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ABSTRACT

The Muon optimizer is consistently faster than Adam in training Large Language
Models (LLMs), yet the mechanism underlying its success remains unclear. This
paper demystifies this mechanism through the lens of associative memory. By
ablating the transformer components optimized by Muon, we reveal that the as-
sociative memory parameters of LLMs, namely the Value and Output (VO) atten-
tion weights and Feed-Forward Networks (FFNs), are the primary contributors to
Muon’s superiority. Motivated by this associative memory view, we then explain
Muon’s superiority on real-world corpora, which are intrinsically heavy-tailed: a
few ‘head’ classes are extremely frequent, while a vast number of ‘tail’ classes are
individually rare. The superiority is explained through two key properties: (i) its
update rule consistently yields a more isotropic singular spectrum than Adam; and
as a result, (ii) on heavy-tailed data, it optimizes tail classes more effectively than
Adam. Beyond empirical evidence, we theoretically confirm these findings by an-
alyzing a one-layer associative memory model under class-imbalanced data. We
prove that Muon consistently achieves balanced learning across classes regard-
less of feature embeddings, whereas Adam can induce large disparities in learning
errors depending on embedding properties. In summary, our empirical observa-
tions and theoretical analyses reveal Muon’s core advantage: its update rule aligns
with the outer-product structure of linear associative memories, enabling more
balanced and effective learning of tail classes in heavy-tailed distributions than
Adam.

1 INTRODUCTION

The effectiveness of Adam (Kingma & Ba, 2015) across diverse training scenarios has made it one
of the most widely used optimizers for neural networks, serving as a cornerstone of the tremendous
successes of Large Language Models (LLMs). Building on this foundation, Muon (Jordan et al.,
2024) has emerged as a matrix-parameter optimizer designed to surpass Adam. Empirical studies
show that Muon is nearly 2 times faster than Adam across a wide range of model sizes and
architectures (Liu et al., 2025; Jordan et al., 2024). Its key innovation is to replace the raw gradient
with the sum of its normalized orthogonal factors, which can be interpreted as performing steepest
descent with respect to the spectral norm (Bernstein & Newhouse, 2024).

However, despite its empirical success, a rigorous understanding of why and how Muon outperforms
Adam in transformers remains incomplete. In particular, the steepest gradient descent interpretation
does not clarify why optimization with respect to the spectral norm, as in Muon, should outperform
optimization with respect to the infinity norm (for vectors), as in Adam. Consequently, convergence
analyses of Muon derived from this interpretation fail to account for its observed superiority over
Adam (Li & Hong, 2025; Shen et al., 2025).

This paper takes the first step toward understanding the mechanisms underlying Muon’s superiority
over Adam in training LLMs. Specifically, we ask the following two questions:

1. Which transformer components benefit most from Muon’s matrix-norm—based
optimization compared to Adam?

2. What structural features of the transformer allow Muon to optimize these com-
ponents more effectively?
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To answer the first question, we apply Muon to different transformer components. Our experiments
consistently show that the more rapid convergence of the validation loss using the Muon optimizer
compared to Adam is primarily due to the former’s focus on the value-output (VO) matrices of
the attention mechanism and the Feed-Forward Networks (FFN) blocks. This leads to our first key
insight: VO and FFN blocks, which serve as the primary associative memory stores in the model
(Geva et al., 2020; Bietti et al., 2023), are the main beneficiaries of Muon’s optimization strategy.

Building on this, we address the second question linking Muon’s update mechanism to the learning
dynamics of associative memory. Prior work suggests that the behavior of these memory compo-
nents can be modeled as a sum of outer products representing stored facts (Meng et al., 2022a).
Since Muon’s update assigns equal update magnitudes to each outer product of the gradient corre-
sponding to orthogonal singular directions, we hypothesize that it optimizes associative memories
more effectively than Adam because: (i) Muon’s spectral normalization procedure balances the rates
of learning of these outer products. (ii) Thus, when training on heavy-tailed data (i.e., where a few
‘head’ classes are extremely frequent, while a vast number of ‘tail’ classes are individually rare),
Muon reduces the dominance of frequent (head) facts and enables more effective learning from
infrequent (tail) facts compared to Adam.

We validate these hypotheses through a combination of empirical analysis and theoretical modeling.
Empirically, we conduct two experiments. First, we measure the singular value spectra of the weight
matrices and show that Muon consistently yields more isotropic representations than Adam, indi-
cating that its normalization prevents spectral energy from concentrating in dominant components.
Second, we evaluate the performance of both optimizers on a knowledge-intensive, heavy-tailed
task to demonstrate the practical benefit of Muon’s more balanced updates: while both optimizers
perform well on head classes (frequent in training data), Muon outperforms Adam on tail classes
(rare in training data), leading to more stable and uniform convergence.

Theoretically, we focus on a one-layer linear associative memory model to rigorously explain
these empirical findings. Under class imbalance in the training data, mimicking a heavy-tailed
distribution, we show that Muon maintains balanced learning across classes, regardless of the
feature embeddings. In contrast, we prove that Adam’s performance is unstable and strongly
dependent on the embedding structure, which can lead to large disparities in learning error across
classes. By closely examining the parameter updates, we find that the singular spectrum of weight
matrices trained by Muon is nearly isotropic, whereas Adam’s is uneven.

Summarizing the empirical and theoretical findings, we identify a clear mechanism underlying
Muon’s superiority: The Muon update rule is aligned with the outer-product structure of linear
associative memories, enabling more balanced and effective learning of tail classes in heavy-
tailed distributions as compared with Adam.

2 PRELIMINARIES

Muon (Jordan et al., 2024) is an optimizer tailored for matrix parameters that replaces the raw (or
momentum) gradient with the sum of its normalized orthogonal factors, producing a scale-invariant,
norm-controlled update direction. For a weight matrix W € R™*" at step ¢, let Gy = Vyw L(W})
denote its gradient. Muon maintains a momentum accumulator of gradients as B; = uB;_1 +
Gy with By = 0, and p € [0, 1). At each step, Muon computes the Singular Value Decomposition
(SVD) of B; as B; = U;S;V," withU; € R™ "V, € R" " where r; = rank(B;), and
form the nearest (semi)—orthogonal matrix O; = U;V,". Then Muon updates the parameter as
Wii1 = Wy —n.Oy. In practice, one can approximate O; using a fixed number (e.g., 5) of Newton—
Schulz iterations applied to B;(B," B;)~'/2, which avoids the full SVD while preserving the scale
normalization effect. Detailed introduction of Muon is in the related works section (Appendix C).

Transformers serve as the backbone of LLMs, predicting the probability of the next token given a
sequence of N tokens. A sequence of N tokens is embedded into a matrix X (©) € R4*N_ The first
layer takes X (?) as the input, and each subsequent layer takes the previous layer’s output as its input.
Every layer £ € [L] processes its input through two sequential components: an attention module and
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a FFN module. The attention module computes

H
HO = X0 4 ST whwi) xCDsm(xEDTw O TwE, xED), @
h=1

where sm(-) is the column-wise softmax operator, H is the number of attention heads,

Wg)h,W}(f)h € R4 capture token relationships, and W‘(/QL € Rd”Xd,Wé@h € R4*dv apply

linear transformations. The feed-forward module then updates the representation as

XO = g0 4 ee(HO, WO W) = HO + WO HO), 22)

where o () is the element-wise activation function, and I/Vige) € Rirxd W(,(ft) € R?¥4s are learnable
parameters. A gated variant replaces the standard form with
£ e (H W Wl W) = Wail (e WV HO) © (W H)),

where © is the Hadamard product, and Wg(zﬁi € R%*4 ig an additional mapping. After L layers, the

final hidden state of the last token, X (_Ll) , is projected by the language model head Eieoq € RX ¥4 to
produce logits Eheaq X (_Ll), which has a vocabulary of size of K.

Associative memory refers to architectures that store and retrieve patterns based on learned asso-
ciations between inputs and outputs. Recent research has examined linear associative memory in
LLMs. Specifically, consider a triplet (s, r, 0), where s is the subject, r the relation, and o the object
(e.g., s =“The United Nations headquarters”, r =*is located in”, o =“New York City”). A linear
associative memory W maps a key vector e, encoding (s, r) to a value vector e, encoding o, such
that e, = Weg holds for all possible (f’ r,0). Under the orthogonality of embeddings e and e,,
W can be expressed as W = >, e, e,., where the summation is taken over the indexes of facts.
These facts naturally emerge in the token association in the pretraining data, e.g., the coappearance
of “SpaceX” and “Elon Musk”, and are learned by LLMs in the form of associative memories.
Prior work has investigated associative memory in both attention and FFN modules. In the attention
module, Bietti et al. (2023) showed that the parameter W, can serve as a linear associative mem-
ory when Wy is fixed. Since W and Wy, play symmetric roles, we also treat Wy, as part of the
associative memory parameters. It is therefore natural to consider VO jointly: several works (Lin
et al., 2024; Wang et al., 2025) have shown that the value and output matrices play similar roles
and can be analyzed together in practice, even in multi-query attention (MQA) and grouped-query
attention (GQA) settings. In FFN, works on knowledge editing (Geva et al., 2020; Dai et al., 2021;
Meng et al., 2022a;b) have identified the module as functioning as an associative memory, which
can be well approximated by linear associative memory models. In fact, they demonstrate that we
can manually update the knowledge in Large Language Models (LLM)s using least squares on the
FFN parameters (Meng et al., 2022a;b; Fang et al., 2024). Thus, throughout this paper, we refer to
Wo, Wy, and FEN in LLMs as the associative memory parameters.

3  MAIN RESULTS

3.1 ASSOCIATIVE MEMORIES ARE MAIN BENEFICIARIES OF MUON

In this section, we identify the transformer components that benefit most from Muon by measuring
validation loss on the FineWeb dataset using a 160M NanoGPT model. We adopt a two—stage
protocol. First, in the “Independent Blocks” setting, we apply Muon to a single block at a time
while keeping all other blocks on Adam, covering the attention projections Wo, Wi, Wy, Wo
and the feed-forward matrices Wi,, Wy. Second, in the “Combined Configurations” setting, we
apply Muon to the most impactful subsets identified in the first stage to examine whether a partial
application can recover the performance gains of full Muon. As introduced in Section 2, we evaluate
both gated and non-gated FFN variants of NanoGPT. The experimental details are in Appendix F.

Figure 1 presents our results. We first examine the independent-block experiments for attention.
From Figures 1(a) and 1(c), the VO weights Wy, W (Muon on VO / Adam on QK and FFN) show
substantially larger gains under Muon than the QK weights W, Wi (Muon on QK/Adam on VO
and FFN). Notably, applying Muon to only Wy, or only Wy already yields much larger gains than



Under review as a conference paper at ICLR 2026

7.0 —— Muon(All Attn, FFN) 70 —— Muon(All Attn, FEN)
—— All Adam —— All Adam
6.5 ---= Muon(QK Attn)&Adam(VO Attn, FFN) 6.5 —— Muon(VO Attn, FEN)&Adam(QK Attn)
—— Muon(VO Attn)&Adam(QK Attn, FFN) ~-—~ Muon(VO Attn, Wip)&Adam(QK Attn, Woyy)

6.0 Muon(V Attn)&Adam(QKO Attn, FFN) 6.0 —— Muon(VO Attn, Woy)&Adam(QK Attn, Wip)
2 Muon(O Attn)&Adam(QKYV Attn, FFN) 2 -~ Muon(V Attn, FFN)&Adam(QKO Attn)
255 Muon(Win)&Adam(All Attn, Wout) oss —— Muon(O Attn, FFN)&Adam(QKV Attn)
2 Muon(Woy)&Adam(All Attn, Wig) £
ﬁ 5.0 WEE— | :?. 5.0
E - S

45 45

4.0 4.0

35 35

2000 4000 6000 8000 10000 2000 4000 6000 8000 10000
Training Steps Training Steps
(a) Independent blocks: Val loss over training (b) Combined configurations: Val loss over training

42 42

40 40
z z
338 538
=] =]
S i
k} -} 3.605
% :i 36 3565
> =

34
32

N © D N S S
S s < Q& & & &
» S & o & & &

K S - R S
oF o o"&\ Qv oF
§ S S S S

S S § - -
- R K

(c) Independent blocks: Val loss at step 10,000  (d) Combined configurations: Val loss at step 10,000

Figure 1: Validation loss comparison on the 160M NanoGPT model with non-gated FFN under
different Muon/Adam assignments. Panels (a) and (b) show the validation loss over training steps
for the Independent Blocks and Combined Configurations settings, respectively. Panels (c) and
(d) report the corresponding validation loss at step 10,000 for each mode, summarizing the final
performance of the Independent Blocks and Combined Configurations.

applying it to QK. For the FFN, we find that Wi,, Waae, and Woy all benefit from Muon, with Wy
yielding stronger improvements than Wj,. As we show in Appendix G.2, these trends persist even
after controlling for parameter count.

After identifying the importance of each module, the combined configurations aim to quantify their
contributions to the full Muon. Guided by the independent-block findings, we first observe that
VO+FFN already closely tracks—and in our runs nearly recovers—the full-Muon trajectory in Fig-
ure 1(b). This indicates that applying Muon to QK contributes little to its overall performance.
Importantly, this effect is not due to the logit explosion reported by Team et al. (2025) in large
Mixture of Experts (MoE) models; logit values for our setting do not explode, as reported in Ap-
pendix G.1. The small remaining gap between full Muon and VO+FFN may stem from the fact that
VO+FFN adopts the same learning rate as full Muon without further tuning.

To isolate the contributions of W and Wy, within VO+FFN, we perform ablations starting from the
VO+FFN setting: we keep Muon on FFN and on only one of W or Wi/, reverting the other to Adam
(i.e., V+FFN and O+FFN). Both ablations degrade performance, with the V+FFN variant dropping
more, indicating that Wy is more influential than Wy . Overall, applying Muon to VO+FFEN is
critical for recovering full-Muon performance. The same qualitative patterns hold for the gated FFN
variant reported in Appendix G.3, and are further confirmed on a larger 0.7B model in Appendix G.4,
demonstrating the robustness of our findings.

Observation 1: Muon is most effective when applied to VO and FEN; in particular, applying Muon
to only VO+FFN almost recovers the full-Muon trajectory.
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Remark 3.1. We emphasize that this observation is not a trivial consequence of parameter counting;
although QK and VO are equal in size, VO proves substantially more influential.

As introduced in Section 2, prior works discover that the common role of VO and FFEN is that
they both serve as the associative memories for transformers, which store facts and knowledge.
Furthermore, Bietti et al. (2023) and Meng et al. (2022a) show that the linear associative memories
well approximate them. Specifically, for a set of facts represented by key-value pairs {(es,, €,,)},

the memory matrix W can be constructed as a sum of outer products, i.e., W = Zf{:l €o; e;, where
the summation is taken over the index ¢ of K facts. To make this more concrete, consider a toy
example with two orthogonal facts in R?:

o Fact 1: (“the capital of France”) e,, = [1,0]", (“Paris”) e,, = [1,0] .
» Fact 2: (“the capital of Italy”) es, = [0,1] T, (“Rome”) e,, = [0,1] .

The resulting memory matrix is W = e, e; + €0, e; = I5 o which correctly stores these facts since
Wes, =e€,, fori=1,2.

Learning linear associative memories is particularly well-suited to Muon’s update mechanism. Con-

cretely, the gradient G € R*? of the loss with respect to the linear associative memory weight

W can be expressed as a sum of outer products via SVD as G = USV T = ijl s;u;v; . Muon

computes its update (without momentum) by normalizing away the singular values, forming the
orthogonal factor O = UV = Z?zl u;v, . Following the toy example, consider training the
memory parameter W with £5 loss, i.e., c1]les, — Weg,||? + c2lleo, — Wes, ||?, where ¢1,ca > 0
represent the importance or frequency of each fact in the current training batch. The corresponding
gradientis G = ¢y - ey, + 2 - €g,e) = diag(ci, c2). Consequently, Muon’s normalized update
factor becomes O = UV'" = I = eo, e/ + €oe. , which is simply the sum of the constituent
facts’ outer products. Crucially, the update O assigns equal weight to both Fact 1 and Fact 2, regard-
less of their original coefficients ¢; and ¢ in the gradient. This illustrates how Muon normalizes the
updates across orthogonal facts, allowing it to learn both frequent (large c;) and infrequent (small
co) facts uniformly. Comparing this with the linear associative memory Zfil eoie;, we see that
Muon updates all “orthogonal” facts at the same rate. Later, we will see that the singular values S
of the gradient GG encode the frequencies of knowledge in the training data under cross-entropy loss
in Sections 3.3 and 4. By normalizing away .S to form its update, Muon can therefore learn both
frequent and infrequent facts more uniformly than gradient-magnitude-based optimizers like Adam.

We verify this insight from two perspectives. First, from the view of weight spectra, the weight ma-
trices learned with Muon exhibit a more isotropic singular-value spectrum than those learned with
Adam, indicating that knowledge, regardless of its frequency, is represented with comparable mag-
nitude. Second, at the level of overall knowledge acquisition, Muon yields more balanced learning
across entities and frequencies (head and tail) than Adam. We examine these two consequences in
the following sections.

3.2 MUON CONSISTENTLY LEARNS MORE ISOTROPIC WEIGHTS THAN ADAM

To validate that Muon can shape the weight matrices more evenly across directions, we conducted a
spectral analysis of them. For a weight matrix with n non-zero singular values 0 = (01,09, ...,04),
we define the normalized singular energy distribution ¢ = (g1, 42, - .., ¢n), Where each compo-
nent ¢; is ¢; = o2/ Z?Zl UJQ-. This distribution represents the fraction of energy captured by
each corresponding singular vector. Based on this, we introduce several metrics to characterize the

isotropy of the spectrum: normalized SVD entropy defined as Hpom (o) = —@ Yo qilogg;,
effective rank defined as eRank(c) = exp (— >, ¢;logg;), Top-k energy fraction defined as
TopE, (o) = Y, 02/ >, 07, and eigenvalue quantile ratio defined as {07}/ 1:Q75/25(0) =
Q3({0?})/Q1({0?}). Detailed explanations of these metrics are in Appendix F.2. Intuitively, more

isotropic weights correspond to larger values of normalized SVD entropy and effective rank, and
smaller Top-k energy fraction and eigenvalue quantile ratio.

The spectral analysis in Figure 2, focusing on the key associative memory components from Ob-
servation 1, shows that Muon systematically reshapes the learned weight matrices relative to Adam.
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Figure 2: Spectral Dynamics of Transformer Weight Matrices During Training. Each panel reports
four metrics characterizing singular value distributions: SVD entropy, Top10E, eRank, and Q75/Q25
ratio. The four subplots correspond to different weight matrix groups: (a) VO and (b) Woy.

The results, averaged over 10 random seeds, demonstrate that: (i) Muon produces a much more
isotropic singular spectrum than Adam from the start of training, whereas Adam’s isotropy fluctu-
ates significantly over the course of optimization. (ii) The isotropy of Muon is stable across random
initializations, as indicated by the negligible error bars in Figure 2, while Adam is more sensitive
to initialization. These findings suggest that Muon consistently promotes richer and more diverse
features in the model’s most critical memory components, a conclusion we summarize below. The
results for the gated FFN architecture and other weights are in Appendix G.3 and G.5, respectively.

Observation 2: Muon consistently yields more isotropic weight matrices with broadly distributed
spectral energy than Adam, both throughout training and across random initializations, thereby sup-
porting richer feature representations.

Empirically, we also find that Muon learns more isotropic QK weights than Adam. However, as
discussed in Section 3.1, QK weights are not part of the linear associative memory mechanism and
are therefore not expected to benefit from the isotropic property of the weight matrices.

Our results differ fundamentally from the spectral analysis in Liu et al. (2025) for three reasons.
First, we decompose the parameters according to associative memories, whereas Liu et al. (2025)
aggregates them, obscuring the essential components driving Muon’s behavior. Second, we
investigate the instability of Adam under random initialization (i.e., random seeds), which we
further establish theoretically in Section 4. Finally, our analysis focuses on dense architectures,
while Liu et al. (2025) centers on Mixture-of-Experts (MoE) models.

3.3 MUON ACQUIRES KNOWLEDGE MORE EVENLY COMPARED TO ADAM

Our previous findings indicate that the Muon optimizer is particularly important for the associative
memory components of the model, where it learns more isotropic weights. To examine the overall
effects of learning associative memories, we turn to a knowledge-intensive question-answering (QA)
task. The task is based on a synthetic QA dataset containing biographical information (e.g., name,
birthday, and company) for over 200,000 individuals (Allen-Zhu & Li, 2024). To capture the heavy-
tailed nature of real-world knowledge, we control the frequency of each individual’s appearance in
the training set so that it follows a power-law distribution (Figure 3(a)), thereby inducing varying
levels of difficulty in learning knowledge about different individuals. A 160M NanoGPT model is
trained to answer questions about this biographical information. The performance is evaluated via
the First Token Accuracy (FTA) on the answers, following Allen-Zhu & Li (2024). Further details
on the dataset are provided in Appendix F.3. We include SGD as a baseline for Adam and Muon.

The results in Figure 3 lead to an unequivocal conclusion about the efficacy of different optimizers
under data imbalance. In high-frequency (head) classes, all optimizers perform well, with Muon,
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Figure 3: Performance comparison of different optimizers for transformers with non-gated FFN
on a heavy-tailed knowledge task. (a) Sample distribution per class, following a power law. (b—d)
Performance of Muon, Adam, and SGD+Momentum. (e) Muon applied to VO and FFN, with Adam
on QK. (f) Muon applied to QK, with Adam on VO and FFN.

Adam, and even SGD+Momentum rapidly reaching near-perfect accuracy (Figure 3(b—d)). Consis-
tent with prior work on heavy-tailed distributions (Kunstner et al., 2024), Adam maintains a clear
advantage over SGD, which struggles with tail classes. Our key finding, however, is that Muon sub-
stantially outperforms Adam on low-frequency (tail) data, achieving faster and more uniform con-
vergence across all frequencies. Moreover, the consistently tighter error bars for Muon—especially
relative to Adam—reflect lower variance and a more stable learning process.

Furthermore, the hybrid configurations in Figure 3(e—f) clarify where Muon matters most. Applying
Muon to VO+FFN (with QK on Adam) yields strong gains on rare classes and markedly reduces the
head-tail gap, whereas applying Muon only to QK (with VO+FFN on Adam) yields only limited
improvement. This mirrors Observation 1: VO+FFN is the most effective target set, as it concen-
trates the model’s associative memory. Results for the gated FFN, which show the same pattern, are
provided in Appendix G.7. Additional experiments in Appendix G.8 vary the degree of fact imbal-
ance, and show that the average FTA gap between Muon and Adam shrinks as the data distribution
becomes more uniform. Together with the Wikitext103 results in Appendix G.9, which exhibit the
same qualitative behavior on a standard language modeling benchmark, these findings further sup-
port the view that Muon’s advantage is tightly linked to heavy-tailed imbalance. We summarize
these findings as Observation 3.

Observation 3: In heavy-tailed, knowledge-intensive tasks, Muon matches Adam’s strong perfor-
mance in the head classes while substantially improving learning on tail classes, narrowing the
head-tail gap and accelerating convergence.

In addition to the knowledge acquisition task, whose success primarily depends on learning the
associative-memory parameters (VO and FFN), we also evaluate an in-context linear regression task
in Appendix G.10, which primarily depends on learning the QK parameters. In contrast to the above
observation, Muon achieves performance on the tail class similar to that of Adam in this task. This
is consistent with Observation 1, which indicates that the QK parameters are not the main source of
Muon’s superiority.

4 CASE STUDY OF ONE-LAYER MODELS

We now analyze three optimizers—Adam, Muon, and Gradient Descent (GD) (as a baseline)—to
complement the preceding empirical observations. We first introduce an abstraction that captures
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Figure 4: (a) Average angles between E; or E; in FFN at layers 5, 10, 15, 20, 25 of Llama3-
8b-instruct. (b) Results of one-step GD, SignGD, and Muon with both coupled and decoupled
embeddings. For GD, the outcomes under the two embedding types coincide. We use different step
sizes to obtain different levels of population loss and A(11).(c) Results of multi-step GD, SignGD,
and Muon with both coupled and decoupled embeddings. We use different numbers of optimization
steps to obtain different levels of population loss and A(W).

their key dynamics and then present both empirical and theoretical results. As shown in Eqns. (2.1)
and (2.2), a structural property of associative memory parameters is that their output is added
directly to the hidden states, which are subsequently processed by the language model head.
Motivated by this property, our abstraction retains the associative memory and language model
head, while replacing all preceding modules with given feature embeddings.

Consider K triplets {(s;, 7, 0;)}2; (introduced in Section 2), where subject-relation pairs (s;, 7;)
and objects o; are embedded into the columns of matrices £ € R% > and E € R4* X respectively.
A linear associative memory W € R%*ds predicts the object for a query Ej, with probabilities
fw(Ey) = sm(ETWE])) € RX. The objective is to minimize the population cross-entropy loss
LW)=— Zle pr log[fw (Ex)]k, where py, is the frequency or probability of the k-th triplet. We
analyze three optimizers initialized at Wy = 0, all simplified by disabling momentum for clarity. (i)
GD: Wy 1 = Wy —nVw L(W,). (ii) Adam: Following prior work (Kunstner et al., 2024; Bernstein
& Newhouse, 2024), we set 31 = B2 = 0, reducing it to SignGD: Wy, = Wy —nsign(Vw L(Wr)).
(iii) Muon: The update is W11 = W; — nU;V,", where U; 3, V," is the SVD of Yy £(W;). This
simplified form, U, V, T, is the projection of the gradient onto the nearest orthogonal matrix. We then
state the assumptions for our results.

Assumption 4.1. The embeddings E and E are orthonormal, ie., ETE = ETE=1 K K-

The unit-norm requirement rules out feature-level imbalance, which would otherwise couple with
the imbalance induced by p; and complicate the analysis. Our techniques can be directly applied
even without this unit-norm requirement. The orthogonality assumption is intuitively plausible, as
different concepts are independent and do not influence one another. We empirically verify this on
Llama3-8b-instruct (Dubey et al., 2024). Following Fang et al. (2024), we extract F; and E; in FFN
across layers for 3,000 knowledge items of Counterfact (Meng et al., 2022a) and compute average
angles between them (see Appendix F.4 for details). As shown in Figure 4(a), these angles are near
90°, confirming approximate orthogonality. For K independent concepts, orthogonality requires
d,,ds > K. For simplicity, we set d,, = ds; = K in what follows.

Assumption 4.2. The first L triplets share the same probability and together contribute a total mass
of o, i.e., pr = a/L for k € [L]. The remaining triplets also share the same probability and together
contribute a total mass of 1 — v, i.e., pr = (1 — «) /(K — L) for k > L.

This assumption states that the data imbalance is between two classes among the K triplets. Defining
B = L/K, the ratio /8 quantifies the degree of balance: if o > §, the first L triplets appear more
frequently during learning, and vice versa. This simplified two-class setting is sufficient to capture
the primary differences between optimizers; the multi-class case follows directly from our proof by
extending the SVD calculation.

Throughout Section 4 we will also refer to the imbalance ratio, defined as the ratio between the

minimal and maximal frequencies of triplets, i.e., 7 := % € (0, 1]. Under Assumption 4.2
aXpc K] Pk



Under review as a conference paper at ICLR 2026

with parameters « and § = L/K, this reduces to r(a, 8) = min { 28:53 58:;; } We keep the

two-mass («, 3) parametrization because it allows us to write the gradient and its SVD in closed
form while capturing the same dependence on class imbalance as using r directly; the multiclass
case follows from the same SVD calculation.

4.1 EXPERIMENTAL RESULTS

Under Assumptions 4.1 and 4.2, we evaluate GD, SignGD, and Muon for « = 0.8, 5 = 0.2,
considering two embeddings for £ and E: (i) support-decoupled: the supports (indices of non-
zero entries) of different F; or F; are disjoint; (ii) support-coupled: supports may overlap. We
study two optimization protocols, initializing Wy = 04 xq4.: (i) one-step: take a single update
with a scaled step size to obtain a range of £(W) values; (ii) multi-step: run multiple updates to
reduce L(W), varying the number of steps. Experimental details are in Appendix F.5. To quantify
learning imbalance across K knowledge items, we examine the relationship between population loss
L(W) and maximal probability gap A(W) := max; jeix[fw (E£i)]i—[fw (E;)];, where [ fu (E;)];
denotes the probability assigned to the correct item i. A larger A(W) indicates greater imbalance.

Across both optimization-step protocols and embeddings (Figures 4(b), 4(c)), we observe that (i) For
all optimizers, A(W) first increases and then decreases as L(W) decreases. Early in training, when
correct probabilities are near 0, imbalance is pronounced; later, when all items are well learned (e.g.,
probabilities > 0.9), imbalance diminishes. (ii) For both embedding regimes, GD and Muon behave
consistently: GD exhibits a substantial imbalance, whereas Muon remains much more balanced
across items. (iii) SignGD also demonstrates unstable behavior; its imbalance resembles GD in the
coupled embedding case and Muon in the decoupled embedding case.

Because one-step and multi-step experiments align qualitatively, we first analyze the one-step set-
ting for clarity. This simplification is common in theoretical studies of neural network dynamics (Ba
et al., 2022; Dandi et al., 2023), and our techniques extend directly—albeit with more algebra—to
the multi-step case. As a demonstration, Theorem 4.4 provides a multi-step analysis of Muon.

4.2 THEORETICAL RESULTS

For each optimizer, we choose a step size 7 so that some class already attains correct-class proba-
bility at least 1 — € after one update, and then we report the smallest correct-class probability across
classes at the same 7. Equation 4.1 formalizes this procedure.

ofpe = inf { min [fiv, (Blk | ma (v, (Bl > 1= e Wy = Wo =0 Gon(Wo) . @.1)

where opt € {GD, SignGD, Muon} and Gy (Wy) denotes the parameter update of optimizer opt at
Wo; and W, denotes the parameter obtained after one step of optimizer opt with step size 7 starting
from WQ, i.e., W'fl = WO /N Gopt(WO)- Speciﬁcally, GGD(W()) = VWE(WQ), GSignGD(WO) =
sign(V L(Wp)), and Gyuon(Wo) = Upnorm(Xg) V" where UyXoV,' is the SVD of Vyy L(Wp).
Note that g5, € [0,1 — ¢] and A(W) are related as A(W) = 1 — e — g5, > 0. When g5, = 1 — ¢,
opt achieves balanced learning across facts; in contrast, when ggm ~ 0, imbalanced learning ensues.

Theorem 4.3. Let 7 := minge[x] pr / Maxye(x) pr (under Assumption 4.2, r = r(a, 8)). If
Assumptions 4.1 and 4.2 hold, with fixed «, 8 such that « # 3, and K goes to infinity, we obtain
the following results for one-step GD, Muon, and Adam.

* GD: For any Eand E satistifying Assumption 4.1, we have

0&p = O(e @A (@B =1) where r(a, B)= %kik — min { 2‘8 -B) Bl-—0o) } <1
k Pk

* Muon: For any Eand E satistifying Assumption 4.1, we have

log K ~ 1 ~
Oty > 1 — e<1 + 0( o8 )) and Giaon(Wo) = —EET + O(KEJK,KET),

RKXK

where Ji i € is the matrix with all elements equal to 1. The big-O notation for matrices
means that for A = O(B), each entry satisfies A;; = O(B;;) for all 7, j.
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« Adam: There exist £ and E satisfying Assumption 4.1 such that 0Signgp = 1 — €. There also exist

E’ and E’ satisfying Assumption 4.1 such that

Tmin (Gsignap(Wo))
Omax (GSignGD (WO ))

where 0,ax and o, are the largest and smallest singular values, respectively.

< 25%,

QgignGD = 0(670'7[(70.3)7 and

Interpretation of Theorem 4.3. These theoretical results align with Observations 2 and 3, and
Figures 4(b) and 4(c): Muon maintains balanced learning with near-isotropic updates, GD is highly
sensitive to data imbalance, and Adam varies widely across embeddings. At the one-step update,
when the maximum correct-class probability across items is at least 1 —¢, the item with the minimum
correct-class probability satisfies: (i) Muon: > 1 — e(l + O(logTK)), which indicates learning is
essentially balanced across items with a near-isotropic update (singular values nearly equal); (ii)
GD: O(e’r(a’ﬁ)KT(o"B)’l), which is strongly controlled by data imbalance via r(c«, 3) (balanced
when r = 1, severe imbalance when r < 1); (iii) Adam: embedding dependent; it can match Muon
with disjoint supports (e.g., E = E = I ), achieving 1 — ¢, but can drop to O(e~ %7K ~0-3) with
overlap; its update may exhibit pronounced spectral decay (Oimin/Omax < 25%), unlike the near-
uniform singular values of Muon. A detailed discussion of Theorem 4.3 is provided in Appendix E.

In the following, we extend our techniques of one-step analysis to the multi-step analysis of Muon.
Parallel to Eqn. (4.1), we define the infimum correct-class probability for the multi-step optimizer
as o5y = infy{minge i) [fw, (Er)|k | maxpex)[fw, ()l > 1 — ¢, where W, = Wy — 7, -
Gopi(Wi—1)}. Here, we assume that the learning rates {7, };>1 are determined by a fixed schedule
prior to optimization. Although the quantity implicitly depends on this schedule, we omit it from
the notation for g5, for brevity. We emphasize that different schedules may affect the value of ¢ that
attains the infimum in o, but they do not influence the balance behavior that we present.

Theorem 4.4. If Assumptions 4.1 and 4.2 hold, then multi-step Muon achieves

log K ~ 1 ~
OMuon = 1 — 6(1 + O< Oi )), and Gyyon(Wh) = —EET + O<KEJK7KET> for any t > 0.

The proof is provided in Appendix I. We note that the multi-step analysis of Muon shares similar
characteristics as the one-step version in Theorem 4.3.

5 CONCLUSION

Our work takes the first step toward unveiling why and how Muon outperforms Adam. Through
ablations of Muon’s effect on different Transformer components and by relating these results to the
balanced learning of associative memories, we conclude that the Muon update rule is aligned with
the outer-product structure of linear associative memories, enabling more balanced and effective
learning of tail classes in heavy-tailed distributions. Intuitively, this property of Muon may extend
beyond outer products to higher-order tensor products, an exciting direction for future work.
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A USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used solely to aid and polish the writing of this paper. The
authors generated all research ideas, methods, analyses, and results independently. LLM assistance
was limited to improving clarity, grammar, and readability of the manuscript text. No content was
fabricated or introduced by the LLM beyond these language refinements.

B NOTATIONS

Let [N] for the set {1,..., N}. For amatrix X € R/ X, is its i-th column and X, _1 is its last
column. Ix g is the K x K identity matrix, [ is all-ones vector and J x is the all-ones matrix.
® denotes the element-wise product.

C RELATED WORKS

Adam, proposed by Kingma & Ba (2015), was designed to make GD adaptive to the complex
optimization landscape of neural networks. Existing works analyze Adam from two primary per-
spectives: online optimization and feature learning. The online convex optimization view focuses
on Adam’s properties when optimizing convex or non-convex loss functions. From this perspective,
Chen et al. (2019) and Zhou et al. (2018) derive non-convex convergence results for Adam, and a
series of subsequent works continuously relaxed the required assumptions for Adam’s convergence
while tightening its convergence rate. For instance, Zou et al. (2019) proposes a set of easy-to-verify
sufficient conditions for Adam’s update rules to guarantee convergence. Défossez et al. (2020) de-
rives the tightest dependency on the heavy ball momentum parameters. More recently, Zhang et al.
(2022) demonstrates that Adam can converge without modification of its procedures, and Li et al.
(2023) relaxes the smoothness assumption by employing an adaptive Lipschitz constant for gradi-
ents. The feature learning view, on the other hand, highlights the relationship between deep learning
characteristics and Adam, focusing more on how Adam’s mechanisms influence the properties of
learned features within deep networks. For example, Pan & Li (2023) examines the sharpness of
GD and Adam and relates Adam’s superiority to its low sharpness. Kunstner et al. (2024) finds that
Adam is better at learning heavy-tailed distributions than GD. Furthermore, Zhang et al. (2024a)
shows that Adam is adaptive to heterogeneous Hessian structures, thus optimizing faster than GD.
In a spirit similar to our work, recent studies have also used ablation experiments to deconstruct
Adam’s effectiveness. For instance, Zhao et al. (2024) and Zhang et al. (2024b) conduct detailed
ablations on Adam’s hyperparameters and components, identifying that its benefits are particularly
pronounced for the first and last embedding layers of language models. While these works focus
on understanding Adam’s existing components, our study applies a similar ablation methodology
to understand the impact of a different optimizer, Muon, on the internal modules of a Transformer.
More literature on Adam is included in the survey by Abdulkadirov et al. (2023).

Muon, proposed by Jordan et al. (2024), applies spectral normalization of the gradient to update
parameters. At a high level, Muon can be understood as steepest descent with respect to the matrix
operator norm (Bernstein & Newhouse, 2024). Alternatively, it can be viewed as maximizing the
feature update subject to a parameter update constraint (Yang et al., 2023). Experiments show that
Muon consistently outperforms Adam across diverse model sizes and architectures, including dense
transformers and Mixture-of-Experts (Liu et al., 2025; Jordan et al., 2024). Building on this, Si
et al. (2025) introduces an adaptive variant of Muon. To explain its advantages, Lau et al. (2025)
introduces a unifying preconditioning framework, distinguishing optimizers that address curvature
anisotropy (like Adam) from those that address gradient anisotropy (like Muon), and proposes a
generalized optimizer class named PolarGrad. Sato et al. (2025) and Shah et al. (2025) examine the
critical batch size of Muon, while other works analyze its convergence in convex and non-convex
settings (Li & Hong, 2025; An et al., 2025; Kovalev, 2025; Pethick et al., 2025; Shen et al., 2025).
Anonymous (2025) derives the convergence bound of Muon, including the influence of NS steps.
Furthermore, Grishina et al. (2025) proposes accelerating these NS steps via Chebyshev-optimized
coefficients. Concurrently, Vasudeva et al. (2025) study Muon on shallow ViTs for computer vi-
sion, grounding their results for gradient descent and Muon in linear regression. In contrast, we
investigate Muon in the context of LLMs, focusing on its effects on associative memory in next-
token prediction. Recent works have also investigated the scalability of the Muon optimizer. For
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instance, Wen et al. (2025) reports that the benefits of Muon diminish with scale (dropping from
1.4x gain at 0.1B to 1.1 x at 1.2B), whereas Liu et al. (2025) observes that Muon maintains a ~ 2x
FLOP-efficiency advantage over Adam even on 32B models.

Associative Memories have a long history in neural network design and knowledge storage (Hop-
field, 1982; Kohonen, 2009; Willshaw et al., 1969). They have inspired architectures capable of
retaining long histories, including RNNs (Orvieto et al., 2023) and Mamba (Zhang et al., 2024c).
With the success of transformers, recent work has examined them through the lens of associative
memories. Geva et al. (2020) and Dai et al. (2021) show that feed-forward modules store knowledge
in Wy, while Bietti et al. (2023) demonstrates that the attention output matrix Wy also encodes
associations of knowledge. Building on these findings, a series of works edit knowledge directly by
modifying these weights (Meng et al., 2022b; Fang et al., 2024). Beyond empirical results, theo-
retical analyses have further clarified how transformers leverage associative memories: Bietti et al.
(2023) conducts a dynamic analysis of memory formation, while Nichani et al. (2024) constructs
explicit associative memory mechanisms in both attention and feed-forward modules.

D STEEPEST DESCENT VIEW UNDERSTANDING MUON AND ADAM

Bernstein & Newhouse (2024) showed that many popular deep learning optimizers can be under-
stood through the unifying framework of steepest descent, once their exponential moving averages
(EMA) are disabled. This perspective shifts the focus from heuristic or second-order motivations to
a more fundamental, geometric view: the choice of an optimizer is equivalent to choosing a specific
norm to measure the “size” of the weight update.

The Steepest Descent Framework. The core idea is to find a weight update, Aw, that minimizes a
local quadratic approximation of the loss function. This is formulated as the following optimization
problem:
Aw* = argmin |g' Aw + i||Aw||2 ,
Aw 2
where g is the gradient of the loss, A > 0 is a “sharpness” parameter that controls the step size, and
|| - | is a chosen norm.

The solution to this problem can be expressed as:
Aw* = —n-d,

where the step size n = @ and the update direction d = arg max¢||—1 g't. Here, || - || denotes
the dual norm of || - || (defined as ||y ||. = supjx<; y ' x). The key insight is that different choices

of the norm || - || lead to different update directions d, recovering the update rules of well-known
optimizers.

Muon as Steepest Descent under Spectral Norm. The update rule of the Muon optimizer is
derived by applying the steepest descent framework to weight matrices equipped with the spectral
norm, denoted in the paper as the || - ||¢,—¢, Operator norm (defined as its largest singular value,
Al = Tmax(A) = supjx|,—1 [|Ax][2). For a gradient matrix G, the problem is to find the
update AW that solves:

A
AW?™ = argmin (G, AW>F + *HAWHZH&
AW 2

The solution to this problem is directly determined by the Singular Value Decomposition (SVD) of
the gradient, G = UXV ". The resulting update direction, which maximizes alignment with the
gradient under the spectral norm constraint, is shown to be UV ". The corresponding dual norm
of the gradient, ||G||7, ,,,, which scales the step size, is found to be tr(%), the sum of the singular
values. Combining these components yields the final steepest descent update rule:
tr(X%
AW* = —¥ UV’

This demonstrates that Muon’s core operation is a principled descent step where the singular vectors
of the gradient determine the direction, and the sum of its singular values scales the step size.
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Adam as Steepest Descent under /., Norm. Adam can be understood as steepest descent on the
flattened parameter vector w when the space is equipped with the vector infinity norm ({,) (defined
as the maximum absolute value of its elements, ||x||.. = max; |z;|). For a gradient vector g, the
optimization problem is to find the update Aw that solves:

A
Aw* = argmin |g' Aw + EHAWHiO .
Aw

The update direction that maximizes alignment with the gradient g under the infinity norm constraint
is the sign of the gradient, sign(g). The corresponding dual norm of the gradient, ||g||%,, which
scales the step size, is the ¢; norm, ||g||; (the sum of the absolute values of its elements, ||x|; =
>, |zi]). Combining these components yields the final steepest descent update rule:

Aw* = _Lg/\lh - sign(g).
This reveals that Adam’s fundamental operation corresponds to a descent step where each parameter
moves with the same magnitude, determined only by its gradient’s sign.

E DETAILED DISCUSSION OF THE THEOREM 4.3

The proof of Theorem 4.3 is provided in Appendix H. We now explain the results for the three
optimizers separately. For GD, the quantity r(a, ) < 1 measures the imbalance of the data dis-
tribution: 7(«, ) = 1 corresponds to perfectly balanced data, while r(«, 8) < 1 indicates severe
imbalance. The results show that if one set of (s, r, 0) triplets is learned with the correct-class prob-
ability [fw (Ek)]r of at least 1 — ¢, then there exists another triplet whose correct-class probability
is O(e (@A) gr(@.f)=1) Thus, GD is highly sensitive to data imbalance: as the training distribu-
tion becomes more imbalanced, the dispersion of correct-class probabilities across items increases,
i.e., the maximal probability gap A(W') grows and miny¢|x)[fw (Ex )] decreases. This mirrors the
message in Figure 4(b), 4(c), and Figure 3(d) in Section 3.3.

In contrast, Muon learns in a balanced fashion, unaffected by data imbalance for any embeddings

E and E. Our results show that when the best-learned triplet achieves a correct-class probability of
at least 1 — ¢, the worst-learned triplet has a comparable correct-class probability at least 1 — ¢(1 +
O(log K/K)). This justifies Observation 3. Furthermore, consistent with Observation 2, Muon’s
update Gvuon rule allocates equal strength to all update directions; equivalently, the singular values
of Gumuon(Wp) are nearly identical.

Our analysis shows that Adam’s performance is unstable with respect to the embeddings F and F,
as reflected by the large error bars in Observations 2 and 3. Adam’s element-wise normalization
disrupts the inherent matrix structure of the gradient. When embeddings of different triplets have
disjoint supports (e.g., E = E = Ik k), Adam can optimize parameters in a balanced manner.
However, when embeddings overlap, the sign operator in Adam can introduce imbalance. In par-
ticular, the worst-optimized triplet may then have correct-class probability O(e~%7 K ~%3). These
exponents (0.3, 0.7) are intrinsic to Adam’s update under certain embeddings and are independent
of a or 5. Moreover, the Adam update Gsigngp(Wo) exhibits pronounced spectral decay—for ex-
ample, its smallest singular value can be less than 25% of the largest—unlike the nearly uniform
singular values of Muon. This spectral decay explains the poor isotropy reported in Observation 2.

F EXPERIMENTAL DETAILS

F.1 EXPERIMENTAL DETAILS OF TRAINING ON FINEWEB

When training 160M models on FineWeb, we disable weight decaying and Nesterov acceleration for
both Adam and Muon. Thus, we only compare their performance along. To set the learning rate, we
conduct a grid searchon 1 x 1071, 5x 1072,2x 1072,1x 1072,5x 1073,2x 1073,1 x 1073, 5 x
107%,2 x 10~*. When conducting the “Independent Blocks ” and “Combined Configuration ”
experiments in Section 3.1, we just fix the learning rate of Muon. We set 81 = 0.8, 52 = 0.95
for Adam and set 8 = 0.95 for Muon. When training 0.7B models on FineWeb, we conduct a grid
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search of learning rate on 2 x 1073, 1 x 1073,5 x 107%,2 x 10™%. We set 31 = 0.9, B2 = 0.95 for
Adam and set 8 = 0.95 for Muon. We do not adopt group query attention in the structure; thus, the
parameter sizes of Wq, Wi, Wy, and Wq are the same. We conduct experiments on 8 A100 with
80 GB memory.

F.2 ISOTROPICITY METRICS EXPLANATIONS

Normalized SVD Entropy. This metric, adapted from Alter et al. (2000), quantifies the uniformity
of the singular energy distribution. A higher entropy value indicates a more isotropic matrix where
energy is distributed evenly across many directions. It is defined as the Shannon entropy of the
distribution ¢, normalized by the maximum possible entropy: Hyom (o) = —@ Z?:l qilogq;.
Effective Rank. The effective rank (Roy & Vetterli, 2007) provides a continuous measure of the
number of significant singular dimensions used by the matrix. It is calculated as the exponentiation
of the unnormalized Shannon entropy, which corresponds to the perplexity of the energy distribution:
eRank (o) = exp (— Y1, ¢ilog ¢;).

Top-k Energy Fraction. This metric measures the concentration of energy within the Top-
k principal singular components. Assuming the singular values are sorted in descending order

k 2
(01 > g9 > -+ > 0y,,), itis the cumulative sum of the first k energy fractions: TopE, () = %Ji Zf .

Eigenvalue Quantile Ratio. To measure the spread of the singular energy distribution while being
robust to extreme outliers, we compute the ratio of the 75th percentile (Q)3) to the 25th percentile

5({o?
(Q1) of the eigenvalues {o?}7_;: Q75/25(0) = gfgag}},;

F.3 DATASET DETAILS FOR THE HEAVY-TAIL KNOWLEDGE TASK

Following Allen-Zhu & Li (2024), the foundation of our knowledge-intensive task is a set of
question-answering (QA) pairs derived from synthetically generated biographies. Each biography
is constructed from a combination of seven key attributes: name, birthdate, birthplace, educational
institution, major, employer, and workplace. The attribute values are sampled from predefined lists,
creating a diverse set of entities. Specifically, we use approximately 400 first names, 1000 surnames,
300 educational institutions, 100 majors, and 300 employers. Each synthetic individual is assigned
a unique combination of these attributes, forming a distinct biographical profile. For example, a
generated biography might look like this:

Ashton Hilda Older has a birthday that falls on February 01, 2063. Miami, FL is
the birthplace of he. He is an alumnus of Saddleback College. He has a General
Literature education. He works closely with BlockFi. For professional growth,
he chose to relocate to Jersey City.

This text is generated by combining the structured attributes (name, date, location, etc.) with a set
of sentence templates.

A predefined set of QA templates is then used to generate the final training data. These templates
contain placeholders corresponding to the biographical attributes. By formatting these templates
with the information from each synthetic biography, we generate a collection of concrete QA pairs
for each entity. For example, for the entity “Ashton Hilda Older”, we can generate the following six
QA pairs:
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1. What is the birth date of Ashton Hilda

Older?
Answer: February 01, 2063.

. What is the birth city of Ashton Hilda
Older?

Answer: Miami, FL.

. Which university did Ashton Hilda Older
study?

4. What major did Ashton Hilda Older

study?
Answer: General Literature.

. Which company did Ashton Hilda Older

work for?
Answer: BlockFi.

. Where did Ashton Hilda Older work?

Answer: Jersey City.

Answer: Saddleback College.

To evaluate the optimizers on a knowledge-intensive task with data imbalance, we constructed a
synthetic dataset where the number of question-answering (QA) samples per class follows a power-
law distribution. This is designed to simulate real-world scenarios where a few entities (the “head”)
are highly represented, while most entities (the “tail”’) are rare.

The generation process is controlled by an integer parameter, m. The classes are organized into
m + 1 groups, indexed from g = 0 to m.

* Group g contains N, classes, where Ny = 1 and Ny = 297! for g > 0.
* Each class within group g is allocated a specific number of “selections,” S, = 2™ 79,

* For each selection, we generate n,4, unique QA pairs by formatting templates with bio-
graphical information corresponding to that class.

Thus, the total number of QA samples for any given class in group g is Sy X ngq. This structure
ensures that the single class in group 0 has the most samples, while the numerous classes in group
m have the fewest.

In our experiment, we set the parameters to m = 15 and n4, = 6. This results in a dataset with a
total of 215 = 32, 768 classes. The number of samples per class ranges from 196, 608 for the head
class (group 0) down to just 6 for each of the 16, 384 tail classes (group 15). The final distribution
is visualized in Figure 3(a) in the main text.

To evaluate the model’s performance on this pure memory task, we measure the First Token Accu-
racy (FTA) on the answers. This metric assesses the model’s ability to correctly recall information
by checking if the first generated token of the answer matches the ground truth. Furthermore, to un-
derstand how optimizers handle data imbalance, we analyze the FTA across different data frequency
groups, from high-frequency (head) to low-frequency (tail) data.

F.4 EXPERIMENTAL DETAILS ABOUT ANGLES BETWEEN ASSOCIATIVE MEMORIES
EMBEDDINGS

Following Fang et al. (2024), we analyze the associative memories in the FFN modules. To obtain

E;, we use the activations within the feed-forward modules, and for E;, we take the corresponding
module outputs. We evaluate knowledge items from two widely used datasets: Counterfact (Meng
et al., 2022a) and ZsRE (Levy et al., 2017). Results on Counterfact are shown in Figure 4(a), while
results on ZsRE are provided in Figure 18 in Appendix G.11.

F.5 EXPERIMENTAL DETAILS OF ONE-LAYER MODELS

We set the hyperparameters as K = d = 999, a = 0.8, § = 0.2. For the support-decoupled setting,

we set E/ and E as identity matrices. For the support-coupled setting, we set &/ and F according to
the construction presented in the proof of Theorem 4.3 in Appendix H.
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G ADDITIONAL EXPERIMENTAL RESULTS

G.1 MAXLOGIT PER LAYER ON THE 160M NANOGPT MODEL VIA MUON OPTIMIZER

In this subsection, we present the MaxLogit values for each layer of the 160M NanoGPT model
trained using the Muon Optimizer. Following Gemma 3 (Kamath et al., 2025), we introduce RM-
SNorm to the attention mechanism. The attention mechanism in our model is defined as follows:

O = softmax(QKT)V, @ =RMSNorm(Q), K = RMSNorm(K)
where RMSNorm is defined as RMSNorm(z) = —£——, with d being the dimension of x.
@) = e s
MaxLogit is defined as:

Smax = H}%X(}; ’ kj
representing the maximum value in the attention scores before softmax normalization.

The MaxLogit values for each layer are summarized in Table 1.

Table 1: MaxLogit values per layer on the 160M NanoGPT model via Muon Optimizer.

Layer 1 2 3 4 5 6 7 8 9 10 11 12
MaxLogit | 8.396 6.880 6.009 7.676 6.349 5.890 7.688 6.314 6.205 5.613 6.033 6.371

Recent reports Team et al. (2025) have shown a potential “MaxLogit explosion” phenomenon, where
Smax grows steadily (often near-linearly) during training, leading to overly peaked attention, gra-
dient spikes, and degraded optimizer comparisons. We included this measurement to rule out the
possibility that Muon’s comparatively smaller impact on the QK blocks (relative to VO/FFN) is sim-
ply due to suppressing such an instability. In our 160M setting, with RMSNorm applied to both @
and K (following Gemma 3), the per-layer MaxLogit values remain moderate and show no runaway
growth. Thus, for this model size and normalization scheme, differences in Muon’s effectiveness
across components cannot be attributed to avoiding a MaxLogit explosion in attention.

G.2 CONTROLLING FOR PARAMETER COUNT IN COMPONENT-WISE ABLATIONS

A potential confounding factor in our ablation studies (Section 3.1) is that different model compo-
nents contain different numbers of parameters. One might argue that applying Muon to a larger
component naturally yields greater gains simply because more parameters are being optimized dif-
ferently. To disentangle the effect of component type from the effect of parameter count, we measure
the performance gain per parameter.

We measure the validation-loss improvement at 10,000 steps when applying Muon to a single com-
ponent (QK, VO, Wj,, or Wy,,) relative to a full-Adam baseline. This gain is then normalized by the
number of parameters in that specific component. For the 160M model, the parameter counts satisfy
(Wv| = [Wol = [Wa| = [Wk|and [Wi| = [Wou| = 4 x [Wq|.

Figure 5(a) reports the validation loss at 10,000 steps, normalized by the number of parameters in
each component. This result shows that the normalized gain for VO Attn is approximately 5 times
greater than that for QK Attn, even though both components have the same number of parameters.
The gains for Wj, and W, are also substantially higher (over 3x) than for QK Attn. Although W,
and W, have twice as many parameters as QK, their normalized gains are far more than half the
gain of QK.

To provide even more direct evidence, we designed the second experiment where the number of
parameters optimized by Muon is held exactly equal across different components. We achieve this
by comparing three configurations: Muon applies to QK matrices in all layers; but Muon applies to
Win and W, matrices in only the odd-numbered layers. In this setup, the total number of parameters
of QK, Wi, and W, optimized by Muon are identical. The results in Figure 5(b) show that even
when optimizing an identical number of parameters, the gain from applying Muon to W, or Wy, is
much more than the gain from applying it to the QK blocks.
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Figure 6: Validation loss comparison on the 160M NanoGPT model with gated FFN under different
Muon/Adam assignments. Panels (a) and (b) show the validation loss over training steps for the
Independent Blocks and Combined Configurations settings, respectively.
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Figure 5: Component-wise validation-loss gain of Muon over Adam at 10,000 steps.

These results demonstrate that Muon’s effectiveness is not simply about the quantity of parameters,
but is highly specific to the function of the parameters. The associative memory components (VO,
Win, Woue) derive a much larger benefit per parameter, reinforcing our central claim that Muon excels
at optimizing these specific parts of the Transformer architecture.

G.3 ADDITIONAL RESULTS FOR GATED FFN ON FINEWEB

To verify that our findings in Section 3.1 are not specific to the non-gated FFN architecture, we
repeat the same “Independent Blocks” and “Combined Configurations” experiments on the 160M
NanoGPT model with a gated FFN. The results are presented in Figure 6.

The conclusions are almost identical to those from the non-gated setting (Figure 1). Specifically, in
both the independent and combined settings, applying Muon to VO+FFN yields the most significant
validation loss reduction, closely tracking the performance of full Muon. In contrast, applying Muon
only to the QK blocks provides minimal benefit over the Adam baseline. This confirms that our
finding—that the associative memory components (VO and FFN) are the primary beneficiaries of
Muon—is robust to variations in the Transformer architecture, holding for both gated and non-gated
FFNs.

Furthermore, we analyze the spectral dynamics of the weight matrices for the gated FFN model,
with results for the VO and W, matrices shown in Figure 7. The trends are consistent with Ob-
servation 2 from the main text: for both matrices, Muon leads to significantly higher SVD entropy
and effective rank (eRank) compared to Adam. This indicates that Muon encourages the learning
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Figure 7: Spectral Dynamics of Transformer Weight Matrices During Training. Each panel reports
four metrics characterizing singular value distributions: SVD entropy, Top10E, eRank, and Q75/Q25
ratio. The four subplots correspond to different weight matrix groups: (a) VO and (b) Woyt.

of more distributed, higher-dimensional representations in the associative memory components, a
finding that holds true for the gated FFN architecture as well.

G.4 ScCALING TO THE 0.7B NANOGPT MODEL

To evaluate the scalability of our findings, we extend our experiments from the 160M model to a
larger 0.7B parameter model. This section presents the results of this scaled-up analysis, examining
whether the advantages of Muon observed in the smaller model persist at a larger scale.
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Figure 8: Validation loss comparison on the 0.7B NanoGPT model. (a) Combined configuration with
non-gated feed-forward networks.(b) Combined configuration with gated feed-forward networks.
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Figure 9: Spectral Dynamics of Weight Matrices During Training on the 0.7B NanoGPT model.
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Figure 10: Spectral Dynamics of Weight Matrices During Training on the 0.7B NanoGPT model
with the Gated FFN.

Figure 8 shows the validation loss curves for various optimizer configurations. Consistent with our
findings on the 160M model, applying Muon to all components achieves the lowest validation loss,
outperforming Adam baseline. The hybrid experiments further reinforce our earlier conclusions:
applying Muon to only the VO and FFN components yields performance nearly identical to that of
the full Muon optimizer, whereas applying it only to the QK components offers little advantage over
Adam.

The spectral dynamics, shown in Figures 9 and 10, also align with Observation 2. For the VO,
Win, Waate (in model with Gated FFN) and W, matrices, Muon leads to higher SVD entropy and
eRank compared to Adam, indicating that it encourages the learning of more distributed, higher-
dimensional representations. Overall, these results demonstrate that the benefits of Muon and the
underlying mechanisms scale to larger models.

G.5 ADDITIONAL RESULTS ABOUT SPECTRAL DYNAMICS OF TRANSFORMER WEIGHT
MATRICES DURING TRAINING

To complement the main-text analysis (Fig. 2), we also evaluate spectral dynamics during training
for the 160M NanoGPT model with both non-gated and gated feed-forward networks (Fig. 11).
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The analysis includes W, for both configurations, as well as the gate matrix Wy for the gated
version. The conclusions are consistent across all three matrices and mirror the non-gated setting:
with Muon, SVD entropy and eRank increase, while Top-k energy and the ()75/25 ratio decrease,
consistent with Observation 2 in the main text.
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Figure 11: Spectral Dynamics of FFN Weight Matrices During Training on the 160M NanoGPT
model. Each panel reports four metrics characterizing singular value distributions: SVD entropy,
Top10E, eRank, and Q75/Q25 ratio. The subplots correspond to different weight matrices: (a) Wi,
(non-gated), (b) Wi, (gated), and (c) Wy (gated).

G.6 DETAILED EXPERIMENT RESULTS ABOUT HEAVY-TAIL IMBALANCE KNOWLEDGE
TASK

To complement the qualitative trends shown in Section 3.3 (Fig. 3), we report the exact First Token
Accuracy (FTA) for selected tail groups at three training checkpoints (2k, 5k, 10k steps). We focus
on groups g = 11, 13,15, which represent increasingly rare (mid-tail, tail, extreme tail) frequency
bands in the power-law distribution (recall that larger g implies fewer samples per class). The
tables contrast full Muon, Adam, SGD+Momentum, and two hybrid configurations (Muon applied
only to VO&FFN or only to QK). The numbers highlight: (i) Muon’s rapid convergence on rare
groups (already strong by 2k, near-saturated by 5k), (ii) Adam’s persistent head—tail gap, and (iii) the
dominant contribution of applying Muon to VO&FFN for tail generalization (the VO&FFN hybrid
closely tracks full Muon, whereas the QK-only hybrid lags). These quantitative results substantiate
Observation 3 that Muon delivers more balanced learning.

Table 2: Heavy-tail knowledge task: Group performance by optimizer (2,000 steps)

Optimizer
Muon Adam SGD+Mom. Muon(VO, FFN)  Muon(QK)

11 0.854+0.029 0.312+0.043 0.156 +£0.037 0.814 +0.022 0.472 +0.041
13 0.386 +0.029 0.146+0.015 0.120+0.012 0.256 +0.030 0.154 £ 0.032
15 0.140 £ 0.027 0.090 +0.031 0.082 +0.013 0.114 +0.023 0.086 + 0.037

Group

Table 3: Heavy-tail knowledge task: Group performance by optimizer (5,000 steps)

Optimizer
Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 0.996 = 0.006 0.936+0.039 0.314 +0.021 0.992 +0.005 0.970 = 0.007
13 0.964 +0.023 0.298 £0.074 0.148 £0.013 0.934 +0.015 0.354 +0.032
15 0.320 +0.028 0.110+0.027 0.084 +0.011 0.254 +0.026 0.118 £0.019

Group
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G.7 ADDITIONAL EXPERIMENT RESULTS ABOUT HEAVY-TAIL IMBALANCE KNOWLEDGE

This subsection complements the main heavy-tail results in Section 3.3 by studying the gated feed-
forward networks (Gated FFN) variant. We follow the same presentation order as in the main text:
first an overview figure (sample distribution and learning curves under different optimizers), then
tables reporting the exact First-Token Accuracy (FTA) for tail groups ¢ € {11,13,15} at three
training checkpoints (2k, 5k, 10k steps). The findings mirror the non-gated setting: (i) full Muon
consistently outperforms Adam and SGD+Momentum on rare classes and reaches high accuracy
earlier; (ii) the VO&FFN-hybrid (Muon applied to VO and FFN while Adam is used for QK) closely
tracks full Muon, indicating that VO&FFN are the primary levers for tail generalization; (iii) the QK-
only hybrid offers limited gains. Overall, the gated FFN does not change the qualitative conclusions

Table 4: Heavy-tail knowledge task: Group performance by optimizer (10,000 steps)

G Optimizer
roup
Muon Adam SGD+Mom. Muon(VO, FFN)  Muon(QK)
11 1.000 £ 0.000 1.000 +£0.000 0.422 +0.023 1.000 + 0.000 1.000 + 0.000
13 1.000 = 0.000 0.890 £0.042 0.294 +0.013 0.998 + 0.002 0.940 £ 0.034
15 0.976 = 0.006 0.264 +0.048 0.126 +0.021 0.954 +0.021 0.286 + 0.039

TASK WITH GATED FEED-FORWARD NETWORKS

about where Muon helps most. See Fig. 12 and Tables 5-7 for details.
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Figure 12: Performance comparison of different optimizers on a heavy-tailed knowledge task with
gated feed-forward networks. (a) The distribution of samples per class follows a power law. (b-d)
Performance of Muon, Adam, and SGD+Momentum optimizers. (¢) Muon (VO, FFN)/Adam (QK).
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Table 5: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (2,000
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steps)
Group Optimizer
Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)
11 0.896 = 0.009 0214 +£0.063 0.146 £0.018 0.892 +0.021 0.330 £ 0.042
13 0.478 £0.034 0.116+£0.030 0.110 £ 0.007 0.458 £0.037 0.140 £ 0.019
15 0.178 £0.018 0.086 +£0.013  0.074 £ 0.009 0.166 £ 0.017 0.090 £ 0.020
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Table 6: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (5,000
steps)

Group Optimizer
Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 0.998 £ 0.002 0.928 £0.024 0.252+0.016 0.990 £ 0.010 0.960 +0.032
13 0.990 +0.010 0.216+0.052 0.156 +0.024 0.968 +0.028 0.290 + 0.046
15 0.510 £ 0.039 0.092+0.015 0.080+0.016 0.468 +0.016 0.098 +0.013

Table 7: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (10,000
steps)

Group Optimizer
Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 1.000 £0.000 0.998 +£0.002 0.322+0.011 1.000 £ 0.000 1.000 £ 0.000
13 1.000 £ 0.000 0.948 +0.027 0.304 £ 0.017 1.000 £ 0.000 0.946 +0.026
15 0.994 +0.006 0.244+0.085 0.148 £0.015 0.990 £ 0.010 0.274 £0.042

G.8 IMPACT OF DATA IMBALANCE LEVEL

To further investigate how the degree of data imbalance affects the performance gap between Muon

and Adam, we conduct an ablation study on the heavy-tail knowledge task with varying levels of
class imbalance. We compare three settings:

* High Imbalance (base = 2.0): This is the default setting used in our main experiments

(Section 3), where the number of samples per class follows the power-law construction in
Section F.3 with base 2.0.

¢ Medium Imbalance (base = 1.2): A less skewed version of the same construction, where
the base is reduced to 1.2 so that the head—tail ratio is smaller.

* Uniform: A balanced setting where each group contains the same number of classes and
each class is assigned the same number of QA samples.

The results are presented in Figure 13. From left to right, the panels correspond to the high-
imbalance, medium-imbalance, and uniform settings, each plotting the average First Token Ac-
curacy (FTA) over all groups for Adam and Muon. As the data distribution becomes more uniform,
the performance gap between Muon and Adam steadily shrinks, and in the uniform case the two

optimizers behave very similarly, indicating that Muon’s advantage is most pronounced in highly
imbalanced, heavy-tailed regimes.

High-Imbalance Median-Imbalance Uniform

Overall FTA
Overall FTA
Overall FTA

—— Adam
0.0 0.0 0.0
2000 4000 6000 8000 10000 2000 4000 6000 8000 10000 2000 4000 6000 8000 10000

Training Steps

Training Steps Training Steps

Figure 13: Comparison of Muon and Adam under different levels of class imbalance on the

heavy-tail knowledge task. From left to right, the panels correspond to the High Imbalance (base =
2.0), Medium Imbalance (base = 1.2), and Uniform settings.
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The datasets mixed with different levels of heavy-tailedness exhibit two properties: (1) Figure 14(a)
shows that the single-token distributions are not exactly the same, i.e., facts and tokens cannot be
perfectly decoupled; and (2) the token distribution in the uniform mixture still follows Zipf’s law
(Figure 14(b)). Thus, we conclude that, under different levels of heavy-tailedness in the pretraining
data, the benefit of Muon over Adam varies even when the token distribution remains close to Zipf’s
law: the more uniform the mixture, the smaller the gain of Muon over Adam.

106 4 —— Power-law Mixing 1064 —— Uniform Mixing
o Uniform Mixing i
< 1054 I 105 4
Q o
w wn
> 10% 4 =)
2 S 1045
510’ 9
5 102 5 1)
21 B
[SEe @ 1024
@ 10 i
100 10! 4
0 500 1000 1500 2000 2500 3000 3500 0 500 1000 1500 2000 2500 3000 3500
Token Rank (sorted by Power-law freq.) Token Rank (sorted by Uniform Mixing freq.)

(a) Freq. Comparison (Sorted by Power-law Rank) (b) Uniform Mixing (Sorted by Uniform Rank)

Figure 14: Token-frequency profiles for the synthetic heavy-tail QA task. (a) Compares the token
frequencies of the original Power-law mixing (red curve) and a fact-balanced Uniform mixing (blue
dots), using the token rank from the power-law mixing. (b) Shows the token frequency profile for
the Uniform mixing data, re-sorted by its own token frequencies.

G.9 ADDITIONAL RESULTS ON WIKITEXT103

To verify that our observations on FineWeb and the synthetic heavy-tail knowledge task transfer to
a more standard language modeling benchmark, we additionally train 160M NanoGPT models on
the Wikitext103 dataset. We keep the model architecture and most hyperparameters identical to the
FineWeb setup and only retune the learning rate for each optimizer with a small grid search.

Figure 15 provides an overview of this setting. Panel (a) shows the empirical token frequency
distribution of Wikitext103, which exhibits a clear heavy-tail pattern: a small number of tokens
appear very frequently, while many tokens are rare. In the plot, the vocabulary is partitioned into ten
frequency-based groups, each containing approximately 10% of the tokens (from most frequent to
rarest), to make head and tail behavior more comparable. Panels (b) and (c) report the training loss
curves for Adam and Muon, respectively. Consistent with our main results, Muon converges faster
and reaches a lower training loss than Adam.

Figure 16 further highlights the difference between the two optimizers by plotting their training
losses on the same axes. Looking from the head group to the tail group, the performance gap between
Muon and Adam steadily widens: while the two optimizers behave similarly on high-frequency
(head) tokens, Muon remains much stronger on mid- and low-frequency (tail) tokens. In addition,
the error bars for Adam grow substantially toward the tail, indicating unstable generalization on rare
tokens, whereas Muon stays consistently stable across all groups.

Figure 16 also reports the two hybrid configurations. The Muon(VO, FFN) variant, which applies
Muon only to the value/output and feed-forward blocks while keeping Adam on QK, almost overlaps
with the full Muon curve, showing that most of the improvement comes from these components. In
contrast, the Muon(QK)-only variant is very close to the Adam baseline, suggesting that using Muon
solely on the QK blocks brings limited benefit.
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Figure 15: Performance comparison of different optimizers on Wikitext103. (a) Token frequency
distribution in the Wikitext103 training corpus, showing a pronounced heavy-tail structure. (b)
Training loss curve for Muon. (c) Training loss curve for Adam.
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Figure 16: Training loss comparison on Wikitext103 across head and tail token groups under dif-
ferent optimizer configurations. The curves correspond to Adam, Muon, and two hybrid variants
that apply Muon only to VO&FFN or only to QK. In these figures, the results of Muon(VO, FFN)
coincide with those of Muon, while the results of Muon(QK) coincide with those of Adam.

G.10 ADDITIONAL RESULTS ON LINEAR REGRESSION
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Figure 17: Validation loss on linear regression across head and tail groups under different Adam and
Muon.
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To further demonstrate that Muon is ineffective at optimizing the QK parameters in the attention
module, we consider an in-context linear regression task (Garg et al., 2022), which heavily relies on
the QK parameters. In this task, the model is prompted with a number of demonstrations (z;, yi)fil
with y; = ) w and a query T4, Where x; € R? for i € [K] and Tq,w € R?. The model is expected
to output a:qu. Intuitively, the QK parameters capture the correlations between the demonstrations
and the query and use them to estimate :vl;rw. Following (Garg et al., 2022), we train the model with
{5 loss. To test the efficacy of the optimizers under a heavy-tailed task distribution, we partition
w into groups supported on mutually orthogonal subspaces, which appear in the training data with
different frequencies. We perform a grid search over learning rates for Adam and Muon and report
the results in Figure 17.

Figure 17 shows that Adam and Muon achieve similar performance across different groups. In
particular, both optimizers effectively learn the head class but barely improve on the tail class. This
behavior is in sharp contrast to the results in Section 3.3, where Muon substantially outperforms
Adam on tail classes. Hence, the linear regression experiment further supports our claim that the
main benefit of Muon does not come from optimizing the QK parameters.

G.11 ADDITIONAL RESULTS ABOUT ANGLES BETWEEN ASSOCIATIVE MEMORIES
EMBEDDINGS

—E
[

Avg. Angles Between Embeddings (Degrees)

5 10 15 20 25
Layer Index

Figure 18: Average angles between e or e,, for items in ZsRE at layers 5, 10, 15, 20, 25 of Llama3-
8b-instruct.

H PROOF OF THEOREM 4.3
We separately derive the results for GD, Muon, and Adam in the following proof. For all of them,
we define
Nopt = inf {77 > 0‘ 1- gnicl]?] [fw(Ek)], <€, where W =Wy —n- Gopt(WO)}' (H.1)
€
The quantity 7, represents the minimal step size for at least one triplet to be learned with error
probability less than e. From the definition, we have that

Q(E)p[ S krél[ig] [f_ngplcopt(Ek)] k'

Step 1: Calculations of GD.
We define the score of k’-th object for the k-th subject-relation pair with the parameter W as

exp(E,;'—, W E})
S exp(ELWE)

sk’ k,W) =
At Wy = 0q4,,4,, we have that

1
s(k', k, Wo) = — forall k. k' € [K].
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Proposition J.1 shows that the gradient is

o~ l—a ~ a =~
_VWE(WO) = EELLEIL + 7}{ — LEL+1;KEI+1:K — EEJK,LEIL
l—a =~
- EJxk-1El 15 H.2
K= D)k Drr-tELx (H.2)

From the gradient, it is easy to see that the first L triplets (s, r, 0) share the same learning behavior,
and the last K — L triplets also share the same behavior. Thus, we calculate the results for £k = 1
and £ = L + 1. The calculation for ¥ = 1 depends on evaluating its score function, which takes

the form 1) - B, [-Vw L(Wo)]Ey, for k” € {1,...,K}. Based on the gradient in (H.2) and the
orthonormality of the embeddings, it evaluates to o/ L for the case k" = 1, and to O for all £” # 1.

This leads to a numerator in the softmax score of exp(n - a/ L), while the denominator sum consists
of one term exp(n- /L) and K — 1 terms of exp(0) = 1. A similar calculation for k = L+ 1 shows
that the argument of the exponent for the correct object, 7 - Eg 1 [=VwL(Wy)]EL 1, evaluates to
n-(1—a)/(K — L). By defining v = a/(8K) and 72 = (1 — «)/((1 — 8)K) based on the
problem setup (L = SK), we have that

exp(1y2)
exp(ny2) + K =17

where 1 and v, are defined as

o« _ l—«
T S T

Then we derive that

e -1 _
NGp = 7max{’yl,72} log [(6 (K 1)] (H.3)

To calculate the desired quantity, we define the quantity r(«, 3) to evaluate the balance of data as

r(a, B) = min{vi/y2,72/71} = min { (;8 : 3’ /28 : (;; }

Some basic calculations show that

. €
1- krg[lg] [f_néDGGD (Ek)}k - €+ (1 _ e)r(a,ﬁ)el—r(a,,ﬁ) (K _ l)r(a,ﬁ)—l :

(H.4)

When r < 1, with the fact that %_H =1—a+ O(x?) as z — 0, we have that

. _ —r(a, r(a,B8)—1
o, [f—neGan (Er)], = O(e @A (A=),

Thus, the proof for the convergence of GD has been established.
Step 2: Calculations of Muon.

For Muon, we first calculate the SVD of the gradient. In fact, we can write the gradient in Eqn. (H.2)
as

-
~ « l1-«a 1 o l1-a
~VwL(Wy) = E<diag| —Ir, —Ix_r | — =g | -1, ——Ix ET
Vw L(Wy) {lag(LL,KLKL) K |:LLaKLKL:| }
= EXE'.
The SVD calculation of X = UXV T can be directly derived from Proposition J.3. Thus, the
SVD of the gradient is —Vy L(Wy) = (E - U)S(E - V) T. The update quantity Gyuon(Wo) =
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Uonorm(Xo)V,' of Muon is

- CTYMuon(VVO)
_ 7 T T = T T
=FEuLRr 1Ry 1By + Eovik Re—pk——1 R k—r—1Ery1.x
1 ~ ~
n (K — L)Ey.L I — LEp+1.x1k—1)

\/K [02(K — L)3 + (1 — )?L?]

(K — L) L(l -«
: (LH—LFEIL - ﬁﬂ}—LE;rl:K

= EI:LEIL + EL+1:KEZ+1:K
(10 BRa - .
— | —— —1\E+.7J; 1 E,.
+ K{B( 3 1oJdr, LBy

1 ﬁQ 11—« ~
+ ( ( ) _ 1) EL+1:KJK7L,K7LEI+1:K

1-3 )

— B(l — a)EI:LJL,KfLEE+1:K - OZ(]- - B)EL+1:KJKL,LEIL}a (HS)

where \ = \/a2(1 —03)3 + (1 — «)?p3, the matrices Ry, ;1 and Rx_1 x——1 are defined in
Proposition J.3, and the second equality results from the following facts
1

RL,L—1R£L_1 =I5 — ZHLHI’

Tl ;.

-
Ry k-1 Ry g 1-1=Ixk_1xk—1—
> K—-L,K—L-1 , K— 1L

Although the gradient is composed of heterogeneous components from Elz L,F1.p and
Er+1.5, EL 1.5, we can bound the convergence rate of [f=1Guen (E'k)]& for any k: an upper (resp.
lower) bound is obtained by increasing (resp. decreasing) the coefficient of EkE,: while decreasing
(resp. increasing) that of Ek/E,: for k¥’ # k. In fact, Eqn. (H.5) implies that there exists a constant

C' > 0 such that the dynamics of the fastest- and slowest-learning triplets are bounded by those
along the following two update directions.

20\ ~ _ c -
—Guon(Wo) = <1 + K> (Ev.LElp + Ery1.xE] 1) — Ve EJg xET

—Gruon (W) = (1 - 25) (BurBlp + Eryur Bl k) + % EJr kBT
Concretely, the rate of score increase for the correct object of the k-th triplet, which is given by
the term E,;r [—Gmuon (Wo)]E, in the exponent of the softmax score, is bounded. The rate for the
fastest-learning triplet is lower-bounded by the corresponding rate derived from —G&uon (Wy), while
the rate for the slowest-learning triplet is upper-bounded by that from —G,,,(Wo). Thus, we only
need to focus on Gyy,o. (Wo) and Gy, (Wo) to calculate the desired quantity. Following the similar
procedures for GD to derive Eqn. (H.4), we have that for any 7 such that max¢ [k [ Jw, (Ek)] e
1 — € (where W,, = Wy — 17 - Gmuon(W0)), the following holds
€

1-— krg[lg] [an (Ek)}k < €+ (1 _ E)T(K)elfr(K) (K _ 1),,«(](),17 (H6)
where r(K) = (K — 2C) /(K + 2C). We further have that
(1— 6)T(K)€1*T(K)(K _ l)r(K)fl
4C €
“(mgew <K+20<log T los(K - U))
= 40 € (log K)?
- (1—6)[14— K+20(log1€—log(K—1)) +O(K2
log K
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where the first equality results from the basic calculations, the second equality results from that
exp(r) = 1 + x + O(2?) when 2 — 0. Combining Eqn. (H.6) and (H.7), we have that

log K
€ > _ .
OMuon Z 1 6(1 O( K >)

Thus, we prove the desired results for Muon.

Step 3: Calculations of Adam.

The proof of the results for Adam is conducted under two cases. We will construct different embed-
dings F and E in these two cases. In the first case, we set E = E = I . With such embedding
and sufficiently large K, we have that

_GSignGD(WO) = — Sign(vWﬁ(Wo)) = 21K7K — JK,K-
Under such a setting, all triplets share the same dynamic. Thus, we have that

€ _
OSignGD = I—e

In the second case, we set ' and E as block-wise diagonal matrices. Here we set the block size as 3,
i.e., requiring that K mod 3 = 0. Such a requirement can be satisfied infinitely often when K — oo.
Then the sufficient and necessary condition of Assumption 4.1 is that each 3 x 3 block contains an
orthonormal basis. To achieve this, we define the following matrix.

cosacosbcosc —sinasine —cosacosbsine —sinacosc cosasinb
R(a,b,c) = |sinacosbcosc+ cosasinc —sinacosbsinc+ cosacosc sinasinbd]| .
—sinbcosc sinbsin ¢ cosb

It is obvious that R(a,b,c) " R(a,b,c) = I3 3. Then we set E and F as

E = I35 © R(3.638,2.949,5.218), E = I3 /3 © R(1.715,0.876,3.098),

where ® is the Kronecker product. With these specifications and sufficiently large K, the Adam
update matrix is

—Gisignap(Wo) = Ik 3.k/3 @ A+ Jk/3.1/3 @ B,
where A and B are specified as
-1 -1 -1
-1 -1 —1] .

1 1 1

2 0 07
A=1]2 0 2
-2 —2 -2]

These show that the diagonal block of —Gisigngn (W) is

B =

)

rt -1 -1
A+B=|1 -1 1].

-1 -1 -1
Since the k-th and (k + 3)-th triplets share the same learning dynamics for all k € [K — 3], we focus
on the learning dynamics of £ = 1,2, 3. We have that

R(3.638,2.949,5.218) T - (A + B) - R(1.715,0.876, 3.098)

[1.46552253 1.0132908 —0.11179563
= |—0.0732561 1.00709257 —1.26935805|
| 0.0544114 0.89611102  1.54147329

R(3.638,2.949,5.218)" - B - R(1.715,0.876, 3.098)

[—0.19288146 —1.24460331 —1.4058011
= |—0.20112175 —1.2977753 —1.465859781 .
|—0.12780259 —0.82466989 —0.93147899

From the last columns of these two matrices, following the similar procedures for GD to derive
Eqn. (H.3), we have that

(e =1)(K-1)] = log [(e7! = 1)(K —1)].

ST
IsignGD = 1 AT 0.930 8 2471
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Then, from the first columns of these matrices, we have that

€
1= min [fope  auo (Ep)], >
krg[lg] [f nSignGDGS‘g"GD( k)]k e+ (1 — G)Tﬁlir(K - 1)7“717

1.4664-0.202 __ 1.668
2.471 T 2471

where r =
Thus, we have that

0SignGD < O(c"K™™ 1) <O "TK %),
Then we calculate the singular values of —Gsigngp (o). We define the eigen vectors of I - as

U, ie., ﬁTIK/&K/gﬁ = diag(K/3,0---,0). Using the orthogonal invariance of singular values,
*GSignGD(Wo) shares the singular values with the following matrix

U Is3)(— GSignGD(WO))(ﬁ ® I33)
=Irs303® A+ (U Iz 53U) ® B
= diag(A — KB/3,A,--- , A).

Thus, the singular values of A are also the singular values of GSignGD(Wo)- ‘We have that
Tmin (Gsignap(Wo)) < Omin(A)
Omax (Gsignad (Wo)) ~ Omax(A)

Thus, we conclude the proof of Theorem 4.3.

< 25%.

I PROOF OF THEOREM 4.4

The proof of Theorem 4.4 takes two steps. In the first step, we derive the share form of W; along the
whole optimization trajectory. In the second step, we build the desired results on the basis of step 1.
Throughout the proof, we will write WM™ as TV, for the ease of presentation.

Step 1: Derive the shared forms of 1/, and Gyyon.

We will derive the forms of W, along the optimization trajectory via the induction method. We first
state our hypothesis and then prove it.

Hypothesis 1. For any optimization step index ¢ € [T'], the parameters W; can be expressed as
W = EXtE, X =M+,
where A; and C are

11 12
it JoL ¢;”-Jo k-1

A = di I, b Ig_p), Ciy=
t lag(at L,0¢ - Ik L) t Ct21'JK—L,L Ct22'JK—L,K—L

)

where a;, by, e, cl2, 2 ¢22 € R are real numbers such that (1) a; = b; > 0, and (2) ¢/ =
O(a:/K) fori,j € [2].

When ¢t = 0, it is obvious to verify that W, = 04, 4, satisfying this hypothesis with a; = b; =
ctt = ¢} = ¢! = ¢72 = 0. Then we assume that this hypothesis holds for {1,--- ¢}, and we
will prove that it holds for ¢ + 1. Since Wiy = Wy — mepq Utnorm(Et)VtT, we need to show
that —7;1 Usnorm(X;)V,T satisfies the hypothesis. We define the score of k’-th object for the k-th

subject-relation pair with the parameter W as

exp(E,;r/WEk)
S exp(ELWE)

s(k' k,W) =

According to the symmetry of W;, we have that

o s(k,k,Wy) =s(1,1,W,;) forall k < L.
o sk, k,Wy) = s(K, K,W;) forall k > L.
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(K, k,Wh)
o s(k' k, W)
o s(k' k, W)
(K ) =

s(2,1,W;) forall k, k' < L k' # k.
s(K,1,W;) forall k < L,k > L.

s(K — 1, K,Wy) forall k, k' > L, k" # k.
s(1, K,Wy) forallk > L, k' < L.

* s

* s

kW
Thus, Proposition J.1 shows that the gradient of W, is
—VWE(Wt) (Ft + Bt)E 9

where I'; and B; are defined as

Ft = dlag<2(1 + 8(2, ]., Wt) — 8(1, 1, Wt))]IL,

1-—
— (145K —1,KW,) - s(K, K, Wt))]IK_L>,
B, — —¢s(2,1,Wy) - Jr 1 ) — =% s(L,K,Wy) - Jp k-1 .
s LWy Ik — = gs(K =LK, Wy) - Jk L k-1

Thus, Proposition J.2 shows that

s Ciy-J Cia- Jr -
~Gonen(:) = Bdina(O) 4 | 7 002 | )T,

where
Cho— 171,1‘71,1 + [71,2‘71,2 -1 Cho — (71,1‘72,1 + [71,2‘72,2
= ’ 12 = ,
K B(1—-B)K
Cor — 172,1‘71,1 + [72,2‘71,2 Coo — (72,1‘72,1 + [72,2‘7272 -1
21 = ; 22 =
B(1—B)K (1-BK

where U,V € R2%2 are the orthonormal matrices defined in Proposition J.2. Since W, = W, —
Nt+1Gmuon (W), it is obvious that a;y1 = by41. The orthonormality of U and V' implies that
|Ui ;l, Vi ;| < 1. Thus, we have

Ui Vig +UiaVig —1 _olLX
BK K)

This further implies that c;’ +1 = O(a¢y1/K). The proofs for other ¢}’ "1 are similar. This completes
the proof.

Step 2: Establish the convergence results.

We note that this analysis is very similar to the proof of Muon in Theorem 4.3. Concretely, for W,
the coefficients a, by, ctt, c?, c3t, ¢?? from multiple-step optimization share the same property with
those of the one-step results. It means that there exists a constant C' > 0 such that the dynamics
of the fastest- and slowest-learning triplets are bounded by those along the following two update

directions in only one step.

20\  ~ ~ C
~Gyon = <1 + K) (BvpElp + EpvicEL ) — I -EJxkE"
_ 20 C
—Gyyon = (1 - K) (El LBl + EL+1 KEL+1 )+ e EJkxET

The remaining analysis is then exactly the same as that of Theorem 4.3. Thus, we conclude the proof
of Theorem 4.4.
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J SUPPORTING PROPOSITIONS

Proposition J.1. We define the score of &’-th object for the k-th subject-relation pair with the pa-
rameter W as

eXp(E'l;r, WE)

s(k',k, W) = —% — .
> k=1 exp(EL W E)

When the parameter W is trained with loss

K
LW) =~ Zpk -log [fw (Ex)] .,

k=1
the gradient of W is
K

Vi L(W) = — Zpk{ [1— stk kW) E BT — S sk, R, W)Ek/E,I}.
k=1 k' £k

Proof of Proposition J.1. The proof just follows from the basic calculus. Thus, we omit them here.
O

Proposition J.2. Let X = A + C € RE*K_ The matrix A = diag(a - I1,b- Ix_r) is a diagonal
matrix whose first L diagonal elements are a and the last K — L elements are b with a,b > 0. The
matrix C is a block-wise constant matrix defined as

c—| - Jr.r ci2 - Jr k-1
co1 - Jx—r1 ca-Jxk_L K-L

Then X = UXV . Here %, V, U are defined as follows. All of them can be decomposed into three
blocks, each corresponding to a subspace. The first subspace is

o
o= {los

The dimension of this space is L — 1. The singular value of X corresponding to this subspace is a.
The block of columns in both U and V' that forms an orthonormal basis for this subspace is given by

Rr.r—1
Ok—r,0-1]’

J:T]IL:0, andxe]RL}.

where the columns of the matrix Ry, ;1 € RLX(L=1) form an orthonormal basis for the subspace
{x € Rz "I = 0}. The second subspace is

Sy = {[OyL} ‘yTHK_L =0, andy € ]RKL}.

The dimension of this space is K — L — 1. The singular value of X corresponding to this subspace
is b. The block of columns in both U and V' that forms an orthonormal basis for this subspace is

given by
Or,k—1—1
Rx_rnrk-1-1|’
where the columns of the matrix Ry 1, ¢ 1 € RE-LIXE=L=1) form an orthonormal basis for

the subspace {y € REX~L|yTlIx_; = 0}. The remaining 2-dimensional subspace is induced by a
2 x 2 matrix M defined as

M = |:3 g:l = ﬁdiag(sl,SQ)VT,

where the elements of M are defined as

a:a+L011, ﬂ:\/L(K—L)Clg, ’)/:\/L(K—L>021, (Szb—l—(K—L)CQQ.
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The singular values s, so are

T+ VTZ —4A
sie=\—— 5 T=a"+§+"+5" A=(ad-p)"

The singular values of X in this subspace are s; and s5. The corresponding right singular vectors
(v;) and left singular vectors (u;), which form columns of V" and U respectively, are given by:

v = ‘71,1'61 + ‘72,¢627U¢ = (71,1'61 + [72,1‘62 fori=1,2,
where the vectors e; and e; are defined as
1
—1 0
€1=|:\EL:|, 62=|: 1Iﬁ :|
Ork-1 TR IK-L
In summary, the SVD of X is

Y= diag(a . ]IL—l, b- HK—L—17 S1, 82),

— Rrr—1 0L k-1
o { {OK‘LvL—J ’ [RK—L,K_L_l] ’”171’2}

Ry -1 Op,k-1-1
U= ’ ’ ,Up, Uz |-
[ l:OKL,Ll NRk—nx—-1] 12
Proof of Proposition J.2. We first prove the results for S;. For any vector v in Sy, it is direct to

verify that
X'x|. Y | =a2|." |.
I:OK—L:| “ |:0K—L
|

Thus, the singular value of X corresponding to the subspace spanned by the vector [v",0% ;|7 is
a, and the corresponding columns of V' form an orthonormal basis for S;. For the U calculation, we

have that
v )
X = .

Thus, the corresponding left singular vectors (columns of U) are identical to the right singular vectors
for this subspace. A similar calculation can be done for Sp. The remaining vectors are orthogonal
to both S7 and Ss and thus take the form of

vy = p1e1 + paea, U; = pser + paes for i = 1,2 with p1,p2, p3,pa € R.

By solving the equation X ' Xv; = Av;, we can show that the corresponding singular values and
coefficients p1, p2, ps, p4 coincide with those in the SVD of M, as can be verified by simple calcu-
lations. Thus, we conclude the proof of Proposition J.2. [

Proposition J.3. Letz = [a-1],b -1} ;]" € RE and X = diag(x) — K 'g -2 € REXK,
where a,b > 0. Then the SVD of X = UX VT is that

2 (K_L)+0% L
E—diag<a~HL_1,b~]IK_L_1,\/a ( )+ ,0),

K
Rrr—1 Or,x-r-1
V= ’ ’
[ [OKL,Ll] ’ {RKL,KLJ ,’Ul,U2:|,
Rr 11 Or,Kk—rL—1
U= ’ ' .
[ |:0K—L,L—1:| ’ |:RK—L,K—L—1:| ’ul’u2]
Here, the columns of the matrix Ry, 7,1 € RLX(L=1) form an orthonormal basis for the subspace of

vectors in R” orthogonal to I ;.. Similarly, the columns of Ry, g 71 € RELX(E=L=1) form
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an orthonormal basis for the subspace of vectors in R % orthogonal to Ix_ ;. These correspond
to the subspaces S; and Ss defined as:

5=l

The vectors vy, va, u1, us are

271, =0, and x € RL} S, { {OL} ’yT]IKL —0, andy € RK_L} .

Y

U1

- (S b - le])

P Ve —1L) +0°L (b {OIEL—L] v {]1;81] )

Uy = KL(lK—L)((K - L) [OIELL] — L [Hl?LJ )

1
Uy = 7}1[(.

VK

Proof of Proposition J.3. This proposition is a direct corollary of Proposition J.2. The matrix X =
diag(x) — K~ - T is an instance of the general form A + C from Proposition J.2.

The diagonal part is A = diag(z) = diag(a-I1,b-Ix_1). The off-diagonal partis C = —K 1l -
xT. We can write C in block form:

B 1 I T T _ 1 aJr, 1 bJL7K—L
C=_—— [ } [al], bl .] = K |aJxk-r1 bxk-rLx-L|"

This corresponds to setting the block-wise constants in Proposition J.2 to:
ci1=—a/K, ci2=-b/K, ca=-a/K, cpn=-b/K.
Substituting these into the formulas for «, 3, «y, § from Proposition J.2 gives:

a=a+L(—-a/K)=a(K — L)/K
8= VLK - L)(~b/K)
v =+VL(K - L)(-a/K)
§=b+ (K — L)(-b/K) =bL/K

These coefficients define the 2 x 2 matrix M from Proposition J.2 for this specific case. We now
analyze this matrix M. A key observation is that its determinant is zero:

det(M) = a5 — gy = W ZLIbL (L(K—L)

2 (M) o -0

Since the determinant is zero, one of its singular values must be zero. The other singular value, s1,
can be calculated from the squared Frobenius norm (sum of squares of elements), which is also the
sum of squared singular values (s? + s3):

(K —L)? LK—LB L(K-La® L

K2 + K? + K? + K2
a*(K — L) +b’L
e :

sT+02=a’+p>++%+6% =

This confirms the singular values stated in the proposition. The singular vectors vy, va, 41, s can
be derived by performing the SVD on this specific 2 x 2 matrix M. O
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K HEAVY-TAILEDNESS OF GRADIENT OF LLMS

In this section, we discuss how our insight about the gradient in the one-layer model generalizes to
the multi-layer model. In the following analysis, we focus on the FFN modules in the model, and
the attention module can be similarly analyzed. The illustration of this multi-layer model of FFN
modules is shown in the following Figure 19.

|fW(Ek)

LM Head
y =sm(ETx)

——

Later Layers
Residual link y =h(Wg(Ey))

Current FFN

Residual link Y = Woue 9(Ep),
g(Ek) = o(WinEy)
Ey T

Previous Layers

Figure 19: The illustration of the multi-layer model of FFN modules.

We abstract the feature extraction role of all the previous layers and the in-projection of the current
FFN as a function as follows.

y= WoutU(VVinx) = Woutg(m)v

where Wy, Win € R4*¢ are weight matrices, z € R? is the output of all the previous layers, and
g : R? — R? abstracts the role of feature learned in 1Wj,. Abstracting all the later layers as a function
h : R* — R?, the function h may also take all previous tokens as inputs, which we omit from the
notation for brevity. The whole model is written as

furtE) = n( BT [Wa(E) + (Wa(E0)] )

where E € R¥K is the parameter of the language model head, K is the alphabet size, and F, is the
hidden state of the last token in the training context that precedes the k-th token in the alphabet, at
the layer where associative memory is present. Without loss of generality, we assume that the next

token is the k-th token in E. Then the loss function on the pretraining data is

LOW) == prloglfw (Ex)]k,
k=1

where pj is the frequency of k-th token. We note that this is a simplification of what happens
in the pretraining, where the frequencies of token associations instead of the single token matter.
However, such simplification does not influence our main message. In the heavy-tailed dataset, e.g.,

37



Under review as a conference paper at ICLR 2026

WikiText103, py. decays as py, = a - k= for k € [K]. Then the gradient of W is

K

ViwL(W) ==Y pxVw loglfw (Ex)lk,
k=1

K
Vw loglfw (Ex)]k = (Id,d + Jh(Wg(Ek))>T [Ekg(Ek)T - Z[fW(Ek)]z : Eig(Ek)T}a
i=1

where I 4 € R%*4 i the identity matrix and .J, is the Jacobian of the function h. Two structural
properties of the gradient are worth highlighting. First, Vy, £(WW) is heavy-tailed, since it is a
weighted sum of per-token gradients with geometrically decaying weights py, = -k~ ! for k € [K].
Second, the gradient decomposes as a sum of outer products £y, g(£},) . Our theoretical analysis in
Section 4 focuses on the simplified setting h = 0 and g(x) = «x. For general h and g, the Jacobian
Jp, acts as a preconditioner on the gradient, and each outer product is formed between the feature in
the language-model head E and the transformed feature g in each layer. Thus, our intuition extends
to this more general multi-layer setting.
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