

# MUON OUTPERFORMS ADAM IN TAIL-END ASSOCIATIVE MEMORY LEARNING

000  
001  
002  
003  
004  
005 **Anonymous authors**  
006 Paper under double-blind review  
007  
008  
009  
010

## ABSTRACT

011 The Muon optimizer is consistently faster than Adam in training Large Language  
012 Models (LLMs), yet the mechanism underlying its success remains unclear. This  
013 paper demystifies this mechanism through the lens of associative memory. By  
014 ablating the transformer components optimized by Muon, we reveal that the as-  
015 sociative memory parameters of LLMs, namely the Value and Output (VO) atten-  
016 tion weights and Feed-Forward Networks (FFNs), are the primary contributors to  
017 Muon’s superiority. Motivated by this associative memory view, we then explain  
018 Muon’s superiority on real-world corpora, which are intrinsically heavy-tailed: **a**  
019 **few ‘head’ classes are extremely frequent, while a vast number of ‘tail’ classes are**  
020 **individually rare**. The superiority is explained through two key properties: (i) its  
021 update rule consistently yields a more isotropic singular spectrum than Adam; and  
022 as a result, (ii) on heavy-tailed data, it optimizes tail classes more effectively than  
023 Adam. Beyond empirical evidence, we theoretically confirm these findings by an-  
024 alyzing a one-layer associative memory model under class-imbalanced data. We  
025 prove that Muon consistently achieves balanced learning across classes regard-  
026 less of feature embeddings, whereas Adam can induce large disparities in learning  
027 errors depending on embedding properties. In summary, our empirical observa-  
028 tions and theoretical analyses reveal Muon’s core advantage: its update rule aligns  
029 with the outer-product structure of linear associative memories, enabling more  
030 balanced and effective learning of tail classes in heavy-tailed distributions than  
031 Adam.

## 1 INTRODUCTION

032 The effectiveness of Adam (Kingma & Ba, 2015) across diverse training scenarios has made it one  
033 of the most widely used optimizers for neural networks, serving as a cornerstone of the tremendous  
034 successes of Large Language Models (LLMs). Building on this foundation, Muon (Jordan et al.,  
035 2024) has emerged as a matrix-parameter optimizer designed to surpass Adam. Empirical studies  
036 show that Muon is nearly 2 times faster than Adam across a wide range of model sizes and  
037 architectures (Liu et al., 2025; Jordan et al., 2024). Its key innovation is to replace the raw gradient  
038 with the sum of its normalized orthogonal factors, which can be interpreted as performing steepest  
039 descent with respect to the spectral norm (Bernstein & Newhouse, 2024).

040 However, despite its empirical success, a rigorous understanding of why and how Muon outperforms  
041 Adam in transformers remains incomplete. In particular, the steepest gradient descent interpretation  
042 does not clarify why optimization with respect to the spectral norm, as in Muon, should outperform  
043 optimization with respect to the infinity norm (for vectors), as in Adam. Consequently, convergence  
044 analyses of Muon derived from this interpretation fail to account for its observed superiority over  
045 Adam (Li & Hong, 2025; Shen et al., 2025).

046 This paper takes the first step toward understanding the mechanisms underlying Muon’s superiority  
047 over Adam in training LLMs. Specifically, we ask the following two questions:

048  
049  
050  
051  
052  
053

1. *Which transformer components benefit most from Muon’s matrix-norm-based optimization compared to Adam?*
2. *What structural features of the transformer allow Muon to optimize these components more effectively?*

054 To answer the first question, we apply Muon to different transformer components. Our experiments  
 055 consistently show that the more rapid convergence of the validation loss using the Muon optimizer  
 056 compared to Adam is primarily due to the former’s focus on the value-output (VO) matrices of  
 057 the attention mechanism and the Feed-Forward Networks (FFN) blocks. This leads to our first key  
 058 insight: VO and FFN blocks, which serve as the primary associative memory stores in the model  
 059 ([Geva et al., 2020](#); [Bietti et al., 2023](#)), are the main beneficiaries of Muon’s optimization strategy.

060 Building on this, we address the second question linking Muon’s update mechanism to the learning  
 061 dynamics of associative memory. Prior work suggests that the behavior of these memory compo-  
 062 nents can be modeled as a sum of outer products representing stored facts ([Meng et al., 2022a](#)).  
 063 Since Muon’s update assigns equal update magnitudes to each outer product of the gradient corre-  
 064 sponding to orthogonal singular directions, we hypothesize that it optimizes associative memories  
 065 more effectively than Adam because: (i) Muon’s spectral normalization procedure balances the rates  
 066 of learning of these outer products. (ii) Thus, when training on heavy-tailed data (i.e., where a few  
 067 ‘head’ classes are extremely frequent, while a vast number of ‘tail’ classes are individually rare),  
 068 Muon reduces the dominance of frequent (head) facts and enables more effective learning from  
 069 infrequent (tail) facts compared to Adam.

070 We validate these hypotheses through a combination of empirical analysis and theoretical modeling.  
 071 Empirically, we conduct two experiments. First, we measure the singular value spectra of the weight  
 072 matrices and show that Muon consistently yields more isotropic representations than Adam, indi-  
 073 cating that its normalization prevents spectral energy from concentrating in dominant components.  
 074 Second, we evaluate the performance of both optimizers on a knowledge-intensive, heavy-tailed  
 075 task to demonstrate the practical benefit of Muon’s more balanced updates: while both optimizers  
 076 perform well on head classes (frequent in training data), Muon outperforms Adam on tail classes  
 077 (rare in training data), leading to more stable and uniform convergence.

078 Theoretically, we focus on a one-layer linear associative memory model to rigorously explain  
 079 these empirical findings. Under class imbalance in the training data, mimicking a heavy-tailed  
 080 distribution, we show that Muon maintains balanced learning across classes, regardless of the  
 081 feature embeddings. In contrast, we prove that Adam’s performance is unstable and strongly  
 082 dependent on the embedding structure, which can lead to large disparities in learning error across  
 083 classes. By closely examining the parameter updates, we find that the singular spectrum of weight  
 084 matrices trained by Muon is nearly isotropic, whereas Adam’s is uneven.

085 Summarizing the empirical and theoretical findings, we identify a clear mechanism underlying  
 086 Muon’s superiority: **The Muon update rule is aligned with the outer-product structure of linear**  
 087 **associative memories, enabling more balanced and effective learning of tail classes in heavy-**  
 088 **tailed distributions as compared with Adam.**

## 2 PRELIMINARIES

095 **Muon** ([Jordan et al., 2024](#)) is an optimizer tailored for matrix parameters that replaces the raw (or  
 096 momentum) gradient with the sum of its *normalized orthogonal factors*, producing a scale-invariant,  
 097 norm-controlled update direction. For a weight matrix  $W \in \mathbb{R}^{m \times n}$  at step  $t$ , let  $G_t = \nabla_W \mathcal{L}(W_t)$   
 098 denote its gradient. Muon maintains a momentum accumulator of gradients as  $B_t = \mu B_{t-1} +$   
 099  $G_t$  with  $B_0 = 0$ , and  $\mu \in [0, 1]$ . At each step, Muon computes the Singular Value Decomposition  
 100 (SVD) of  $B_t$  as  $B_t = U_t S_t V_t^\top$  with  $U_t \in \mathbb{R}^{m \times r_t}$ ,  $V_t \in \mathbb{R}^{n \times r_t}$ , where  $r_t = \text{rank}(B_t)$ , and  
 101 form the nearest (semi)-orthogonal matrix  $O_t = U_t V_t^\top$ . Then Muon updates the parameter as  
 102  $W_{t+1} = W_t - \eta_t O_t$ . In practice, one can approximate  $O_t$  using a fixed number (e.g., 5) of Newton-  
 103 Schulz iterations applied to  $B_t (B_t^\top B_t)^{-1/2}$ , which avoids the full SVD while preserving the scale  
 104 normalization effect. Detailed introduction of Muon is in the related works section (Appendix C).

105 **Transformers** serve as the backbone of LLMs, predicting the probability of the next token given a  
 106 sequence of  $N$  tokens. A sequence of  $N$  tokens is embedded into a matrix  $X^{(0)} \in \mathbb{R}^{d \times N}$ . The first  
 107 layer takes  $X^{(0)}$  as the input, and each subsequent layer takes the previous layer’s output as its input.  
 Every layer  $\ell \in [L]$  processes its input through two sequential components: an attention module and

108 a FFN module. The attention module computes  
 109

$$110 \quad H^{(\ell)} = X^{(\ell-1)} + \sum_{h=1}^H W_{O,h}^{(\ell)} W_{V,h}^{(\ell)} X^{(\ell-1)} \text{sm}\left(X^{(\ell-1),\top} W_{K,h}^{(\ell),\top} W_{Q,h}^{(\ell)} X^{(\ell-1)}\right), \quad (2.1)$$

113 where  $\text{sm}(\cdot)$  is the column-wise softmax operator,  $H$  is the number of attention heads,  
 114  $W_{Q,h}^{(\ell)}, W_{K,h}^{(\ell)} \in \mathbb{R}^{d_k \times d}$  capture token relationships, and  $W_{V,h}^{(\ell)} \in \mathbb{R}^{d_v \times d}$ ,  $W_{O,h}^{(\ell)} \in \mathbb{R}^{d \times d_v}$  apply  
 115 linear transformations. The feed-forward module then updates the representation as

$$116 \quad X^{(\ell)} = H^{(\ell)} + \text{ff}(H^{(\ell)}, W_{\text{in}}^{(\ell)}, W_{\text{out}}^{(\ell)}) = H^{(\ell)} + W_{\text{out}}^{(\ell)} \sigma(W_{\text{in}}^{(\ell)} H^{(\ell)}), \quad (2.2)$$

118 where  $\sigma(\cdot)$  is the element-wise activation function, and  $W_{\text{in}}^{(\ell)} \in \mathbb{R}^{d_f \times d}$ ,  $W_{\text{out}}^{(\ell)} \in \mathbb{R}^{d \times d_f}$  are learnable  
 119 parameters. A gated variant replaces the standard form with

$$121 \quad \text{ff}_{\text{gate}}(H^{(\ell)}, W_{\text{in}}^{(\ell)}, W_{\text{out}}^{(\ell)}, W_{\text{gate}}^{(\ell)}) = W_{\text{out}}^{(\ell)} (\sigma(W_{\text{in}}^{(\ell)} H^{(\ell)}) \odot (W_{\text{gate}}^{(\ell)} H^{(\ell)})),$$

123 where  $\odot$  is the Hadamard product, and  $W_{\text{gate}}^{(\ell)} \in \mathbb{R}^{d_f \times d}$  is an additional mapping. After  $L$  layers, the  
 124 final hidden state of the last token,  $X_{-1}^{(L)}$ , is projected by the language model head  $E_{\text{head}} \in \mathbb{R}^{K \times d}$  to  
 125 produce logits  $E_{\text{head}} X_{-1}^{(L)}$ , which has a vocabulary of size of  $K$ .

127 **Associative memory** refers to architectures that store and retrieve patterns based on learned asso-  
 128 ciations between inputs and outputs. Recent research has examined *linear* associative memory in  
 129 LLMs. Specifically, consider a triplet  $(s, r, o)$ , where  $s$  is the subject,  $r$  the relation, and  $o$  the object  
 130 (e.g.,  $s$  = “The United Nations headquarters”,  $r$  = “is located in”,  $o$  = “New York City”). A linear  
 131 associative memory  $W$  maps a key vector  $e_s$  encoding  $(s, r)$  to a value vector  $e_o$  encoding  $o$ , such  
 132 that  $e_o = We_s$  holds for all possible  $(s, r, o)$ . Under the orthogonality of embeddings  $e_s$  and  $e_o$ ,  
 133  $W$  can be expressed as  $W = \sum_i e_{o_i} e_{s_i}^{\top}$ , where the summation is taken over the indexes of facts.  
 134 These facts naturally emerge in the token association in the pretraining data, e.g., the coappearance  
 135 of “SpaceX” and “Elon Musk”, and are learned by LLMs in the form of associative memories.  
 136 Prior work has investigated associative memory in both attention and FFN modules. In the attention  
 137 module, Bietti et al. (2023) showed that the parameter  $W_O$  can serve as a linear associative mem-  
 138 ory when  $W_V$  is fixed. Since  $W_O$  and  $W_V$  play symmetric roles, we also treat  $W_V$  as part of the  
 139 associative memory parameters. It is therefore natural to consider VO jointly: several works (Lin  
 140 et al., 2024; Wang et al., 2025) have shown that the value and output matrices play similar roles  
 141 and can be analyzed together in practice, even in multi-query attention (MQA) and grouped-query  
 142 attention (GQA) settings. In FFN, works on knowledge editing (Geva et al., 2020; Dai et al., 2021;  
 143 Meng et al., 2022a;b) have identified the module as functioning as an associative memory, which  
 144 can be well approximated by linear associative memory models. In fact, they demonstrate that we  
 145 can manually update the knowledge in Large Language Models (LLMs) using least squares on the  
 146 FFN parameters (Meng et al., 2022a;b; Fang et al., 2024). Thus, throughout this paper, we refer to  
 147  $W_O$ ,  $W_V$ , and FFN in LLMs as the *associative memory parameters*.

### 148 3 MAIN RESULTS

#### 149 3.1 ASSOCIATIVE MEMORIES ARE MAIN BENEFICIARIES OF MUON

151 In this section, we identify the transformer components that benefit most from Muon by measuring  
 152 validation loss on the FineWeb dataset using a 160M NanoGPT model. We adopt a two-stage  
 153 protocol. First, in the “Independent Blocks” setting, we apply Muon to a single block at a time  
 154 while keeping all other blocks on Adam, covering the attention projections  $W_Q, W_K, W_V, W_O$   
 155 and the feed-forward matrices  $W_{\text{in}}, W_{\text{out}}$ . Second, in the “Combined Configurations” setting, we  
 156 apply Muon to the most impactful subsets identified in the first stage to examine whether a partial  
 157 application can recover the performance gains of full Muon. As introduced in Section 2, we evaluate  
 158 both gated and non-gated FFN variants of NanoGPT. The experimental details are in Appendix F.

159 Figure 1 presents our results. We first examine the independent-block experiments for attention.  
 160 From Figures 1(a) and 1(c), the VO weights  $W_V, W_O$  (Muon on VO / Adam on QK and FFN) show  
 161 substantially larger gains under Muon than the QK weights  $W_Q, W_K$  (Muon on QK/Adam on VO  
 and FFN). Notably, applying Muon to only  $W_V$  or only  $W_O$  already yields much larger gains than

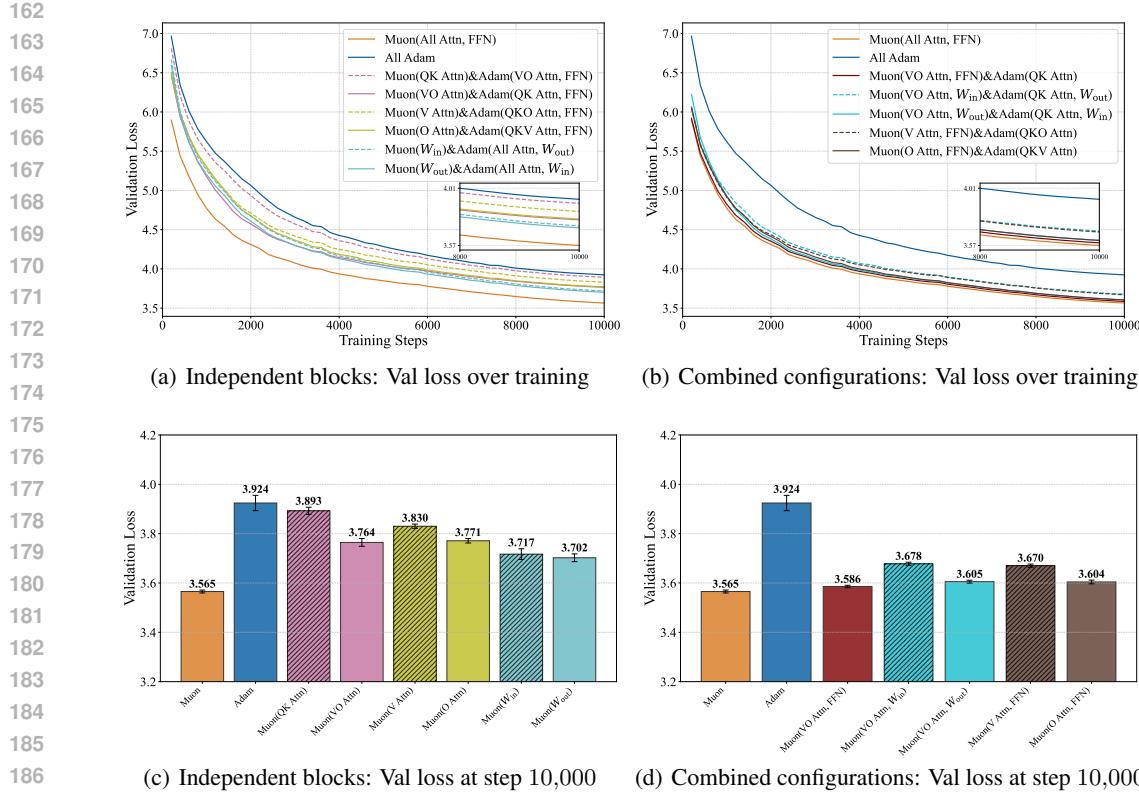


Figure 1: Validation loss comparison on the 160M NanoGPT model with non-gated FFN under different Muon/Adam assignments. Panels (a) and (b) show the validation loss over training steps for the Independent Blocks and Combined Configurations settings, respectively. Panels (c) and (d) report the corresponding validation loss at step 10,000 for each mode, summarizing the final performance of the Independent Blocks and Combined Configurations.

applying it to QK. For the FFN, we find that  $W_{in}$ ,  $W_{gate}$ , and  $W_{out}$  all benefit from Muon, with  $W_{out}$  yielding stronger improvements than  $W_{in}$ . [As we show in Appendix G.2](#), these trends persist even after controlling for parameter count.

After identifying the importance of each module, the combined configurations aim to quantify their contributions to the full Muon. Guided by the independent-block findings, we first observe that VO+FFN already closely tracks—and in our runs nearly recovers—the full-Muon trajectory in Figure 1(b). This indicates that applying Muon to QK contributes little to its overall performance. Importantly, this effect is not due to the logit explosion reported by [Team et al. \(2025\)](#) in large Mixture of Experts (MoE) models; logit values for our setting do not explode, as reported in Appendix G.1. The small remaining gap between full Muon and VO+FFN may stem from the fact that VO+FFN adopts the same learning rate as full Muon without further tuning.

To isolate the contributions of  $W_O$  and  $W_V$  within VO+FFN, we perform ablations starting from the VO+FFN setting: we keep Muon on FFN and on only one of  $W_O$  or  $W_V$ , reverting the other to Adam (i.e., V+FFN and O+FFN). Both ablations degrade performance, with the V+FFN variant dropping more, indicating that  $W_O$  is more influential than  $W_V$ . Overall, applying Muon to VO+FFN is critical for recovering full-Muon performance. The same qualitative patterns hold for the gated FFN variant reported in Appendix G.3, and are further confirmed on a larger 0.7B model in Appendix G.4, demonstrating the robustness of our findings.

**Observation 1:** Muon is most effective when applied to VO and FFN; in particular, applying Muon to only VO+FFN almost recovers the full-Muon trajectory.

216 **Remark 3.1.** We emphasize that this observation is not a trivial consequence of parameter counting;  
 217 although QK and VO are equal in size, VO proves substantially more influential.  
 218

219 As introduced in Section 2, prior works discover that the common role of VO and FFN is that  
 220 they both serve as the associative memories for transformers, which store facts and knowledge.  
 221 Furthermore, Bietti et al. (2023) and Meng et al. (2022a) show that the linear associative memories  
 222 well approximate them. Specifically, for a set of facts represented by key-value pairs  $\{(e_{s_i}, e_{o_i})\}$ ,  
 223 the memory matrix  $W$  can be constructed as a sum of outer products, i.e.,  $W = \sum_{i=1}^K e_{o_i} e_{s_i}^\top$ , where  
 224 the summation is taken over the index  $i$  of  $K$  facts. **To make this more concrete, consider a toy**  
 225 **example with two orthogonal facts in  $\mathbb{R}^2$ :**

226 

- 227 • Fact 1: (“the capital of France”)  $e_{s_1} = [1, 0]^\top$ , (“Paris”)  $e_{o_1} = [1, 0]^\top$ .
- 228 • Fact 2: (“the capital of Italy”)  $e_{s_2} = [0, 1]^\top$ , (“Rome”)  $e_{o_2} = [0, 1]^\top$ .

229 The resulting memory matrix is  $W = e_{o_1} e_{s_1}^\top + e_{o_2} e_{s_2}^\top = I_{2,2}$  which correctly stores these facts since  
 230  $W e_{s_i} = e_{o_i}$  for  $i = 1, 2$ .  
 231

232 Learning linear associative memories is particularly well-suited to Muon’s update mechanism. Con-  
 233 cretely, the gradient  $G \in \mathbb{R}^{d \times d}$  of the loss with respect to the linear associative memory weight  
 234  $W$  can be expressed as a sum of outer products via SVD as  $G = USV^\top = \sum_{i=1}^d s_i u_i v_i^\top$ . Muon  
 235 computes its update (without momentum) by normalizing away the singular values, forming the  
 236 orthogonal factor  $O = UV^\top = \sum_{i=1}^d u_i v_i^\top$ . **Following the toy example, consider training the**  
 237 **memory parameter  $W$  with  $\ell_2$  loss, i.e.,  $c_1 \|e_{o_1} - We_{s_1}\|^2 + c_2 \|e_{o_2} - We_{s_2}\|^2$ , where  $c_1, c_2 > 0$**   
 238 **represent the importance or frequency of each fact in the current training batch. The corresponding**  
 239 **gradient is  $G = c_1 \cdot e_{o_1} e_{s_1}^\top + c_2 \cdot e_{o_2} e_{s_2}^\top = \text{diag}(c_1, c_2)$ . Consequently, Muon’s normalized update**  
 240 **factor becomes  $O = UV^\top = I_{2,2} = e_{o_1} e_{s_1}^\top + e_{o_2} e_{s_2}^\top$ , which is simply the sum of the constituent**  
 241 **facts’ outer products. Crucially, the update  $O$  assigns equal weight to both Fact 1 and Fact 2, regard-**  
 242 **less of their original coefficients  $c_1$  and  $c_2$  in the gradient. This illustrates how Muon normalizes the**  
 243 **updates across orthogonal facts, allowing it to learn both frequent (large  $c_1$ ) and infrequent (small**  
 244  **$c_2$ ) facts uniformly.** Comparing this with the linear associative memory  $\sum_{i=1}^K e_{o_i} e_{s_i}^\top$ , we see that  
 245 Muon updates all “orthogonal” facts at the same rate. Later, we will see that the singular values  $S$   
 246 of the gradient  $G$  encode the frequencies of knowledge in the training data under cross-entropy loss  
 247 in Sections 3.3 and 4. By normalizing away  $S$  to form its update, Muon can therefore learn both  
 248 frequent and infrequent facts more uniformly than gradient-magnitude-based optimizers like Adam.  
 249

250 We verify this insight from two perspectives. First, from the view of weight spectra, the weight ma-  
 251 trices learned with Muon exhibit a more isotropic singular-value spectrum than those learned with  
 252 Adam, indicating that knowledge, regardless of its frequency, is represented with comparable mag-  
 253 nitude. Second, at the level of overall knowledge acquisition, Muon yields more balanced learning  
 254 across entities and frequencies (head and tail) than Adam. We examine these two consequences in  
 255 the following sections.  
 256

### 257 3.2 MUON CONSISTENTLY LEARNS MORE ISOTROPIC WEIGHTS THAN ADAM

258 To validate that Muon can shape the weight matrices more evenly across directions, we conducted a  
 259 spectral analysis of them. For a weight matrix with  $n$  non-zero singular values  $\sigma = (\sigma_1, \sigma_2, \dots, \sigma_n)$ ,  
 260 we define the normalized singular energy distribution  $q = (q_1, q_2, \dots, q_n)$ , where each compo-  
 261 nent  $q_i$  is  $q_i = \sigma_i^2 / \sum_{j=1}^n \sigma_j^2$ . This distribution represents the fraction of energy captured by  
 262 each corresponding singular vector. Based on this, we introduce several metrics to characterize the  
 263 isotropy of the spectrum: normalized SVD entropy defined as  $H_{\text{norm}}(\sigma) = -\frac{1}{\log n} \sum_{i=1}^n q_i \log q_i$ ,  
 264 effective rank defined as  $\text{eRank}(\sigma) = \exp(-\sum_{i=1}^n q_i \log q_i)$ , Top- $k$  energy fraction defined as  
 265  $\text{TopE}_k(\sigma) = \sum_{i=1}^k \sigma_i^2 / \sum_{j=1}^n \sigma_j^2$ , and eigenvalue quantile ratio defined as  $\{\sigma_i^2\}_{i=1}^n : Q_{75/25}(\sigma) =$   
 266  $Q_3(\{\sigma_i^2\}) / Q_1(\{\sigma_i^2\})$ . Detailed explanations of these metrics are in Appendix F.2. Intuitively, more  
 267 isotropic weights correspond to larger values of normalized SVD entropy and effective rank, and  
 268 smaller Top- $k$  energy fraction and eigenvalue quantile ratio.  
 269

The spectral analysis in Figure 2, focusing on the key associative memory components from Ob-  
 servation 1, shows that Muon systematically reshapes the learned weight matrices relative to Adam.

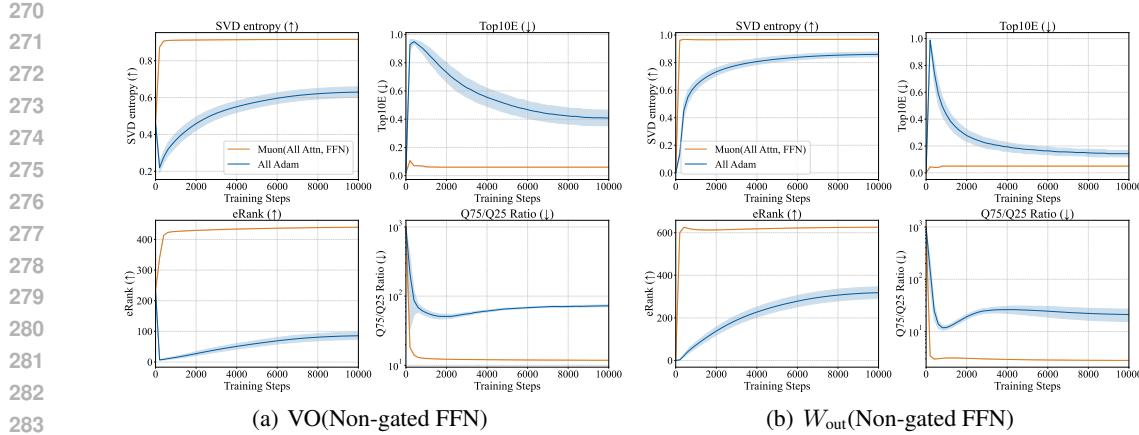


Figure 2: Spectral Dynamics of Transformer Weight Matrices During Training. Each panel reports four metrics characterizing singular value distributions: SVD entropy, Top10E, eRank, and Q75/Q25 ratio. The four subplots correspond to different weight matrix groups: (a) VO and (b)  $W_{\text{out}}$ .

The results, averaged over 10 random seeds, demonstrate that: (i) Muon produces a much more isotropic singular spectrum than Adam from the start of training, whereas Adam’s isotropy fluctuates significantly over the course of optimization. (ii) The isotropy of Muon is stable across random initializations, as indicated by the negligible error bars in Figure 2, while Adam is **more** sensitive to initialization. These findings suggest that Muon consistently promotes richer and more diverse features in the model’s most critical memory components, a conclusion we summarize below. The results for the gated FFN architecture and other weights are in Appendix G.3 and G.5, respectively.

**Observation 2:** Muon consistently yields more isotropic weight matrices with broadly distributed spectral energy than Adam, both throughout training and across random initializations, thereby supporting richer feature representations.

Empirically, we also find that Muon learns more isotropic QK weights than Adam. However, as discussed in Section 3.1, QK weights are not part of the linear associative memory mechanism and are therefore not expected to benefit from the isotropic property of the weight matrices.

Our results differ fundamentally from the spectral analysis in Liu et al. (2025) for three reasons. First, we decompose the parameters according to associative memories, whereas Liu et al. (2025) aggregates them, obscuring the essential components driving Muon’s behavior. Second, we investigate the instability of Adam under random initialization (i.e., random seeds), which we further establish theoretically in Section 4. Finally, our analysis focuses on dense architectures, while Liu et al. (2025) centers on Mixture-of-Experts (MoE) models.

### 3.3 MUON ACQUIRES KNOWLEDGE MORE EVENLY COMPARED TO ADAM

Our previous findings indicate that the Muon optimizer is particularly important for the associative memory components of the model, where it learns more isotropic weights. To examine the overall effects of learning associative memories, we turn to a knowledge-intensive question-answering (QA) task. The task is based on a synthetic QA dataset containing biographical information (e.g., name, birthday, and company) for over 200,000 individuals (Allen-Zhu & Li, 2024). To capture the heavy-tailed nature of real-world knowledge, we control the frequency of each individual’s appearance in the training set so that it follows a power-law distribution (Figure 3(a)), thereby inducing varying levels of difficulty in learning knowledge about different individuals. A 160M NanoGPT model is trained to answer questions about this biographical information. The performance is evaluated via the First Token Accuracy (FTA) on the answers, following Allen-Zhu & Li (2024). Further details on the dataset are provided in Appendix F.3. We include SGD as a baseline for Adam and Muon.

The results in Figure 3 lead to an unequivocal conclusion about the efficacy of different optimizers under data imbalance. In high-frequency (head) classes, all optimizers perform well, with Muon,

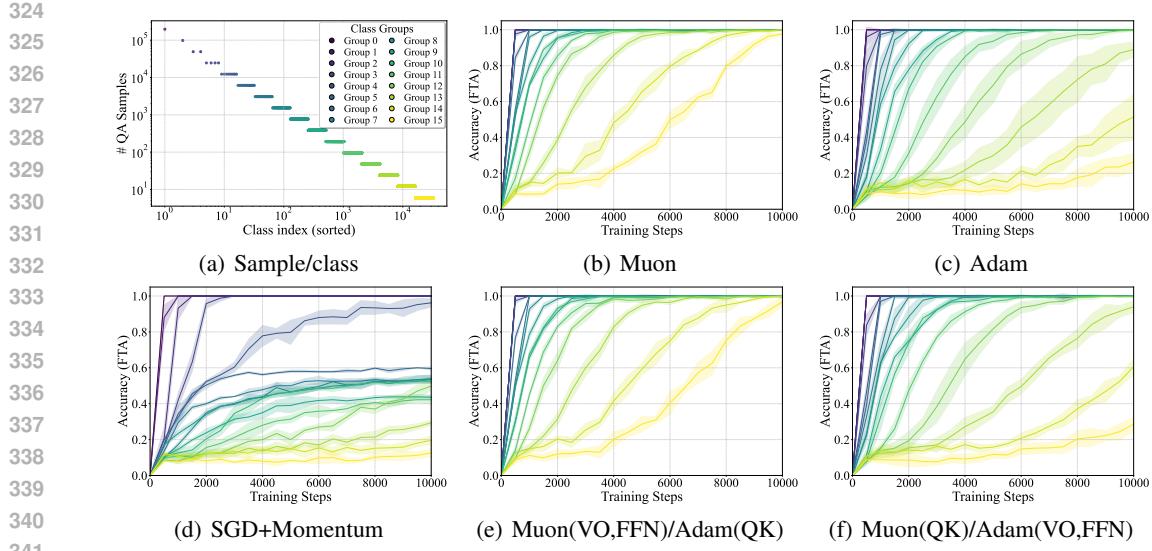


Figure 3: Performance comparison of different optimizers for transformers with non-gated FFN on a heavy-tailed knowledge task. (a) Sample distribution per class, following a power law. (b–d) Performance of Muon, Adam, and SGD+Momentum. (e) Muon applied to VO and FFN, with Adam on QK. (f) Muon applied to QK, with Adam on VO and FFN.

Adam, and even SGD+Momentum rapidly reaching near-perfect accuracy (Figure 3(b–d)). Consistent with prior work on heavy-tailed distributions (Kunstner et al., 2024), Adam maintains a clear advantage over SGD, which struggles with tail classes. Our key finding, however, is that Muon substantially outperforms Adam on low-frequency (tail) data, achieving faster and more uniform convergence across all frequencies. Moreover, the consistently tighter error bars for Muon—especially relative to Adam—reflect lower variance and a more stable learning process.

Furthermore, the hybrid configurations in Figure 3(e–f) clarify where Muon matters most. Applying Muon to VO+FFN (with QK on Adam) yields strong gains on rare classes and markedly reduces the head–tail gap, whereas applying Muon only to QK (with VO+FFN on Adam) yields only limited improvement. This mirrors Observation 1: VO+FFN is the most effective target set, as it concentrates the model’s associative memory. Results for the gated FFN, which show the same pattern, are provided in Appendix G.7. Additional experiments in Appendix G.8 vary the degree of fact imbalance, and show that the average FTA gap between Muon and Adam shrinks as the data distribution becomes more uniform. Together with the Wikitext103 results in Appendix G.9, which exhibit the same qualitative behavior on a standard language modeling benchmark, these findings further support the view that Muon’s advantage is tightly linked to heavy-tailed imbalance. We summarize these findings as Observation 3.

**Observation 3:** In heavy-tailed, knowledge-intensive tasks, Muon matches Adam’s strong performance in the head classes while substantially improving learning on tail classes, narrowing the head–tail gap and accelerating convergence.

In addition to the knowledge acquisition task, whose success primarily depends on learning the associative-memory parameters (VO and FFN), we also evaluate an in-context linear regression task in Appendix G.10, which primarily depends on learning the QK parameters. In contrast to the above observation, Muon achieves performance on the tail class similar to that of Adam in this task. This is consistent with Observation 1, which indicates that the QK parameters are not the main source of Muon’s superiority.

## 4 CASE STUDY OF ONE-LAYER MODELS

We now analyze three optimizers—Adam, Muon, and Gradient Descent (GD) (as a baseline)—to complement the preceding empirical observations. We first introduce an abstraction that captures

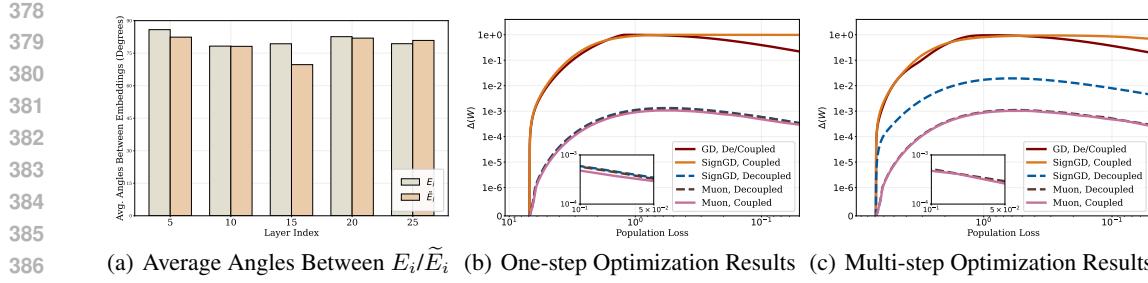
(a) Average Angles Between  $E_i$  and  $\tilde{E}_i$  (b) One-step Optimization Results (c) Multi-step Optimization Results

Figure 4: (a) Average angles between  $E_i$  or  $\tilde{E}_i$  in FFN at layers 5, 10, 15, 20, 25 of Llama3-8b-instruct. (b) Results of one-step GD, SignGD, and Muon with both coupled and decoupled embeddings. For GD, the outcomes under the two embedding types coincide. **We use different step sizes to obtain different levels of population loss and  $\Delta(W)$ .** (c) Results of multi-step GD, SignGD, and Muon with both coupled and decoupled embeddings. **We use different numbers of optimization steps to obtain different levels of population loss and  $\Delta(W)$ .**

their key dynamics and then present both empirical and theoretical results. As shown in Eqns. (2.1) and (2.2), a structural property of associative memory parameters is that their output is added directly to the hidden states, which are subsequently processed by the language model head. Motivated by this property, our abstraction retains the associative memory and language model head, while replacing all preceding modules with given feature embeddings.

Consider  $K$  triplets  $\{(s_i, r_i, o_i)\}_{i=1}^K$  (introduced in Section 2), where subject-relation pairs  $(s_i, r_i)$  and objects  $o_i$  are embedded into the columns of matrices  $E \in \mathbb{R}^{d_s \times K}$  and  $\tilde{E} \in \mathbb{R}^{d_o \times K}$ , respectively. A linear associative memory  $W \in \mathbb{R}^{d_o \times d_s}$  predicts the object for a query  $E_k$  with probabilities  $f_W(E_k) = \text{sm}(\tilde{E}^\top W E_k) \in \mathbb{R}^K$ . The objective is to minimize the population cross-entropy loss  $\mathcal{L}(W) = -\sum_{k=1}^K p_k \log[f_W(E_k)]_k$ , where  $p_k$  is the frequency or probability of the  $k$ -th triplet. We analyze three optimizers initialized at  $W_0 = 0$ , all simplified by disabling momentum for clarity. **(i) GD:**  $W_{t+1} = \tilde{W}_t - \eta \nabla_W \mathcal{L}(W_t)$ . **(ii) Adam:** Following prior work (Kunstner et al., 2024; Bernstein & Newhouse, 2024), we set  $\beta_1 = \beta_2 = 0$ , reducing it to SignGD:  $W_{t+1} = W_t - \eta \text{sign}(\nabla_W \mathcal{L}(W_t))$ . **(iii) Muon:** The update is  $W_{t+1} = W_t - \eta U_t V_t^\top$ , where  $U_t \Sigma_t V_t^\top$  is the SVD of  $\nabla_W \mathcal{L}(W_t)$ . This simplified form,  $U_t V_t^\top$ , is the projection of the gradient onto the nearest orthogonal matrix. We then state the assumptions for our results.

**Assumption 4.1.** The embeddings  $E$  and  $\tilde{E}$  are orthonormal, i.e.,  $E^\top E = \tilde{E}^\top \tilde{E} = I_{K,K}$ .

The unit-norm requirement rules out feature-level imbalance, which would otherwise couple with the imbalance induced by  $p_k$  and complicate the analysis. Our techniques can be directly applied even without this unit-norm requirement. The orthogonality assumption is intuitively plausible, as different concepts are independent and do not influence one another. We empirically verify this on Llama3-8b-instruct (Dubey et al., 2024). Following Fang et al. (2024), we extract  $E_i$  and  $\tilde{E}_i$  in FFN across layers for 3,000 knowledge items of Counterfact (Meng et al., 2022a) and compute average angles between them (see Appendix F.4 for details). As shown in Figure 4(a), these angles are near 90°, confirming approximate orthogonality. For  $K$  independent concepts, orthogonality requires  $d_r, d_s \geq K$ . For simplicity, we set  $d_r = d_s = K$  in what follows.

**Assumption 4.2.** The first  $L$  triplets share the same probability and together contribute a total mass of  $\alpha$ , i.e.,  $p_k = \alpha/L$  for  $k \in [L]$ . The remaining triplets also share the same probability and together contribute a total mass of  $1 - \alpha$ , i.e.,  $p_k = (1 - \alpha)/(K - L)$  for  $k > L$ .

This assumption states that the data imbalance is between two classes among the  $K$  triplets. Defining  $\beta = L/K$ , the ratio  $\alpha/\beta$  quantifies the degree of balance: if  $\alpha > \beta$ , the first  $L$  triplets appear more frequently during learning, and vice versa. This simplified two-class setting is sufficient to capture the primary differences between optimizers; the multi-class case follows directly from our proof by extending the SVD calculation.

Throughout Section 4 we will also refer to the *imbalance ratio*, defined as the ratio between the minimal and maximal frequencies of triplets, i.e.,  $r := \frac{\min_{k \in [K]} p_k}{\max_{k \in [K]} p_k} \in (0, 1]$ . Under Assumption 4.2

432 with parameters  $\alpha$  and  $\beta = L/K$ , this reduces to  $r(\alpha, \beta) = \min \left\{ \frac{\alpha(1-\beta)}{\beta(1-\alpha)}, \frac{\beta(1-\alpha)}{\alpha(1-\beta)} \right\}$ . We keep the  
 433 two-mass  $(\alpha, \beta)$  parametrization because it allows us to write the gradient and its SVD in closed  
 434 form while capturing the same dependence on class imbalance as using  $r$  directly; the multiclass  
 435 case follows from the same SVD calculation.  
 436

437 **4.1 EXPERIMENTAL RESULTS**

439 Under Assumptions 4.1 and 4.2, we evaluate GD, SignGD, and Muon for  $\alpha = 0.8$ ,  $\beta = 0.2$ ,  
 440 considering two embeddings for  $E$  and  $\tilde{E}$ : (i) support-decoupled: the supports (indices of non-  
 441 zero entries) of different  $E_i$  or  $\tilde{E}_i$  are disjoint; (ii) support-coupled: supports may overlap. We  
 442 study two optimization protocols, initializing  $W_0 = 0_{d_o \times d_s}$ : (i) one-step: take a single update  
 443 with a scaled step size to obtain a range of  $\mathcal{L}(W)$  values; (ii) multi-step: run multiple updates to  
 444 reduce  $\mathcal{L}(W)$ , varying the number of steps. Experimental details are in Appendix F.5. To quantify  
 445 *learning imbalance* across  $K$  knowledge items, we examine the relationship between population loss  
 446  $\mathcal{L}(W)$  and *maximal probability gap*  $\Delta(W) := \max_{i,j \in [K]} [f_W(E_i)]_i - [f_W(E_j)]_j$ , where  $[f_W(E_i)]_i$   
 447 denotes the probability assigned to the correct item  $i$ . A larger  $\Delta(W)$  indicates greater imbalance.  
 448

449 Across both optimization-step protocols and embeddings (Figures 4(b), 4(c)), we observe that (i) For  
 450 all optimizers,  $\Delta(W)$  first *increases* and then *decreases* as  $\mathcal{L}(W)$  decreases. Early in training, when  
 451 correct probabilities are near 0, imbalance is pronounced; later, when all items are well learned (e.g.,  
 452 probabilities  $\geq 0.9$ ), imbalance diminishes. (ii) For both embedding regimes, GD and Muon behave  
 453 consistently: GD exhibits a substantial imbalance, whereas Muon remains much more balanced  
 454 across items. (iii) SignGD also demonstrates unstable behavior; its imbalance resembles GD in the  
 455 coupled embedding case and Muon in the decoupled embedding case.

456 Because one-step and multi-step experiments align qualitatively, we first analyze the **one-step** set-  
 457 ting for clarity. This simplification is common in theoretical studies of neural network dynamics (Ba  
 458 et al., 2022; Dandi et al., 2023), and our techniques extend directly—albeit with more algebra—to  
 459 the multi-step case. As a demonstration, Theorem 4.4 provides a multi-step analysis of Muon.  
 460

461 **4.2 THEORETICAL RESULTS**

462 For each optimizer, we choose a step size  $\eta$  so that *some* class already attains correct-class proba-  
 463 bility at least  $1 - \epsilon$  after one update, and then we report the *smallest* correct-class probability across  
 464 classes at the same  $\eta$ . Equation 4.1 formalizes this procedure.

465 
$$\varrho_{\text{opt}}^\epsilon = \inf_{\eta \geq 0} \left\{ \min_{k \in [K]} [f_{W_\eta}(E_k)]_k \mid \max_{k \in [K]} [f_{W_\eta}(E_k)]_k \geq 1 - \epsilon, W_\eta = W_0 - \eta \cdot G_{\text{opt}}(W_0) \right\}. \quad (4.1)$$

466 where  $\text{opt} \in \{\text{GD, SignGD, Muon}\}$  and  $G_{\text{opt}}(W_0)$  denotes the parameter update of optimizer opt at  
 467  $W_0$ ; and  $W_\eta$  denotes the parameter obtained after one step of optimizer opt with step size  $\eta$  starting  
 468 from  $W_0$ , i.e.,  $W_\eta = W_0 - \eta \cdot G_{\text{opt}}(W_0)$ . Specifically,  $G_{\text{GD}}(W_0) = \nabla_W \mathcal{L}(W_0)$ ,  $G_{\text{SignGD}}(W_0) =$   
 469  $\text{sign}(\nabla_W \mathcal{L}(W_0))$ , and  $G_{\text{Muon}}(W_0) = U_0 \text{norm}(\Sigma_0) V_0^\top$  where  $U_0 \Sigma_0 V_0^\top$  is the SVD of  $\nabla_W \mathcal{L}(W_0)$ .  
 470 Note that  $\varrho_{\text{opt}}^\epsilon \in [0, 1 - \epsilon]$  and  $\Delta(W)$  are related as  $\Delta(W) = 1 - \epsilon - \varrho_{\text{opt}}^\epsilon \geq 0$ . When  $\varrho_{\text{opt}}^\epsilon \approx 1 - \epsilon$ ,  
 471 opt achieves balanced learning across facts; in contrast, when  $\varrho_{\text{opt}}^\epsilon \approx 0$ , imbalanced learning ensues.  
 472

473 **Theorem 4.3.** Let  $r := \min_{k \in [K]} p_k / \max_{k \in [K]} p_k$  (under Assumption 4.2,  $r = r(\alpha, \beta)$ ). If  
 474 Assumptions 4.1 and 4.2 hold, with fixed  $\alpha, \beta$  such that  $\alpha \neq \beta$ , and  $K$  goes to infinity, we obtain  
 475 the following results for one-step GD, Muon, and Adam.  
 476

477 • **GD:** For any  $\tilde{E}$  and  $E$  satisfying Assumption 4.1, we have

478 
$$\varrho_{\text{GD}}^\epsilon = O(\epsilon^{-r(\alpha, \beta)} K^{r(\alpha, \beta)-1}), \text{ where } r(\alpha, \beta) = \frac{\min_k p_k}{\max_k p_k} = \min \left\{ \frac{\alpha(1-\beta)}{\beta(1-\alpha)}, \frac{\beta(1-\alpha)}{\alpha(1-\beta)} \right\} < 1.$$

481 • **Muon:** For any  $\tilde{E}$  and  $E$  satisfying Assumption 4.1, we have

482 
$$\varrho_{\text{Muon}}^\epsilon \geq 1 - \epsilon \left( 1 + O\left(\frac{\log K}{K}\right) \right), \text{ and } G_{\text{Muon}}(W_0) = -\tilde{E} E^\top + O\left(\frac{1}{K} \tilde{E} J_{K,K} E^\top\right),$$

483 where  $J_{K,K} \in \mathbb{R}^{K \times K}$  is the matrix with all elements equal to 1. The big- $O$  notation for matrices  
 484 means that for  $A = O(B)$ , each entry satisfies  $A_{ij} = O(B_{ij})$  for all  $i, j$ .  
 485

486 • **Adam:** There exist  $\tilde{E}$  and  $E$  satisfying Assumption 4.1 such that  $\varrho_{\text{SignGD}}^\epsilon \geq 1 - \epsilon$ . There also exist  
 487  $\tilde{E}'$  and  $E'$  satisfying Assumption 4.1 such that  
 488

$$489 \varrho_{\text{SignGD}}^\epsilon = O(\epsilon^{-0.7} K^{-0.3}), \text{ and } \frac{\sigma_{\min}(G_{\text{SignGD}}(W_0))}{\sigma_{\max}(G_{\text{SignGD}}(W_0))} \leq 25\%,$$

490  
 491

492 where  $\sigma_{\max}$  and  $\sigma_{\min}$  are the largest and smallest singular values, respectively.

493

494 **Interpretation of Theorem 4.3.** *These theoretical results align with Observations 2 and 3, and*  
 495 *Figures 4(b) and 4(c): Muon maintains balanced learning with near-isotropic updates, GD is highly*  
 496 *sensitive to data imbalance, and Adam varies widely across embeddings.* At the one-step update,  
 497 when the maximum correct-class probability across items is at least  $1 - \epsilon$ , the item with the minimum  
 498 correct-class probability satisfies: (i) Muon:  $\geq 1 - \epsilon(1 + O(\frac{\log K}{K}))$ , which indicates learning is  
 499 essentially balanced across items with a near-isotropic update (singular values nearly equal); (ii)  
 500 GD:  $O(\epsilon^{-r(\alpha, \beta)} K^{r(\alpha, \beta)-1})$ , which is strongly controlled by data imbalance via  $r(\alpha, \beta)$  (balanced  
 501 when  $r = 1$ , severe imbalance when  $r \ll 1$ ); (iii) Adam: embedding dependent; it can match Muon  
 502 with disjoint supports (e.g.,  $\tilde{E} = E = I_{K,K}$ ), achieving  $1 - \epsilon$ , but can drop to  $O(\epsilon^{-0.7} K^{-0.3})$  with  
 503 overlap; its update may exhibit pronounced spectral decay ( $\sigma_{\min}/\sigma_{\max} \leq 25\%$ ), unlike the near-  
 504 uniform singular values of Muon. A detailed discussion of Theorem 4.3 is provided in Appendix E.

505

506 In the following, we extend our techniques of one-step analysis to the multi-step analysis of Muon.  
 507 Parallel to Eqn. (4.1), we define the infimum correct-class probability for the multi-step optimizer  
 508 as  $\varrho_{\text{opt}}^\epsilon = \inf_t \{\min_{k \in [K]} [f_{W_t}(E_k)]_k \mid \max_{k \in [K]} [f_{W_t}(E_k)]_k \geq 1 - \epsilon\}$ , where  $W_t = W_{t-1} - \eta_t \cdot$   
 509  $G_{\text{opt}}(W_{t-1})\}$ . Here, we assume that the learning rates  $\{\eta_t\}_{t \geq 1}$  are determined by a fixed schedule  
 510 prior to optimization. Although the quantity implicitly depends on this schedule, we omit it from  
 511 the notation for  $\varrho_{\text{opt}}^\epsilon$  for brevity. We emphasize that different schedules may affect the value of  $t$  that  
 512 attains the infimum in  $\varrho_{\text{opt}}^\epsilon$ , but they do not influence the balance behavior that we present.

513

514 **Theorem 4.4.** If Assumptions 4.1 and 4.2 hold, then multi-step Muon achieves

515

$$516 \varrho_{\text{Muon}}^\epsilon \geq 1 - \epsilon \left( 1 + O\left(\frac{\log K}{K}\right) \right), \text{ and } G_{\text{Muon}}(W_t) = -\tilde{E}E^\top + O\left(\frac{1}{K}\tilde{E}J_{K,K}E^\top\right) \text{ for any } t \geq 0.$$

517

518 The proof is provided in Appendix I. We note that the multi-step analysis of Muon shares similar  
 519 characteristics as the one-step version in Theorem 4.3.

520

## 5 CONCLUSION

521 Our work takes the first step toward unveiling why and how Muon outperforms Adam. Through  
 522 ablations of Muon’s effect on different Transformer components and by relating these results to the  
 523 balanced learning of associative memories, we conclude that the Muon update rule is aligned with  
 524 the outer-product structure of linear associative memories, enabling more balanced and effective  
 525 learning of tail classes in heavy-tailed distributions. Intuitively, this property of Muon may extend  
 526 beyond outer products to higher-order tensor products, an exciting direction for future work.

527

528  
 529  
 530  
 531  
 532  
 533  
 534  
 535  
 536  
 537  
 538  
 539

540 REFERENCES  
541

542 Ruslan Abdulkadirov, Pavel Lyakhov, and Nikolay Nagornov. Survey of optimization algorithms in  
543 modern neural networks. *Mathematics*, 11(11):2466, 2023.

544 Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity  
545 scaling laws. *arXiv preprint arXiv:2404.05405*, 2024.

546 Orly Alter, Patrick O Brown, and David Botstein. Singular value decomposition for genome-wide  
547 expression data processing and modeling. *Proceedings of the National Academy of Sciences*, 97  
548 (18):10101–10106, 2000.

549 Kang An, Yuxing Liu, Rui Pan, Yi Ren, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo:  
550 Adaptive structured gradient optimization. *arXiv preprint arXiv:2503.20762*, 2025.

551 Anonymous. Convergence of muon with newton-schulz, 2025. URL <https://openreview.net/forum?id=IJSfxtLpLm>. Under review for ICLR 2026.

552

553 Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-  
554 dimensional asymptotics of feature learning: How one gradient step improves the representation.  
555 *Advances in Neural Information Processing Systems*, 35:37932–37946, 2022.

556 Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. *arXiv preprint*  
557 *arXiv:2409.20325*, 2024.

558

559 Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a  
560 transformer: A memory viewpoint. *Advances in Neural Information Processing Systems*, 36:  
561 1560–1588, 2023.

562

563 Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type  
564 algorithms for non-convex optimization. In *International Conference on Learning Representa-  
565 tions*, 2019. URL <https://openreview.net/forum?id=H1x-x309tm>.

566

567 Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in  
568 pretrained transformers. *arXiv preprint arXiv:2104.08696*, 2021.

569

570 Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer  
571 neural networks learn, one (giant) step at a time. *arXiv preprint arXiv:2305.18270*, 2023.

572

573 Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof  
574 of adam and adagrad. *arXiv preprint arXiv:2003.02395*, 2020.

575

576 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha  
577 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.  
578 *arXiv e-prints*, pp. arXiv–2407, 2024.

579

580 Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and  
581 Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. *arXiv*  
582 *preprint arXiv:2410.02355*, 2024.

583

584 Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn  
585 in-context? a case study of simple function classes. *Advances in neural information processing*  
586 *systems*, 35:30583–30598, 2022.

587

588 Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are  
589 key-value memories. *arXiv preprint arXiv:2012.14913*, 2020.

590

591 Ekaterina Grishina, Matvey Smirnov, and Maxim Rakhuba. Accelerating newton-schulz iteration  
592 for orthogonalization via chebyshev-type polynomials. *arXiv preprint arXiv:2506.10935*, 2025.

593

John J Hopfield. Neural networks and physical systems with emergent collective computational  
abilities. *Proceedings of the national academy of sciences*, 79(8):2554–2558, 1982.

594 Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and  
 595 Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. *URL*  
 596 <https://kellerjordan.github.io/posts/muon>, 6, 2024.

597

598 Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,  
 599 Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. *arXiv*  
 600 *preprint arXiv:2503.19786*, 2025.

601 Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In *ICLR: international conference on learning representations*, pp. 1–15, 2015.

602

603 Teuvo Kohonen. Correlation matrix memories. *IEEE transactions on computers*, 100(4):353–359,  
 604 2009.

605

606 Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean  
 607 trust-region optimization. *arXiv preprint arXiv:2503.12645*, 2025.

608

609 Frederik Kunstner, Alan Milligan, Robin Yadav, Mark Schmidt, and Alberto Bietti. Heavy-tailed  
 610 class imbalance and why adam outperforms gradient descent on language models. *Advances in  
 611 Neural Information Processing Systems*, 37:30106–30148, 2024.

612 Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a  
 613 unifying preconditioning perspective. *arXiv preprint arXiv:2505.21799*, 2025.

614

615 Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via  
 616 reading comprehension. *arXiv preprint arXiv:1706.04115*, 2017.

617

618 Haochuan Li, Alexander Raklin, and Ali Jadbabaie. Convergence of adam under relaxed assump-  
 619 tions. *Advances in Neural Information Processing Systems*, 36:52166–52196, 2023.

620

621 Jiaxiang Li and Mingyi Hong. A note on the convergence of muon and further. *arXiv e-prints*, pp.  
 622 arXiv–2502, 2025.

623

624 Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen,  
 625 Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model  
 compression. *arXiv preprint arXiv:2408.09632*, 2024.

626

627 Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,  
 628 Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. *arXiv preprint  
 629 arXiv:2502.16982*, 2025.

630

631 Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual  
 632 associations in gpt. *Advances in neural information processing systems*, 35:17359–17372, 2022a.

633

634 Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing  
 635 memory in a transformer. *arXiv preprint arXiv:2210.07229*, 2022b.

636

637 Eshaan Nichani, Jason D Lee, and Alberto Bietti. Understanding factual recall in transformers via  
 638 associative memories. *arXiv preprint arXiv:2412.06538*, 2024.

639

640 Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-  
 641 canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In *International  
 642 Conference on Machine Learning*, pp. 26670–26698. PMLR, 2023.

643

644 Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for transform-  
 645 ers. *arXiv preprint arXiv:2306.00204*, 2023.

646

647 Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and  
 648 Volkan Cevher. Training deep learning models with norm-constrained lmos. *arXiv preprint  
 649 arXiv:2502.07529*, 2025.

650

651 Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In *2007  
 652 15th European signal processing conference*, pp. 606–610. IEEE, 2007.

648 Naoki Sato, Hiroki Naganuma, and Hideaki Iiduka. Analysis of muon’s convergence and critical  
 649 batch size. *arXiv preprint arXiv:2507.01598*, 2025.  
 650

651 Ishaaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,  
 652 Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for  
 653 pretraining. *arXiv preprint arXiv:2505.02222*, 2025.

654 Wei Shen, Ruichuan Huang, Minhui Huang, Cong Shen, and Jiawei Zhang. On the convergence  
 655 analysis of muon. *arXiv preprint arXiv:2505.23737*, 2025.  
 656

657 Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer. *arXiv preprint  
 658 arXiv:2507.11005*, 2025.

659 Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,  
 660 Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. *arXiv  
 661 preprint arXiv:2507.20534*, 2025.

662 Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. On generalization of spectral  
 663 gradient descent: A case study on imbalanced data. In *High-dimensional Learning Dynamics 2025*,  
 664 2025.

665 Jinbo Wang, Mingze Wang, Zhanpeng Zhou, Junchi Yan, Lei Wu, et al. The sharpness dis-  
 666 parity principle in transformers for accelerating language model pre-training. *arXiv preprint  
 667 arXiv:2502.19002*, 2025.

668 Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where  
 669 to find them. *arXiv preprint arXiv:2509.02046*, 2025.

670 David J Willshaw, O Peter Buneman, and Hugh Christopher Longuet-Higgins. Non-holographic  
 671 associative memory. *Nature*, 222(5197):960–962, 1969.

672 Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. *arXiv  
 673 preprint arXiv:2310.17813*, 2023.

674 Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge  
 675 without any modification on update rules. *Advances in neural information processing systems*,  
 676 35:28386–28399, 2022.

677 Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhiquan Luo. Why trans-  
 678 formers need adam: A hessian perspective. *Advances in neural information processing systems*,  
 679 37:131786–131823, 2024a.

680 Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu  
 681 Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. *arXiv  
 682 preprint arXiv:2406.16793*, 2024b.

683 Zeyu Zhang, Akide Liu, Ian Reid, Richard Hartley, Bohan Zhuang, and Hao Tang. Motion mamba:  
 684 Efficient and long sequence motion generation. In *European Conference on Computer Vision*, pp.  
 685 265–282. Springer, 2024c.

686 Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-  
 687 ing what makes a good optimizer for language models. *arXiv preprint arXiv:2407.07972*, 2024.

688 Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, and Quanquan Gu. On the convergence of  
 689 adaptive gradient methods for nonconvex optimization. *arXiv preprint arXiv:1808.05671*, 2018.

690 Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for conver-  
 691 gences of adam and rmsprop. In *Proceedings of the IEEE/CVF Conference on computer vision  
 692 and pattern recognition*, pp. 11127–11135, 2019.

693

694

695

696

697

698

699

700

701

702 **A USE OF LARGE LANGUAGE MODELS (LLMs)**  
703704 Large language models (LLMs) were used solely to aid and polish the writing of this paper. The  
705 authors generated all research ideas, methods, analyses, and results independently. LLM assistance  
706 was limited to improving clarity, grammar, and readability of the manuscript text. No content was  
707 fabricated or introduced by the LLM beyond these language refinements.  
708709 **B NOTATIONS**  
710711 Let  $[N]$  for the set  $\{1, \dots, N\}$ . For a matrix  $X \in \mathbb{R}^{d \times N}$ ,  $X_i$  is its  $i$ -th column and  $X_{:, -1}$  is its last  
712 column.  $I_{K, K}$  is the  $K \times K$  identity matrix,  $\mathbb{1}_K$  is all-ones vector and  $J_{K, K}$  is the all-ones matrix.  
713  $\odot$  denotes the element-wise product.  
714715 **C RELATED WORKS**  
716717 **Adam**, proposed by Kingma & Ba (2015), was designed to make GD adaptive to the complex  
718 optimization landscape of neural networks. Existing works analyze Adam from two primary per-  
719 spectives: online optimization and feature learning. The online convex optimization view focuses  
720 on Adam’s properties when optimizing convex or non-convex loss functions. From this perspective,  
721 Chen et al. (2019) and Zhou et al. (2018) derive non-convex convergence results for Adam, and a  
722 series of subsequent works continuously relaxed the required assumptions for Adam’s convergence  
723 while tightening its convergence rate. For instance, Zou et al. (2019) proposes a set of easy-to-verify  
724 sufficient conditions for Adam’s update rules to guarantee convergence. Défossez et al. (2020) de-  
725 rives the tightest dependency on the heavy ball momentum parameters. More recently, Zhang et al.  
726 (2022) demonstrates that Adam can converge without modification of its procedures, and Li et al.  
727 (2023) relaxes the smoothness assumption by employing an adaptive Lipschitz constant for gradi-  
728 ents. The feature learning view, on the other hand, highlights the relationship between deep learning  
729 characteristics and Adam, focusing more on how Adam’s mechanisms influence the properties of  
730 learned features within deep networks. For example, Pan & Li (2023) examines the sharpness of  
731 GD and Adam and relates Adam’s superiority to its low sharpness. Kunstner et al. (2024) finds that  
732 Adam is better at learning heavy-tailed distributions than GD. Furthermore, Zhang et al. (2024a)  
733 shows that Adam is adaptive to heterogeneous Hessian structures, thus optimizing faster than GD.  
734 In a spirit similar to our work, recent studies have also used ablation experiments to deconstruct  
735 Adam’s effectiveness. For instance, Zhao et al. (2024) and Zhang et al. (2024b) conduct detailed  
736 ablations on Adam’s hyperparameters and components, identifying that its benefits are particularly  
737 pronounced for the first and last embedding layers of language models. While these works focus  
738 on understanding Adam’s existing components, our study applies a similar ablation methodology  
739 to understand the impact of a different optimizer, Muon, on the internal modules of a Transformer.  
More literature on Adam is included in the survey by Abdulkadirov et al. (2023).740 **Muon**, proposed by Jordan et al. (2024), applies spectral normalization of the gradient to update  
741 parameters. At a high level, Muon can be understood as steepest descent with respect to the matrix  
742 operator norm (Bernstein & Newhouse, 2024). Alternatively, it can be viewed as maximizing the  
743 feature update subject to a parameter update constraint (Yang et al., 2023). Experiments show that  
744 Muon consistently outperforms Adam across diverse model sizes and architectures, including dense  
745 transformers and Mixture-of-Experts (Liu et al., 2025; Jordan et al., 2024). Building on this, Si  
746 et al. (2025) introduces an adaptive variant of Muon. To explain its advantages, Lau et al. (2025)  
747 introduces a unifying preconditioning framework, distinguishing optimizers that address curvature  
748 anisotropy (like Adam) from those that address gradient anisotropy (like Muon), and proposes a  
749 generalized optimizer class named PolarGrad. Sato et al. (2025) and Shah et al. (2025) examine the  
750 critical batch size of Muon, while other works analyze its convergence in convex and non-convex  
751 settings (Li & Hong, 2025; An et al., 2025; Kovalev, 2025; Pethick et al., 2025; Shen et al., 2025).  
752 Anonymous (2025) derives the convergence bound of Muon, including the influence of NS steps.  
753 Furthermore, Grishina et al. (2025) proposes accelerating these NS steps via Chebyshev-optimized  
754 coefficients. Concurrently, Vasudeva et al. (2025) study Muon on shallow ViTs for computer vi-  
755 sion, grounding their results for gradient descent and Muon in linear regression. In contrast, we  
investigate Muon in the context of LLMs, focusing on its effects on associative memory in next-  
token prediction. Recent works have also investigated the scalability of the Muon optimizer. For

756 instance, Wen et al. (2025) reports that the benefits of Muon diminish with scale (dropping from  
 757  $1.4 \times$  gain at 0.1B to  $1.1 \times$  at 1.2B), whereas Liu et al. (2025) observes that Muon maintains a  $\approx 2 \times$   
 758 FLOP-efficiency advantage over Adam even on 32B models.

759 **Associative Memories** have a long history in neural network design and knowledge storage (Hop-  
 760 field, 1982; Kohonen, 2009; Willshaw et al., 1969). They have inspired architectures capable of  
 761 retaining long histories, including RNNs (Orvieto et al., 2023) and Mamba (Zhang et al., 2024c).  
 762 With the success of transformers, recent work has examined them through the lens of associative  
 763 memories. Geva et al. (2020) and Dai et al. (2021) show that feed-forward modules store knowledge  
 764 in  $W_{\text{out}}$ , while Bietti et al. (2023) demonstrates that the attention output matrix  $W_O$  also encodes  
 765 associations of knowledge. Building on these findings, a series of works edit knowledge directly by  
 766 modifying these weights (Meng et al., 2022b; Fang et al., 2024). Beyond empirical results, theo-  
 767 retical analyses have further clarified how transformers leverage associative memories: Bietti et al.  
 768 (2023) conducts a dynamic analysis of memory formation, while Nichani et al. (2024) constructs  
 769 explicit associative memory mechanisms in both attention and feed-forward modules.

## 771 D STEEPEST DESCENT VIEW UNDERSTANDING MUON AND ADAM

773 Bernstein & Newhouse (2024) showed that many popular deep learning optimizers can be under-  
 774 stood through the unifying framework of *steepest descent*, once their exponential moving averages  
 775 (EMAs) are disabled. This perspective shifts the focus from heuristic or second-order motivations to  
 776 a more fundamental, geometric view: the choice of an optimizer is equivalent to choosing a specific  
 777 *norm* to measure the “size” of the weight update.

778 **The Steepest Descent Framework.** The core idea is to find a weight update,  $\Delta \mathbf{w}$ , that minimizes a  
 779 local quadratic approximation of the loss function. This is formulated as the following optimization  
 780 problem:

$$781 \quad \Delta \mathbf{w}^* = \operatorname{argmin}_{\Delta \mathbf{w}} \left[ \mathbf{g}^\top \Delta \mathbf{w} + \frac{\lambda}{2} \|\Delta \mathbf{w}\|^2 \right],$$

783 where  $\mathbf{g}$  is the gradient of the loss,  $\lambda > 0$  is a “sharpness” parameter that controls the step size, and  
 784  $\|\cdot\|$  is a chosen norm.

785 The solution to this problem can be expressed as:

$$787 \quad \Delta \mathbf{w}^* = -\eta \cdot \mathbf{d},$$

788 where the step size  $\eta = \frac{\|\mathbf{g}\|_*}{\lambda}$  and the update direction  $\mathbf{d} = \operatorname{arg} \max_{\|\mathbf{t}\|=1} \mathbf{g}^\top \mathbf{t}$ . Here,  $\|\cdot\|_*$  denotes  
 789 the *dual norm* of  $\|\cdot\|$  (defined as  $\|\mathbf{y}\|_* = \sup_{\|\mathbf{x}\| \leq 1} \mathbf{y}^\top \mathbf{x}$ ). The key insight is that different choices  
 790 of the norm  $\|\cdot\|$  lead to different update directions  $\mathbf{d}$ , recovering the update rules of well-known  
 792 optimizers.

793 **Muon as Steepest Descent under Spectral Norm.** The update rule of the Muon optimizer is  
 794 derived by applying the steepest descent framework to weight matrices equipped with the *spectral*  
 795 *norm*, denoted in the paper as the  $\|\cdot\|_{\ell_2 \rightarrow \ell_2}$  operator norm (defined as its largest singular value,  
 796  $\|\mathbf{A}\|_{\ell_2 \rightarrow \ell_2} = \sigma_{\max}(\mathbf{A}) = \sup_{\|\mathbf{x}\|_2=1} \|\mathbf{Ax}\|_2$ ). For a gradient matrix  $\mathbf{G}$ , the problem is to find the  
 797 update  $\Delta \mathbf{W}$  that solves:

$$799 \quad \Delta \mathbf{W}^* = \operatorname{argmin}_{\Delta \mathbf{W}} \left[ \langle \mathbf{G}, \Delta \mathbf{W} \rangle_F + \frac{\lambda}{2} \|\Delta \mathbf{W}\|_{\ell_2 \rightarrow \ell_2}^2 \right].$$

801 The solution to this problem is directly determined by the Singular Value Decomposition (SVD) of  
 802 the gradient,  $\mathbf{G} = \mathbf{U} \Sigma \mathbf{V}^\top$ . The resulting update direction, which maximizes alignment with the  
 803 gradient under the spectral norm constraint, is shown to be  $\mathbf{U} \Sigma \mathbf{V}^\top$ . The corresponding dual norm  
 804 of the gradient,  $\|\mathbf{G}\|_{\ell_2 \rightarrow \ell_2}^*$ , which scales the step size, is found to be  $\operatorname{tr}(\Sigma)$ , the sum of the singular  
 805 values. Combining these components yields the final steepest descent update rule:

$$807 \quad \Delta \mathbf{W}^* = -\frac{\operatorname{tr}(\Sigma)}{\lambda} \cdot \mathbf{U} \Sigma \mathbf{V}^\top.$$

809 This demonstrates that Muon’s core operation is a principled descent step where the singular vectors  
 810 of the gradient determine the direction, and the sum of its singular values scales the step size.

810    **Adam as Steepest Descent under  $\ell_\infty$  Norm.** Adam can be understood as steepest descent on the  
 811    flattened parameter vector  $\mathbf{w}$  when the space is equipped with the vector *infinity norm* ( $\ell_\infty$ ) (defined  
 812    as the maximum absolute value of its elements,  $\|\mathbf{x}\|_\infty = \max_i |x_i|$ ). For a gradient vector  $\mathbf{g}$ , the  
 813    optimization problem is to find the update  $\Delta\mathbf{w}$  that solves:

$$814 \quad \Delta\mathbf{w}^* = \underset{\Delta\mathbf{w}}{\operatorname{argmin}} \left[ \mathbf{g}^\top \Delta\mathbf{w} + \frac{\lambda}{2} \|\Delta\mathbf{w}\|_\infty^2 \right].$$

817    The update direction that maximizes alignment with the gradient  $\mathbf{g}$  under the infinity norm constraint  
 818    is the sign of the gradient,  $\operatorname{sign}(\mathbf{g})$ . The corresponding dual norm of the gradient,  $\|\mathbf{g}\|_\infty^*$ , which  
 819    scales the step size, is the  $\ell_1$  norm,  $\|\mathbf{g}\|_1$  (the sum of the absolute values of its elements,  $\|\mathbf{x}\|_1 =$   
 820     $\sum_i |x_i|$ ). Combining these components yields the final steepest descent update rule:

$$821 \quad \Delta\mathbf{w}^* = -\frac{\|\mathbf{g}\|_1}{\lambda} \cdot \operatorname{sign}(\mathbf{g}).$$

824    This reveals that Adam’s fundamental operation corresponds to a descent step where each parameter  
 825    moves with the same magnitude, determined only by its gradient’s sign.

## 827    E DETAILED DISCUSSION OF THE THEOREM 4.3

829    The proof of Theorem 4.3 is provided in Appendix H. We now explain the results for the three  
 830    optimizers separately. For GD, the quantity  $r(\alpha, \beta) \leq 1$  measures the imbalance of the data dis-  
 831    tribution:  $r(\alpha, \beta) = 1$  corresponds to perfectly balanced data, while  $r(\alpha, \beta) \ll 1$  indicates severe  
 832    imbalance. The results show that if one set of  $(s, r, o)$  triplets is learned with the correct-class prob-  
 833    ability  $[f_W(E_k)]_k$  of at least  $1 - \epsilon$ , then there exists another triplet whose correct-class probability  
 834    is  $O(\epsilon^{-r(\alpha, \beta)} K^{r(\alpha, \beta)-1})$ . Thus, GD is highly sensitive to data imbalance: as the training distribu-  
 835    tion becomes more imbalanced, the dispersion of correct-class probabilities across items increases,  
 836    i.e., the maximal probability gap  $\Delta(W)$  grows and  $\min_{k \in [K]} [f_W(E_k)]_k$  decreases. This mirrors the  
 837    message in Figure 4(b), 4(c), and Figure 3(d) in Section 3.3.

838    In contrast, Muon learns in a balanced fashion, unaffected by data imbalance for any embeddings  
 839     $\tilde{E}$  and  $E$ . Our results show that when the best-learned triplet achieves a correct-class probability of  
 840    at least  $1 - \epsilon$ , the worst-learned triplet has a comparable correct-class probability at least  $1 - \epsilon(1 +$   
 841     $O(\log K/K))$ . This justifies Observation 3. Furthermore, consistent with Observation 2, Muon’s  
 842    update  $G_{\text{Muon}}$  rule allocates equal strength to all update directions; equivalently, the singular values  
 843    of  $G_{\text{Muon}}(W_0)$  are nearly identical.

844    Our analysis shows that Adam’s performance is *unstable* with respect to the embeddings  $\tilde{E}$  and  $E$ ,  
 845    as reflected by the large error bars in Observations 2 and 3. Adam’s element-wise normalization  
 846    disrupts the inherent matrix structure of the gradient. When embeddings of different triplets have  
 847    disjoint supports (e.g.,  $\tilde{E} = E = I_{K,K}$ ), Adam can optimize parameters in a balanced manner.  
 848    However, when embeddings overlap, the sign operator in Adam can introduce imbalance. In par-  
 849    ticular, the worst-optimized triplet may then have correct-class probability  $O(\epsilon^{-0.7} K^{-0.3})$ . These  
 850    exponents (0.3, 0.7) are intrinsic to Adam’s update under certain embeddings and are independent  
 851    of  $\alpha$  or  $\beta$ . Moreover, the Adam update  $G_{\text{SignGD}}(W_0)$  exhibits pronounced spectral decay—for ex-  
 852    ample, its smallest singular value can be less than 25% of the largest—unlike the nearly uniform  
 853    singular values of Muon. This spectral decay explains the poor isotropy reported in Observation 2.

## 855    F EXPERIMENTAL DETAILS

### 857    F.1 EXPERIMENTAL DETAILS OF TRAINING ON FINEWEB

859    When training 160M models on FineWeb, we disable weight decaying and Nesterov acceleration for  
 860    both Adam and Muon. Thus, we only compare their performance along. To set the learning rate, we  
 861    conduct a grid search on  $1 \times 10^{-1}, 5 \times 10^{-2}, 2 \times 10^{-2}, 1 \times 10^{-2}, 5 \times 10^{-3}, 2 \times 10^{-3}, 1 \times 10^{-3}, 5 \times$   
 862     $10^{-4}, 2 \times 10^{-4}$ . When conducting the “Independent Blocks” and “Combined Configuration”  
 863    experiments in Section 3.1, we just fix the learning rate of Muon. We set  $\beta_1 = 0.8$ ,  $\beta_2 = 0.95$   
 for Adam and set  $\beta = 0.95$  for Muon. When training 0.7B models on FineWeb, we conduct a grid

864 search of learning rate on  $2 \times 10^{-3}, 1 \times 10^{-3}, 5 \times 10^{-4}, 2 \times 10^{-4}$ . We set  $\beta_1 = 0.9, \beta_2 = 0.95$  for  
 865 Adam and set  $\beta = 0.95$  for Muon. We do not adopt group query attention in the structure; thus, the  
 866 parameter sizes of  $W_Q, W_K, W_V$ , and  $W_O$  are the same. We conduct experiments on 8 A100 with  
 867 80 GB memory.  
 868  
 869  
 870  
 871

## 872 F.2 ISOTROPICITY METRICS EXPLANATIONS

873  
 874 **Normalized SVD Entropy.** This metric, adapted from Alter et al. (2000), quantifies the uniformity  
 875 of the singular energy distribution. A higher entropy value indicates a more isotropic matrix where  
 876 energy is distributed evenly across many directions. It is defined as the Shannon entropy of the  
 877 distribution  $q$ , normalized by the maximum possible entropy:  $H_{\text{norm}}(\sigma) = -\frac{1}{\log n} \sum_{i=1}^n q_i \log q_i$ .  
 878

879 **Effective Rank.** The effective rank (Roy & Vetterli, 2007) provides a continuous measure of the  
 880 number of significant singular dimensions used by the matrix. It is calculated as the exponentiation  
 881 of the unnormalized Shannon entropy, which corresponds to the perplexity of the energy distribution:  
 882  $\text{eRank}(\sigma) = \exp(-\sum_{i=1}^n q_i \log q_i)$ .  
 883

884 **Top- $k$  Energy Fraction.** This metric measures the concentration of energy within the Top-  
 885  $k$  principal singular components. Assuming the singular values are sorted in descending order  
 886 ( $\sigma_1 \geq \sigma_2 \geq \dots \geq \sigma_n$ ), it is the cumulative sum of the first  $k$  energy fractions:  $\text{TopE}_k(\sigma) = \frac{\sum_{i=1}^k \sigma_i^2}{\sum_{j=1}^n \sigma_j^2}$ .  
 887

888 **Eigenvalue Quantile Ratio.** To measure the spread of the singular energy distribution while being  
 889 robust to extreme outliers, we compute the ratio of the 75th percentile ( $Q_3$ ) to the 25th percentile  
 890 ( $Q_1$ ) of the eigenvalues  $\{\sigma_i^2\}_{i=1}^n$ :  $Q_{75/25}(\sigma) = \frac{Q_3(\{\sigma_i^2\})}{Q_1(\{\sigma_i^2\})}$ .  
 891  
 892  
 893

## 894 F.3 DATASET DETAILS FOR THE HEAVY-TAIL KNOWLEDGE TASK

895  
 896 Following Allen-Zhu & Li (2024), the foundation of our knowledge-intensive task is a set of  
 897 question-answering (QA) pairs derived from synthetically generated biographies. Each biography  
 898 is constructed from a combination of seven key attributes: name, birthdate, birthplace, educational  
 899 institution, major, employer, and workplace. The attribute values are sampled from predefined lists,  
 900 creating a diverse set of entities. Specifically, we use approximately 400 first names, 1000 surnames,  
 901 300 educational institutions, 100 majors, and 300 employers. Each synthetic individual is assigned  
 902 a unique combination of these attributes, forming a distinct biographical profile. For example, a  
 903 generated biography might look like this:  
 904  
 905

906 *Ashton Hilda Older has a birthday that falls on February 01, 2063. Miami, FL is*  
 907 *the birthplace of he. He is an alumnus of Saddleback College. He has a General*  
 908 *Literature education. He works closely with BlockFi. For professional growth,*  
 909 *he chose to relocate to Jersey City.*

910  
 911 This text is generated by combining the **structured attributes** (name, date, location, etc.) with a set  
 912 of sentence templates.  
 913

914 A predefined set of QA templates is then used to generate the final training data. These templates  
 915 contain placeholders corresponding to the biographical attributes. By formatting these templates  
 916 with the information from each synthetic biography, we generate a collection of concrete QA pairs  
 917 for each entity. For example, for the entity “Ashton Hilda Older”, we can generate the following six  
 918 QA pairs:  
 919

918

919 1. What is the birth date of Ashton Hilda

920 Older?

921 **Answer: February 01, 2063.**

922 2. What is the birth city of Ashton Hilda

923 Older?

924 **Answer: Miami, FL.**

925 3. Which university did Ashton Hilda Older

926 study?

927 **Answer: Saddleback College.**

928

929 To evaluate the optimizers on a knowledge-intensive task with data imbalance, we constructed a

930 synthetic dataset where the number of question-answering (QA) samples per class follows a power-

931 law distribution. This is designed to simulate real-world scenarios where a few entities (the “head”)

932 are highly represented, while most entities (the “tail”) are rare.

933 The generation process is controlled by an integer parameter,  $m$ . The classes are organized into

934  $m + 1$  groups, indexed from  $g = 0$  to  $m$ .

935

936 • Group  $g$  contains  $N_g$  classes, where  $N_0 = 1$  and  $N_g = 2^{g-1}$  for  $g > 0$ .

937

938 • Each class within group  $g$  is allocated a specific number of “selections,”  $S_g = 2^{m-g}$ .

939

940 • For each selection, we generate  $n_{qa}$  unique QA pairs by formatting templates with bio-

941 graphical information corresponding to that class.

942

943 Thus, the total number of QA samples for any given class in group  $g$  is  $S_g \times n_{qa}$ . This structure

944 ensures that the single class in group 0 has the most samples, while the numerous classes in group

945  $m$  have the fewest.

946 In our experiment, we set the parameters to  $m = 15$  and  $n_{qa} = 6$ . This results in a dataset with a

947 total of  $2^{15} = 32,768$  classes. The number of samples per class ranges from 196,608 for the head

948 class (group 0) down to just 6 for each of the 16,384 tail classes (group 15). The final distribution

949 is visualized in Figure 3(a) in the main text.

950 To evaluate the model’s performance on this pure memory task, we measure the First Token Accu-

951 racy (FTA) on the answers. This metric assesses the model’s ability to correctly recall information

952 by checking if the first generated token of the answer matches the ground truth. Furthermore, to un-

953 derstand how optimizers handle data imbalance, we analyze the FTA across different data frequency

954 groups, from high-frequency (head) to low-frequency (tail) data.

955

956

957 **F.4 EXPERIMENTAL DETAILS ABOUT ANGLES BETWEEN ASSOCIATIVE MEMORIES**

958 **EMBEDDINGS**

959

960 Following Fang et al. (2024), we analyze the associative memories in the FFN modules. To obtain

961  $E_i$ , we use the activations within the feed-forward modules, and for  $\tilde{E}_i$ , we take the corresponding

962 module outputs. We evaluate knowledge items from two widely used datasets: Counterfact (Meng

963 et al., 2022a) and ZsRE (Levy et al., 2017). Results on Counterfact are shown in Figure 4(a), while

964 results on ZsRE are provided in Figure 18 in Appendix G.11.

965

966

967 **F.5 EXPERIMENTAL DETAILS OF ONE-LAYER MODELS**

968

969 We set the hyperparameters as  $K = d = 999$ ,  $\alpha = 0.8$ ,  $\beta = 0.2$ . For the support-decoupled setting,

970 we set  $E$  and  $\tilde{E}$  as identity matrices. For the support-coupled setting, we set  $E$  and  $\tilde{E}$  according to

971 the construction presented in the proof of Theorem 4.3 in Appendix H.

## 972 G ADDITIONAL EXPERIMENTAL RESULTS

### 974 G.1 MAXLOGIT PER LAYER ON THE 160M NANO GPT MODEL VIA MUON OPTIMIZER

976 In this subsection, we present the MaxLogit values for each layer of the 160M NanoGPT model  
 977 trained using the Muon Optimizer. Following Gemma 3 (Kamath et al., 2025), we introduce RM-  
 978 SNorm to the attention mechanism. The attention mechanism in our model is defined as follows:

$$979 \quad O = \text{softmax}(\tilde{Q}\tilde{K}^T)V, \quad \tilde{Q} = \text{RMSNorm}(Q), \quad \tilde{K} = \text{RMSNorm}(K)$$

981 where RMSNorm is defined as  $\text{RMSNorm}(x) = \frac{x}{\sqrt{\frac{1}{d} \sum_{i=1}^d x_i^2}}$ , with  $d$  being the dimension of  $x$ .  
 982 MaxLogit is defined as:

$$984 \quad S_{\max} = \max_{i,j} \tilde{q}_i \cdot \tilde{k}_j$$

986 representing the maximum value in the attention scores before softmax normalization.

987 The MaxLogit values for each layer are summarized in Table 1.

989 Table 1: MaxLogit values per layer on the 160M NanoGPT model via Muon Optimizer.

| Layer    | 1     | 2     | 3     | 4     | 5     | 6     | 7     | 8     | 9     | 10    | 11    | 12    |
|----------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|-------|
| MaxLogit | 8.396 | 6.880 | 6.009 | 7.676 | 6.349 | 5.890 | 7.688 | 6.314 | 6.205 | 5.613 | 6.033 | 6.371 |

994 Recent reports Team et al. (2025) have shown a potential “MaxLogit explosion” phenomenon, where  
 995  $S_{\max}$  grows steadily (often near-linearly) during training, leading to overly peaked attention, gra-  
 996 dient spikes, and degraded optimizer comparisons. We included this measurement to rule out the  
 997 possibility that Muon’s comparatively smaller impact on the QK blocks (relative to VO/FFN) is sim-  
 998 ply due to suppressing such an instability. In our 160M setting, with RMSNorm applied to both  $Q$   
 999 and  $K$  (following Gemma 3), the per-layer MaxLogit values remain moderate and show no runaway  
 1000 growth. Thus, for this model size and normalization scheme, differences in Muon’s effectiveness  
 1001 across components cannot be attributed to avoiding a MaxLogit explosion in attention.

### 1003 G.2 CONTROLLING FOR PARAMETER COUNT IN COMPONENT-WISE ABLATIONS

1005 A potential confounding factor in our ablation studies (Section 3.1) is that different model compo-  
 1006 nents contain different numbers of parameters. One might argue that applying Muon to a larger  
 1007 component naturally yields greater gains simply because more parameters are being optimized dif-  
 1008 ferently. To disentangle the effect of component type from the effect of parameter count, we measure  
 1009 the performance gain *per parameter*.

1010 We measure the validation-loss improvement at 10,000 steps when applying Muon to a single com-  
 1011 ponent (QK, VO,  $W_{\text{in}}$ , or  $W_{\text{out}}$ ) relative to a full-Adam baseline. This gain is then normalized by the  
 1012 number of parameters in that specific component. For the 160M model, the parameter counts satisfy  
 1013  $|W_V| = |W_O| = |W_Q| = |W_K|$  and  $|W_{\text{in}}| = |W_{\text{out}}| = 4 \times |W_Q|$ .

1014 Figure 5(a) reports the validation loss at 10,000 steps, normalized by the number of parameters in  
 1015 each component. This result shows that the normalized gain for VO Attn is approximately 5 times  
 1016 greater than that for QK Attn, even though both components have the same number of parameters.  
 1017 The gains for  $W_{\text{in}}$  and  $W_{\text{out}}$  are also substantially higher (over 3x) than for QK Attn. Although  $W_{\text{in}}$   
 1018 and  $W_{\text{out}}$  have twice as many parameters as QK, their normalized gains are far more than half the  
 1019 gain of QK.

1020 To provide even more direct evidence, we designed the second experiment where the number of  
 1021 parameters optimized by Muon is held exactly equal across different components. We achieve this  
 1022 by comparing three configurations: Muon applies to QK matrices in all layers; but Muon applies to  
 1023  $W_{\text{in}}$  and  $W_{\text{out}}$  matrices in only the odd-numbered layers. In this setup, the total number of parameters  
 1024 of QK,  $W_{\text{in}}$  and  $W_{\text{out}}$  optimized by Muon are identical. The results in Figure 5(b) show that even  
 1025 when optimizing an identical number of parameters, the gain from applying Muon to  $W_{\text{in}}$  or  $W_{\text{out}}$  is  
 much more than the gain from applying it to the QK blocks.

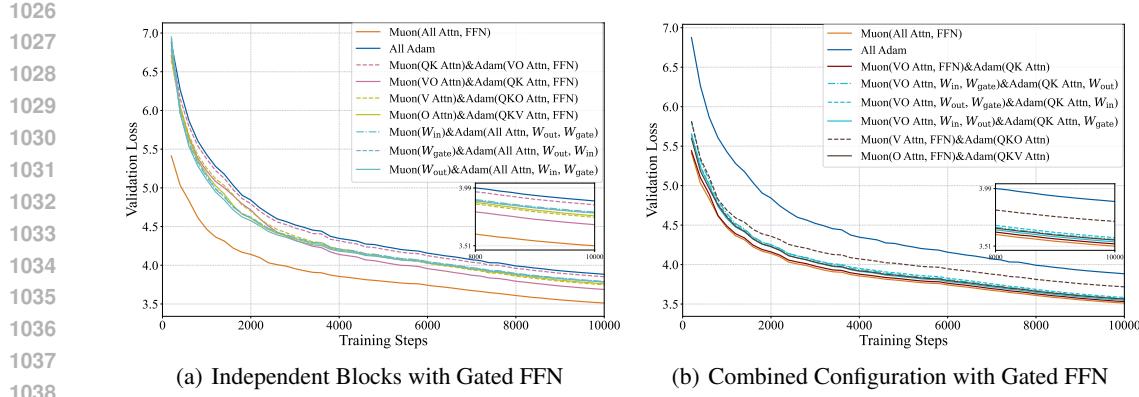


Figure 6: Validation loss comparison on the 160M NanoGPT model with gated FFN under different Muon/Adam assignments. Panels (a) and (b) show the validation loss over training steps for the Independent Blocks and Combined Configurations settings, respectively.

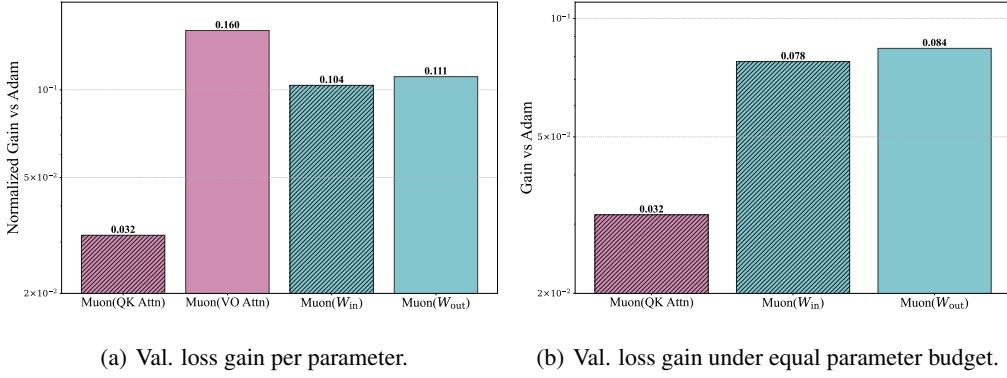


Figure 5: Component-wise validation-loss gain of Muon over Adam at 10,000 steps.

These results demonstrate that Muon’s effectiveness is not simply about the quantity of parameters, but is highly specific to the *function* of the parameters. The associative memory components (VO,  $W_{in}$ ,  $W_{out}$ ) derive a much larger benefit per parameter, reinforcing our central claim that Muon excels at optimizing these specific parts of the Transformer architecture.

### G.3 ADDITIONAL RESULTS FOR GATED FFN ON FINEWEB

To verify that our findings in Section 3.1 are not specific to the non-gated FFN architecture, we repeat the same “Independent Blocks” and “Combined Configurations” experiments on the 160M NanoGPT model with a gated FFN. The results are presented in Figure 6.

The conclusions are almost identical to those from the non-gated setting (Figure 1). Specifically, in both the independent and combined settings, applying Muon to VO+FFN yields the most significant validation loss reduction, closely tracking the performance of full Muon. In contrast, applying Muon only to the QK blocks provides minimal benefit over the Adam baseline. This confirms that our finding—that the associative memory components (VO and FFN) are the primary beneficiaries of Muon—is robust to variations in the Transformer architecture, holding for both gated and non-gated FFNs.

Furthermore, we analyze the spectral dynamics of the weight matrices for the gated FFN model, with results for the VO and  $W_{out}$  matrices shown in Figure 7. The trends are consistent with Observation 2 from the main text: for both matrices, Muon leads to significantly higher SVD entropy and effective rank (eRank) compared to Adam. This indicates that Muon encourages the learning

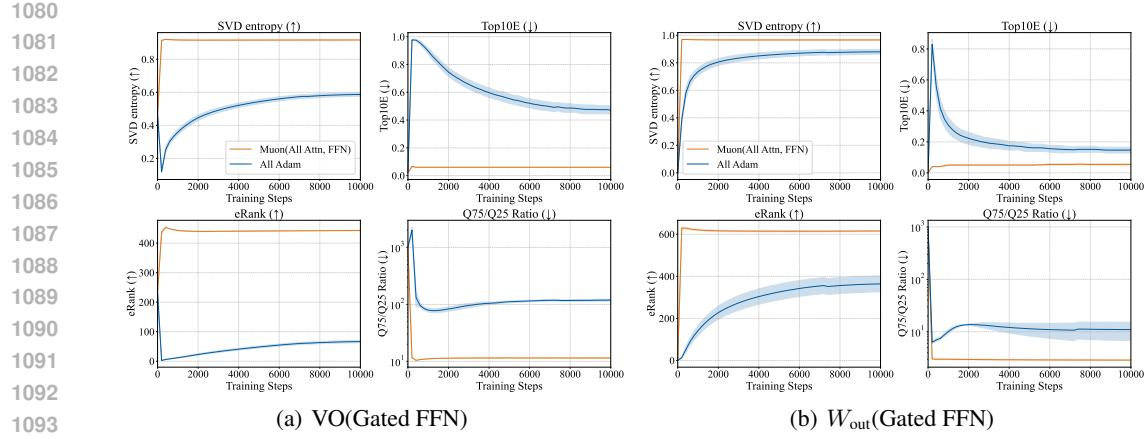


Figure 7: Spectral Dynamics of Transformer Weight Matrices During Training. Each panel reports four metrics characterizing singular value distributions: SVD entropy, Top10E, eRank, and Q75/Q25 ratio. The four subplots correspond to different weight matrix groups: (a) VO and (b)  $W_{\text{out}}$ .

of more distributed, higher-dimensional representations in the associative memory components, a finding that holds true for the gated FFN architecture as well.

#### G.4 SCALING TO THE 0.7B NANO GPT MODEL

To evaluate the scalability of our findings, we extend our experiments from the 160M model to a larger 0.7B parameter model. This section presents the results of this scaled-up analysis, examining whether the advantages of Muon observed in the smaller model persist at a larger scale.

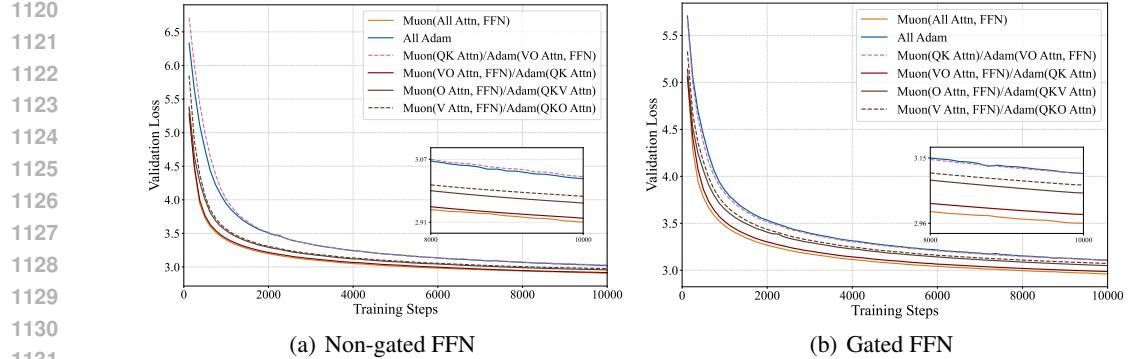


Figure 8: Validation loss comparison on the 0.7B NanoGPT model. (a) Combined configuration with non-gated feed-forward networks. (b) Combined configuration with gated feed-forward networks.

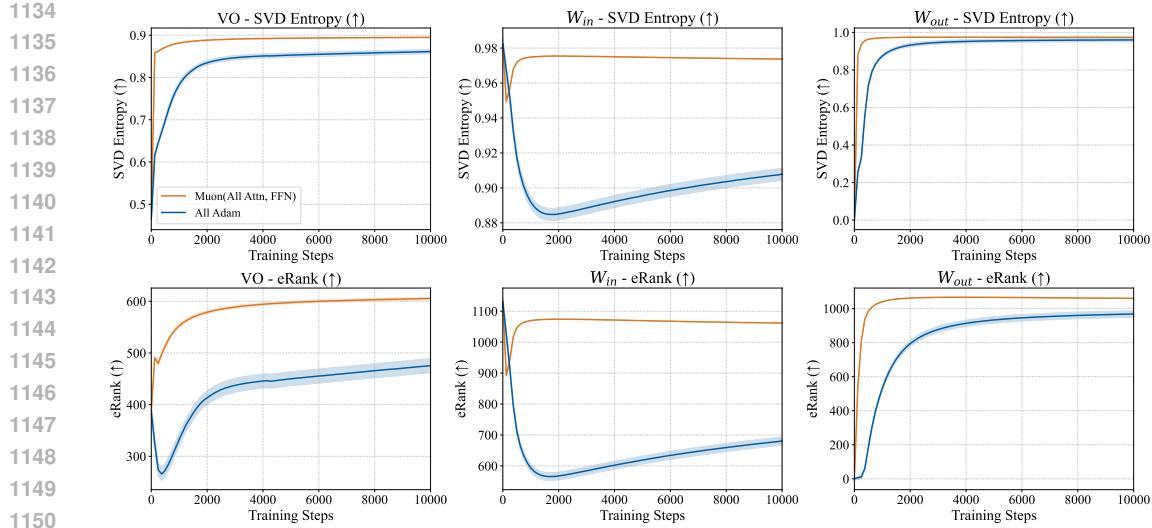


Figure 9: Spectral Dynamics of Weight Matrices During Training on the 0.7B NanoGPT model.

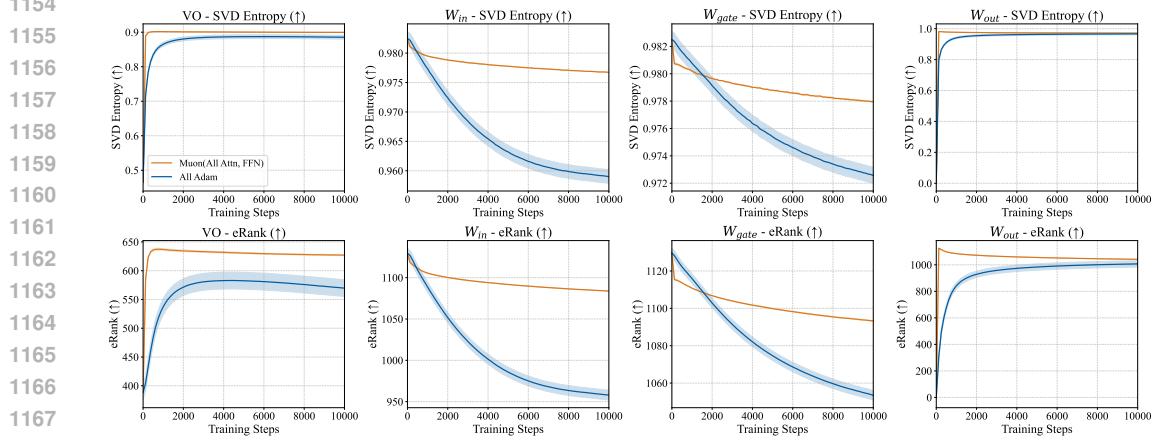


Figure 10: Spectral Dynamics of Weight Matrices During Training on the 0.7B NanoGPT model with the Gated FFN.

Figure 8 shows the validation loss curves for various optimizer configurations. Consistent with our findings on the 160M model, applying Muon to all components achieves the lowest validation loss, outperforming Adam baseline. The hybrid experiments further reinforce our earlier conclusions: applying Muon to only the VO and FFN components yields performance nearly identical to that of the full Muon optimizer, whereas applying it only to the QK components offers little advantage over Adam.

The spectral dynamics, shown in Figures 9 and 10, also align with Observation 2. For the VO,  $W_{in}$ ,  $W_{gate}$  (in model with Gated FFN) and  $W_{out}$  matrices, Muon leads to higher SVD entropy and eRank compared to Adam, indicating that it encourages the learning of more distributed, higher-dimensional representations. Overall, these results demonstrate that the benefits of Muon and the underlying mechanisms scale to larger models.

## G.5 ADDITIONAL RESULTS ABOUT SPECTRAL DYNAMICS OF TRANSFORMER WEIGHT MATRICES DURING TRAINING

To complement the main-text analysis (Fig. 2), we also evaluate spectral dynamics during training for the 160M NanoGPT model with both non-gated and gated feed-forward networks (Fig. 11).

The analysis includes  $W_{\text{in}}$  for both configurations, as well as the gate matrix  $W_{\text{gate}}$  for the gated version. The conclusions are consistent across all three matrices and mirror the non-gated setting: with Muon, SVD entropy and eRank increase, while Top- $k$  energy and the  $Q_{75/25}$  ratio decrease, consistent with Observation 2 in the main text.

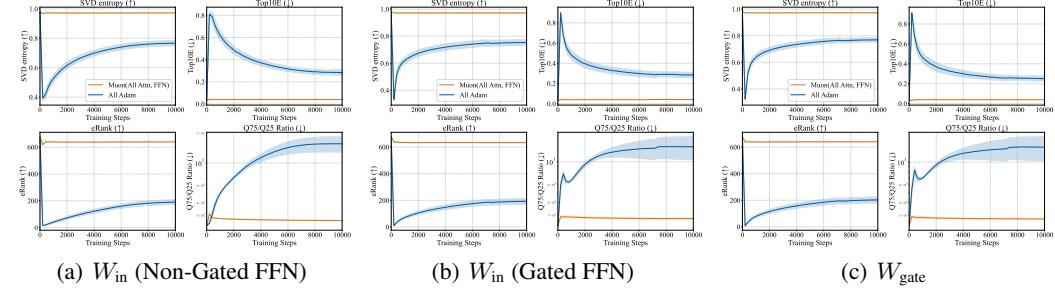


Figure 11: Spectral Dynamics of FFN Weight Matrices During Training on the 160M NanoGPT model. Each panel reports four metrics characterizing singular value distributions: SVD entropy, Top10E, eRank, and Q75/Q25 ratio. The subplots correspond to different weight matrices: (a)  $W_{\text{in}}$  (non-gated), (b)  $W_{\text{in}}$  (gated), and (c)  $W_{\text{gate}}$ .

## G.6 DETAILED EXPERIMENT RESULTS ABOUT HEAVY-TAIL IMBALANCE KNOWLEDGE TASK

To complement the qualitative trends shown in Section 3.3 (Fig. 3), we report the exact First Token Accuracy (FTA) for selected tail groups at three training checkpoints (2k, 5k, 10k steps). We focus on groups  $g = 11, 13, 15$ , which represent increasingly rare (mid-tail, tail, extreme tail) frequency bands in the power-law distribution (recall that larger  $g$  implies fewer samples per class). The tables contrast full Muon, Adam, SGD+Momentum, and two hybrid configurations (Muon applied only to VO&FFN or only to QK). The numbers highlight: (i) Muon’s rapid convergence on rare groups (already strong by 2k, near-saturated by 5k), (ii) Adam’s persistent head-tail gap, and (iii) the dominant contribution of applying Muon to VO&FFN for tail generalization (the VO&FFN hybrid closely tracks full Muon, whereas the QK-only hybrid lags). These quantitative results substantiate Observation 3 that Muon delivers more balanced learning.

Table 2: Heavy-tail knowledge task: Group performance by optimizer (2,000 steps)

| Group | Optimizer            |               |               |               |               |
|-------|----------------------|---------------|---------------|---------------|---------------|
|       | Muon                 | Adam          | SGD+Mom.      | Muon(VO, FFN) | Muon(QK)      |
| 11    | <b>0.854 ± 0.029</b> | 0.312 ± 0.043 | 0.156 ± 0.037 | 0.814 ± 0.022 | 0.472 ± 0.041 |
| 13    | <b>0.386 ± 0.029</b> | 0.146 ± 0.015 | 0.120 ± 0.012 | 0.256 ± 0.030 | 0.154 ± 0.032 |
| 15    | <b>0.140 ± 0.027</b> | 0.090 ± 0.031 | 0.082 ± 0.013 | 0.114 ± 0.023 | 0.086 ± 0.037 |

Table 3: Heavy-tail knowledge task: Group performance by optimizer (5,000 steps)

| Group | Optimizer            |               |               |               |               |
|-------|----------------------|---------------|---------------|---------------|---------------|
|       | Muon                 | Adam          | SGD+Mom.      | Muon(VO, FFN) | Muon(QK)      |
| 11    | <b>0.996 ± 0.006</b> | 0.936 ± 0.039 | 0.314 ± 0.021 | 0.992 ± 0.005 | 0.970 ± 0.007 |
| 13    | <b>0.964 ± 0.023</b> | 0.298 ± 0.074 | 0.148 ± 0.013 | 0.934 ± 0.015 | 0.354 ± 0.032 |
| 15    | <b>0.320 ± 0.028</b> | 0.110 ± 0.027 | 0.084 ± 0.011 | 0.254 ± 0.026 | 0.118 ± 0.019 |

Table 4: Heavy-tail knowledge task: Group performance by optimizer (10,000 steps)

| Group | Optimizer                           |                   |                   |                   |                   |
|-------|-------------------------------------|-------------------|-------------------|-------------------|-------------------|
|       | Muon                                | Adam              | SGD+Mom.          | Muon(VO, FFN)     | Muon(QK)          |
| 11    | 1.000 $\pm$ 0.000                   | 1.000 $\pm$ 0.000 | 0.422 $\pm$ 0.023 | 1.000 $\pm$ 0.000 | 1.000 $\pm$ 0.000 |
| 13    | <b>1.000 <math>\pm</math> 0.000</b> | 0.890 $\pm$ 0.042 | 0.294 $\pm$ 0.013 | 0.998 $\pm$ 0.002 | 0.940 $\pm$ 0.034 |
| 15    | <b>0.976 <math>\pm</math> 0.006</b> | 0.264 $\pm$ 0.048 | 0.126 $\pm$ 0.021 | 0.954 $\pm$ 0.021 | 0.286 $\pm$ 0.039 |

## G.7 ADDITIONAL EXPERIMENT RESULTS ABOUT HEAVY-TAIL IMBALANCE KNOWLEDGE TASK WITH GATED FEED-FORWARD NETWORKS

This subsection complements the main heavy-tail results in Section 3.3 by studying the gated feed-forward networks (Gated FFN) variant. We follow the same presentation order as in the main text: first an overview figure (sample distribution and learning curves under different optimizers), then tables reporting the exact First-Token Accuracy (FTA) for tail groups  $g \in \{11, 13, 15\}$  at three training checkpoints (2k, 5k, 10k steps). The findings mirror the non-gated setting: (i) full Muon consistently outperforms Adam and SGD+Momentum on rare classes and reaches high accuracy earlier; (ii) the VO&FFN-hybrid (Muon applied to VO and FFN while Adam is used for QK) closely tracks full Muon, indicating that VO&FFN are the primary levers for tail generalization; (iii) the QK-only hybrid offers limited gains. Overall, the gated FFN does not change the qualitative conclusions about where Muon helps most. See Fig. 12 and Tables 5–7 for details.

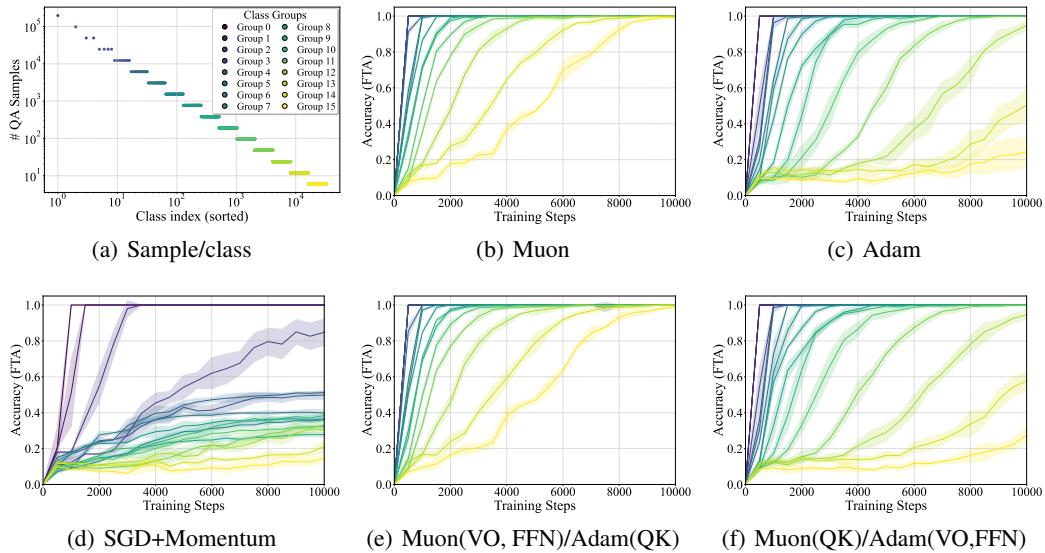


Figure 12: Performance comparison of different optimizers on a heavy-tailed knowledge task with gated feed-forward networks. (a) The distribution of samples per class follows a power law. (b-d) Performance of Muon, Adam, and SGD+Momentum optimizers. (e) Muon (VO, FFN)/Adam (QK). (f) Muon (QK)/Adam (VO, FFN).

Table 5: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (2,000 steps)

| Group | Optimizer                           |                   |                   |                   |                   |
|-------|-------------------------------------|-------------------|-------------------|-------------------|-------------------|
|       | Muon                                | Adam              | SGD+Mom.          | Muon(VO, FFN)     | Muon(QK)          |
| 11    | <b>0.896 <math>\pm</math> 0.009</b> | 0.214 $\pm$ 0.063 | 0.146 $\pm$ 0.018 | 0.892 $\pm$ 0.021 | 0.330 $\pm$ 0.042 |
| 13    | <b>0.478 <math>\pm</math> 0.034</b> | 0.116 $\pm$ 0.030 | 0.110 $\pm$ 0.007 | 0.458 $\pm$ 0.037 | 0.140 $\pm$ 0.019 |
| 15    | <b>0.178 <math>\pm</math> 0.018</b> | 0.086 $\pm$ 0.013 | 0.074 $\pm$ 0.009 | 0.166 $\pm$ 0.017 | 0.090 $\pm$ 0.020 |

1296 Table 6: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (5,000  
1297 steps)

1298

1299

1300

1301

1302

1303

1304

1305

1306

1307

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318

1306 Table 7: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (10,000  
1307 steps)

1308

1309

1310

1311

1312

1313

1314

1315

1316

1317

1318 

## IMPACT OF DATA IMBALANCE LEVEL

1319

1320

1321

1322

1323

1324

1325

1326

1327

1328

1329

1330

1331

1332

1333

1334

1335

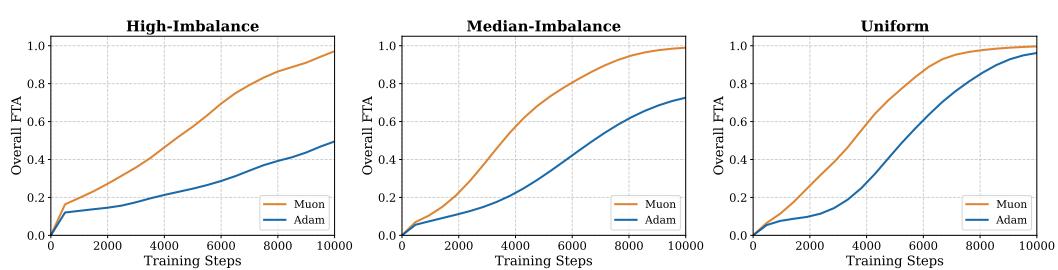
1336

1337

To further investigate how the degree of data imbalance affects the performance gap between Muon and Adam, we conduct an ablation study on the heavy-tail knowledge task with varying levels of class imbalance. We compare three settings:

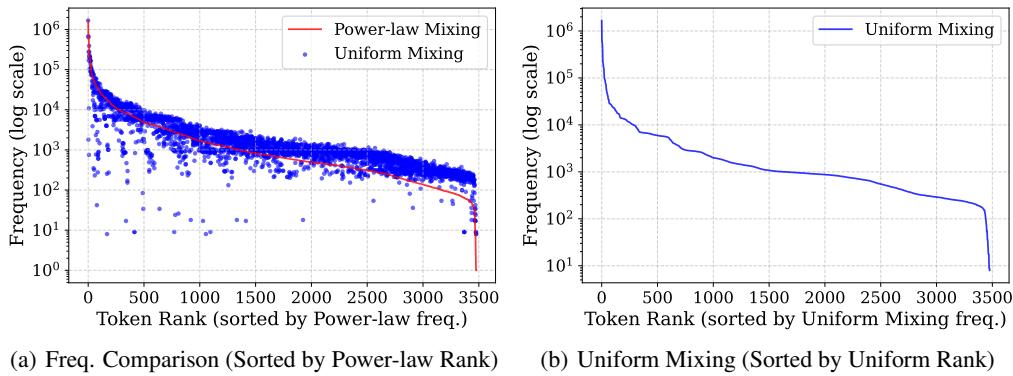
- **High Imbalance (base = 2.0):** This is the default setting used in our main experiments (Section 3), where the number of samples per class follows the power-law construction in Section F.3 with base 2.0.
- **Medium Imbalance (base = 1.2):** A less skewed version of the same construction, where the base is reduced to 1.2 so that the head-tail ratio is smaller.
- **Uniform:** A balanced setting where each group contains the same number of classes and each class is assigned the same number of QA samples.

The results are presented in Figure 13. From left to right, the panels correspond to the high-imbalance, medium-imbalance, and uniform settings, each plotting the average First Token Accuracy (FTA) over all groups for Adam and Muon. As the data distribution becomes more uniform, the performance gap between Muon and Adam steadily shrinks, and in the uniform case the two optimizers behave very similarly, indicating that Muon’s advantage is most pronounced in highly imbalanced, heavy-tailed regimes.



1346 Figure 13: Comparison of Muon and Adam under different levels of class imbalance on the  
1347 heavy-tail knowledge task. From left to right, the panels correspond to the High Imbalance (base =  
1348 2.0), Medium Imbalance (base = 1.2), and Uniform settings.

1350  
 1351 The datasets mixed with different levels of heavy-tailedness exhibit two properties: (1) Figure 14(a)  
 1352 shows that the single-token distributions are not exactly the same, i.e., facts and tokens cannot be  
 1353 perfectly decoupled; and (2) the token distribution in the uniform mixture still follows Zipf’s law  
 1354 (Figure 14(b)). Thus, we conclude that, under different levels of heavy-tailedness in the pretraining  
 1355 data, the benefit of Muon over Adam varies even when the token distribution remains close to Zipf’s  
 1356 law: the more uniform the mixture, the smaller the gain of Muon over Adam.  
 1357  
 1358



1359  
 1360 Figure 14: Token-frequency profiles for the synthetic heavy-tail QA task. (a) Compares the token  
 1361 frequencies of the original Power-law mixing (red curve) and a fact-balanced Uniform mixing (blue  
 1362 dots), using the token rank from the power-law mixing. (b) Shows the token frequency profile for  
 1363 the Uniform mixing data, re-sorted by its own token frequencies.  
 1364  
 1365  
 1366  
 1367  
 1368  
 1369  
 1370

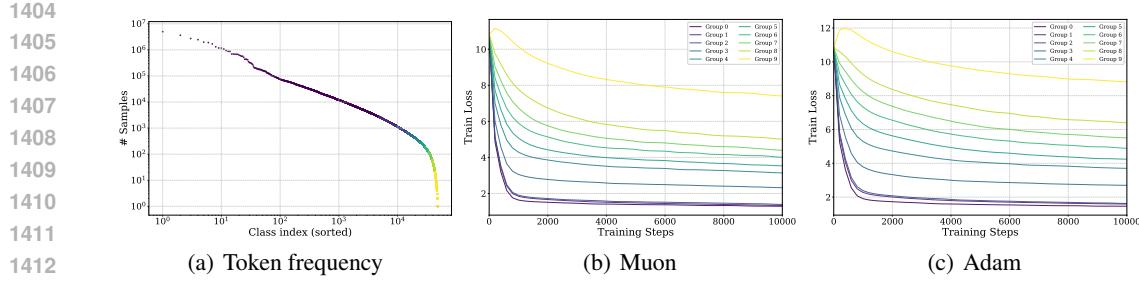
## G.9 ADDITIONAL RESULTS ON WIKITEXT103

1371  
 1372 To verify that our observations on FineWeb and the synthetic heavy-tail knowledge task transfer to  
 1373 a more standard language modeling benchmark, we additionally train 160M NanoGPT models on  
 1374 the Wikitext103 dataset. We keep the model architecture and most hyperparameters identical to the  
 1375 FineWeb setup and only retune the learning rate for each optimizer with a small grid search.  
 1376  
 1377  
 1378  
 1379  
 1380

1381 To verify that our observations on FineWeb and the synthetic heavy-tail knowledge task transfer to  
 1382 a more standard language modeling benchmark, we additionally train 160M NanoGPT models on  
 1383 the Wikitext103 dataset. We keep the model architecture and most hyperparameters identical to the  
 1384 FineWeb setup and only retune the learning rate for each optimizer with a small grid search.  
 1385  
 1386 Figure 15 provides an overview of this setting. Panel (a) shows the empirical token frequency  
 1387 distribution of Wikitext103, which exhibits a clear heavy-tail pattern: a small number of tokens  
 1388 appear very frequently, while many tokens are rare. In the plot, the vocabulary is partitioned into ten  
 1389 frequency-based groups, each containing approximately 10% of the tokens (from most frequent to  
 1390 rarest), to make head and tail behavior more comparable. Panels (b) and (c) report the training loss  
 1391 curves for Adam and Muon, respectively. Consistent with our main results, Muon converges faster  
 1392 and reaches a lower training loss than Adam.  
 1393

1394 Figure 16 further highlights the difference between the two optimizers by plotting their training  
 1395 losses on the same axes. Looking from the head group to the tail group, the performance gap between  
 1396 Muon and Adam steadily widens: while the two optimizers behave similarly on high-frequency  
 1397 (head) tokens, Muon remains much stronger on mid- and low-frequency (tail) tokens. In addition,  
 1398 the error bars for Adam grow substantially toward the tail, indicating unstable generalization on rare  
 1399 tokens, whereas Muon stays consistently stable across all groups.  
 1400

1401 Figure 16 also reports the two hybrid configurations. The Muon(VO, FFN) variant, which applies  
 1402 Muon only to the value/output and feed-forward blocks while keeping Adam on QK, almost overlaps  
 1403 with the full Muon curve, showing that most of the improvement comes from these components. In  
 1404 contrast, the Muon(QK)-only variant is very close to the Adam baseline, suggesting that using Muon  
 1405 solely on the QK blocks brings limited benefit.  
 1406



1414  
1415  
1416  
1417  
1418  
1419  
1420  
1421  
1422  
1423  
1424  
1425  
1426  
1427  
1428  
1429  
1430  
1431  
1432  
1433  
1434  
1435  
1436  
1437  
1438  
1439  
1440  
1441  
1442  
1443  
1444  
1445  
1446  
1447  
1448  
1449  
1450  
1451  
1452  
1453  
1454  
1455  
1456  
1457

Figure 15: Performance comparison of different optimizers on Wikitext103. (a) Token frequency distribution in the Wikitext103 training corpus, showing a pronounced heavy-tail structure. (b) Training loss curve for Muon. (c) Training loss curve for Adam.

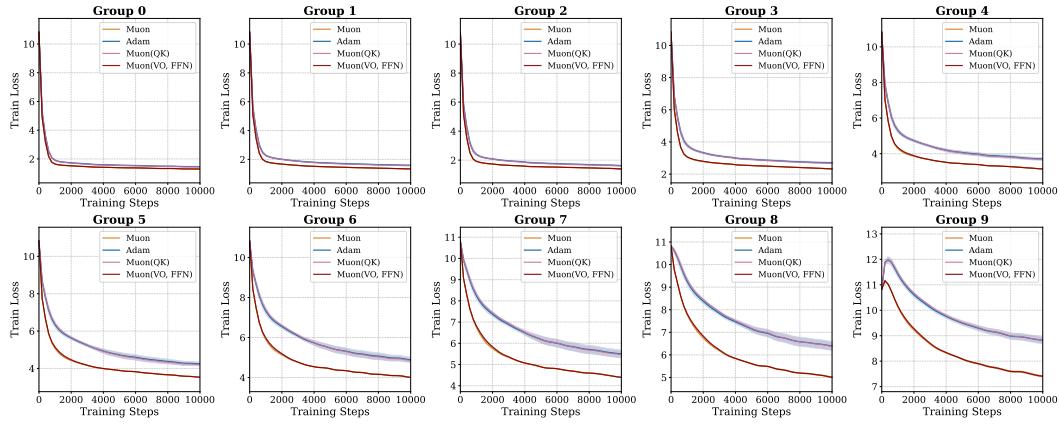


Figure 16: Training loss comparison on Wikitext103 across head and tail token groups under different optimizer configurations. The curves correspond to Adam, Muon, and two hybrid variants that apply Muon only to VO&FFN or only to QK. In these figures, the results of Muon(VO, FFN) coincide with those of Muon, while the results of Muon(QK) coincide with those of Adam.

## G.10 ADDITIONAL RESULTS ON LINEAR REGRESSION

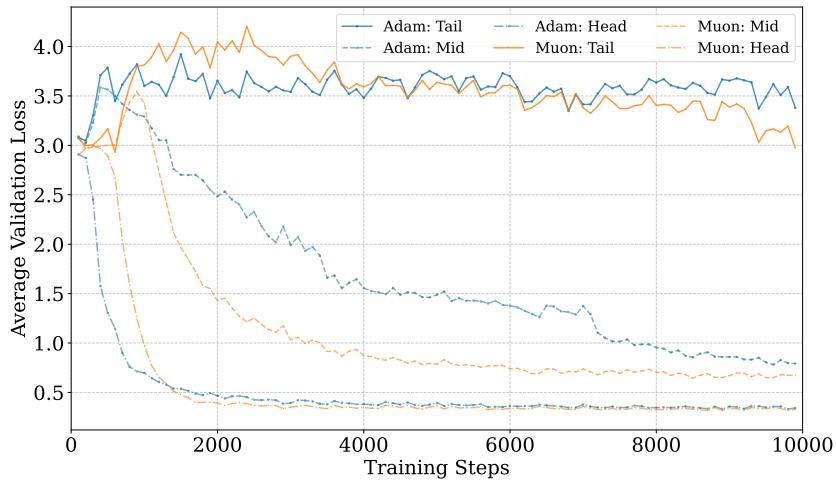


Figure 17: Validation loss on linear regression across head and tail groups under different Adam and Muon.

To further demonstrate that Muon is ineffective at optimizing the QK parameters in the attention module, we consider an in-context linear regression task (Garg et al., 2022), which heavily relies on the QK parameters. In this task, the model is prompted with a number of demonstrations  $(x_i, y_i)_{i=1}^K$  with  $y_i = x_i^\top w$  and a query  $x_q$ , where  $x_i \in \mathbb{R}^d$  for  $i \in [K]$  and  $x_q, w \in \mathbb{R}^d$ . The model is expected to output  $x_q^\top w$ . Intuitively, the QK parameters capture the correlations between the demonstrations and the query and use them to estimate  $x_q^\top w$ . Following (Garg et al., 2022), we train the model with  $\ell_2$  loss. To test the efficacy of the optimizers under a heavy-tailed task distribution, we partition  $w$  into groups supported on mutually orthogonal subspaces, which appear in the training data with different frequencies. We perform a grid search over learning rates for Adam and Muon and report the results in Figure 17.

Figure 17 shows that Adam and Muon achieve similar performance across different groups. In particular, both optimizers effectively learn the head class but barely improve on the tail class. This behavior is in sharp contrast to the results in Section 3.3, where Muon substantially outperforms Adam on tail classes. Hence, the linear regression experiment further supports our claim that the main benefit of Muon does not come from optimizing the QK parameters.

## G.11 ADDITIONAL RESULTS ABOUT ANGLES BETWEEN ASSOCIATIVE MEMORIES EMBEDDINGS

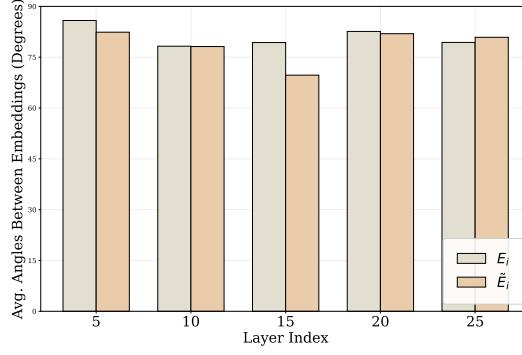


Figure 18: Average angles between  $e_s$  or  $e_o$  for items in ZsRE at layers 5, 10, 15, 20, 25 of Llama3-8b-instruct.

## H PROOF OF THEOREM 4.3

We separately derive the results for GD, Muon, and Adam in the following proof. For all of them, we define

$$\eta_{\text{opt}}^\epsilon = \inf \left\{ \eta \geq 0 \mid 1 - \max_{k \in [K]} [f_W(E_k)]_k \leq \epsilon, \text{ where } W = W_0 - \eta \cdot G_{\text{opt}}(W_0) \right\}. \quad (\text{H.1})$$

The quantity  $\eta_{\text{opt}}^\epsilon$  represents the minimal step size for at least one triplet to be learned with error probability less than  $\epsilon$ . From the definition, we have that

$$\varrho_{\text{opt}}^\epsilon \leq \min_{k \in [K]} [f_{-\eta_{\text{opt}}^\epsilon G_{\text{opt}}}(E_k)]_k.$$

### Step 1: Calculations of GD.

We define the score of  $k'$ -th object for the  $k$ -th subject-relation pair with the parameter  $W$  as

$$s(k', k, W) = \frac{\exp(\tilde{E}_{k'}^\top W E_k)}{\sum_{k''=1}^K \exp(\tilde{E}_{k''}^\top W E_k)}.$$

At  $W_0 = 0_{d_o, d_s}$ , we have that

$$s(k', k, W_0) = \frac{1}{K} \text{ for all } k, k' \in [K].$$

1512 Proposition J.1 shows that the gradient is  
 1513

$$\begin{aligned} -\nabla_W \mathcal{L}(W_0) &= \frac{\alpha}{L} \tilde{E}_{1:L} E_{1:L}^\top + \frac{1-\alpha}{K-L} \tilde{E}_{L+1:K} E_{L+1:K}^\top - \frac{\alpha}{LK} \tilde{E}_{J_{K,L}} E_{1:L}^\top \\ &\quad - \frac{1-\alpha}{(K-L)K} \tilde{E}_{J_{K,K-L}} E_{L+1:K}^\top. \end{aligned} \quad (\text{H.2})$$

1519 From the gradient, it is easy to see that the first  $L$  triplets  $(s, r, o)$  share the same learning behavior,  
 1520 and the last  $K - L$  triplets also share the same behavior. Thus, we calculate the results for  $k = 1$   
 1521 and  $k = L + 1$ . The calculation for  $k = 1$  depends on evaluating its score function, which takes  
 1522 the form  $\eta \cdot \tilde{E}_{k''}^\top [-\nabla_W \mathcal{L}(W_0)] E_1$ , for  $k'' \in \{1, \dots, K\}$ . Based on the gradient in (H.2) and the  
 1523 orthonormality of the embeddings, it evaluates to  $\alpha/L$  for the case  $k'' = 1$ , and to 0 for all  $k'' \neq 1$ .

1524 This leads to a numerator in the softmax score of  $\exp(\eta \cdot \alpha/L)$ , while the denominator sum consists  
 1525 of one term  $\exp(\eta \cdot \alpha/L)$  and  $K - 1$  terms of  $\exp(0) = 1$ . A similar calculation for  $k = L + 1$  shows  
 1526 that the argument of the exponent for the correct object,  $\eta \cdot \tilde{E}_{L+1}^\top [-\nabla_W \mathcal{L}(W_0)] E_{L+1}$ , evaluates to  
 1527  $\eta \cdot (1 - \alpha)/(K - L)$ . By defining  $\gamma_1 = \alpha/(\beta K)$  and  $\gamma_2 = (1 - \alpha)/((1 - \beta)K)$  based on the  
 1528 problem setup ( $L = \beta K$ ), we have that  
 1529

$$[f_{-\eta \nabla_W \mathcal{L}}(E_1)]_1 = \frac{\exp(\eta \gamma_1)}{\exp(\eta \gamma_1) + K - 1}, \quad [f_{-\eta \nabla_W \mathcal{L}}(E_{L+1})]_{L+1} = \frac{\exp(\eta \gamma_2)}{\exp(\eta \gamma_2) + K - 1},$$

1532 where  $\gamma_1$  and  $\gamma_2$  are defined as  
 1533

$$\gamma_1 = \frac{\alpha}{\beta K}, \quad \gamma_2 = \frac{1 - \alpha}{(1 - \beta)K}.$$

1537 Then we derive that  
 1538

$$\eta_{\text{GD}}^\epsilon = \frac{1}{\max\{\gamma_1, \gamma_2\}} \log [(\epsilon^{-1} - 1)(K - 1)]. \quad (\text{H.3})$$

1541 To calculate the desired quantity, we define the quantity  $r(\alpha, \beta)$  to evaluate the balance of data as  
 1542

$$r(\alpha, \beta) = \min\{\gamma_1/\gamma_2, \gamma_2/\gamma_1\} = \min\left\{\frac{\alpha(1 - \beta)}{\beta(1 - \alpha)}, \frac{\beta(1 - \alpha)}{\alpha(1 - \beta)}\right\}.$$

1546 Some basic calculations show that  
 1547

$$1 - \min_{k \in [K]} [f_{-\eta_{\text{GD}}^\epsilon G_{\text{GD}}}(E_k)]_k = \frac{\epsilon}{\epsilon + (1 - \epsilon)^{r(\alpha, \beta)} \epsilon^{1-r(\alpha, \beta)} (K - 1)^{r(\alpha, \beta) - 1}}. \quad (\text{H.4})$$

1550 When  $r < 1$ , with the fact that  $\frac{1}{x+1} = 1 - x + O(x^2)$  as  $x \rightarrow 0$ , we have that  
 1551

$$\min_{k \in [K]} [f_{-\eta_{\text{GD}}^\epsilon G_{\text{GD}}}(E_k)]_k = O(\epsilon^{-r(\alpha, \beta)} K^{r(\alpha, \beta) - 1}).$$

1554 Thus, the proof for the convergence of GD has been established.  
 1555

## Step 2: Calculations of Muon.

1557 For Muon, we first calculate the SVD of the gradient. In fact, we can write the gradient in Eqn. (H.2)  
 1558 as  
 1559

$$\begin{aligned} -\nabla_W \mathcal{L}(W_0) &= \tilde{E} \left\{ \text{diag} \left( \frac{\alpha}{L} \mathbb{I}_L, \frac{1 - \alpha}{K - L} \mathbb{I}_{K-L} \right) - \frac{1}{K} \mathbb{I}_K \cdot \left[ \frac{\alpha}{L} \mathbb{I}_L^\top, \frac{1 - \alpha}{K - L} \mathbb{I}_{K-L}^\top \right]^\top \right\} E^\top \\ &= \tilde{E} X E^\top. \end{aligned}$$

1564 The SVD calculation of  $X = U \Sigma V^\top$  can be directly derived from Proposition J.3. Thus, the  
 1565 SVD of the gradient is  $-\nabla_W \mathcal{L}(W_0) = (\tilde{E} \cdot U) \Sigma (E \cdot V)^\top$ . The update quantity  $G_{\text{Muon}}(W_0) =$

1566  $U_0 \text{norm}(\Sigma_0) V_0^\top$  of Muon is  
 1567  $-G_{\text{Muon}}(W_0)$   
 1568  $= \tilde{E}_{1:L} R_{L,L-1} R_{L,L-1}^\top E_{1:L}^\top + \tilde{E}_{L+1:K} R_{K-L,K-L-1} R_{K-L,K-L-1}^\top E_{L+1:K}^\top$   
 1569  $+ \frac{1}{\sqrt{K[\alpha^2(K-L)^3 + (1-\alpha)^2L^3]}} \left( (K-L)\tilde{E}_{1:L} \mathbb{I}_L - L\tilde{E}_{L+1:K} \mathbb{I}_{K-L} \right)$   
 1570  $\cdot \left( \frac{(K-L)\alpha}{L} \mathbb{I}_L^\top E_{1:L}^\top - \frac{L(1-\alpha)}{K-L} \mathbb{I}_{K-L}^\top E_{L+1:K}^\top \right)$   
 1571  $= \tilde{E}_{1:L} E_{1:L}^\top + \tilde{E}_{L+1:K} E_{L+1:K}^\top$   
 1572  $+ \frac{1}{K} \left\{ \frac{1}{\beta} \left( \frac{(1-\beta)^2\alpha}{\lambda} - 1 \right) \tilde{E}_{1:L} J_{L,L} E_{1:L}^\top \right.$   
 1573  $+ \frac{1}{1-\beta} \left( \frac{\beta^2(1-\alpha)}{\lambda} - 1 \right) \tilde{E}_{L+1:K} J_{K-L,K-L} E_{L+1:K}^\top$   
 1574  $\left. - \beta(1-\alpha) \tilde{E}_{1:L} J_{L,K-L} E_{L+1:K}^\top - \alpha(1-\beta) \tilde{E}_{L+1:K} J_{K-L,L} E_{1:L}^\top \right\}, \quad (\text{H.5})$   
 1575  
 1576  
 1577  
 1578  
 1579  
 1580  
 1581  
 1582  
 1583

1584 where  $\lambda = \sqrt{\alpha^2(1-\beta)^3 + (1-\alpha)^2\beta^3}$ , the matrices  $R_{L,L-1}$  and  $R_{K-L,K-L-1}$  are defined in  
 1585 Proposition J.3, and the second equality results from the following facts

1586  $R_{L,L-1} R_{L,L-1}^\top = I_{L,L} - \frac{1}{L} \mathbb{I}_L \mathbb{I}_L^\top,$   
 1587  
 1588  $R_{K-L,K-L-1} R_{K-L,K-L-1}^\top = I_{K-L,K-L} - \frac{1}{K-L} \mathbb{I}_{K-L} \mathbb{I}_{K-L}^\top.$   
 1589

1590 Although the gradient is composed of heterogeneous components from  $\tilde{E}_{1:L}, E_{1:L}$  and  
 1591  $\tilde{E}_{L+1:K}, E_{L+1:K}$ , we can bound the convergence rate of  $[f_{-\eta G_{\text{Muon}}}(E_k)]_k$  for any  $k$ : an upper (resp.  
 1592 lower) bound is obtained by increasing (resp. decreasing) the coefficient of  $\tilde{E}_k E_k^\top$  while decreasing  
 1593 (resp. increasing) that of  $\tilde{E}_{k'} E_{k'}^\top$  for  $k' \neq k$ . In fact, Eqn. (H.5) implies that there exists a constant  
 1594  $C > 0$  such that the dynamics of the fastest- and slowest-learning triplets are bounded by those  
 1595 along the following two update directions.  
 1596

1597  $-G_{\text{Muon}}^+(W_0) = \left(1 + \frac{2C}{K}\right) (\tilde{E}_{1:L} E_{1:L}^\top + \tilde{E}_{L+1:K} E_{L+1:K}^\top) - \frac{C}{K} \cdot \tilde{E} J_{K,K} E^\top$   
 1598  
 1599  $-G_{\text{Muon}}^-(W_0) = \left(1 - \frac{2C}{K}\right) (\tilde{E}_{1:L} E_{1:L}^\top + \tilde{E}_{L+1:K} E_{L+1:K}^\top) + \frac{C}{K} \cdot \tilde{E} J_{K,K} E^\top.$   
 1600

1601 Concretely, the rate of score increase for the correct object of the  $k$ -th triplet, which is given by  
 1602 the term  $E_k^\top [-G_{\text{Muon}}(W_0)] E_k$  in the exponent of the softmax score, is bounded. The rate for the  
 1603 fastest-learning triplet is lower-bounded by the corresponding rate derived from  $-G_{\text{Muon}}^+(W_0)$ , while  
 1604 the rate for the slowest-learning triplet is upper-bounded by that from  $-G_{\text{Muon}}^-(W_0)$ . Thus, we only  
 1605 need to focus on  $G_{\text{Muon}}^+(W_0)$  and  $G_{\text{Muon}}^-(W_0)$  to calculate the desired quantity. Following the similar  
 1606 procedures for GD to derive Eqn. (H.4), we have that for any  $\eta$  such that  $\max_{k \in [K]} [f_{W_\eta}(E_k)]_k \geq$   
 1607  $1 - \epsilon$  (where  $W_\eta = W_0 - \eta \cdot G_{\text{Muon}}(W_0)$ ), the following holds  
 1608

1609  $1 - \min_{k \in [K]} [f_{W_\eta}(E_k)]_k \leq \frac{\epsilon}{\epsilon + (1-\epsilon)^{r(K)} \epsilon^{1-r(K)} (K-1)^{r(K)-1}}, \quad (\text{H.6})$   
 1610

1611 where  $r(K) = (K-2C)/(K+2C)$ . We further have that

1612  $(1-\epsilon)^{r(K)} \epsilon^{1-r(K)} (K-1)^{r(K)-1}$   
 1613  
 1614  $= (1-\epsilon) \exp \left( \frac{4C}{K+2C} \left( \log \frac{\epsilon}{1-\epsilon} - \log(K-1) \right) \right)$   
 1615  
 1616  $= (1-\epsilon) \left[ 1 + \frac{4C}{K+2C} \left( \log \frac{\epsilon}{1-\epsilon} - \log(K-1) \right) + O\left(\frac{(\log K)^2}{K^2}\right) \right]$   
 1617  
 1618  $= (1-\epsilon) + O\left(\frac{\log K}{K}\right), \quad (\text{H.7})$   
 1619

1620 where the first equality results from the basic calculations, the second equality results from that  
 1621  $\exp(x) = 1 + x + O(x^2)$  when  $x \rightarrow 0$ . Combining Eqn. (H.6) and (H.7), we have that  
 1622

$$1623 \quad \rho_{\text{Muon}}^\epsilon \geq 1 - \epsilon \left( 1 + O\left(\frac{\log K}{K}\right) \right). \\ 1624$$

1625 Thus, we prove the desired results for Muon.

1626 **Step 3: Calculations of Adam.**

1628 The proof of the results for Adam is conducted under two cases. We will construct different embed-  
 1629 dings  $\tilde{E}$  and  $E$  in these two cases. In the first case, we set  $\tilde{E} = E = I_{K,K}$ . With such embedding  
 1630 and sufficiently large  $K$ , we have that

$$1631 \quad -G_{\text{SignGD}}(W_0) = -\text{sign}(\nabla_W \mathcal{L}(W_0)) = 2I_{K,K} - J_{K,K}. \\ 1632$$

1633 Under such a setting, all triplets share the same dynamic. Thus, we have that

$$1634 \quad \rho_{\text{SignGD}}^\epsilon = 1 - \epsilon. \\ 1635$$

1636 In the second case, we set  $\tilde{E}$  and  $E$  as block-wise diagonal matrices. Here we set the block size as 3,  
 1637 i.e., requiring that  $K \bmod 3 = 0$ . Such a requirement can be satisfied infinitely often when  $K \rightarrow \infty$ .  
 1638 Then the sufficient and necessary condition of Assumption 4.1 is that each  $3 \times 3$  block contains an  
 1639 orthonormal basis. To achieve this, we define the following matrix.

$$1640 \quad R(a, b, c) = \begin{bmatrix} \cos a \cos b \cos c - \sin a \sin c & -\cos a \cos b \sin c - \sin a \cos c & \cos a \sin b \\ \sin a \cos b \cos c + \cos a \sin c & -\sin a \cos b \sin c + \cos a \cos c & \sin a \sin b \\ -\sin b \cos c & \sin b \sin c & \cos b \end{bmatrix}. \\ 1641 \\ 1642$$

1643 It is obvious that  $R(a, b, c)^\top R(a, b, c) = I_{3,3}$ . Then we set  $\tilde{E}$  and  $E$  as

$$1645 \quad \tilde{E} = I_{K/3, K/3} \otimes R(3.638, 2.949, 5.218), \quad E = I_{K/3, K/3} \otimes R(1.715, 0.876, 3.098), \\ 1646$$

1647 where  $\otimes$  is the Kronecker product. With these specifications and sufficiently large  $K$ , the Adam  
 1648 update matrix is

$$1649 \quad -G_{\text{SignGD}}(W_0) = I_{K/3, K/3} \otimes A + J_{K/3, K/3} \otimes B,$$

1650 where  $A$  and  $B$  are specified as

$$1651 \quad A = \begin{bmatrix} 2 & 0 & 0 \\ 2 & 0 & 2 \\ -2 & -2 & -2 \end{bmatrix}, \quad B = \begin{bmatrix} -1 & -1 & -1 \\ -1 & -1 & -1 \\ 1 & 1 & 1 \end{bmatrix}. \\ 1652 \\ 1653$$

1654 These show that the diagonal block of  $-G_{\text{SignGD}}(W_0)$  is

$$1656 \quad A + B = \begin{bmatrix} 1 & -1 & -1 \\ 1 & -1 & 1 \\ -1 & -1 & -1 \end{bmatrix}. \\ 1657 \\ 1658$$

1659 Since the  $k$ -th and  $(k+3)$ -th triplets share the same learning dynamics for all  $k \in [K-3]$ , we focus  
 1660 on the learning dynamics of  $k = 1, 2, 3$ . We have that

$$1661 \quad R(3.638, 2.949, 5.218)^\top \cdot (A + B) \cdot R(1.715, 0.876, 3.098) \\ 1662 \\ 1663 \quad = \begin{bmatrix} 1.46552253 & 1.0132908 & -0.11179563 \\ -0.0732561 & 1.00709257 & -1.26935805 \\ 0.0544114 & 0.89611102 & 1.54147329 \end{bmatrix}, \\ 1664 \\ 1665 \\ 1666 \quad R(3.638, 2.949, 5.218)^\top \cdot B \cdot R(1.715, 0.876, 3.098) \\ 1667 \\ 1668 \quad = \begin{bmatrix} -0.19288146 & -1.24460331 & -1.4058011 \\ -0.20112175 & -1.2977753 & -1.46585978 \\ -0.12780259 & -0.82466989 & -0.93147899 \end{bmatrix}. \\ 1669$$

1670 From the last columns of these two matrices, following the similar procedures for GD to derive  
 1671 Eqn. (H.3), we have that  
 1672

$$1673 \quad \eta_{\text{SignGD}}^\epsilon \leq \frac{1}{1.541 + 0.930} \log [(\epsilon^{-1} - 1)(K - 1)] = \frac{1}{2.471} \log [(\epsilon^{-1} - 1)(K - 1)].$$

1674 Then, from the first columns of these matrices, we have that  
 1675

$$1 - \min_{k \in [K]} [f_{-\eta_{\text{SignGD}}^\epsilon G_{\text{SignGD}}}(E_k)]_k \geq \frac{\epsilon}{\epsilon + (1 - \epsilon)^r \epsilon^{1-r} (K-1)^{r-1}},$$

1678 where  $r = \frac{1.466+0.202}{2.471} = \frac{1.668}{2.471}$ .  
 1679

1680 Thus, we have that

$$\varrho_{\text{SignGD}}^\epsilon \leq O(\epsilon^{-r} K^{r-1}) \leq O(\epsilon^{-0.7} K^{-0.3}).$$

1683 Then we calculate the singular values of  $-G_{\text{SignGD}}(W_0)$ . We define the eigen vectors of  $I_{K,K}$  as  
 1684  $\tilde{U}$ , i.e.,  $\tilde{U}^\top I_{K/3, K/3} \tilde{U} = \text{diag}(K/3, 0, \dots, 0)$ . Using the orthogonal invariance of singular values,  
 1685  $-G_{\text{SignGD}}(W_0)$  shares the singular values with the following matrix

$$\begin{aligned} & (\tilde{U}^\top \otimes I_{3,3})(-G_{\text{SignGD}}(W_0))(\tilde{U} \otimes I_{3,3}) \\ &= I_{K/3, K/3} \otimes A + (\tilde{U}^\top I_{K/3, K/3} \tilde{U}) \otimes B \\ &= \text{diag}(A - KB/3, A, \dots, A). \end{aligned}$$

1690 Thus, the singular values of  $A$  are also the singular values of  $G_{\text{SignGD}}(W_0)$ . We have that  
 1691

$$\frac{\sigma_{\min}(G_{\text{SignGD}}(W_0))}{\sigma_{\max}(G_{\text{SignGD}}(W_0))} \leq \frac{\sigma_{\min}(A)}{\sigma_{\max}(A)} \leq 25\%.$$

1695 Thus, we conclude the proof of Theorem 4.3.  
 1696

## 1697 I PROOF OF THEOREM 4.4

1699 The proof of Theorem 4.4 takes two steps. In the first step, we derive the share form of  $W_t$  along the  
 1700 whole optimization trajectory. In the second step, we build the desired results on the basis of step 1.  
 1701 Throughout the proof, we will write  $W_t^{\text{Muon}}$  as  $\bar{W}_t$  for the ease of presentation.  
 1702

### 1703 Step 1: Derive the shared forms of $W_t$ and $G_{\text{Muon}}$ .

1704 We will derive the forms of  $W_t$  along the optimization trajectory via the induction method. We first  
 1705 state our hypothesis and then prove it.

1706 **Hypothesis 1**. For any optimization step index  $t \in [T]$ , the parameters  $W_t$  can be expressed as  
 1707

$$W_t = \tilde{E} X_t E, \quad X_t = \Lambda_t + C_t,$$

1710 where  $\Lambda_t$  and  $C_t$  are

$$\Lambda_t = \text{diag}(a_t \cdot \mathbb{I}_L, b_t \cdot \mathbb{I}_{K-L}), \quad C_t = \begin{bmatrix} c_t^{11} \cdot J_{L,L} & c_t^{12} \cdot J_{L,K-L} \\ c_t^{21} \cdot J_{K-L,L} & c_t^{22} \cdot J_{K-L,K-L} \end{bmatrix},$$

1714 where  $a_t, b_t, c_t^{11}, c_t^{12}, c_t^{21}, c_t^{22} \in \mathbb{R}$  are real numbers such that (1)  $a_t = b_t \geq 0$ , and (2)  $c_t^{ij} =$   
 1715  $O(a_t/K)$  for  $i, j \in [2]$ .

1716 When  $t = 0$ , it is obvious to verify that  $W_0 = 0_{d_o, d_s}$  satisfying this hypothesis with  $a_t = b_t =$   
 1717  $c_t^{11} = c_t^{12} = c_t^{21} = c_t^{22} = 0$ . Then we assume that this hypothesis holds for  $\{1, \dots, t\}$ , and we  
 1718 will prove that it holds for  $t + 1$ . Since  $W_{t+1} = W_t - \eta_{t+1} U_t \text{norm}(\Sigma_t) V_t^\top$ , we need to show  
 1719 that  $-\eta_{t+1} U_t \text{norm}(\Sigma_t) V_t^\top$  satisfies the hypothesis. We define the score of  $k'$ -th object for the  $k$ -th  
 1720 subject-relation pair with the parameter  $W$  as  
 1721

$$s(k', k, W) = \frac{\exp(\tilde{E}_{k'}^\top W E_k)}{\sum_{k''=1}^K \exp(\tilde{E}_{k''}^\top W E_k)}.$$

1725 According to the symmetry of  $W_t$ , we have that

- 1726 •  $s(k, k, W_t) = s(1, 1, W_t)$  for all  $k \leq L$ .  
 1727
- $s(k, k, W_t) = s(K, K, W_t)$  for all  $k > L$ .

- $s(k', k, W_t) = s(2, 1, W_t)$  for all  $k, k' \leq L, k' \neq k$ .
- $s(k', k, W_t) = s(K, 1, W_t)$  for all  $k \leq L, k' > L$ .
- $s(k', k, W_t) = s(K-1, K, W_t)$  for all  $k, k' > L, k' \neq k$ .
- $s(k', k, W_t) = s(1, K, W_t)$  for all  $k > L, k' \leq L$ .

Thus, Proposition J.1 shows that the gradient of  $W_t$  is

$$-\nabla_W \mathcal{L}(W_t) = \tilde{E}(\Gamma_t + B_t)E^\top,$$

where  $\Gamma_t$  and  $B_t$  are defined as

$$\begin{aligned} \Gamma_t &= \text{diag}\left(\frac{\alpha}{L}(1 + s(2, 1, W_t) - s(1, 1, W_t))\mathbb{I}_L, \right. \\ &\quad \left. \frac{1-\alpha}{K-L}(1 + s(K-1, K, W_t) - s(K, K, W_t))\mathbb{I}_{K-L}\right), \\ B_t &= \begin{bmatrix} -\frac{\alpha}{L}s(2, 1, W_t) \cdot J_{L,L} & -\frac{1-\alpha}{K-L}s(1, K, W_t) \cdot J_{L,K-L} \\ -\frac{\alpha}{L}s(K, 1, W_t) \cdot J_{K-L,L} & -\frac{1-\alpha}{K-L}s(K-1, K, W_t) \cdot J_{K-L,K-L} \end{bmatrix}. \end{aligned}$$

Thus, Proposition J.2 shows that

$$-G_{\text{Muon}}(W_t) = \tilde{E}\left(\text{diag}(\mathbb{I}_K) + \begin{bmatrix} C_{11} \cdot J_{L,L} & C_{12} \cdot J_{L,K-L} \\ C_{21} \cdot J_{K-L,L} & C_{22} \cdot J_{K-L,K-L} \end{bmatrix}\right)E^\top,$$

where

$$\begin{aligned} C_{11} &= \frac{\tilde{U}_{1,1}\tilde{V}_{1,1} + \tilde{U}_{1,2}\tilde{V}_{1,2} - 1}{\beta K}, & C_{12} &= \frac{\tilde{U}_{1,1}\tilde{V}_{2,1} + \tilde{U}_{1,2}\tilde{V}_{2,2}}{\sqrt{\beta(1-\beta)}K}, \\ C_{21} &= \frac{\tilde{U}_{2,1}\tilde{V}_{1,1} + \tilde{U}_{2,2}\tilde{V}_{1,2}}{\sqrt{\beta(1-\beta)}K}, & C_{22} &= \frac{\tilde{U}_{2,1}\tilde{V}_{2,1} + \tilde{U}_{2,2}\tilde{V}_{2,2} - 1}{(1-\beta)K}. \end{aligned}$$

where  $\tilde{U}, \tilde{V} \in \mathbb{R}^{2 \times 2}$  are the orthonormal matrices defined in Proposition J.2. Since  $W_{t+1} = W_t - \eta_{t+1}G_{\text{Muon}}(W_t)$ , it is obvious that  $a_{t+1} = b_{t+1}$ . The orthonormality of  $\tilde{U}$  and  $\tilde{V}$  implies that  $|\tilde{U}_{i,j}|, |\tilde{V}_{i,j}| \leq 1$ . Thus, we have

$$\frac{\tilde{U}_{1,1}\tilde{V}_{1,1} + \tilde{U}_{1,2}\tilde{V}_{1,2} - 1}{\beta K} = O\left(\frac{1}{K}\right).$$

This further implies that  $c_{t+1}^{1,1} = O(a_{t+1}/K)$ . The proofs for other  $c_{t+1}^{ij}$  are similar. This completes the proof.

## Step 2: Establish the convergence results.

We note that this analysis is very similar to the proof of Muon in Theorem 4.3. Concretely, for  $W_t$ , the coefficients  $a_t, b_t, c_t^{11}, c_t^{12}, c_t^{21}, c_t^{22}$  from multiple-step optimization share the same property with those of the one-step results. It means that there exists a constant  $C > 0$  such that the dynamics of the fastest- and slowest-learning triplets are bounded by those along the following two update directions in only one step.

$$\begin{aligned} -G_{\text{Muon}}^+ &= \left(1 + \frac{2C}{K}\right)(\tilde{E}_{1:L}E_{1:L}^\top + \tilde{E}_{L+1:K}E_{L+1:K}^\top) - \frac{C}{K} \cdot \tilde{E}J_{K,K}E^\top \\ -G_{\text{Muon}}^- &= \left(1 - \frac{2C}{K}\right)(\tilde{E}_{1:L}E_{1:L}^\top + \tilde{E}_{L+1:K}E_{L+1:K}^\top) + \frac{C}{K} \cdot \tilde{E}J_{K,K}E^\top. \end{aligned}$$

The remaining analysis is then exactly the same as that of Theorem 4.3. Thus, we conclude the proof of Theorem 4.4.

1782 **J SUPPORTING PROPOSITIONS**  
 1783

1784 **Proposition J.1.** We define the score of  $k'$ -th object for the  $k$ -th subject-relation pair with the pa-  
 1785 rameter  $W$  as

1786 
$$1787 s(k', k, W) = \frac{\exp(\tilde{E}_{k'}^\top W E_k)}{\sum_{k''=1}^K \exp(\tilde{E}_{k''}^\top W E_k)}.$$
  
 1788

1789 When the parameter  $W$  is trained with loss

1790 
$$1791 \mathcal{L}(W) = - \sum_{k=1}^K p_k \cdot \log [f_W(E_k)]_k,$$
  
 1792

1793 the gradient of  $W$  is

1794 
$$1795 \nabla_W \mathcal{L}(W) = - \sum_{k=1}^K p_k \left\{ [1 - s(k, k, W)] \tilde{E}_k E_k^\top - \sum_{k' \neq k} s(k', k, W) \tilde{E}_{k'} E_k^\top \right\}.$$
  
 1796

1797 *Proof of Proposition J.1.* The proof just follows from the basic calculus. Thus, we omit them here.  $\square$

1800  
 1801 **Proposition J.2.** Let  $X = \Lambda + C \in \mathbb{R}^{K \times K}$ . The matrix  $\Lambda = \text{diag}(a \cdot \mathbb{I}_L, b \cdot \mathbb{I}_{K-L})$  is a diagonal  
 1802 matrix whose first  $L$  diagonal elements are  $a$  and the last  $K - L$  elements are  $b$  with  $a, b > 0$ . The  
 1803 matrix  $C$  is a block-wise constant matrix defined as

1804 
$$1805 C = \begin{bmatrix} c_{11} \cdot J_{L,L} & c_{12} \cdot J_{L,K-L} \\ c_{21} \cdot J_{K-L,L} & c_{22} \cdot J_{K-L,K-L} \end{bmatrix}.$$
  
 1806

1807 Then  $X = U \Sigma V^\top$ . Here  $\Sigma, V, U$  are defined as follows. All of them can be decomposed into three  
 1808 blocks, each corresponding to a subspace. The first subspace is

1809 
$$1810 \mathcal{S}_1 = \left\{ \begin{bmatrix} x \\ 0_{K-L} \end{bmatrix} \mid x^\top \mathbb{I}_L = 0, \text{ and } x \in \mathbb{R}^L \right\}.$$
  
 1811

1812 The dimension of this space is  $L - 1$ . The singular value of  $X$  corresponding to this subspace is  $a$ .  
 1813 The block of columns in both  $U$  and  $V$  that forms an orthonormal basis for this subspace is given by

1814 
$$1815 \begin{bmatrix} R_{L,L-1} \\ 0_{K-L,L-1} \end{bmatrix},$$
  
 1816

1817 where the columns of the matrix  $R_{L,L-1} \in \mathbb{R}^{L \times (L-1)}$  form an orthonormal basis for the subspace  
 1818  $\{x \in \mathbb{R}^L \mid x^\top \mathbb{I}_L = 0\}$ . The second subspace is

1819 
$$1820 \mathcal{S}_2 = \left\{ \begin{bmatrix} 0_L \\ y \end{bmatrix} \mid y^\top \mathbb{I}_{K-L} = 0, \text{ and } y \in \mathbb{R}^{K-L} \right\}.$$
  
 1821

1822 The dimension of this space is  $K - L - 1$ . The singular value of  $X$  corresponding to this subspace  
 1823 is  $b$ . The block of columns in both  $U$  and  $V$  that forms an orthonormal basis for this subspace is  
 1824 given by

1825 
$$1826 \begin{bmatrix} 0_{L,K-L-1} \\ R_{K-L,K-L-1} \end{bmatrix},$$
  
 1827

1828 where the columns of the matrix  $R_{K-L,K-L-1} \in \mathbb{R}^{(K-L) \times (K-L-1)}$  form an orthonormal basis for  
 1829 the subspace  $\{y \in \mathbb{R}^{K-L} \mid y^\top \mathbb{I}_{K-L} = 0\}$ . The remaining 2-dimensional subspace is induced by a  
 1830  $2 \times 2$  matrix  $M$  defined as

1831 
$$1832 M = \begin{bmatrix} \alpha & \beta \\ \gamma & \delta \end{bmatrix} = \tilde{U} \text{diag}(s_1, s_2) \tilde{V}^\top,$$
  
 1833

1834 where the elements of  $M$  are defined as

1835 
$$\alpha = a + Lc_{11}, \quad \beta = \sqrt{L(K-L)} c_{12}, \quad \gamma = \sqrt{L(K-L)} c_{21}, \quad \delta = b + (K-L)c_{22}.$$

1836 The singular values  $s_1, s_2$  are  
 1837

$$1838 \quad 1839 \quad s_{1,2} = \sqrt{\frac{T \pm \sqrt{T^2 - 4\Delta}}{2}}, \quad T = \alpha^2 + \beta^2 + \gamma^2 + \delta^2, \quad \Delta = (\alpha\delta - \beta\gamma)^2.$$

1840

1841 The singular values of  $X$  in this subspace are  $s_1$  and  $s_2$ . The corresponding right singular vectors  
 1842 ( $v_i$ ) and left singular vectors ( $u_i$ ), which form columns of  $V$  and  $U$  respectively, are given by:

$$1843 \quad v_i = \tilde{V}_{1,i}e_1 + \tilde{V}_{2,i}e_2, \quad u_i = \tilde{U}_{1,i}e_1 + \tilde{U}_{2,i}e_2 \text{ for } i = 1, 2,$$

1844

1845 where the vectors  $e_1$  and  $e_2$  are defined as  
 1846

$$1847 \quad e_1 = \begin{bmatrix} \frac{1}{\sqrt{L}} \mathbb{I}_L \\ 0_{K-L} \end{bmatrix}, \quad e_2 = \begin{bmatrix} 0_L \\ \frac{1}{\sqrt{K-L}} \mathbb{I}_{K-L} \end{bmatrix}.$$

1848

1849 In summary, the SVD of  $X$  is  
 1850

$$1851 \quad \Sigma = \text{diag}(a \cdot \mathbb{I}_{L-1}, b \cdot \mathbb{I}_{K-L-1}, s_1, s_2),$$

$$1852 \quad V = \left[ \begin{bmatrix} R_{L,L-1} \\ 0_{K-L,L-1} \end{bmatrix}, \begin{bmatrix} 0_{L,K-L-1} \\ R_{K-L,K-L-1} \end{bmatrix}, v_1, v_2 \right],$$

$$1854 \quad U = \left[ \begin{bmatrix} R_{L,L-1} \\ 0_{K-L,L-1} \end{bmatrix}, \begin{bmatrix} 0_{L,K-L-1} \\ R_{K-L,K-L-1} \end{bmatrix}, u_1, u_2 \right].$$

1856

1858 *Proof of Proposition J.2.* We first prove the results for  $\mathcal{S}_1$ . For any vector  $v$  in  $\mathcal{S}_1$ , it is direct to  
 1859 verify that  
 1860

$$1861 \quad X^\top X \begin{bmatrix} v \\ 0_{K-L} \end{bmatrix} = a^2 \begin{bmatrix} v \\ 0_{K-L} \end{bmatrix}.$$

1862

1863 Thus, the singular value of  $X$  corresponding to the subspace spanned by the vector  $[v^\top, 0_{K-L}^\top]^\top$  is  
 1864  $a$ , and the corresponding columns of  $V$  form an orthonormal basis for  $\mathcal{S}_1$ . For the  $U$  calculation, we  
 1865 have that  
 1866

$$1867 \quad X \begin{bmatrix} v \\ 0_{K-L} \end{bmatrix} = a \begin{bmatrix} v \\ 0_{K-L} \end{bmatrix}.$$

1868

1869 Thus, the corresponding left singular vectors (columns of  $U$ ) are identical to the right singular vectors  
 1870 for this subspace. A similar calculation can be done for  $\mathcal{S}_2$ . The remaining vectors are orthogonal  
 1871 to both  $\mathcal{S}_1$  and  $\mathcal{S}_2$  and thus take the form of  
 1872

$$1873 \quad v_i = p_1e_1 + p_2e_2, \quad u_i = p_3e_1 + p_4e_2 \text{ for } i = 1, 2 \text{ with } p_1, p_2, p_3, p_4 \in \mathbb{R}.$$

1874 By solving the equation  $X^\top X v_i = \lambda v_i$ , we can show that the corresponding singular values and  
 1875 coefficients  $p_1, p_2, p_3, p_4$  coincide with those in the SVD of  $M$ , as can be verified by simple calcu-  
 1876 lations. Thus, we conclude the proof of Proposition J.2.  $\square$

1877 **Proposition J.3.** Let  $x = [a \cdot \mathbb{I}_L^\top, b \cdot \mathbb{I}_{K-L}^\top]^\top \in \mathbb{R}^K$ , and  $X = \text{diag}(x) - K^{-1}\mathbb{I}_K \cdot x^\top \in \mathbb{R}^{K \times K}$ ,  
 1878 where  $a, b > 0$ . Then the SVD of  $X = U\Sigma V^T$  is that  
 1879

$$1880 \quad \Sigma = \text{diag}\left(a \cdot \mathbb{I}_{L-1}, b \cdot \mathbb{I}_{K-L-1}, \sqrt{\frac{a^2 \cdot (K-L) + b^2 \cdot L}{K}}, 0\right),$$

$$1882 \quad V = \left[ \begin{bmatrix} R_{L,L-1} \\ 0_{K-L,L-1} \end{bmatrix}, \begin{bmatrix} 0_{L,K-L-1} \\ R_{K-L,K-L-1} \end{bmatrix}, v_1, v_2 \right],$$

$$1885 \quad U = \left[ \begin{bmatrix} R_{L,L-1} \\ 0_{K-L,L-1} \end{bmatrix}, \begin{bmatrix} 0_{L,K-L-1} \\ R_{K-L,K-L-1} \end{bmatrix}, u_1, u_2 \right].$$

1887

1888 Here, the columns of the matrix  $R_{L,L-1} \in \mathbb{R}^{L \times (L-1)}$  form an orthonormal basis for the subspace of  
 1889 vectors in  $\mathbb{R}^L$  orthogonal to  $\mathbb{I}_L$ . Similarly, the columns of  $R_{K-L,K-L-1} \in \mathbb{R}^{(K-L) \times (K-L-1)}$  form

1890 an orthonormal basis for the subspace of vectors in  $\mathbb{R}^{K-L}$  orthogonal to  $\mathbb{I}_{K-L}$ . These correspond  
 1891 to the subspaces  $\mathcal{S}_1$  and  $\mathcal{S}_2$  defined as:  
 1892

$$1893 \quad \mathcal{S}_1 = \left\{ \begin{bmatrix} x \\ 0_{K-L} \end{bmatrix} \mid x^\top \mathbb{I}_L = 0, \text{ and } x \in \mathbb{R}^L \right\}, \quad \mathcal{S}_2 = \left\{ \begin{bmatrix} 0_L \\ y \end{bmatrix} \mid y^\top \mathbb{I}_{K-L} = 0, \text{ and } y \in \mathbb{R}^{K-L} \right\}.$$

1895 The vectors  $v_1, v_2, u_1, u_2$  are

$$\begin{aligned} 1898 \quad v_1 &= \frac{1}{\sqrt{a^2(K-L) + b^2L}} \left( \frac{a\sqrt{K-L}}{\sqrt{L}} \begin{bmatrix} \mathbb{I}_L \\ 0_{K-L} \end{bmatrix} - \frac{b\sqrt{L}}{\sqrt{K-L}} \begin{bmatrix} 0_L \\ \mathbb{I}_{K-L} \end{bmatrix} \right) \\ 1900 \quad v_2 &= \frac{1}{\sqrt{a^2(K-L) + b^2L}} \left( b \begin{bmatrix} \mathbb{I}_L \\ 0_{K-L} \end{bmatrix} + a \begin{bmatrix} 0_L \\ \mathbb{I}_{K-L} \end{bmatrix} \right) \\ 1903 \quad u_1 &= \frac{1}{\sqrt{KL(K-L)}} \left( (K-L) \begin{bmatrix} \mathbb{I}_L \\ 0_{K-L} \end{bmatrix} - L \begin{bmatrix} 0_L \\ \mathbb{I}_{K-L} \end{bmatrix} \right) \\ 1906 \quad u_2 &= \frac{1}{\sqrt{K}} \mathbb{I}_K. \end{aligned}$$

1908 *Proof of Proposition J.3.* This proposition is a direct corollary of Proposition J.2. The matrix  $X =$   
 1909  $\text{diag}(x) - K^{-1}\mathbb{I}_K \cdot x^\top$  is an instance of the general form  $\Lambda + C$  from Proposition J.2.

1911 The diagonal part is  $\Lambda = \text{diag}(x) = \text{diag}(a \cdot \mathbb{I}_L, b \cdot \mathbb{I}_{K-L})$ . The off-diagonal part is  $C = -K^{-1}\mathbb{I}_K \cdot$   
 1912  $x^\top$ . We can write  $C$  in block form:

$$1914 \quad C = -\frac{1}{K} \begin{bmatrix} \mathbb{I}_L \\ \mathbb{I}_{K-L} \end{bmatrix} \begin{bmatrix} a\mathbb{I}_L^\top & b\mathbb{I}_{K-L}^\top \end{bmatrix} = -\frac{1}{K} \begin{bmatrix} aJ_{L,L} & bJ_{L,K-L} \\ aJ_{K-L,L} & bJ_{K-L,K-L} \end{bmatrix}.$$

1916 This corresponds to setting the block-wise constants in Proposition J.2 to:

$$1918 \quad c_{11} = -a/K, \quad c_{12} = -b/K, \quad c_{21} = -a/K, \quad c_{22} = -b/K.$$

1920 Substituting these into the formulas for  $\alpha, \beta, \gamma, \delta$  from Proposition J.2 gives:

$$\begin{aligned} 1922 \quad \alpha &= a + L(-a/K) = a(K-L)/K \\ 1923 \quad \beta &= \sqrt{L(K-L)}(-b/K) \\ 1924 \quad \gamma &= \sqrt{L(K-L)}(-a/K) \\ 1925 \quad \delta &= b + (K-L)(-b/K) = bL/K \end{aligned}$$

1927 These coefficients define the  $2 \times 2$  matrix  $M$  from Proposition J.2 for this specific case. We now  
 1928 analyze this matrix  $M$ . A key observation is that its determinant is zero:  
 1929

$$1930 \quad \det(M) = \alpha\delta - \beta\gamma = \frac{a(K-L)}{K} \frac{bL}{K} - \left( \frac{L(K-L)}{K^2} \right) (-b)(-a) = 0.$$

1933 Since the determinant is zero, one of its singular values must be zero. The other singular value,  $s_1$ ,  
 1934 can be calculated from the squared Frobenius norm (sum of squares of elements), which is also the  
 1935 sum of squared singular values ( $s_1^2 + s_2^2$ ):

$$\begin{aligned} 1937 \quad s_1^2 + 0^2 &= \alpha^2 + \beta^2 + \gamma^2 + \delta^2 = \frac{a^2(K-L)^2}{K^2} + \frac{L(K-L)b^2}{K^2} + \frac{L(K-L)a^2}{K^2} + \frac{b^2L^2}{K^2} \\ 1938 \quad &= \frac{a^2(K-L) + b^2L}{K}. \end{aligned}$$

1941 This confirms the singular values stated in the proposition. The singular vectors  $v_1, v_2, u_1, u_2$  can  
 1942 be derived by performing the SVD on this specific  $2 \times 2$  matrix  $M$ .  $\square$   
 1943

1944  
1945

## K HEAVY-TAILEDNESS OF GRADIENT OF LLMs

1946  
1947  
1948  
1949

In this section, we discuss how our insight about the gradient in the one-layer model generalizes to the multi-layer model. In the following analysis, we focus on the FFN modules in the model, and the attention module can be similarly analyzed. The illustration of this multi-layer model of FFN modules is shown in the following Figure 19.

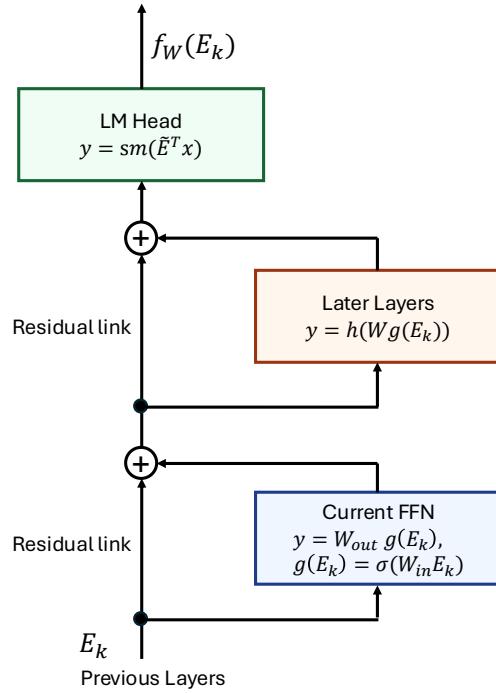
1950  
1951  
1952  
1953  
1954  
1955  
1956  
1957  
1958  
1959  
1960  
1961  
1962  
1963  
1964  
1965  
1966  
1967  
1968  
1969  
1970  
1971  
1972  
19731974  
1975  
1976

Figure 19: The illustration of the multi-layer model of FFN modules.

1977  
1978

We abstract the feature extraction role of all the previous layers and the in-projection of the current FFN as a function as follows.

1979  
1980

$$y = W_{\text{out}} \sigma(W_{\text{in}} x) = W_{\text{out}} g(x),$$

1981  
1982  
1983  
1984

where  $W_{\text{out}}, W_{\text{in}} \in \mathbb{R}^{d \times d}$  are weight matrices,  $x \in \mathbb{R}^d$  is the output of all the previous layers, and  $g : \mathbb{R}^d \rightarrow \mathbb{R}^d$  abstracts the role of feature learned in  $W_{\text{in}}$ . Abstracting all the later layers as a function  $h : \mathbb{R}^d \rightarrow \mathbb{R}^d$ , the function  $h$  may also take all previous tokens as inputs, which we omit from the notation for brevity. The whole model is written as

1985  
1986  
1987

$$f_W(E_k) = \text{sm}\left(\tilde{E}^T [W g(E_k) + h(W g(E_k))]\right),$$

1988  
1989  
1990  
1991

where  $\tilde{E} \in \mathbb{R}^{d \times K}$  is the parameter of the language model head,  $K$  is the alphabet size, and  $E_k$  is the hidden state of the last token in the training context that precedes the  $k$ -th token in the alphabet, at the layer where associative memory is present. Without loss of generality, we assume that the next token is the  $k$ -th token in  $\tilde{E}$ . Then the loss function on the pretraining data is

1992  
1993  
1994  
1995

$$\mathcal{L}(W) = - \sum_{k=1}^K p_k \log[f_W(E_k)]_k,$$

1996  
1997

where  $p_k$  is the frequency of  $k$ -th token. We note that this is a simplification of what happens in the pretraining, where the frequencies of token associations instead of the single token matter. However, such simplification does not influence our main message. In the heavy-tailed dataset, e.g.,

1998 WikiText103,  $p_k$  decays as  $p_k = \alpha \cdot k^{-1}$  for  $k \in [K]$ . Then the gradient of  $W$  is  
 1999

2000 
$$\nabla_W \mathcal{L}(W) = - \sum_{k=1}^K p_k \nabla_W \log[f_W(E_k)]_k,$$
  
 2001  
 2002  
 2003 
$$\nabla_W \log[f_W(E_k)]_k = \left( I_{d,d} + J_h(Wg(E_k)) \right)^\top \left[ \tilde{E}_k g(E_k)^\top - \sum_{i=1}^K [f_W(E_k)]_i \cdot \tilde{E}_i g(E_k)^\top \right],$$
  
 2004  
 2005

2006 where  $I_{d,d} \in \mathbb{R}^{d \times d}$  is the identity matrix and  $J_h$  is the Jacobian of the function  $h$ . Two structural  
 2007 properties of the gradient are worth highlighting. First,  $\nabla_W \mathcal{L}(W)$  is heavy-tailed, since it is a  
 2008 weighted sum of per-token gradients with geometrically decaying weights  $p_k = \alpha \cdot k^{-1}$  for  $k \in [K]$ .  
 2009 Second, the gradient decomposes as a sum of outer products  $\tilde{E}_k g(E_k)^\top$ . Our theoretical analysis in  
 2010 Section 4 focuses on the simplified setting  $h = 0$  and  $g(x) = x$ . For general  $h$  and  $g$ , the Jacobian  
 2011  $J_h$  acts as a preconditioner on the gradient, and each outer product is formed between the feature in  
 2012 the language-model head  $\tilde{E}$  and the transformed feature  $g$  in each layer. Thus, our intuition extends  
 2013 to this more general multi-layer setting.

2014  
 2015  
 2016  
 2017  
 2018  
 2019  
 2020  
 2021  
 2022  
 2023  
 2024  
 2025  
 2026  
 2027  
 2028  
 2029  
 2030  
 2031  
 2032  
 2033  
 2034  
 2035  
 2036  
 2037  
 2038  
 2039  
 2040  
 2041  
 2042  
 2043  
 2044  
 2045  
 2046  
 2047  
 2048  
 2049  
 2050  
 2051