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Abstract

Attention mechanisms have revolutionized numerous domains of artificial intelli-
gence, including natural language processing and computer vision, by enabling
models to selectively focus on relevant parts of the input data. Building on recent
results characterizing the optimization dynamics of gradient descent (GD) and the
structural properties of its preferred solutions in attention-based models, this paper
explores the convergence properties and implicit bias of a family of mirror descent
(MD) algorithms designed for softmax attention mechanisms, with the potential
function chosen as the p-th power of the ℓp-norm. Specifically, we show the direc-
tional convergence of these algorithms to a generalized hard-margin SVM with
an ℓp-norm objective when applied to a classification problem using a one-layer
softmax attention model. Our theoretical results demonstrate that these algorithms
not only converge directionally to the generalized max-margin solutions but also
do so at a rate comparable to that of traditional GD in simpler models, despite the
highly nonlinear and nonconvex nature of the present problem. Additionally, we
delve into the joint optimization dynamics of the key-query matrix and the decoder,
establishing conditions under which this complex joint optimization converges to
their respective hard-margin SVM solutions.

1 Introduction

Attention mechanisms [4] have transformed natural language processing (NLP) and large language
models (LLMs). Initially developed for encoder-decoder recurrent neural networks (RNNs), at-
tention enables the decoder to focus on relevant input segments rather than relying solely on a
fixed-length hidden state. This approach became fundamental in transformers [60], where attention
layers—computing softmax similarities among input tokens—are the architecture’s backbone. Trans-
formers have driven rapid advancements in NLP with models like BERT [19] and ChatGPT [42], and
have become the preferred architecture for generative modeling [12, 46], computer vision [20, 45],
and reinforcement learning [21, 11]. This has led to increased exploration of the mathematical
foundations of attention’s optimization.

To understand the optimization dynamics of attention mechanisms, [53, 52] studied the implicit
bias of gradient descent (GD) in binary classification with a fixed linear decoder. This bias reflects
GD’s tendency to favor certain weight characteristics when multiple valid solutions exist. For
instance, in linear logistic regression on separable data, GD aligns with the max-margin class
separator [49, 31]. Similarly, [52, 53] propose a model akin to a hard-margin Support Vector Machine
(SVM)—specifically, (ℓp-AttSVM) with p = 2—maximizing the margin between optimal and non-
optimal tokens based on their softmax logits. These studies show that as training progresses, the
key-query weightsW (k) align with the locally optimal solutionWα

mm, the minimizer of (ℓp-AttSVM).
Expanding on these insights, [58] explores global directional convergence and GD’s convergence
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rate under certain conditions. [48] extends this by relaxing assumptions about regularized paths
for the (WK ,WQ) parameterization, showing that gradient flow minimizes the nuclear norm of the
key-query weight W =WKW

⊤
Q .

Contributions. While the aforementioned works provide insights into the implicit bias and token
selection properties of attention mechanisms, their analyses are limited to GD. A broader understand-
ing of general descent algorithms, such as the mirror descent (MD) family, and their token selection
properties is missing. We address this by examining a family of MD algorithms designed for softmax
attention, where the potential function is the p-th power of the ℓp-norm, termed ℓp-AttGD. This
generalizes both ℓp-GD [2, 50, 51] and attention GD [53, 52], enabling the exploration of key aspects
of attention optimization via ℓp-AttGD.

Implicit bias of ℓp-AttGD for attention optimization. Building on [52, 58, 48], we examine a one-layer
attention model for binary classification and extend the SVM formulation in [52] to (ℓp-AttSVM),
defining a hard-margin SVM with the ℓp-norm. The solution Wα

mm separates locally optimal tokens
(αi)

n
i=1 with a generalized maximum margin. Theorem 3 shows sufficient conditions for ℓp-AttGD to

converge directionally to Wα
mm, while Theorem 2 demonstrates that ∥W (k)∥p,p diverges as k →∞.

Convergence rate of ℓp-AttGD to the solution of (ℓp-AttSVM). Theorem 4 shows that
Dψ (Wα

mm/∥Wα
mm∥p,p,W (k)/∥W (k)∥p,p) decreases at an inverse poly-log rate, where W (k) are

the iterates andDψ(·, ·) denotes the Bregman divergence [9]. Despite optimizing a nonconvex softmax
function, the rate is similar to GD in linear binary classification [31, Theorem 1.1]. Though slower
than the O(k−3/4) rate in [58, Theorem 1], our result applies without assuming token orthogonality.

Generalized Max-Margin Solutions and Joint Optimization of (v,W ). We examine the joint problem
under logistic loss with ℓp-norm regularization, solving an empirical risk minimization problem
(ERM) under relaxed ℓp-norm constraints. If the attention features X̄i = X⊤

i σ(XiWzi) are separable
by labels yi, v acts as a generalized max-margin classifier [3]. We show that under suitable geometric
conditions, W and v converge to their generalized max-margin solutions (Theorem 5 in the appendix).

We also provide experiments showing that mirror descent improves generalization over GD, excelling
in optimal token selection and suppressing non-optimal tokens.

2 Preliminaries

Notations. Let N ≥ 1 and [N ] = {1, 2, . . . , N}. Vectors are denoted by lowercase letters
(e.g., a), with components ai, and matrices by uppercase letters (e.g., A). For a vector v ∈ Rd,
the p-norm is ∥v∥p = (

∑d
i=1 |vi|p)1/p. For a matrix M ∈ Rd×d, the p, p-norm is ∥M∥p,p =

(
∑d
i=1

∑d
j=1 |Mij |p)1/p. For any two matrices X,Y of the same dimensions, we define ⟨X,Y ⟩ :=

trace(X⊤Y ). Asymptotic notations O and Ω hide constant factors, and all logarithms are natural.
For a differentiable function f : Rd×d → R, we define Df : Rd×d × Rd×d → R as

Df (W,V ) := f(W )− f(V )− ⟨∇f(V ),W − V ⟩. (1)
Single-head attention model. Given input sequences X,Z ∈ RT×d with length T and
embedding dimension d, the output of a single-head (cross)-attention layer is computed as:
softmax(XWQW

⊤
KZ

⊤)XWV , where WQ,WK ∈ Rd×d1 , WV ∈ Rd×d2 are trainable key, query,
value matrices, respectively; softmax(XWQW

⊤
KZ

⊤) is the attention map; and softmax(·) : RT×T →
RT×T denotes the row-wise softmax function applied row-wise onXWQW

⊤
KZ

⊤. Similar to [53, 52],
we reparameterize the key-query product matrix as W :=WQW

⊤
K ∈ Rd×d, and subsume the value

weights WV within the prediction head v ∈ Rd. Suppose the first token of Z, denoted by z, is used
for prediction. Then, the attention model can be formulated as

f(X, z) = v⊤X⊤σ(XWz). (2)
where σ(·) : RT → RT is the softmax function for vectors.

Attention-based empirical risk minimization. We consider a one-layer attention model (2) for
binary classification. Consider the dataset (Xi, yi, zi)

n
i=1, where Xi ∈ RT×d is the input with T

tokens each of dimension d, yi ∈ {±1} is the label, and zi ∈ Rd is the token used for comparison.
We use a smooth decreasing loss function l : R→ R and study empirical risk minimization (ERM):

min
v∈Rd,W∈Rd×d

L(v,W ) :=
1

n

n∑
i=1

l
(
yiv

⊤X⊤
i σ (XiWzi)

)
. (ERM)
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Throughout, we will use L(W ) to denote the objective of (ERM) with fixed v.

Next, we provide an assumption on the loss function necessary to demonstrate the convergence of
MD for margin maximization within the attention mechanism.
Assumption A. Within any closed interval, the loss function l : R→ R is strictly decreasing and
differentiable, and its derivative l′ is bounded and Lipschitz continuous.

Assumption A aligns with the assumptions on loss functions in [53, 52]. Commonly used loss
functions, such as l(x) = e−x, l(x) = −x, and l(x) = log(1 + e−x), satisfy this assumption.

Preliminaries on mirror descent. We review the mirror descent algorithm [7] for solving attention-
based (ERM). Mirror descent is defined using a potential function. We focus on differentiable and
strictly convex potentials ψ defined on the entire domain Rd×d. We call ∇ψ the mirror map. The
natural “distance” associated with the potential ψ is given by the Bregman divergence [8].

Definition 1 (Bregman Divergence). For a strictly convex function ψ : Rd×d → R, the expression
Dψ(·, ·) defined in (1) is called the Bregman divergence.

For more details, see [6]. MD with respect to the mirror map ψ is a generalization of GD where the
Bregman divergence is used as a measure of distance. Given a stepsize η > 0, the MD algorithm is as
follows:

W (k + 1)← argminW∈Rd×d

{
η−1Dψ(W,W (k)) + ⟨∇L(W (k)),W ⟩

}
. (MD)

Equivalently, MD can be written as∇ψ(W (k + 1)) = ∇ψ(W (k))− η∇L(W (k)); see [10, 34].

A useful fact about the Bregman divergence is that it is always non-negative and Dψ(W,V ) = 0 if
and only if W = V . Using this notation, one property we will repeatedly use is the following [2]:

Lemma 1. For any W ∈ Rd×d, the following identities hold for MD:

Dψ(W,W (k)) = Dψ(W,W (k + 1)) +Dψ−ηL(W (k + 1),W (k))

− η⟨∇L(W (k)),W −W (k)⟩ − ηL(W (k)) + ηL(W (k + 1)). (3)

Preliminaries on attention SVM. Following [53, 52], we use the following definition of token
scores.
Definition 2 (Token Score). For prediction head v ∈ Rd, the score of token Xit is γit = yiv

⊤Xit.

It is important to highlight that the score is determined solely based on the value embeddings v⊤Xit

of the tokens. The softmax function σ(·) minimizes (ERM) by selecting the token with the highest
score [52, Lemma 2]. Using (2), [52] defines globally optimal tokens (opti)

n
i=1, with each opti

maximizing the score for Xiopti . For our MD analysis, we primarily consider locally optimal tokens,
as they are more general than globally optimal ones. Locally optimal tokens are characterized by
having scores that surpass those of nearby tokens. We formalize the term nearby tokens later in
Definition 3 for locally optimal tokens and support tokens. Intuitively, these are the tokens that locally
minimize (ERM) upon selection and can be defined based on support tokens. Before presenting the
mathematical notion of locally optimal tokens, we provide the formulation of the attention SVM
problem. Given a set of (locally) optimal token indices (αi)

n
i=1, [52] defines the following hard-

margin attention SVM problem, which aims to separate, with maximal margin, (locally) optimal
tokens from the rest of the tokens for every input sequence:

Wα
mm := argminW∈Rd×d ∥W∥F

subj. to (Xiαi −Xit)
⊤Wzi ≥ 1, for all t ∈ [T ]− {αi}, i ∈ [n].

(4)

The constraint (Xiαi
−Xit)

⊤Wzi ≥ 1 indicates that in the softmax probability vector σ(XiWzi),
the αi component has a significantly higher probability compared to the rest, and so these problems
solve for a sort of probability separator that has the lowest norm.
Definition 3 (Globally and Locally Optimal Tokens). Consider the dataset (Xi, yi, zi)

n
i=1.

1. The tokens with indices opt = (opti)
n
i=1 are called globally optimal if they have the highest

scores, given by opti ∈ argmaxt∈[T ] γit.
2. Fix token indices (αi)ni=1 for which (4) is feasible to obtain Wα

mm. Let the support tokens Ti for
the ith data be the set of tokens τ such that (Xiαi

−Xiτ )
⊤Wα

mmzi = 1. The tokens with indices
(αi)

n
i=1 are called locally optimal if, for all i ∈ [n] and τ ∈ Ti, the scores per Def. 2 obey γiαi

> γiτ .
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It is worth noting that token scoring and optimal token identification can help us understand the
importance of individual tokens and their impact on the overall objective. A token score measures
how much a token contributes to a prediction or classification task, while an optimal token is defined
as the token with the highest relevance in the corresponding input sequence [53, 52].

3 Implicit Bias of Mirror Descent for Optimizing Attention

3.1 Optimizing Attention with Fixed Head v

In this section, we assume that the prediction head is fixed, allowing us to delve into the dynamics
of the token selection mechanism driven by the training of the key-query weight matrix W . The
analysis will later be expanded in Section 3.2 to include the joint optimization of both v and W .

We investigate the theoretical properties of the main algorithm of interest, namely MD with ψ(·) =
1
p∥ · ∥

p
p,p for p > 1 for training (ERM) with fixed v. For conciseness, we will refer to this algorithm

by the shorthand ℓp-AttGD. As noted by [3], this choice of mirror potential is particularly of practical
interest because the mirror map ∇ψ updates become separable in coordinates and thus can be
implemented coordinate-wise independently of other coordinates.

∀ i, j ∈ [d],

[W (k + 1)]ij ←
∣∣[W (k)]+ij

∣∣ 1
p−1 · sign

(
[W (k)]+ij

)
,

[W (k)]+ij := |[W (k)]ij |p−1sign([W (k)]ij)− η[∇L(W (k))]ij .
(ℓp-AttGD)

In the following, we first identify the conditions that guarantee the convergence of ℓp-AttGD. The
intuition is that, for attention to exhibit implicit bias, the softmax nonlinearity should select the locally
optimal token within each input sequence. [52] shows that under certain assumptions, training an
attention model using GD causes its parameters’ direction to converge.

This direction can be found by solving a simpler optimization problem, such as attention SVM (4),
which selects the locally optimal token. Here, we generalize (4) using the ℓp-norm as follows:
Definition 4 (Attention SVM with ℓp–norm Objective). For a dataset {(Xi, yi, zi)}ni=1 with yi ∈
{±1}, Xi ∈ RT×d, and token indices (αi)ni=1, ℓp-based attention SVM is defined as

Wα
mm := argminW∈Rd×d ∥W∥p,p

subj. to (Xiαi
−Xit)

⊤Wzi ≥ 1, for all t ∈ [T ]− {αi}, i ∈ [n].
(ℓp-AttSVM)

Problem (ℓp-AttSVM) is strictly convex, so it has unique solutions when feasible. Furthermore,
under mild overparameterization, d ≥ max{T − 1, n}, the problem is almost always feasible [52,
Theorem 1]. We assert that the solution to the (ℓp-AttSVM) problems determines the direction that
the attention model parameters approach as the training progresses.
Theorem 1 (ℓp–norm Regularization Path). Suppose Assumption A on the loss function holds.
Consider the ridge-constrained solutions W (R) of (ERM) defined as

W (R) := argminW∈Rd×d L(W ) subj. to ∥W∥p,p ≤ R. (ℓp-AttRP)

Then, limR→∞W (R)/R =W opt
mm/∥W opt

mm∥p,p, where W opt
mm is the solution of (ℓp-AttSVM), with αi

replaced by opti.

Theorem 1 shows that as the regularization strength R increases, the optimal direction W (R) aligns
more closely with the max-margin solution Wα

mm. This theorem, which allows for globally optimal
tokens (see Definition 3), does not require any specific initialization for the ℓp-AttRP algorithm and
demonstrates that max-margin token separation is an essential feature of the attention mechanism.

Next, we provide the convergence of MD applied to (ERM). We found that under certain initializations,
the parameter’s ℓp-norm increases to infinity as training progresses, and its direction approaches that
of the (ℓp-AttSVM) solution. To describe the initialization that allows for these, we define the notion
of cone sets.
Definition 5. Given a square matrix W ∈ Rd×d, µ ∈ (0, 1), and some R > 0,

Sp,µ(W ) :=

{
W ′ ∈ Rd×d | Dψ

(
W

∥W∥p,p
,

W ′

∥W ′∥p,p

)
≤ µ

}
, (5a)

Cp,µ,R(W ) := Sµ(W ) ∩ {W ′ | ∥W∥p,p ≥ R} . (5b)
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These sets contain matrices with a similar direction to a reference matrix W , as captured by the inner
product in Sµ(W ). For Cp,µ,R(W ), there is an additional constraint that the matrices must have a
sufficiently high norm. We note that Sp,µ(W ) and Cp,µ,R(W ) reduce to their Euclidean variants
as described in [53, 52]. With this definition, we present our first theorem about the norm of the
parameter increasing during training.
Theorem 2. Suppose Assumption A holds. Let (αi)ni=1 be locally optimal tokens as per Defi-
nition 3. Consider the sequence W (k) generated by Algorithm ℓp-AttGD. For a small enough
stepsize η, if W (0) ∈ Cp,µ,R(Wα

mm) for some dataset-dependent constants µ,R > 0, then we have
limk→∞ ∥W (k)∥p,p =∞.
Remark 1. The condition on the stepsize η is that it must be sufficiently small so that ψ(·)− ηL(·)
remains convex for the matrices W along the path traced by the iterates W (k). Specifically, there
exists an index k and a real number r ∈ [0, 1] such that W = rW (k) + (1 − r)W (k + 1). This
restriction applies to all theorems in this paper that require a sufficiently small stepsize η.

This theorem implies that the parameters will increase and diverge to infinity, justifying the need to
characterize the convergence of their direction.
Theorem 3 (Convergence of ℓp-AttGD). Suppose Assumption A holds. Let (αi)ni=1 be locally
optimal tokens as per Definition 3. Consider the sequence W (k) generated by Algorithm ℓp-AttGD.
For a small enough η, if W (0) ∈ Cp,µ,R(Wα

mm) for some constants µ > 0, R > exp(2), then

lim
k→∞

W (k)

∥W (k)∥p,p
=

Wα
mm

∥Wα
mm∥p,p

.

These theorems show that as the parameters grow large enough and approach a locally optimal
direction, they will keep moving toward that direction.
Theorem 4 (Convergence Rate of ℓp-AttGD). Suppose Assumption A holds. Let (αi)ni=1 be locally
optimal tokens as per Definition 3. Consider the sequence W (k) generated by Algorithm ℓp-AttGD.
For a small enough η, if W (0) ∈ Cp,µ,R(Wα

mm) for some constants µ > 0, R > exp(2), then

Dψ

(
Wα

mm

∥Wα
mm∥p,p

,
W (k)

∥W (k)∥p,p

)
= O




log log k
log k if p > 2,

(log log k)2

log k if p = 2,
1

(log k)p−1 otherwise.

 . (6)

Despite optimizing a highly nonlinear, nonconvex softmax function, we achieve a convergence rate
similar to that of GD in linear binary classification [31, Theorem 1.1] (up to a log log k factor).

3.2 Training Dynamics of Mirror Descent for Joint Optimization of W and v

This section delves into the training dynamics of simultaneously optimizing the prediction head v
and the attention weights W . Unlike Section 3.1, the main challenge here is the evolving token
scores γ influenced by the changing nature of v. This requires additional technical considerations
beyond those in Section 3.1, which are also addressed in this section. Given stepsizes ηW , ηv > 0, we
consider the following joint updates for W and v applied to (ERM), respectively: For all i, j ∈ [d]:

[W (k + 1)]ij ←
∣∣[W (k)]+ij

∣∣ 1
p−1 · sign

(
[W (k)]+ij

)
,

[W (k)]+ij := |[W (k)]ij |p−1sign([W (k)]ij)− ηW [∇WL(W (k), v(k))]ij ,

[v(k + 1)]i ←
∣∣[v(k)]+i ∣∣ 1

p−1 · sign([v(k)]+i ),

[v(k)]+i := |[v(k)]i|p−1sign([v(k)]i)− ηv[∇vL(W (k), v(k))]i.

(ℓp-JointGD)

We discuss the implicit bias and convergence for v(k) below. From previous results [3], one can expect
v(k) to converge to the ℓp-SVM solution, i.e., the max-margin classifier separating the set of samples
{(Xiαi , yi)}ni=1, where Xiαi denote the (locally) optimal token for each i ∈ [n]. Consequently, we
consider the following hard-margin SVM problem,

vmm = arg min
v∈Rd

∥v∥p subj. to yiX
⊤
iαi
v ≥ 1 for all i ∈ [n]. (ℓp-SVM)
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In (ℓp-SVM), define the label margin as 1/∥vmm∥p. The label margin quantifies the distance between
the separating hyperplane and the nearest data point in the feature space. A larger label margin
indicates better generalization performance of the classifier, as it suggests that the classifier has a
greater separation between classes. From (ℓp-SVM) and Definitions 2 and 3, an additional intuition
by [53] behind optimal tokens is that they maximize the label margin when selected; see Figure 3 in
the appendix for a visualization. Selecting the locally optimal token indices α = (αi)

n
i=1 from each

input data sequence achieves the largest label margin, meaning that including other tokens will reduce
the label margin as defined in (ℓp-SVM). In the Appendix G, we show that W and v generated by
ℓp-JointRP converge to their respective max-margin solutions under suitable geometric conditions
(Theorem 5 in the appendix).

4 Experimental Results

We validate our theorems through numerical simulations in Appendix H, and present real data
experiments here. Our results show that training an attention network with mirror descent improves
generalization and token selection compared to GD.

Algorithm Model Size 3 Model Size 4 Model Size 6

ℓ1.1-MD 83.47 ± 0.09% 83.36 ± 0.13% 83.65 ± 0.13%
ℓ2-MD 81.66± 0.09% 81.05± 0.17% 82.22± 0.13%

ℓ3-MD 82.57± 0.09% 82.40± 0.12% 81.97± 0.10%

Table 1: Test accuracies of transformer classification models trained with ℓ1.1, ℓ2, and ℓ3-MD on
the Stanford Large Movie Review Dataset. The model size refers to the number of layers in
the transformer model and the number of attention heads per layer. ℓ1.1-MD provides superior
generalization performance.

We trained a transformer classification model on the Stanford Large Movie Review Dataset [39] using
MD with ℓ1.1, ℓ2, and ℓ3 potentials. The models are similar to the one in [60], with the last layer being
a linear classification layer on the feature representation of the first [CLS] token. Table 1 summarizes
the resulting test accuracy of several variants of that model when trained with the three algorithms,
which shows that the ℓ1.1 potential mirror descent outperforms the other mirror descent algorithms,
including the one with the ℓ2 potential, which is equivalent to the GD.

We also investigate how the model’s attention layers select pivotal tokens in simple GPT-4o-generated
reviews, focusing on those that determine whether the review is positive or negative. These pivotal
tokens were also identified by GPT-4o. We compare the model trained using ℓ1.1 mirror descent to
one trained with GD, with full results in the Appendix (Figure 9), which shows that the ℓ1.1 mirror
descent outperforms GD in token selection.

5 Conclusion

We studied the optimization dynamics of mirror descent algorithms for softmax attention, focusing on
ℓp-AttGD, which generalizes GD using the p-th power of the ℓp-norm as the potential function. Our
analysis and experiments show that ℓp-AttGD converges to the solution of a generalized hard-margin
SVM with an ℓp-norm objective in classification tasks using a one-layer softmax attention model.
This generalized SVM separates optimal from non-optimal tokens via linear constraints on token
pairs. We also analyzed the joint problem under logistic loss with ℓp-norm regularization and proved
convergence of W and v to their generalized max-margin solutions under appropriate conditions.
Numerical experiments on synthetic data support our theoretical results.
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A Related Work

Transformers Optimization. Recently, the study of optimization dynamics of attention mechanisms
has garnered significant attention [18, 26, 55, 24, 36, 53, 52, 58, 48, 17, 40, 29, 61, 16, 13, 35, 48,
27, 59, 5, 14]. We discuss the works most closely related to this paper. Studies such as [47, 22]
investigate the optimization of attention models through convex relaxations. [28] demonstrate that
Vision Transformers (ViTs) identify spatial patterns in binary classification via gradient methods.
[35] provide sample complexity bounds and discuss attention sparsity in SGD for ViTs. [43] and [18]
explore optimization dynamics in prompt-attention and multi-head attention models, respectively.
[54, 55] study SGD dynamics and multi-layer transformer training. [53, 52] explored GD’s implicit
bias in a binary classification setting with a fixed linear decoder. [58] discusses the global directional
convergence and convergence rate of GD under specific data conditions. [48] notes that gradient flow
not only achieves minimal loss but also minimizes the nuclear norm of the key-query weight W . Our
work extends these findings and those of [53, 52], focusing on the implicit bias of the general class of
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MD algorithms for attention training.

Implicit Bias of First Order Methods. In recent years, significant progress has been made in
understanding the implicit bias of gradient descent on separable data, particularly highlighted by the
works of [49, 31]. For linear predictors, [41, 33, 30] demonstrated that gradient descent methods
rapidly converge to the max-margin predictor. Extending these insights to MLPs, [32, 38, 15] have
examined the implicit bias of GD and gradient flow using exponentially-tailed classification losses,
and show convergence to the Karush-Kuhn-Tucker (KKT) points of the corresponding max-margin
problem, both in finite [32, 38] and infinite width scenarios [15]. Further, the implicit bias of GD
for training ReLU and Leaky-ReLU networks has been investigated, particularly on orthogonal data
[44, 23]. Additionally, the implicit bias towards rank minimization in regression settings with square
loss has been explored in [57, 1, 37].

Our work is closely related to the implicit bias of MD [25, 2] for regression and classification,
respectively. Specifically, [50] extended the findings of [25, 2] to classification problems, and
developed a class of algorithms exhibiting an implicit bias towards a generalized SVM with ℓp norms
that effectively separates samples based on their labels; for a survey, we refer to [56].

B Auxiliary lemmas

B.1 Additional Notations

We denote the minimum and maximum of scalars a and b as a ∧ b and a ∨ b, respectively. Consider
the following constants for the proofs, depending on the dataset (Xi, Yi, zi)

n
i=1, the parameter v, and

the locally optimal token (αi)
n
i=1:

δ′ :=
1

2
min
i∈[n]

min
τ∈T̄i

(
(Xiαi

−Xiτ )
⊤Wα

mmzi − 1
)

≤ 1

2
min
i∈[n]

min
t∈Ti,τ∈T̄i

(
(Xit −Xiτ )

⊤Wα
mmzi

)
; (7a)

δ := min{0.25, δ′}. (7b)

When T̄i = ∅ for all i ∈ [n] (i.e. globally-optimal indices), we set δ′ = ∞ as all non-neighbor
related terms will disappear. Further, recalling Definition 4 and using Wα

mm—i.e., the minimizer of
(ℓp-AttSVM), we set

A′ := ∥Wα
mm∥p,p max

i∈[n],t∈[T ]
∥Xitz

⊤
i ∥ p

p−1 ,
p

p−1
;

A := max{1, A′}. (8)

Recalling Definition 5, we provide the following initial radius µ = µ0 which will be used later in
Lemma 10:

µ0 :=


1

p

(
δ

8A

)p
if p ≥ 2,

1

p

(
δ(p− 1)

4Ad
2
p−1

)2

otherwise.

(9)

Furthermore, define the following sums for W :

Si(W ) :=
∑
t∈Ti

[σ(XiWzi)]t, and Qi(W ) :=
∑
t∈T̄i

[σ(XiWzi)]t.

For the samples i with non-empty supports Ti, let

γgap
i := γiαi

−max
t∈Ti

γit, and γ̄gap
i := γiαi

−min
t∈Ti

γit. (10)

Furthermore, we define the global score gap as

Γ := sup
i∈[n],t,τ∈[T ]

|γit − γiτ |. (11)
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B.2 Lemma for Analyzing The ℓp-Norm

In this section of the Appendix, we provide some analysis on comparing the ℓp-norm, the ℓp Bregman
divergence, and the ℓ2-norm of matrices. Since the ℓ2-norm of matrices are much easier to analyze
and use, like in the inner product Cauchy-Schwarz inequality, having this comparison is valuable
when analyzing the ℓp-AttGD.

Lemma 2. For any d× d matrix W , let w denote its vectorization. Then,

∥w∥p ∈
[
d

2
p−1∥w∥2, ∥w∥2

]
for p ≥ 2, and for 1 < p ≤ 2, ∥w∥p is in a similar interval, with the two ends switched.

Proof. Let w1, w2, ..., wd2 be the entries of w. Therefore, for p ≥ 2,

∥w∥p = p

√√√√ d2∑
i=1

|wi|p

= p

√√√√ d2∑
i=1

(|wi|2)p/2,

and because p
2 ≥ 1, we would have

p

√√√√ d2∑
i=1

(|wi|2)p/2 ≤
p

√√√√√( d2∑
i=1

|wi|2
)p/2

= p

√
∥w∥p2 = ∥w∥2.

Therefore, ∥w∥p ≤ ∥w∥2 whenever p ≥ 2. A similar argument will get us ∥w∥p ≥ ∥w∥2 whenever
1 < p ≤ 2, so one end of the interval is solved for each case, now for the other end.

Using the power-mean inequality, we can get that whenever p ≥ 2,

p

√√√√ 1

d2

d2∑
i=1

|wi|p ≥

√√√√ 1

d2

d2∑
i=1

|wi|2,

d−
2
p ∥w∥p ≥ d−1∥w∥2,

∥w∥p ≥ d
2
p−1∥w∥2.

Similarly, for 1 < p ≤ 2,
∥w∥p ≤ d

2
p−1∥w∥2.

Lemma 3. Let W1,W2 ∈ Rd×d be two matrices such that ∥W1∥p,p = ∥W2∥p,p = 1. Then, the
following inequalities hold:

L1. For p ≥ 2,

Dψ(W1,W2) ≥
1

p× 2p
∥W1 −W2∥pp,p,

L2. For p ∈ (1, 2),

Dψ(W1,W2) ≥
(p− 1)2

p
∥W1 −W2∥22,2.

Here, Dψ(·, ·) denotes the Bregman divergence given in Definition 1.
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Proof. Let W1 = (xij)i,j∈[d] and W2 = (yij)i,j∈[d], then from Definition 1, we have

Dψ(W1,W2) =
1

p

∑
i,j∈[d]

|xij |p −
1

p

∑
i,j∈[d]

|yij |p −
∑
i,j∈[d]

|yij |p−1(xij − yij) sign(yij)

=
∑
i,j∈[d]

(
1

p
|xij |p +

p− 1

p
|yij |p − |yij |p−1|xij | sign(xijyij)

)
.

Therefore, it is enough to prove that whenever x, y ∈ [−1, 1], the expression

1

p
|x|p + p− 1

p
|y|p − |x∥y|p−1 sign(xy) (12)

is at least 1
p2p |x− y|

p if p ≥ 2, or is at least (p−1)2

p |x− y|2 if p ∈ (1, 2). We split the argument into
two cases, the first is when the signs of x and y are the same, and the second for when they are not.

Case 1: sign(xy) = 1, so both x and y have the same sign, WLOG both are non-negative. Let us fix
the value ∆ ∈ [−1, 1] and find the minimum value of (12) when we constraint x and y to be positive
and x− y = ∆. Therefore, that expression can be written as

(y +∆)p + (p− 1)yp

p
− (y +∆)yp−1,

the first derivative with respect to y is

(y +∆)p−1 + (p− 1)yp−1 − yp−1 − (p− 1)(y +∆)yp−2

= (y +∆)p−1 − yp−1 − (p− 1)∆yp−2.

Since the function t 7→ tp−1 is convex for p ≥ 2, and concave for p ∈ (1, 2), then that derivative is
always non-negative when p ≥ 2 and always negative when p ∈ (1, 2).

Sub-Case 1.1: p ≥ 2. In this subcase, (12) reaches its minimum when (x, y) = (∆, 0) or (0,−∆),
depending on the sign of ∆, plugging them in gets us the minimum, which is 1

p |∆|
p when ∆ ≥ 0 or

p−1
p |∆|

p otherwise.

Sub-Case 1.2: p ∈ (1, 2). In this subcase, (12) reaches its minimum when (x, y) = (1, 1−∆) if ∆
is non-negative or (1 + ∆, 1) otherwise. When ∆ is non-negative, the desired minimum is

1 + (p− 1)(1−∆)p

p
− (1−∆)p−1 =

1

p
(1− (1−∆)p−1 − (p− 1)∆(1−∆)p−1)

≥ 1

p
((p− 1)∆− (p− 1)∆(1−∆)p−1)

=
(p− 1)∆

p
(1− (1−∆)p−1) ≥ (p− 1)2

p
∆2.

Combining the results from the subcases, we get that the expression in (12) is lower-bounded by
1
p |x− y|

p when p ≥ 2, or (p−1)2

p |x− y|2 otherwise, which sufficiently satisfies the desired bounds
for case 1.

Case 2: sign(xy) = −1, so x and y has opposite sign. The expression in (12) can be simplified to

1

p
|x|p + p− 1

p
|y|p + |x||y|p−1,

and we want to prove that it is at least 1
p2p (|x|+ |y|)

p when p ≥ 2, or is at least (p−1)2

p (|x|+ |y|)2

when p ∈ (1, 2). In the case that p ≥ 2, one of |x| or |y| is at least |x|+|y|
2 , so the above is at least
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1
p

(
|x|+|y|

2

)p
= 1

p2p (|x|+ |y|)
p. Otherwise,

1

p
|x|p + p− 1

p
|y|p + |x|y|p−1 =

|x|(|x|p−1 + |y|p−1) + (p− 1)|y|p−1(|x|+ |y|)
p

≥ (|x|+ |y|)(|x|+ (p− 1)|y|p−1)

p

≥ (|x|+ |y|)((p− 1)|x|+ (p− 1)|y|)
p

=
p− 1

p
(|x|+ |y|)2 ≥ (p− 1)2

p
(|x|+ |y|)2.

Therefore, we have proven the bound for this case.

Lemma 4. For any x ≥ y ≥ 0, we we have

p− 1

p
xp − p− 1

p
yp ≥ y(xp−1 − yp−1).

Proof.
d

dx

(
p− 1

p
xp − p− 1

p
yp
)

= (p− 1)xp−1,

d

dx
y(xp−1 − yp−1) = (p− 1)xp−2y ≤ (p− 1)xp−1,

so as we increase x, the left side grows faster than the right side, so we simply need to prove that the
inequality holds at x = y, which is trivially true.

Lemma 5. For any x ≥ y ≥ 0, we we have that if q ≥ 1

xq − yq ≤ qxq−1(x− y),

and if 0 < q < 1,
xq − yq ≤ qyq−1(x− y)

Proof.
d

dx
(xq − yq) = qxq−1,

d

dx
qxq−1(x− y) = q(q − 1)xq−2(x− y) + qxq−1, and

d

dx
qyq−1(x− y) = qyq−1.

When q ≥ 1,
d

dx
(xq − yq) ≥ d

dx
qxq−1(x− y),

so because we have
xq − yq = qxq−1(x− y) = 0

when x = y, then
xq − yq ≥ qxq−1(x− y)

when x ≥ y ≥ 0 if q ≥ 1. We can use a similar argument for the 0 < q < 1 case.
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B.3 Lemma for Analyzing ERM Objective and Its Gradient

In this section of the Appendix, we analyze the objective function. We especially want to know about
its gradient and the inner product of this gradient with the matrices of the cone set, as was mentioned
before in the main body of the paper. The first one bounds the loss objective,
Lemma 6. Under Assumption A, L(W ) is bounded from above by Lmax and below by Lmin for
some dataset-dependent constants Lmax and Lmin that are finite.

Proof. It is enough to show the same thing for each of the loss contributions of each sample,
li(yiv

⊤X⊤
i σ(XiWzi)). By Assumption A, we simply need to show that yiv⊤X⊤

i σ(XiWzi) is
bounded by dataset-dependent bounds. However, W only affects the softmax, so the above expression
is bounded above by maxt∈[T ] γit and bounded below by mint∈[T ] γit, which are dataset dependent.

Lemma 7. If we denote hi := XiWzi and l′i := l′(γ⊤i σ(hi)), then

∇L(W ) =
1

n

n∑
i=1

l′iX
⊤
i (diag(σ(hi))− σ(hi)σ(hi)⊤)γiz⊤i ,

where L(W ) denotes the objective of (ERM) with fixed v.

Proof. We first calculate the derivatives of each term in the sum of L(W ). The derivative of the i-th
term for the Wj1j2 component is

∂

∂Wj1j2

l(yiv
⊤X⊤

i σ(XiWzi)) = l′iγ
⊤
i

∂

∂Wj1j2

σ(XiWzi)

= l′iγ
⊤
i ∇σ(hi)X⊤

i,:,j1zij2

= l′iXi,:,j1∇σ(hi)⊤γizij2 .

Therefore, the derivative for the j2-th row of W is

l′iX
⊤
i ∇σ(hi)⊤γizij2 .

Next, the full gradient for the i-th term equals

l′iX
⊤
i ∇σ(hi)⊤γiz⊤i .

To finish the proof, we calculate the derivative of σ(hi). The derivative of the j1-th component of
σ(hi) with respect to hij2 is

∂

∂hij2

(
ehij1∑T
l=1 e

hil

)
=
ehij11j1=j2∑T

l=1 e
hil

− ehij1 ehij2(∑T
l=1 e

hil

)2
= σ(hi)j11j1=j2 − σ(hi)j1σ(hi)j2 .

Thus, the derivative of σ(hi) is a matrix in RT×T defined as

diag(σ(hi))− σ(hi)σ(hi)⊤.

Therefore, the full gradient is

1

n

n∑
i=1

l′iX
⊤
i (diag(σ(hi))− σ(hi)σ(hi)⊤)γiz⊤i .

Lemma 8. Under Assumption A, ∥∇L(W )∥p,p is bounded by a dataset-dependent constant L.

Proof. Using the expression in Lemma 7, since l′ is bounded and the entries in σ(hi) is always
between 0 and 1, then the entries of ∇L(W ) is bounded by a dataset-dependent bounded, which
directly implies this lemma statement.
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In the following lemma, we analyze the behaviors of the (ℓp-AttSVM) constraint (Xit −Xiτ )
⊤Wzi

for all W ∈ Sp,µ0
(Wα

mm) satisfying ∥W∥p,p = ∥Wα
mm∥p,p, the result of which is a generalization of

[52, Equation 64] for a general ℓp norm.

Lemma 9. Let α = (αi)
n
i=1 be locally optimal tokens as per Definition 3, and let Wα

mm be the
(ℓp-AttSVM) solution. Let (Ti)ni=1 be the index set of all support tokens per Definition 3. Let
T̄i = [T ]−Ti − {αi}. For any W ∈ Sp,µ0

(Wα
mm) with µ0 defined in (9) and ∥W∥p,p = ∥Wα

mm∥p,p,
we have

(Xit −Xiτ )
⊤Wzi ≥

3

2
δ > 0, (13a)

(Xiαi
−Xiτ )

⊤Wzi ≥ 1 +
3

2
δ, (13b)

1 +
1

2
δ ≥ (Xiαi

−Xit)
⊤Wzi ≥ 1− 1

2
δ, (13c)

for all t ∈ Ti and τ ∈ T̄i

Proof. Let

W̄ :=
W

∥W∥p,p
and W̄α

mm :=
Wα

mm

∥Wα
mm∥p,p

.

Using Lemma 3 and the definition of Sp,µ0
(Wα

mm) in (5a), when p ≥ 2,

∥W̄ − W̄α
mm∥pp,p ≤ 2ppDψ(W̄

α
mm, W̄ )

≤ 2ppµ0

=

(
δ

4A

)p
,

which implies that

∥W̄ − W̄α
mm∥p,p ≤

δ

4A
.

When p ∈ (1, 2), we can also use Lemmas 2 and 3 to obtain

∥W̄ − W̄α
mm∥p,p ≤ d

2
p−1∥W̄ − W̄α

mm∥2,2

≤ d
2
p−1

√
p

p− 1

√
Dψ(W̄α

mm, W̄ )

≤ d
2
p−1

√
p

p− 1

√
µ0 =

δ

4A
,

where the last inequality uses the definition of Sp,µ0
(Wα

mm) in (5a).

Therefore, either way, we have

∥W −Wα
mm∥p,p ≤

δ

4A
∥Wα

mm∥p,p.

We will proceed to show a bound on (Xit1 −Xit2)
⊤(W −Wα

mm)zi for any i ∈ [n] and any token
indices t1, t2 ∈ [T ]. To do that, let us focus on the term X⊤

it1
(W −Wα

mm)zi first,∣∣X⊤
it1(W −W

α
mm)zi

∣∣ = ∣∣⟨W −Wα
mm, Xit1z

⊤
i ⟩
∣∣

≤ ∥W −Wα
mm∥p,p · ∥Xit1z

⊤
i ∥ p

p−1 ,
p

p−1

≤ δ

4A
∥Wα

mm∥p,p · ∥Xit1z
⊤
i ∥ p

p−1 ,
p

p−1

≤ δ

4A
·A

=
δ

4
.
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The first inequality above uses Hölder’s Inequality. We now have∣∣(Xit1 −Xit2)
⊤(W −Wα

mm)zi
∣∣ ≤ 1

2
δ.

To obtain the first inequality of the lemma in (13a), for all t ∈ Ti and τ ∈ T̄i, we have

(Xit −Xiτ )
⊤Wzi ≥ (Xit −Xiτ )

⊤Wα
mmzi + (Xit −Xiτ )

⊤(W −Wα
mm)zi

≥ 2δ′ − 1

2
δ ≥ 3

2
δ.

To get the second inequality in (13b), for all τ ∈ T̄i, we have

(Xiαi −Xiτ )
⊤Wzi ≥ (Xiαi −Xiτ )

⊤Wα
mmzi + (Xiαi −Xiτ )

⊤(W −Wα
mm)zi

≥ 1 + 2δ′ − 1

2
δ ≥ 1 +

3

2
δ.

Finally, to get the last inequality in (13c), for all t ∈ Ti, we have∣∣(Xiαi
−Xit)

⊤Wzi − 1
∣∣ = ∣∣(Xiαi

−Xit)
⊤Wα

mmzi + (Xiαi
−Xit)

⊤(W −Wα
mm)zi − 1

∣∣
= |(Xiαi −Xit)

⊤(W −Wα
mm)zi| ≤

1

2
δ,

which implies that

1 +
1

2
δ ≥ (Xiαi −Xit)

⊤Wzi ≥ 1− 1

2
δ.

The following two lemmas aim at bounding the correlation between the gradient and the attention
matrix parameter, each of which is a generalization of [52, Lemmas 13 and 14] for the generalized ℓp
norm.
Lemma 10. Suppose Assumption A holds. Let α = (αi)

n
i=1 be locally optimal tokens as per

Definition 3, and let Wα
mm be the solution to (ℓp-AttSVM). There exists a dataset-dependent constant

Rδ = O(1/δ) such that for all W,V ∈ Cp,µ0,Rδ
(Wα

mm) with ∥V ∥p,p = ∥Wα
mm∥p,p, δ and µ0

defined in (7) and (9), respectively,

−⟨∇L(W ), V ⟩ = Ω

(
e
− ∥W∥p,p

∥Wα
mm∥p,p

(1+ 1
2 δ)
)
> 0.

Proof. Let

hi := XiWzi, h̃i := XiV zi, l
′
i := l′(γ⊤i σ(hi)), and si = σ(hi).

Therefore,

⟨∇L(W ), V ⟩ = 1

n

n∑
i=1

l′i⟨X⊤
i (diag(si)− sis⊤i )γiz⊤i , V ⟩

=
1

n

n∑
i=1

l′i⟨(diag(si)− sis⊤i )γi, XiV zi⟩

=
1

n

n∑
i=1

l′i⟨(diag(si)− sis⊤i )γi, h̃i⟩

=
1

n

n∑
i=1

l′ih̃
⊤
i (diag(si)− sis⊤i )γi,

−⟨∇L(W ), V ⟩ = 1

n

n∑
i=1

(−l′i)h̃⊤i (diag(si)− sis⊤i )γi. (14)
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The value γ⊤i σ(hi) for any i ∈ [n] must be bounded, and the bound is only dataset-dependent, so by
Assumption A, l′i is bounded for any i ∈ [n] by some bound that is dataset-dependent. Furthermore,
because l is decreasing, −l′ is always non-negative, so an easier approach is to lower-bound the
following for each i ∈ [n],

h̃⊤i sis
⊤
i γi − h̃⊤i diag(si)γi.

Next, we can get for all i ∈ [n] and t ∈ [T ] that

h̃it = X⊤
itV zi = ⟨Xitz

⊤
i , V ⟩

≤ ∥V ∥p,p∥Xitz
⊤
i ∥ p

p−1

≤ A,

where A is defined in (8).

Therefore, if we drop the i notation and let αi = 1, and use [52, Lemma 7],∣∣∣∣∣h̃⊤ss⊤γ − h̃⊤ diag(s)γ −
T∑
t=2

(h̃1 − h̃t)st(γ1 − γt)

∣∣∣∣∣ ≤ 2ΓA(1− s1)2.

Let us attempt to remove the non-support tokens from the sum above by bounding the sum of the
term for the non-supports,∣∣∣∣∣∣

∑
t∈T̄

(h̃1 − h̃t)st(γ1 − γt)

∣∣∣∣∣∣ ≤ 2max
t∈[T ]
{|h̃t|}Q(W )Γ ≤ 2AQ(W )Γ.

Therefore,∣∣∣∣∣h̃⊤ss⊤γ − h̃⊤ diag(s)γ −
∑
t∈T

(h̃1 − h̃t)st(γ1 − γt)

∣∣∣∣∣ ≤ 2ΓA((1− s1)2 +Q(W )),

which implies that

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥
∑
t∈T

(h̃1 − h̃t)st(γ1 − γt)− 2ΓA((1− s1)2 +Q(W )).

Using Lemma 9, we have

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥
(
1− 1

2
δ

)∑
t∈T

st(γ1 − γt)− 2ΓA((1− s1)2 +Q(W )). (15)

To proceed, we can upper-bound 1− s1 and Q(W ). For bounding 1− s1, let τ > 1 be some index
that maximizes X⊤

τ Wz, so

1− s1 =

∑T
t=2 e

X⊤
t Wz∑T

t=1 e
X⊤

t Wz
≤ (T − 1)eX

⊤
τ Wz

(T − 1)eX
⊤
τ Wz + eX

⊤
1 Wz

≤ T

T + e(X1−Xτ )⊤Wz

≤ T

T + e
∥W∥p,p

∥Wα
mm∥p,p

(1− 1
2 δ)

≤ T

e
∥W∥p,p

∥Wα
mm∥p,p

(1− 1
2 δ)

,

with the last inequality using the third inequality Lemma 9.

For ease of notation, denote

R′ :=
∥W∥p,p
∥Wα

mm∥p,p
. (16)
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To upper boundQ(W ), we use a method similar to that for 1−s1, but we utilize the second inequality
of Lemma 9 instead of the first. This gives:

Q(W ) ≤ T

T + e(1+
3
2 δ)R

′ ≤
T

e(1+
3
2 δ)R

′ .

Therefore, we have

2ΓA((1− s1)2 +Q(W )) ≤ 2ΓA

(
T 2

e(2−δ)R′ +
T

e(1+
3
2 δ)R

′

)
≤ 2ΓAT (T + 1)

e(1+
3
2 δ)R

′ . (17)

Now it is time to lower-bound the sum on the right side of Equation (15). When the set of supports is
empty, that sum is zero. However, if it is not empty,∑

t∈T
st(γ1 − γt) ≥ S(W )γgap.

If we let τ ∈ T be the support index that minimizes X⊤
τ Wz, then

S(W ) =

∑
t∈T e

X⊤
t Wz∑T

t=1 e
X⊤

t Wz
≥ eX

⊤
τ Wz

TeX
⊤
1 Wz

=
1

Te(X1−Xτ )⊤Wz

≥ 1

Te(1+
1
2 δ)R

′ ,

with the last inequality coming from the third inequality of Lemma 9.

Therefore, ∑
t∈T

st(γ1 − γt) ≥
γgap

Te(1+
1
2 δ)R

′ > 0.

Using Equation (15), we get that if the support index set is empty,

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥ −2ΓAT (T + 1)

e(1+
3
2 δ)R

′ ,

otherwise,

h̃⊤ss⊤γ − h̃⊤ diag(s)γ ≥ γgap

Te(1+
1
2 δ)R

′

(
1− 1

2
δ

)
− 2ΓAT (T + 1)

e(1+
3
2 δ)R

′ .

Plugging everything back into Equation (14), and considering that some samples will have non-empty
support index sets, we have:

−⟨L(W ), V ⟩ ≥ −mini∈Ti
{γgap
i }

nTe(1+
1
2 δ)R

′

(
1− 1

2
δ

)
n

max
i=1
{l′i}

+
2ΓAT (T + 1)

e(1+
3
2 δ)R

′

n∑
i=1

l′i = Ω
(
e−(1+ 1

2 δ)R
′
)
. (18)

Let

L̄ :=

∑n
i=1 l

′
i

maxni=1{l′i}
. (19)

Note that using Assumption A, L̄ is positive. Hence, using (19) and (18), the term −⟨L(W ), V ⟩ is
positive when

R′ ≥ 1

δ
log

(
2ΓL̄AT 2(T + 1)n

mini∈Ti
{γgap
i }

(
1− 1

2δ
)) ,

or equivalently, from (16), we have

∥W∥p,p ≥
∥Wα

mm∥p,p
δ

log

(
2ΓL̄AT 2(T + 1)

mini∈Ti{γ
gap
i }

(
1− 1

2δ
)) .
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Finally, we introduce the following lemma to help understand the correlation between the gradient of
the objective and the parameter.

Lemma 11. Suppose Assumption A holds. Let α = (αi)
n
i=1 be locally optimal tokens as per

Definition 3, let Wα
mm be the (ℓp-AttSVM) solution, and let Rδ be the constant from Lemma 10. For

any choice of π ∈ (0, 1), there exists Rπ that depends on π defined as

Rπ := max

{
Rδ,O

(
1

πδ
log

δ

π

)}
,

such that for all W ∈ Cp,µ0,Rπ (W
α
mm),〈

∇L(W ),
W

∥W∥p,p

〉
≥ (1 + π)

〈
∇L(W ),

Wα
mm

∥Wα
mm∥p,p

〉
.

Proof. Let

hi := XiWzi, h̃i := XiW
α
mmzi, l′i := l′(γ⊤i σ(hi)),

si := σ(hi), W̄ :=
∥Wα

mm∥p,pW
∥W∥p,p

, and h̄i := XiW̄zi.
(20)

By decomposing L(W ) into its sum and using Lemma 7, the main inequality is equivalent to the
following,

n∑
i=1

(−l′i)⟨X⊤
i (diag(si)− sis⊤i )γiz⊤i , W̄ ⟩

≤ (1 + π)

n∑
i=1

(−l′i)⟨X⊤
i (diag(si)− sis⊤i )γiz⊤i ,Wα

mm⟩,

which implies that
n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, XiW̄zi⟩

≤ (1 + π)

n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, XiW
α
mmzi⟩.

Using (20), we get
n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, h̄i⟩ ≤ (1 + π)

n∑
i=1

(−l′i)⟨(diag(si)− sis⊤i )γi, h̃i⟩,

which gives
n∑
i=1

(−l′i)h̄⊤i (diag(si)− sis⊤i )γi ≤ (1 + π)

n∑
i=1

(−l′i)h̃⊤i (diag(si)− sis⊤i )γi.

Hence,
n∑
i=1

(−l′i)
[
(1 + π)

(
h̃⊤i diag(si)γi − h̃⊤i sis⊤i γi

)
−
(
h̄⊤i diag(si)γi − h̄⊤i sis⊤i γi

)]
≥ 0.

Using a similar technique as the one we used to prove Lemma 10,∣∣∣h̃⊤i diag(si)γi − h̃⊤i sis⊤i γi −
∑
t∈Ti

(h̃iαi − h̃it)sit(γiαi − γit)
∣∣∣

≤ 2ΓA((1− siαi
)2 +Qi(W )).
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Similarly, ∣∣∣h̄⊤i diag(si)γi − h̄⊤i sis⊤i γi −
∑
t∈Ti

(h̄iαi − h̄it)sit(γiαi − γit)
∣∣∣

≤ 2ΓA((1− siαi)
2 +Qi(W )).

Therefore, it is enough to prove that

n∑
i=1

(−l′i)

(
(1 + π)

(∑
t∈Ti

(h̃iαi
− h̃it)sit(γiαi

− γit)− 2ΓA((1− siαi
)2 +Qi(W ))

)

−

(∑
t∈Ti

(h̄iαi
− h̄it)sit(γiαi

− γit) + 2ΓA((1− siαi
)2 +Qi(W ))

))
,

(21)

Using the fact that π < 1 and using Equation (17), we get another lower-bound

n∑
i=1

∑
t∈Ti

(−l′i)(1 + π − (h̄iαi
− h̄it))sit(γiαi

− γit) +
6ΓAT (T + 1)

e(1+
3
2 δ)R

′

n∑
i=1

l′i, (22)

with R′ again being ∥W∥p,p

∥Wα
mm∥p,p

. Next, we analyze the softmax probability sit, and lower and upper-
bound them in terms of R′ and h̄iαi

− h̄it. For the lower-bound,

sit =
eh̄itR

′∑
τ∈[T ] e

h̄iτR′ ≥
eh̄itR

′

Teh̄iαi
R′

=
1

T
e−(h̄iαi

−h̄it)R
′
.

For the upper-bound,

sit =
eh̄itR

′∑
τ∈[T ] e

h̄iτR′ ≤
eh̄itR

′

eh̄iαi
R′

= e−(h̄iαi
−h̄it)R

′
.

In both bounds, the main inequality derivation stems from the fact that h̄iαi
> h̄iτ for all τ ∈ [T ],

which we obtain from Lemma 9. Now, we analyze the left double-summation in Equation (22). To
analyze the sum, let I be the subset of [n]× [T ] that contains all (i, t) such that t ∈ Ti. Furthermore,
let

I1 :=
{
(i, t) ∈ I | h̄iαi − h̄it ≤ 1

}
,

I2 :=
{
(i, t) ∈ I | 1 < h̄iαi

− h̄it ≤ 1 + π
}
,

I3 :=
{
(i, t) ∈ I | h̄iαi

− h̄it > 1 + π
}
.

Therefore, we can split the sum above into the sum over I1, I2, and I3. The set I1 in particular must
be non-empty because ∥W̄∥p,p = ∥Wα

mm∥p,p, meaning that one of the constraints in the ℓp-AttSVM
problem must either be fulfilled exactly or violated.

The sum over I1 must be positive and is at least

− π
T

min
i∈I1

{γgapi }e
−R′ n

max
i=1
{l′i}.

The sum over I2 must be non-negative, and the sum over I3 is negative can be bounded from below
using Lemma 9

1

2
δmax
i∈I3

{γ̄gapi }Te
−(1+π)R′

n∑
i=1

l′i.
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Putting things together into Equation (22), we get that we want the following to be non-negative

− π
T

min
i∈I1

{γgapi }e
−R′ n

max
i=1
{l′i}+

1

2
δmax
i∈I3

{γ̄gapi }Te
−(1+π)R′

n∑
i=1

l′i

+ 6ΓAT (T + 1)e−(1+ 3
2 δ)R

′
n∑
i=1

l′i.

This can be achieved when

R′ ≥ 1

min{π, 32δ}
log

(
1
2δmaxi∈I3

{γ̄gapi }T 2 + 6ΓAT 2(T + 1)

πmini∈I1
{γgapi }maxni=1{l′i}

n∑
i=1

l′i

)
,

or equivalently,

∥W∥p,p ≥
∥Wα

mm∥p,p
min{π, 32δ}

log

(
1
2δmaxi∈I3

{γ̄gapi }T 2 + 6ΓAT 2(T + 1)

πmini∈I1{γ
gap
i }maxni=1{l′i}

n∑
i=1

l′i

)
,

which means that such dataset dependent Rπ exists.

B.4 Lemma for Analyzing ℓp-AttGD

We introduce the lemmas for analyzing ℓp-AttGD. The first we prove is Lemma 12, which describes
the lower bound of the W parameter at every iterate.

Lemma 12. Suppose Assumption A holds. For the sequence {W (k)}k≥0 generated by ℓp-AttGD,
we have

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +
η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩.

Proof. With ψ(W ) = 1
p∥W∥p,p, the derivative∇ψ(·) is computed as follows:

∇ψ(W ) = (sign(Wij)|Wij |p−1)1≤i,j≤d.

Thus, we have
⟨∇ψ(W ),W ⟩ =

∑
i,j

sign(Wij)|Wij |p−1Wij = ∥W∥pp,p.

Using this fact, we take the inner product of both sides of (3) with W (k):

⟨∇ψ(W (k + 1)),W (k)⟩ = ⟨∇ψ(W (k)),W (k)⟩+ η⟨−∇L(W (k)),W (k)⟩,

⟨∇ψ(W (k + 1)),W (k)⟩ = ∥W (k)∥pp,p + η⟨−∇L(W (k)),W (k)⟩. (23)

The left side of the above equation is upper-bounded by∑
i,j

sign(Wij(k + 1))|Wij(k + 1)|p−1Wij(k) ≤
∑
i,j

|Wij(k + 1)|p−1|Wij(k)|.

Using Hölder’s inequality:∑
i,j

|Wij(k + 1)|p−1|Wij(k)| ≤
(∑
i,j

(|Wij(k + 1)|p−1)
p

p−1

) p−1
p
(∑
i,j

|Wij(k)|p
) 1

p

= ∥W (k + 1)∥p−1
p,p ∥W (k)∥p,p.

Combining this result with (23), we get:

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +
η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩.
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Next, we show several tools for analyzing the algorithm further and for analyzing the Bregman
divergence. The following two specifically are from [50, Lemma 18, 3], and so the proofs are
ommitted.

Lemma 13. Suppose Assumptions A hold and η is small enough. For the sequence {W (k)}k≥0

generated by ℓp-AttGD, we have

p− 1

p
∥W (k + 1)∥pp,p −

p− 1

p
∥W (k)∥pp,p + ηL(W (k + 1))− ηL(W (k))

≤ ⟨−η∇L(W (k)),W (k)⟩. (24)

Lemma 14. Suppose Assumptions A hold. Consider the sequence W (k) generated by Algorithm
ℓp-AttGD. Given that the step size η is sufficiently small, then the ERM objective L(W (k)) is
decreasing in k.

This following is a well-known lemma, so the proof is omitted.

Lemma 15 (Bregman Divergences Cosine Law). For any w,w′, w′′ that are all vectors or matrices
with the same dimensionalities, we have

Dψ(w,w
′) = Dψ(w,w

′′) +Dψ(w
′′, w′)− ⟨∇ψ(w′)−∇ψ(w′′), w − w′′⟩.

The following is adapted from [50, Equation 12] for the case of our attention model. Our proof is
quite similar, except that we use our version of the gradient correlation lemma.

Lemma 16. Suppose Assumptions A hold. Consider the sequence W (k) generated by Algorithm
ℓp-AttGD. For any π ∈ (0, 1), if W (k) ∈ Cp,µ0,Rπ (W

α
mm), with Rπ being the constant from Lemma

11, then for a small enough step size η,

⟨∇ψ(W (k + 1))−∇ψ(W (k)), W̄α
mm⟩ ≥

1

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p )

+
η

∥W (k)∥p,p
(L(W (k + 1))− L(W (k))).

(25)

Proof. Let W̄α
mm =

Wα
mm

∥Wα
mm∥p,p

. Using the ℓp-AttGD algorithm equation,

⟨∇ψ(W (k + 1))−∇ψ(W (k)), W̄α
mm⟩ = ⟨−η∇L(W (k)), W̄α

mm⟩.

Then, using Lemma 11, we get that

⟨−η∇L(W (k)), W̄α
mm⟩ ≥

1

(1 + π)∥W (k)∥p,p
⟨−η∇L(W (k)),W (k)⟩,

and using Lemma 13, we get that this is lower-bounded by

p− 1

p(1 + π)∥W (k)∥p,p
(∥W (k+1)∥pp,p−∥W (k)∥pp,p)+

η

(1 + π)∥W (k)∥p,p
(L(W (k+1))−L(W (k))).

By Lemma 10, ⟨−η∇L(W (k)),W (k)⟩ > 0, so by Lemma 12, ∥W (k + 1)∥p,p ≥ ∥W (k)∥p,p.
Therefore, we can use Lemma 4 to get that the above is lower-bounded by

1

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p ) +

η

(1 + π)∥W (k)∥p,p
(L(W (k + 1))− L(W (k))).

From Lemma 14, we get that we can lower-bound the above further using the right hand side of
(25).

With all these lemmas in hand, we provide the following Lemma 17.

Lemma 17. Suppose Assumptions A holds and that the step size η is sufficiently small. For any
µ ∈ (0, µ0] and any locally optimal tokens (αi)ni=1 as per Definition 3, there exists constants Rµ and
µ′ ∈ (0, µ] that depends on the dataset and µ such that if C1 is the wider cone Cp,µ,Rµ

(Wα
mm) and

C2 is the thinner cone Cp,µ′,Rµ
(Wα

mm), then if W (0) ∈ C2, then W (k) ∈ C1 for all positive indices
k.
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Figure 1: Illustration of Lemma 17. W (k) for all positive indices k are within the larger set.

Proof. Let π be some positive real number that we determine later, and let Rπ be as described in
Lemma 11.

For the proof, we use induction with the assumption that W (k) ∈ Cp,µ,Rπ (W
α
mm) for all k =

0, . . . ,K − 1. We aim to find the correct µ′ and Rµ such that W (K) ∈ Cp,µ,Rπ (W
α
mm).

Denote W̄ (k) := W (k)
∥W (k)∥p,p

, so

Dψ(W̄
α
mm, W̄ (k)) =

1

p
∥W̄α

mm∥p,p −
1

p
∥W̄ (k)∥p,p − ⟨∇ψ(W̄ (k)), W̄α

mm − W̄ (k)⟩

= 1− ⟨∇ψ(W̄ (k)), W̄α
mm⟩.

So now, let us analyze the term ⟨∇ψ(W̄ (K)), W̄α
mm⟩ using the inductive hypothesis on k =

0, 1, ...,K − 1. Lemma 16 tells us that

⟨∇ψ(W (k + 1))−∇ψ(W (k)), W̄α
mm⟩ ≥

∥W (k + 1)∥p−1
p,p − ∥W (k)∥p−1

p,p

(1 + π)

+
η

∥W (k)∥p,p
(L(W (k + 1))− L(W (k))).

(26)

Since this is true for all k = 0, 1, ...,K − 1, and since ∥W (k)∥p,p is increasing in k, we can sum all
the above inequalities and get the following,

⟨∇ψ(W (K))−∇ψ(W (0)), W̄α
mm⟩ ≥

∥W (K)∥p−1
p,p − ∥W (0)∥p−1

p,p

(1 + π)

+
η

∥W (0)∥p,p
(L(W (K))− L(W (0))).

Rearranging this, we get
∥W (K)∥p−1

p,p − ⟨∇ψ(W (K)), W̄α
mm⟩ ≤ ∥W (0)∥p−1

p,p − ⟨∇ψ(W (0)), W̄α
mm⟩

+
π

1 + π
(∥W (K)∥p−1

p,p − ∥W (0)∥p−1
p,p )

+
η

∥W (0)∥p,p
(L(W (0))− L(W (K))).

Dividing by ∥W (K)∥p−1
p,p , we get

Dψ(W̄
α
mm, W̄ (K)) ≤

∥W (0)∥p−1
p,p

∥W (K)∥p−1
p,p

Dψ(W̄
α
mm, W̄ (0)) +

π

1 + π

(
1−

∥W (0)∥p−1
p,p

∥W (K)∥p−1
p,p

)
+

η

∥W (K)∥p−1
p,p ∥W (0)∥p,p

(L(W (0))− L(W (K)))

≤ µ′ + π +
η(L(W (0))− L(W (K)))

Rpµ
.

(27)
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Therefore, we can simply choose µ′ = 1
3µ, π be any real number below 1

3µ, and have Rµ big enough
so that η(L(W (0))−L(W (K)))

Rp
µ

≤ 1
3µ and Rµ ≥ Rπ , such Rµ exists because L is bounded.

B.5 Lemma for Analyzing Rate of Convergence

Lemma 18. Suppose Assumptions A holds. Let Rδ be from Lemma 10, let c be from Lemma 16, let µ′

andRµ be from Lemma 17 when µ = µ0, and letR := max{Rµ, Rδ, e1/c}. If the initializationW (0)
is in Cp,µ′,R(W

α
mm), then for a sufficiently small step size η, the sequence {W (k)}k≥0 generated by

ℓp-AttGD satisfies

Dψ(W̄
α
mm, W̄ (k)) =



O
(
log ∥W (k)∥p,p
∥W (k)∥p,p

)
if p > 2,

O
(
(log ∥W (k)∥p,p)2

∥W (k)∥p,p

)
if p = 2,

O
(

1

∥W (k)∥p−1
p,p

)
otherwise.

(28)

Proof. Using Lemma 11, setting c as the dataset dependent constant hidden by the O notation for
Rπ , we can get that by setting π = min{ c log ∥W (k)∥p,p

δ∥W (k)∥p,p
, 1}, we can use the result of Lemma 16 on k,

so rearranging that result, we get

∥W (k + 1)∥p−1
p,p − ⟨∇ψ(W (k + 1)), W̄α

mm⟩ ≤ ∥W (k)∥p−1
p,p − ⟨∇ψ(W (k)), W̄α

mm⟩

+
π

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p )

+
η

∥W (k)∥p,p
(L(W (k))− L(W (k + 1))).

From Lemma 10 and Lemma 12, ∥W (k)∥p,p is increasing, so focusing on the second line, we can
use Lemma 5 and get

π

1 + π
(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p ) ≤ π(∥W (k + 1)∥p−1

p,p − ∥W (k)∥p−1
p,p )

≤ cp

δ∥W (k)∥p,p
max{∥W (k)∥p−2

p,p , ∥W (k + 1)∥p−2
p,p }

× log ∥W (k)∥p,p
× (∥W (k + 1)∥p,p − ∥W (k)∥p,p).

From Lemma 8, we know that for all index k,

∥W (k + 1)∥p,p ≤ ∥W (k)∥p,p + ηL, (29)

so we can use integral approximation when bounding the sums of ∆(k)’s. Let

∆(k) =
cp

δ∥W (k)∥p,p
max{∥W (k)∥p−2

p,p , ∥W (k + 1)∥p−2
p,p } log ∥W (k)∥p,p

× (∥W (k + 1)∥p,p − ∥W (k)∥p,p),

so we can get that

∥W (K)∥p−1
p,p − ⟨∇ψ(W (K)), W̄α

mm⟩ ≤ ∥W (0)∥p−1
p,p − ⟨∇ψ(W (0)), W̄α

mm⟩

+

k−1∑
k=0

∆(k) +
η

c
(L(W (0))− L(W (K))),

∥W (K)∥p−1
p,p Dψ(W̄

α
mm, W̄ (K)) ≤ ∥W (0)∥p−1

p,p Dψ(W̄
α
mm, W̄ (0))

+

k−1∑
k=0

∆(k) +
η

c
(L(W (0))− L(W (K))).

(30)
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When p > 2, we have

∆(k) =
cp

δ∥W (k)∥p,p
(∥W (k)∥p,p + ηL)p−2 log ∥W (k)∥p,p(∥W (k + 1)∥p,p − ∥W (k)∥p,p).

We can see that
d

dx
(x+ ηL)p−2(log x− log c) >

p− 2

x
(x+ ηL)p−2 log x

for all x > 0, so from Equation (29), we can get that
K−1∑
k=0

∆(k) = O(∥W (K)∥p−2 log ∥W (K)∥p,p).

When p = 2, we have

∆(k) =
cp

∥W (k)∥p,p
log ∥W (k)∥p,p(∥W (k + 1)∥p,p − ∥W (k)∥p,p).

We can see that
d

dx
(log x)2 >

2

x
(log x)

for all x ≥ c, so from Equation (29), we can get that
K−1∑
k=0

∆(k) = O((log ∥W (K)∥p,p)2).

When p < 2, we have

∆(k) = cp∥W (k)∥p−3
p,p log ∥W (k)∥p,p(∥W (k + 1)∥p,p − ∥W (k)∥p,p).

From Equation (29), we can get that
K−1∑
k=0

∆(k) = O(1).

Combining the above cases with Equation (30), we get that

∥W (K)∥p−1
p,p Dψ(W̄

α
mm, W̄ (K)) =


O(∥W (K)∥p−2

p,p log ∥W (K)∥p,p) if p > 2,

O((log ∥W (K)∥p,p)2) if p = 2,

O(1) otherwise
,

Dividing both sides by ∥W (K)∥p−1
p,p gives (28).

Lemma 19. Suppose Assumptions A holds. Let µ′ be that from Lemma 17 if µ = µ0, and let R the
maximum of the Rµ from 17 and Rδ 10. Let {W (k)}k≥0 be the sequence generated by ℓp-AttGD.
If the initialization W (0) is in Cp,µ′,R(W

α
mm), then with a small enough step size η, we have the

following for each k ≥ 0,

∥W (k)∥p,p = Ω(log k).

Proof. For each k ≥ 0, Lemma 12 gives

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +
η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩.

Lemma 17 gives us that W (k) ∈ Cp,µ,R(Wα
mm) for each k ≥ 0, so by Lemma 10,

η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩ = Ω

(
e
− ∥W (k)∥p,p

∥Wα
mm∥p,p

(1+ 1
2 δ)
)
,

so there exists dataset dependent constants R1, R2 > 0 such that
η

∥W (k)∥p,p
⟨−∇L(W (k)),W (k)⟩ ≥ R1e

−R2∥W (k)∥p,p ,
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so for each k ≥ 0,

∥W (k + 1)∥p−1
p,p ≥ ∥W (k)∥p−1

p,p +R1e
−R2∥W (k)∥p,p .

Set k0 = 0, and let ki+1 be the lowest indices such that ∥W (ki+1)∥p,p ≥ ∥W (ki)∥p,p + 1 for all
index i ≥ 0. Therefore,

ki+1 − ki ≤
(∥W (ki)∥p,p + 1)p−1 − ∥W (ki)∥p−1

p,p

R1e−R2(∥W (ki)∥p,p+1)
= eO(∥W (ki)∥p,p).

Therefore,
∥W (k)∥p,p = Ω(log k).

C Proof of Theorem 1

Proof. The proof is similar to the proof of [53, Theorem 1]. Specifically, we need to show that
f(X) = v⊤X⊤σ(XW ) satisfies the assumptions of [53, Lemma 14], where the nonlinear head is
replaced by the linear term v. This holds independently of the choice of algorithm or the attention
SVM solution. Thus, we omit the details and refer to the proof of [53, Theorem 1].

D Proof of Theorem 2

Proof. It is enough to show the existence of such constants µ,R > 0 such that if W (0) is in
Cp,µ,R(W

α
mm), then the norm diverges to infinity. As discussed in Lemma 12, for any timestep k,

∥W (k + 1)∥p−1
p ≥ ∥W (k)∥p−1

p − η

∥W (k)∥p
⟨∇L(W (k)),W (k)⟩. (31)

Let R1 be the R from Lemma 10, set µ and R2 to be the µ′ and R for µ = µ0 of Lemma 17, and set
R := max{R1, R2}. From Lemma 17, we know that W (k) ∈ Cp,µ0,R(W

mm
α ) for any timestep k,

so from Lemma 10,
⟨∇L(W (k)),W (k)⟩ < 0,

for all timesteps k.

Therefore, the lp-norm is always increasing, but this does not immediately imply that the lp-norm
will approach infinity; it could converge to a finite value. However, if ∥W (k)∥p converges to a finite
value, then again by Lemma 10, we get a lower bound for − η

∥W (k)∥p
⟨∇L(W (k)),W (k)⟩ at any

timestep k. Therefore, by Equation (31),

lim
k→∞

∥W (k)∥p−1
p =∞,

a contradiction, so ∥W (k)∥p converges to infinity.

E Proof of Theorem 3

Proof. This is a direct consequence of Theorem 4.

F Proof of Theorem 4

Proof. Let R be the one from Lemma 18. Given W (0) ∈ Cp,µ,R(Wα
mm), by Lemma 18, we have

Dψ(W̄
α
mm, W̄ (k)) =



O
(
log ∥W (k)∥p,p
∥W (k)∥p,p

)
if p > 2,

O
(
(log ∥W (k)∥p,p)2

∥W (k)∥p,p

)
if p = 2,

O
(

1

∥W (k)∥p−1
p,p

)
otherwise.
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From Lemma 19, we know that

∥W (k)∥p,p = Ω(log k).

The derivative d
dx

(
log x
x

)
= 1−log x

x2 is negative when x > e, so log x
x is decreasing when x > e.

Similarly, (log x)2

x is decreasing when x > e2.

Thus when p > 2, for a large enough k,

Dψ(W̄
α
mm, W̄ (k)) = O

(
log log k

log k

)
. (32a)

Similarly, when p = 2, for a large enough k,

Dψ(W̄
α
mm, W̄ (k)) = O

(
(log log k)2

log k

)
. (32b)

Finally, when 1 < p < 2,

Dψ(W̄
α
mm, W̄ (k)) = O

(
1

(log k)p−1

)
. (32c)

G On the Convergence of the ℓp Regularization Path for Joint W and v

In this section, we extend the results of Theorem 1 to the case of joint optimization of head v and
attention weights W using a logistic loss function.

Assumption B. Let Γ,Γ′ > 0 denote the label margins when solving (ℓp-SVM) with Xiαi
and its

replacement with X⊤
i σ(XiWzi), for all i ∈ [n], respectively. There exists ν > 0 such that for all

i ∈ [n] and W ∈ Rd×d,

Γ− Γ′ ≥ ν · (1− siαi
), where siαi

= [σ(XiWzi)]αi
.

Assumption B is similar to [53] and highlights that selecting optimal tokens is key to maximizing
the classifier’s label margin. When attention features, a weighted combination of all tokens, are
used, the label margin shrinks based on how much attention is given to the optimal tokens. The term
ν · (1− siαi

) quantifies this minimum shrinkage. If the attention mechanism fails to focus on these
tokens (i.e., low siαi), the margin decreases, reducing generalization. This assumption implies that
optimal performance is achieved when attention converges on the most important tokens, aligning
with the max-margin attention SVM solution.

Similar to how we provided the characterization of convergence for the regularization path of
ℓp-AttGD, we offer a similar characterization here for ℓp-JointGD.

Theorem 5 (Joint ℓp–norm Regularization Path). Consider (ERM) with a logistic loss l(x) =
log(1 + e−x), and define

(v(r),W (R)) := argmin(v,W ) L(v,W ) subj. to ∥W∥p,p ≤ R and ∥v∥p ≤ r. (ℓp-JointRP)

Suppose there are token indices α = (αi)
m
i=1 for which Wα

mm of (ℓp-AttSVM) exists and Assump-
tion B holds for some Γ, ν > 0. Then,

lim
(r,R)→(∞,∞)

(
v(r)

r
,
W (R)

R

)
=

(
vmm

∥vmm∥p
,

Wα
mm

∥Wα
mm∥p,p

)
. (33)

Here, vmm and Wα
mm are the solution of (ℓp-SVM) and (ℓp-AttSVM), respectively.

Proof. The proof is similar to the proof of [53, Theorem 5]. We provide the revised version for the
generalized attention SVM, tracking the required changes. Without loss of generality, we set αi = 1
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for all i ∈ [n], and we use Wmm instead of Wα
mm. Suppose the claim is incorrect, meaning either

W (R)/R or v(r)/r fails to converge as R and r grow. Define

Ξ =
1

∥W̄mm∥p,p
, Γ =

1

∥vmm∥p
,

W̄mm := RΞWmm, v̄mm := rΓvmm (34)

Our strategy is to show that (v̄mm, W̄mm) is a strictly better solution compared to (v(r),W (R)) for
large R and r, leading to a contradiction.

• Case 1: W (R)/R does not converge to W̄mm/R. In this case, there exists δ, γ = γ(δ) > 0 such
that we can find arbitrarily large R with

∥W (R)/R− W̄mm/R∥ ≥ δ

and the margin induced by W (R)/R is at most Ξ(1− γ).
We bound the amount of non-optimality q∗i of W̄mm:

q∗i :=

∑
t ̸=αi

exp(X⊤
it W̄mmzi)∑

t∈[T ] exp(X
⊤
it W̄mmzi)

≤
∑
t ̸=αi

exp(X⊤
it W̄mmzi)

exp(X⊤
iαi
W̄mmzi)

≤ T exp(−ΞR).

Thus,
q∗max := max

i∈[n]
q∗i ≤ T exp(−ΞR). (35a)

Next, assume without loss of generality that the first margin constraint is γ-violated by W (R),
meaning

min
t̸=α1

(X1α1 −X1t)
⊤W (R)z1 ≤ ΞR(1− γ).

Denoting the amount of non-optimality of the first input of W (R) as q̂1, we find

q̂1 :=

∑
t ̸=α1

exp(X⊤
1tW

(R)z1)∑
t∈[T ] exp(X

⊤
1tW

(R)z1)
≥ 1

T

∑
t̸=α1

exp(X⊤
1tW

(R)z1)

exp(X⊤
1α1

W (R)z1)

≥ T−1 exp(−(1− γ)RΞ).

This implies that
q̂max := max

i∈[n]
q∗i ≥ T−1 exp(−ΞR(1− γ)). (35b)

We similarly have
q∗max ≥ T−1 exp(−ΞR). (35c)

Thus, (35) gives the following relationship between the upper and lower bounds on non-optimality:

−(1− γ)ΞR− log T ≤ log(q̂max),

−ΞR− log T ≤ log(q∗max) ≤ −ΞR+ log T. (36)

In other words, W̄mm has exponentially less non-optimality compared to W (R) as R grows. To
proceed, we need to upper and lower bound the logistic loss of (v̄mm, W̄mm) and (v(r),W (R))
respectively, to establish a contradiction.

• Sub-Case 1.1: Upper bound for L(v̄mm, W̄mm). We now bound the logistic loss for the limiting
solution. Set r̄i = X⊤

i σ(XiW̄mmzi). If ∥r̄i −Xi1∥p ≤ ϵi, then vmm satisfies the SVM constraints
on r̄i with Yi · r̄⊤i vmm ≥ 1 − ϵi/Γ. Setting ϵmax = supi∈[n] ϵi, vmm achieves a label-margin of
Γ − ϵmax on the dataset (Yi, r̄i)i∈[n]. Let M = supi∈[n],t,τ∈[T ] ∥Xit −Xiτ∥p. Recalling (36), the
worst-case perturbation is

ϵmax ≤M exp(−ΞR+ log T ) =MT exp(−ΞR).
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This implies the upper bound on the logistic loss:

L(v̄mm, W̄mm) ≤ max
i∈[n]

log(1 + exp(−Yir̄⊤i v̄mm))

≤ max
i∈[n]

exp(−Yir̄⊤i v̄mm)

≤ exp(−rΓ + rϵmax)

≤ erMT exp(−ΞR)e−rΓ. (37)

• Sub-Case 1.2: Lower bound for L(v(r),W (R)). We now bound the logistic loss for the finite
solution. Set r̄i = X⊤

i σ(XiW
(R)zi). Using Assumption B, solving (ℓp-SVM) on (yi, r̄i)i∈[n]

achieves at most Γ− νe−(1−γ)ΞR/T margin. Consequently, we have:

L(v(r),W (R)) ≥ 1

n
max
i∈[n]

log(1 + exp(−Yir̄⊤i v(r)))

≥
(

1

2n
max
i∈[n]

exp(−Yir̄⊤i v(r))
)
∧ log 2

≥
(

1

2n
exp(−r(Γ− νe−(1−γ)ΞR/T ))

)
∧ log 2

≥
(

1

2n
er(ν/T ) exp(−(1−γ)ΞR)e−rΓ

)
∧ log 2.

Observe that this lower bound dominates the upper bound from (37) when R is large, specifically
when (ignoring the multiplier 1/2n for simplicity):

(ν/T )e−(1−γ)ΞR ≥MTe−ΞR =⇒ R ≥ 1

γΞ
log

(
MT 2

ν

)
.

Thus, we obtain the desired contradiction since such a largeR is guaranteed to exist whenW (R)/R ̸→
W̄mm. Therefore, W (R)/R must converge to W̄mm/R.

• Case 2: Suppose v(r)/r does not converge. In this case, there exists δ > 0 such that we
can find arbitrarily large r obeying dist(v(r)/r, v̄mm/r) ≥ δ. If dist(W (R)/R,ΞWmm) ̸→ 0,
then "Case 1" applies. Otherwise, we have dist(W (R)/R,ΞWmm) → 0, thus we can assume
dist(W (R)/R,ΞWmm) ≤ ϵ for an arbitrary choice of ϵ > 0.

On the other hand, due to the strong convexity of (ℓp-AttSVM), for some γ := γ(δ) > 0, v(r)
achieves a margin of at most (1− γ)Γr on the dataset (Yi, Xi1)i∈[n], where Xi1 denotes the optimal
token for each i ∈ [n]. Additionally, since dist(W (R)/R,ΞWmm) ≤ ϵ, W (R) strictly separates
all optimal tokens (for small enough ϵ > 0) and q̂max := f(ϵ) → 0 as R → ∞. Note that f(ϵ)
quantifies the non-optimality of W (R) compared to Wmm; as ϵ→ 0, meaning W (R)/R converges
to ΞWmm/R, f(ϵ)→ 0. Consequently, setting ri = X⊤

i σ(XiW
(R)zi), for sufficiently large R > 0

and setting M = supi∈[n],t∈[T ] ∥Xit∥, we have that

min
i∈[n]

yi(v
(r))⊤ri ≤ min

i∈[n]
yi(v

(r))⊤Xi1 + sup
i∈[n]

|(v(r))⊤(Xit −Xi1)|

≤ (1− γ)Γr +Mf(ϵ)r

≤ (1− γ/2)Γr. (38)
This in turn implies that logistic loss is lower bounded by

L(v(r),W (R)) ≥
(

1

2n
eγΓr/2e−Γr

)
∧ log 2.

Going back to (37), this exponentially dominates the upper bound of (W̄mm, v̄mm) whenever
rMT exp(−ΞR) < rγΓ/2 (that is, whenever R, r are sufficiently large), again concluding the
proof.
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H Implementation Details

The experiments were run on an Intel i7 core and a single V100 GPU using the pytorch and
huggingface libraries. They should be runnable on any generic laptop. The GitHub repository can be
found here.

H.1 Illustrating Optimal Tokens

Example 1. Consider the matricesX1 = [5, 0; 0, 1] andX2 = [−5, 0; 0, −1] with y1 = −y2 = 1.
Let xi1 be the optimal token and xit be the others. Problem (ℓp-AttSVM) with p = 3 and zi = Xi1

yields Wα
mm = Wmm = [0.03846, 0; −0.00769, 0]. Figure 2 illustrates how the optimal tokens

X11 and X21 are separated by the dashed lines (orthogonal to Wmmzi) for each sequence.

Figure 2: Visualization of Problem (ℓp-AttSVM) with p = 3.

H.2 Synthetic Data Experiment

We describe the setup of the experiments for ℓp-AttGD and ℓp-JointGD and their results.

ℓp-AttGD Experiment. To measure the directional distance between Wmm
α ((ℓp-AttSVM) solution)

andW (k) (output of ℓp-AttGD), we use a directional Bregman divergence, defined forW,V ∈ Rd×d
as Dψ(W/∥W∥p,p, V/∥V ∥p,p). We compare the (ℓp-AttSVM) solution with the ℓq optimization
path for all p, q ∈ {1.75, 2, 3} for synthetically generated data. The experiment is repeated 100 times,
and the average directional Bregman divergence is reported. A closer look at one sample trial is also
provided.

The dataset (Xi, Yi, zi)
n
i=1 used for the experiment is generated randomly: Xi and zi are sampled

from the unit sphere, and Yi is uniformly sampled from {±1}. Additionally, v is randomly selected
from the unit sphere. We use n = 6 samples, T = 8 tokens per sample, and d = 10 dimensions per
token, fulfilling the overparameterized condition for the ℓp-AttSVM problem to be almost always
feasible.
The model parameter is initialized near the origin, and it is trained using Algorithms ℓp-AttGD
with p = 1.75, 2, and 3, and a learning rate of 0.1. Training lasted for 1, 500 epochs for p = 1.75,
2, 000 epochs for p = 2, and 20, 000 epochs for p = 3. Gradients are normalized to accelerate
convergence without altering results significantly. We refer to the parameter histories as the ℓ1.75, ℓ2,
and ℓ3 optimization paths. We compute the chosen tokens (αi)ni=1 for the (ℓp-AttSVM) problem by
selecting the token with the highest softmax probability for each sample. This process is repeated for
p = 1.75, 2, and 3.

Figure 4 shows the directional Bregman divergence between the (ℓp-AttSVM) solution and the ℓq
optimization path for each pair p, q ∈ {1.75, 2, 3}. In Figure 4a, the divergence converges to 0
only for the (ℓp-AttSVM) (p = 1.75) solution, indicating that the ℓ1.75 path does not converge to
the p = 2 or 3 solutions. The shrinking standard deviation shows consistent behavior. Similarly,
Figures 4b and 4c show the divergence converging to 0 for the corresponding (ℓp-AttSVM) solution,
demonstrating that the ℓp optimization path converges to the (ℓp-AttSVM) solution, with the direction
of convergence changing with p.
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Figure 3: Visualizing the effect of token selection on margin size in (ℓp-SVM) for Example 1. The
first plot illustrates the largest class margin, indicating the optimality of tokens X11 and X21. In
subsequent plots, as different tokens are used, the class margin (light blue shaded area) decreases,
reflecting suboptimal class separation.

(a) ℓ1.75 Convergence Rate (b) ℓ2 Convergence Rate (c) ℓ3 Convergence Rate

Figure 4: Average directional Bregman divergence between the (a) ℓ1.75, (b) ℓ2, and (c) ℓ3 optimiza-
tion paths and the (ℓp-AttSVM) solutions for p = 1.75, 2, and 3 at each training iteration from 100
trials. The shaded area represents the standard deviation of the directional Bregman divergence.

Using this same synthetic data, we can also observe the convergence in direction for one of the
trials directly by plotting how two of the entries of W change during training simultaneously and
plotting it on a Cartesian graph, then showing that the path it follows converges to the direction of
the (ℓp-AttSVM) solution. As we can see in Figure 5, each of the ℓp optimization paths follows the
direction of the corresponding (ℓp-AttSVM) solution.

ℓp-JointGD Experiment. We use the data from the following to train a model using ℓp-JointGD
for p = 1.75, 2, and 3.
Example 2. Let n = 2, T = 3, d = 2. Let y1 = 1, y2 = −1. Let:

X1 =

(
X11

X12

X13

)
=

(−5.4 2.4
2.8 4.2
2.6 −0.2

)
, and X2 =

(
X21

X22

X23

)
=

(
0.8 −4.4
−2.2 −0.8
1.8 0.2

)
. (39)

Let z1 = X11, z2 = X21.

We use learning rates 0.1 and we trained the model for 1, 500 epochs for when p = 1.75, 2, 000
epochs for p = 2, and 20, 000 epochs for p = 3. As it was done in the previous experiment, we
obtain the parameter history for each p, and compute the optimal token for the (ℓp-AttSVM) and
ℓp-SVM problems.

The comparison between the iterates and the SVM solutions in Figure 6 shows that the iterates of W
and v converge to the ℓp-AttSVM and ℓp-SVM directions, respectively, for each of p = 1.75, 2, and
3. These convergence are similar to Theorem 5, as in both this experiment and that theorem, we get
that the iterates converge to the SVM problem solutions. In addition to these iterates, we record the
evolution of the average softmax probability of the optimal token, along with the average logistic
probability of the model, which we define to be 1/n

∑n
i=1 1/(1 + e−γiαi ).

As we can see in Figure 7, each of the average softmax probability converges to 1, indicating that the
attention mechanism produces a softmax probability vector that converges to a one-hot vector for the
different ℓp-JointGD training. Furthermore, the average logistic probability also converges to 1,
indicating that the model’s prediction converges to a 100% accuracy.
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(a) ℓ1.75 Optimization Path (b) ℓ2 Optimization Path (c) ℓ3 Optimization Path

Figure 5: Direction of change of two entries of W updated by ℓp-AttGD with p = 1.75, p = 2, and
p = 3 for one trial, shown in (a), (b), and (c). Each axis represents a different entry. The orange line
shows the direction of (ℓp-AttSVM).

(a) ℓ1.75 Iterates (b) ℓ2 Iterates (c) ℓ3 Iterates

Figure 6: Iterates of the W and v parameters of the model as they are trained using ℓp-JointGD for
p = 1.75, 2, and 3, along with the corresponding ℓp-AttSVM and ℓp-SVM directions.

(a) ℓ1.75 Probabilties (b) ℓ2 Probabilties (c) ℓ3 Probabilties

Figure 7: Softmax probability evolution of the optimal token and logistic probability evolution for
p = 1.75, 2, and 3.
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H.3 Additional Real Experiments

We collect the training weights from the resulting models trained by ℓ1.1 mirror descent and the
gradient descent and plot a histogram of their absolute values in Figure 8. Specifically, we take the
histogram of the weights responsible for determining the softmax within the model and the value
matrices. The figures shows us that the resulting model that was trained using ℓ1.1 mirror descent is
sparser than the one trained using gradient descent, which could hint at a potential explanation as to
why ℓ1.1 mirror descent can outperform the standard gradient descent algorithm when it is used to
train attention-based models.

(a) WK parameters with ℓ1.1-MD (b) WQ parameters with ℓ1.1-MD (c) WV parameters with ℓ1.1-
MD

(d) WK parameters with ℓ2-MD (e) WQ parameters with ℓ2-MD (f) WV parameters with ℓ2-MD

Figure 8: Histogram of the absolute values of the WK ,WQ, and WV components of transformer
models trained with ℓ1.1 and ℓ2-MD on the Stanford Large Movie Review Dataset. Only large
parameters (≥ 0.06) are shown, with the maximum magnitude component marked by a red dot. The
ℓ1.1-MD model has 18, 206 components in WK , 13, 964 in WQ, and 7, 643 in WV with magnitudes
≥ 0.06, while the ℓ2-MD model has 27, 224 in WK , 14, 654 in WQ, and 10, 127 in WV with such
magnitudes. These results imply that the ℓ1.1-MD algorithm yields sparser parameters and that it
would have a stronger token selection ability.
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Finally, the following figures show the full attention maps.
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Figure 9: The attention map generated by the resulting models that were trained using ℓ1.1 mirror
descent and gradient descent for five sample sentences. For three out of five of the sample sentences,
the model trained using ℓ1.1 mirror descent selects the optimal token better than the model trained
using gradient descent.
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