 extends the results of Theorem 1 to the case of joint optimization of head v and attention792

weights W using a logistic loss function.793

H Proof of Theorem 5794

Proof. The proof is similar to the proof of [53, Theorem 5]. We provide the revised version for the795

generalized attention SVM, tracking the required changes. Without loss of generality, we set αi = 1796

for all i ∈ [n], and we use Wmm instead of Wα
mm. Suppose the claim is incorrect, meaning either797

W (R)/R or v(r)/r fails to converge as R and r grow. Define798

Ξ =
1

∥W̄mm∥p,p
, Γ =

1

∥vmm∥p
,

W̄mm := RΞWmm, v̄mm := rΓvmm (34)

Our strategy is to show that (v̄mm, W̄mm) is a strictly better solution compared to (v(r),W (R)) for799

large R and r, leading to a contradiction.800
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• Case 1: W (R)/R does not converge to W̄mm/R. In this case, there exists δ, γ = γ(δ) > 0 such801

that we can find arbitrarily large R with802

∥W (R)/R− W̄mm/R∥ ≥ δ

and the margin induced by W (R)/R is at most Ξ(1− γ).803

We bound the amount of non-optimality q∗i of W̄mm:804

q∗i :=

∑
t ̸=αi

exp(X⊤
it W̄mmzi)∑

t∈[T ] exp(X
⊤
it W̄mmzi)

≤
∑
t ̸=αi

exp(X⊤
it W̄mmzi)

exp(X⊤
iαi
W̄mmzi)

≤ T exp(−ΞR).

Thus,805

q∗max := max
i∈[n]

q∗i ≤ T exp(−ΞR). (35a)

Next, assume without loss of generality that the first margin constraint is γ-violated by W (R),806

meaning807

min
t̸=α1

(X1α1 −X1t)
⊤W (R)z1 ≤ ΞR(1− γ).

Denoting the amount of non-optimality of the first input of W (R) as q̂1, we find808

q̂1 :=

∑
t ̸=α1

exp(X⊤
1tW

(R)z1)∑
t∈[T ] exp(X

⊤
1tW

(R)z1)
≥ 1

T

∑
t̸=α1

exp(X⊤
1tW

(R)z1)

exp(X⊤
1α1

W (R)z1)

≥ T−1 exp(−(1− γ)RΞ).

This implies that809

q̂max := max
i∈[n]

q∗i ≥ T−1 exp(−ΞR(1− γ)). (35b)

We similarly have810

q∗max ≥ T−1 exp(−ΞR). (35c)
Thus, (35) gives the following relationship between the upper and lower bounds on non-optimality:811

−(1− γ)ΞR− log T ≤ log(q̂max),

−ΞR− log T ≤ log(q∗max) ≤ −ΞR+ log T. (36)

In other words, W̄mm has exponentially less non-optimality compared to W (R) as R grows. To812

proceed, we need to upper and lower bound the logistic loss of (v̄mm, W̄mm) and (v(r),W (R))813

respectively, to establish a contradiction.814

• Sub-Case 1.1: Upper bound for L(v̄mm, W̄mm). We now bound the logistic loss for the limiting815

solution. Set r̄i = X⊤
i σ(XiW̄mmzi). If ∥r̄i −Xi1∥p ≤ ϵi, then vmm satisfies the SVM constraints816

on r̄i with Yi · r̄⊤i vmm ≥ 1 − ϵi/Γ. Setting ϵmax = supi∈[n] ϵi, vmm achieves a label-margin of817

Γ − ϵmax on the dataset (Yi, r̄i)i∈[n]. Let M = supi∈[n],t,τ∈[T ] ∥Xit −Xiτ∥p. Recalling (36), the818

worst-case perturbation is819

ϵmax ≤M exp(−ΞR+ log T ) =MT exp(−ΞR).

This implies the upper bound on the logistic loss:820

L(v̄mm, W̄mm) ≤ max
i∈[n]

log(1 + exp(−Yir̄⊤i v̄mm))

≤ max
i∈[n]

exp(−Yir̄⊤i v̄mm)

≤ exp(−rΓ + rϵmax)

≤ erMT exp(−ΞR)e−rΓ. (37)

• Sub-Case 1.2: Lower bound for L(v(r),W (R)). We now bound the logistic loss for the finite821

solution. Set r̄i = X⊤
i σ(XiW

(R)zi). Using Assumption B, solving (ℓp-SVM) on (yi, r̄i)i∈[n]822

achieves at most Γ− νe−(1−γ)ΞR/T margin. Consequently, we have:823
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L(v(r),W (R)) ≥ 1

n
max
i∈[n]

log(1 + exp(−Yir̄⊤i v(r)))

≥
(

1

2n
max
i∈[n]

exp(−Yir̄⊤i v(r))
)
∧ log 2

≥
(

1

2n
exp(−r(Γ− νe−(1−γ)ΞR/T ))

)
∧ log 2

≥
(

1

2n
er(ν/T ) exp(−(1−γ)ΞR)e−rΓ

)
∧ log 2.

Observe that this lower bound dominates the upper bound from (37) when R is large, specifically824

when (ignoring the multiplier 1/2n for simplicity):825

(ν/T )e−(1−γ)ΞR ≥MTe−ΞR =⇒ R ≥ 1

γΞ
log

(
MT 2

ν

)
.

Thus, we obtain the desired contradiction since such a largeR is guaranteed to exist whenW (R)/R ̸→826

W̄mm. Therefore, W (R)/R must converge to W̄mm/R.827

• Case 2: Suppose v(r)/r does not converge. In this case, there exists δ > 0 such that we828

can find arbitrarily large r obeying dist(v(r)/r, v̄mm/r) ≥ δ. If dist(W (R)/R,ΞWmm) ̸→ 0,829

then "Case 1" applies. Otherwise, we have dist(W (R)/R,ΞWmm) → 0, thus we can assume830

dist(W (R)/R,ΞWmm) ≤ ϵ for an arbitrary choice of ϵ > 0.831

On the other hand, due to the strong convexity of (ℓp-AttSVM), for some γ := γ(δ) > 0, v(r)832

achieves a margin of at most (1− γ)Γr on the dataset (Yi, Xi1)i∈[n], where Xi1 denotes the optimal833

token for each i ∈ [n]. Additionally, since dist(W (R)/R,ΞWmm) ≤ ϵ, W (R) strictly separates834

all optimal tokens (for small enough ϵ > 0) and q̂max := f(ϵ) → 0 as R → ∞. Note that f(ϵ)835

quantifies the non-optimality of W (R) compared to Wmm; as ϵ→ 0, meaning W (R)/R converges836

to ΞWmm/R, f(ϵ)→ 0. Consequently, setting ri = X⊤
i σ(XiW

(R)zi), for sufficiently large R > 0837

and setting M = supi∈[n],t∈[T ] ∥Xit∥, we have that838

min
i∈[n]

yi(v
(r))⊤ri ≤ min

i∈[n]
yi(v

(r))⊤Xi1 + sup
i∈[n]

|(v(r))⊤(Xit −Xi1)|

≤ (1− γ)Γr +Mf(ϵ)r

≤ (1− γ/2)Γr. (38)
This in turn implies that logistic loss is lower bounded by839

L(v(r),W (R)) ≥
(

1

2n
eγΓr/2e−Γr

)
∧ log 2.

Going back to (37), this exponentially dominates the upper bound of (W̄mm, v̄mm) whenever840

rMT exp(−ΞR) < rγΓ/2 (that is, whenever R, r are sufficiently large), again concluding the841

proof.842

843

I Implementation Details844

The experiments were run on an Intel i7 core and a single V100 GPU using the pytorch and845

huggingface libraries. They should be runnable on any generic laptop.846

I.1 Illustrating Optimal Tokens847

Example 1. Consider the matricesX1 = [5, 0; 0, 1] andX2 = [−5, 0; 0, −1] with y1 = −y2 = 1.848

Let xi1 be the optimal token and xit be the others. Problem (ℓp-AttSVM) with p = 3 and zi = Xi1849

yields Wα
mm = Wmm = [0.03846, 0; −0.00769, 0]. Figure 3 illustrates how the optimal tokens850

X11 and X21 are separated by the dashed lines (orthogonal to Wmmzi) for each sequence.851
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Figure 3: Visualization of Problem (ℓp-AttSVM) with p = 3.

Figure 4: Visualizing the effect of token selection on margin size in (ℓp-SVM) for Example 1. The
first plot illustrates the largest class margin, indicating the optimality of tokens X11 and X21. In
subsequent plots, as different tokens are used, the class margin (light blue shaded area) decreases,
reflecting suboptimal class separation.

I.2 Synthetic Data Experiment852

We describe the setup of the experiments for ℓp-AttGD and ℓp-JointGD and their results.853

ℓp-AttGD Experiment. To measure the directional distance between Wmm
α ((ℓp-AttSVM) solution)854

andW (k) (output of ℓp-AttGD), we use a directional Bregman divergence, defined forW,V ∈ Rd×d855

as Dψ(W/∥W∥p,p, V/∥V ∥p,p). We compare the (ℓp-AttSVM) solution with the ℓq optimization856

path for all p, q ∈ {1.75, 2, 3} for synthetically generated data. The experiment is repeated 100 times,857

and the average directional Bregman divergence is reported. A closer look at one sample trial is also858

provided.859

The dataset (Xi, Yi, zi)
n
i=1 used for the experiment is generated randomly: Xi and zi are sampled860

from the unit sphere, and Yi is uniformly sampled from {±1}. Additionally, v is randomly selected861

from the unit sphere. We use n = 6 samples, T = 8 tokens per sample, and d = 10 dimensions per862

token, fulfilling the overparameterized condition for the ℓp-AttSVM problem to be almost always863

feasible.864

The model parameter is initialized near the origin, and it is trained using Algorithms ℓp-AttGD865

with p = 1.75, 2, and 3, and a learning rate of 0.1. Training lasted for 1, 500 epochs for p = 1.75,866

2, 000 epochs for p = 2, and 20, 000 epochs for p = 3. Gradients are normalized to accelerate867

convergence without altering results significantly. We refer to the parameter histories as the ℓ1.75, ℓ2,868

and ℓ3 optimization paths. We compute the chosen tokens (αi)ni=1 for the (ℓp-AttSVM) problem by869

selecting the token with the highest softmax probability for each sample. This process is repeated for870

p = 1.75, 2, and 3.871

Figure 5 shows the directional Bregman divergence between the (ℓp-AttSVM) solution and the ℓq872

optimization path for each pair p, q ∈ {1.75, 2, 3}. In Figure 5a, the divergence converges to 0873

only for the (ℓp-AttSVM) (p = 1.75) solution, indicating that the ℓ1.75 path does not converge to874

the p = 2 or 3 solutions. The shrinking standard deviation shows consistent behavior. Similarly,875

Figures 5b and 5c show the divergence converging to 0 for the corresponding (ℓp-AttSVM) solution,876

demonstrating that the ℓp optimization path converges to the (ℓp-AttSVM) solution, with the direction877

of convergence changing with p.878
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(a) ℓ1.75 Convergence Rate (b) ℓ2 Convergence Rate (c) ℓ3 Convergence Rate

Figure 5: Average directional Bregman divergence between the (a) ℓ1.75, (b) ℓ2, and (c) ℓ3 optimiza-
tion paths and the (ℓp-AttSVM) solutions for p = 1.75, 2, and 3 at each training iteration from 100
trials. The shaded area represents the standard deviation of the directional Bregman divergence.

(a) ℓ1.75 Optimization Path (b) ℓ2 Optimization Path (c) ℓ3 Optimization Path

Figure 6: Direction of change of two entries of W updated by ℓp-AttGD with p = 1.75, p = 2, and
p = 3 for one trial, shown in (a), (b), and (c). Each axis represents a different entry. The orange line
shows the direction of (ℓp-AttSVM).

Using this same synthetic data, we can also observe the convergence in direction for one of the879

trials directly by plotting how two of the entries of W change during training simultaneously and880

plotting it on a Cartesian graph, then showing that the path it follows converges to the direction of881

the (ℓp-AttSVM) solution. As we can see in Figure 6, each of the ℓp optimization paths follows the882

direction of the corresponding (ℓp-AttSVM) solution.883

ℓp-JointGD Experiment. We use the data from the following to train a model using ℓp-JointGD884

for p = 1.75, 2, and 3.885

Example 2. Let n = 2, T = 3, d = 2. Let y1 = 1, y2 = −1. Let:886

X1 =

(
X11

X12

X13

)
=

(−5.4 2.4
2.8 4.2
2.6 −0.2

)
, and X2 =

(
X21

X22

X23

)
=

(
0.8 −4.4
−2.2 −0.8
1.8 0.2

)
. (39)

Let z1 = X11, z2 = X21.887

We use learning rates 0.1 and we trained the model for 1, 500 epochs for when p = 1.75, 2, 000888

epochs for p = 2, and 20, 000 epochs for p = 3. As it was done in the previous experiment, we889

obtain the parameter history for each p, and compute the optimal token for the (ℓp-AttSVM) and890

ℓp-SVM problems.891

The comparison between the iterates and the SVM solutions in Figure 7 shows that the iterates of W892

and v converge to the ℓp-AttSVM and ℓp-SVM directions, respectively, for each of p = 1.75, 2, and893

3. These convergence are similar to Theorem 5, as in both this experiment and that theorem, we get894

that the iterates converge to the SVM problem solutions. In addition to these iterates, we record the895

evolution of the average softmax probability of the optimal token, along with the average logistic896

probability of the model, which we define to be 1/n
∑n
i=1 1/(1 + e−γiαi ).897

As we can see in Figure 8, each of the average softmax probability converges to 1, indicating that the898

attention mechanism produces a softmax probability vector that converges to a one-hot vector for the899

different ℓp-JointGD training. Furthermore, the average logistic probability also converges to 1,900

indicating that the model’s prediction converges to a 100% accuracy.901
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(a) ℓ1.75 Iterates (b) ℓ2 Iterates (c) ℓ3 Iterates

Figure 7: Iterates of the W and v parameters of the model as they are trained using ℓp-JointGD for
p = 1.75, 2, and 3, along with the corresponding ℓp-AttSVM and ℓp-SVM directions.

(a) ℓ1.75 Probabilties (b) ℓ2 Probabilties (c) ℓ3 Probabilties

Figure 8: Softmax probability evolution of the optimal token and logistic probability evolution for
p = 1.75, 2, and 3.

I.3 Additional Real Experiments902

We collect the training weights from the resulting models trained by ℓ1.1 mirror descent and the903

gradient descent and plot a histogram of their absolute values in Figure 9. Specifically, we take the904

histogram of the weights responsible for determining the softmax within the model and the value905

matrices. The figures shows us that the resulting model that was trained using ℓ1.1 mirror descent is906

sparser than the one trained using gradient descent, which could hint at a potential explanation as to907

why ℓ1.1 mirror descent can outperform the standard gradient descent algorithm when it is used to908

train attention-based models.909

Finally, the following figures show the full attention maps.910
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(a) WK parameters with ℓ1.1-MD (b) WQ parameters with ℓ1.1-MD (c) WV parameters with ℓ1.1-
MD

(d) WK parameters with ℓ2-MD (e) WQ parameters with ℓ2-MD (f) WV parameters with ℓ2-MD

Figure 9: Histogram of the absolute values of the WK ,WQ, and WV components of transformer
models trained with ℓ1.1 and ℓ2-MD on the Stanford Large Movie Review Dataset. Only large
parameters (≥ 0.06) are shown, with the maximum magnitude component marked by a red dot. The
ℓ1.1-MD model has 18, 206 components in WK , 13, 964 in WQ, and 7, 643 in WV with magnitudes
≥ 0.06, while the ℓ2-MD model has 27, 224 in WK , 14, 654 in WQ, and 10, 127 in WV with such
magnitudes. These results imply that the ℓ1.1-MD algorithm yields sparser parameters and that it
would have a stronger token selection ability.
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Figure 10: The attention map generated by the resulting models that were trained using ℓ1.1 mirror
descent and gradient descent for five sample sentences. For three out of five of the sample sentences,
the model trained using ℓ1.1 mirror descent selects the optimal token better than the model trained
using gradient descent.
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