
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

MUON OUTPERFORMS ADAM IN TAIL-END
ASSOCIATIVE MEMORY LEARNING

Anonymous authors
Paper under double-blind review

ABSTRACT

The Muon optimizer is consistently faster than Adam in training Large Language
Models (LLMs), yet the mechanism underlying its success remains unclear. This
paper demystifies this mechanism through the lens of associative memory. By
ablating the transformer components optimized by Muon, we reveal that the as-
sociative memory parameters of LLMs, namely the Value and Output (VO) atten-
tion weights and Feed-Forward Networks (FFNs), are the primary contributors to
Muon’s superiority. Motivated by this associative memory view, we then explain
Muon’s superiority on real-world corpora, which are intrinsically heavy-tailed: a
few ‘head’ classes are extremely frequent, while a vast number of ‘tail’ classes are
individually rare. The superiority is explained through two key properties: (i) its
update rule consistently yields a more isotropic singular spectrum than Adam; and
as a result, (ii) on heavy-tailed data, it optimizes tail classes more effectively than
Adam. Beyond empirical evidence, we theoretically confirm these findings by an-
alyzing a one-layer associative memory model under class-imbalanced data. We
prove that Muon consistently achieves balanced learning across classes regard-
less of feature embeddings, whereas Adam can induce large disparities in learning
errors depending on embedding properties. In summary, our empirical observa-
tions and theoretical analyses reveal Muon’s core advantage: its update rule aligns
with the outer-product structure of linear associative memories, enabling more
balanced and effective learning of tail classes in heavy-tailed distributions than
Adam.

1 INTRODUCTION

The effectiveness of Adam (Kingma & Ba, 2015) across diverse training scenarios has made it one
of the most widely used optimizers for neural networks, serving as a cornerstone of the tremendous
successes of Large Language Models (LLMs). Building on this foundation, Muon (Jordan et al.,
2024) has emerged as a matrix-parameter optimizer designed to surpass Adam. Empirical studies
show that Muon is nearly 2 times faster than Adam across a wide range of model sizes and
architectures (Liu et al., 2025; Jordan et al., 2024). Its key innovation is to replace the raw gradient
with the sum of its normalized orthogonal factors, which can be interpreted as performing steepest
descent with respect to the spectral norm (Bernstein & Newhouse, 2024).

However, despite its empirical success, a rigorous understanding of why and how Muon outperforms
Adam in transformers remains incomplete. In particular, the steepest gradient descent interpretation
does not clarify why optimization with respect to the spectral norm, as in Muon, should outperform
optimization with respect to the infinity norm (for vectors), as in Adam. Consequently, convergence
analyses of Muon derived from this interpretation fail to account for its observed superiority over
Adam (Li & Hong, 2025; Shen et al., 2025).

This paper takes the first step toward understanding the mechanisms underlying Muon’s superiority
over Adam in training LLMs. Specifically, we ask the following two questions:

1. Which transformer components benefit most from Muon’s matrix-norm–based
optimization compared to Adam?

2. What structural features of the transformer allow Muon to optimize these com-
ponents more effectively?

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

To answer the first question, we apply Muon to different transformer components. Our experiments
consistently show that the more rapid convergence of the validation loss using the Muon optimizer
compared to Adam is primarily due to the former’s focus on the value-output (VO) matrices of
the attention mechanism and the Feed-Forward Networks (FFN) blocks. This leads to our first key
insight: VO and FFN blocks, which serve as the primary associative memory stores in the model
(Geva et al., 2020; Bietti et al., 2023), are the main beneficiaries of Muon’s optimization strategy.

Building on this, we address the second question linking Muon’s update mechanism to the learning
dynamics of associative memory. Prior work suggests that the behavior of these memory compo-
nents can be modeled as a sum of outer products representing stored facts (Meng et al., 2022a).
Since Muon’s update assigns equal update magnitudes to each outer product of the gradient corre-
sponding to orthogonal singular directions, we hypothesize that it optimizes associative memories
more effectively than Adam because: (i) Muon’s spectral normalization procedure balances the rates
of learning of these outer products. (ii) Thus, when training on heavy-tailed data (i.e., where a few
‘head’ classes are extremely frequent, while a vast number of ‘tail’ classes are individually rare),
Muon reduces the dominance of frequent (head) facts and enables more effective learning from
infrequent (tail) facts compared to Adam.

We validate these hypotheses through a combination of empirical analysis and theoretical modeling.
Empirically, we conduct two experiments. First, we measure the singular value spectra of the weight
matrices and show that Muon consistently yields more isotropic representations than Adam, indi-
cating that its normalization prevents spectral energy from concentrating in dominant components.
Second, we evaluate the performance of both optimizers on a knowledge-intensive, heavy-tailed
task to demonstrate the practical benefit of Muon’s more balanced updates: while both optimizers
perform well on head classes (frequent in training data), Muon outperforms Adam on tail classes
(rare in training data), leading to more stable and uniform convergence.

Theoretically, we focus on a one-layer linear associative memory model to rigorously explain
these empirical findings. Under class imbalance in the training data, mimicking a heavy-tailed
distribution, we show that Muon maintains balanced learning across classes, regardless of the
feature embeddings. In contrast, we prove that Adam’s performance is unstable and strongly
dependent on the embedding structure, which can lead to large disparities in learning error across
classes. By closely examining the parameter updates, we find that the singular spectrum of weight
matrices trained by Muon is nearly isotropic, whereas Adam’s is uneven.

Summarizing the empirical and theoretical findings, we identify a clear mechanism underlying
Muon’s superiority: The Muon update rule is aligned with the outer-product structure of linear
associative memories, enabling more balanced and effective learning of tail classes in heavy-
tailed distributions as compared with Adam.

2 PRELIMINARIES

Muon (Jordan et al., 2024) is an optimizer tailored for matrix parameters that replaces the raw (or
momentum) gradient with the sum of its normalized orthogonal factors, producing a scale-invariant,
norm-controlled update direction. For a weight matrix W ∈ Rm×n at step t, let Gt = ∇WL(Wt)
denote its gradient. Muon maintains a momentum accumulator of gradients as Bt = µBt−1 +
Gt with B0 = 0, and µ ∈ [0, 1). At each step, Muon computes the Singular Value Decomposition
(SVD) of Bt as Bt = UtStV

⊤
t with Ut ∈ Rm×rt , Vt ∈ Rn×rt , where rt = rank(Bt), and

form the nearest (semi)–orthogonal matrix Ot = UtV
⊤
t . Then Muon updates the parameter as

Wt+1 = Wt − ηtOt. In practice, one can approximate Ot using a fixed number (e.g., 5) of Newton–
Schulz iterations applied to Bt(B

⊤
t Bt)

−1/2, which avoids the full SVD while preserving the scale
normalization effect. Detailed introduction of Muon is in the related works section (Appendix C).

Transformers serve as the backbone of LLMs, predicting the probability of the next token given a
sequence of N tokens. A sequence of N tokens is embedded into a matrix X(0) ∈ Rd×N . The first
layer takes X(0) as the input, and each subsequent layer takes the previous layer’s output as its input.
Every layer ℓ ∈ [L] processes its input through two sequential components: an attention module and

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

a FFN module. The attention module computes

H(ℓ) = X(ℓ−1) +

H∑
h=1

W
(ℓ)
O,hW

(ℓ)
V,hX

(ℓ−1)sm
(
X(ℓ−1),⊤W

(ℓ),⊤
K,h W

(ℓ)
Q,hX

(ℓ−1)
)
, (2.1)

where sm(·) is the column-wise softmax operator, H is the number of attention heads,
W

(ℓ)
Q,h,W

(ℓ)
K,h ∈ Rdk×d capture token relationships, and W

(ℓ)
V,h ∈ Rdv×d,W

(ℓ)
O,h ∈ Rd×dv apply

linear transformations. The feed-forward module then updates the representation as

X(ℓ) = H(ℓ) + ff(H(ℓ),W
(ℓ)
in ,W

(ℓ)
out) = H(ℓ) +W

(ℓ)
out σ(W

(ℓ)
in H(ℓ)), (2.2)

where σ(·) is the element-wise activation function, and W
(ℓ)
in ∈ Rdf×d,W

(ℓ)
out ∈ Rd×df are learnable

parameters. A gated variant replaces the standard form with

ffgate(H
(ℓ),W

(ℓ)
in ,W

(ℓ)
out ,W

(ℓ)
gate) = W

(ℓ)
out

(
σ(W

(ℓ)
in H(ℓ))⊙ (W

(ℓ)
gateH

(ℓ))
)
,

where ⊙ is the Hadamard product, and W
(ℓ)
gate ∈ Rdf×d is an additional mapping. After L layers, the

final hidden state of the last token, X(L)
−1 , is projected by the language model head Ehead ∈ RK×d to

produce logits EheadX
(L)
−1 , which has a vocabulary of size of K.

Associative memory refers to architectures that store and retrieve patterns based on learned asso-
ciations between inputs and outputs. Recent research has examined linear associative memory in
LLMs. Specifically, consider a triplet (s, r, o), where s is the subject, r the relation, and o the object
(e.g., s =“The United Nations headquarters”, r =“is located in”, o =“New York City”). A linear
associative memory W maps a key vector es encoding (s, r) to a value vector eo encoding o, such
that eo = Wes holds for all possible (s, r, o). Under the orthogonality of embeddings es and eo,
W can be expressed as W =

∑
i eoie

⊤
si , where the summation is taken over the indexes of facts.

These facts naturally emerge in the token association in the pretraining data, e.g., the coappearance
of “SpaceX” and “Elon Musk”, and are learned by LLMs in the form of associative memories.
Prior work has investigated associative memory in both attention and FFN modules. In the attention
module, Bietti et al. (2023) showed that the parameter WO can serve as a linear associative mem-
ory when WV is fixed. Since WO and WV play symmetric roles, we also treat WV as part of the
associative memory parameters. It is therefore natural to consider VO jointly: several works (Lin
et al., 2024; Wang et al., 2025) have shown that the value and output matrices play similar roles
and can be analyzed together in practice, even in multi-query attention (MQA) and grouped-query
attention (GQA) settings. In FFN, works on knowledge editing (Geva et al., 2020; Dai et al., 2021;
Meng et al., 2022a;b) have identified the module as functioning as an associative memory, which
can be well approximated by linear associative memory models. In fact, they demonstrate that we
can manually update the knowledge in Large Language Models (LLM)s using least squares on the
FFN parameters (Meng et al., 2022a;b; Fang et al., 2024). Thus, throughout this paper, we refer to
WO, WV , and FFN in LLMs as the associative memory parameters.

3 MAIN RESULTS

3.1 ASSOCIATIVE MEMORIES ARE MAIN BENEFICIARIES OF MUON

In this section, we identify the transformer components that benefit most from Muon by measuring
validation loss on the FineWeb dataset using a 160M NanoGPT model. We adopt a two–stage
protocol. First, in the “Independent Blocks” setting, we apply Muon to a single block at a time
while keeping all other blocks on Adam, covering the attention projections WQ,WK ,WV ,WO

and the feed-forward matrices Win,Wout. Second, in the “Combined Configurations” setting, we
apply Muon to the most impactful subsets identified in the first stage to examine whether a partial
application can recover the performance gains of full Muon. As introduced in Section 2, we evaluate
both gated and non-gated FFN variants of NanoGPT. The experimental details are in Appendix F.

Figure 1 presents our results. We first examine the independent-block experiments for attention.
From Figures 1(a) and 1(c), the VO weights WV ,WO (Muon on VO / Adam on QK and FFN) show
substantially larger gains under Muon than the QK weights WQ,WK (Muon on QK/Adam on VO
and FFN). Notably, applying Muon to only WV or only WO already yields much larger gains than

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Training Steps

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Va
lid

at
io

n
Lo

ss

Muon(All Attn, FFN)
All Adam
Muon(QK Attn)&Adam(VO Attn, FFN)
Muon(VO Attn)&Adam(QK Attn, FFN)
Muon(V Attn)&Adam(QKO Attn, FFN)
Muon(O Attn)&Adam(QKV Attn, FFN)
Muon(Win)&Adam(All Attn, Wout)
Muon(Wout)&Adam(All Attn, Win)

8000 10000
3.57

4.01

(a) Independent blocks: Val loss over training

0 2000 4000 6000 8000 10000
Training Steps

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Va
lid

at
io

n
Lo

ss

Muon(All Attn, FFN)
All Adam
Muon(VO Attn, FFN)&Adam(QK Attn)
Muon(VO Attn, Win)&Adam(QK Attn, Wout)
Muon(VO Attn, Wout)&Adam(QK Attn, Win)
Muon(V Attn, FFN)&Adam(QKO Attn)
Muon(O Attn, FFN)&Adam(QKV Attn)

8000 10000
3.57

4.01

(b) Combined configurations: Val loss over training

Muo
n

Ada
m

Muo
n(Q

K Attn
)

Muo
n(V

O Attn
)

Muo
n(V

 Attn
)

Muo
n(O

 Attn
)

Muo
n(W

in
)

Muo
n(W

ou
t)

3.2

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

3.565

3.924
3.893

3.764
3.830

3.771
3.717 3.702

(c) Independent blocks: Val loss at step 10,000

Muo
n

Ada
m

Muo
n(V

O Attn
, F

FN)

Muo
n(V

O A
ttn

, W
in
)

Muo
n(V

O A
ttn

, W
ou

t)

Muo
n(V

 Attn
, F

FN)

Muo
n(O

 Attn
, F

FN)
3.2

3.4

3.6

3.8

4.0

4.2

Va
lid

at
io

n
Lo

ss

3.565

3.924

3.586

3.678
3.605

3.670
3.604

(d) Combined configurations: Val loss at step 10,000

Figure 1: Validation loss comparison on the 160M NanoGPT model with non-gated FFN under
different Muon/Adam assignments. Panels (a) and (b) show the validation loss over training steps
for the Independent Blocks and Combined Configurations settings, respectively. Panels (c) and
(d) report the corresponding validation loss at step 10,000 for each mode, summarizing the final
performance of the Independent Blocks and Combined Configurations.

applying it to QK. For the FFN, we find that Win, Wgate, and Wout all benefit from Muon, with Wout
yielding stronger improvements than Win. As we show in Appendix G.2, these trends persist even
after controlling for parameter count.

After identifying the importance of each module, the combined configurations aim to quantify their
contributions to the full Muon. Guided by the independent-block findings, we first observe that
VO+FFN already closely tracks—and in our runs nearly recovers—the full-Muon trajectory in Fig-
ure 1(b). This indicates that applying Muon to QK contributes little to its overall performance.
Importantly, this effect is not due to the logit explosion reported by Team et al. (2025) in large
Mixture of Experts (MoE) models; logit values for our setting do not explode, as reported in Ap-
pendix G.1. The small remaining gap between full Muon and VO+FFN may stem from the fact that
VO+FFN adopts the same learning rate as full Muon without further tuning.

To isolate the contributions of WO and WV within VO+FFN, we perform ablations starting from the
VO+FFN setting: we keep Muon on FFN and on only one of WO or WV , reverting the other to Adam
(i.e., V+FFN and O+FFN). Both ablations degrade performance, with the V+FFN variant dropping
more, indicating that WO is more influential than WV . Overall, applying Muon to VO+FFN is
critical for recovering full-Muon performance. The same qualitative patterns hold for the gated FFN
variant reported in Appendix G.3, and are further confirmed on a larger 0.7B model in Appendix G.4,
demonstrating the robustness of our findings.

Observation 1: Muon is most effective when applied to VO and FFN; in particular, applying Muon
to only VO+FFN almost recovers the full-Muon trajectory.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Remark 3.1. We emphasize that this observation is not a trivial consequence of parameter counting;
although QK and VO are equal in size, VO proves substantially more influential.

As introduced in Section 2, prior works discover that the common role of VO and FFN is that
they both serve as the associative memories for transformers, which store facts and knowledge.
Furthermore, Bietti et al. (2023) and Meng et al. (2022a) show that the linear associative memories
well approximate them. Specifically, for a set of facts represented by key-value pairs {(esi , eoi)},
the memory matrix W can be constructed as a sum of outer products, i.e., W =

∑K
i=1 eoie

⊤
si , where

the summation is taken over the index i of K facts. To make this more concrete, consider a toy
example with two orthogonal facts in R2:

• Fact 1: (“the capital of France”) es1 = [1, 0]⊤, (“Paris”) eo1 = [1, 0]⊤.

• Fact 2: (“the capital of Italy”) es2 = [0, 1]⊤, (“Rome”) eo2 = [0, 1]⊤.

The resulting memory matrix is W = eo1e
⊤
s1 +eo2e

⊤
s2 = I2,2 which correctly stores these facts since

Wesi = eoi for i = 1, 2.

Learning linear associative memories is particularly well-suited to Muon’s update mechanism. Con-
cretely, the gradient G ∈ Rd×d of the loss with respect to the linear associative memory weight
W can be expressed as a sum of outer products via SVD as G = USV ⊤ =

∑d
i=1 siuiv

⊤
i . Muon

computes its update (without momentum) by normalizing away the singular values, forming the
orthogonal factor O = UV ⊤ =

∑d
i=1 uiv

⊤
i . Following the toy example, consider training the

memory parameter W with ℓ2 loss, i.e., c1∥eo1 − Wes1∥2 + c2∥eo2 − Wes2∥2, where c1, c2 > 0
represent the importance or frequency of each fact in the current training batch. The corresponding
gradient is G = c1 · eo1e⊤s1 + c2 · eo2e⊤s2 = diag(c1, c2). Consequently, Muon’s normalized update
factor becomes O = UV ⊤ = I2,2 = eo1e

⊤
s1 + eo2e

⊤
s2 , which is simply the sum of the constituent

facts’ outer products. Crucially, the update O assigns equal weight to both Fact 1 and Fact 2, regard-
less of their original coefficients c1 and c2 in the gradient. This illustrates how Muon normalizes the
updates across orthogonal facts, allowing it to learn both frequent (large c1) and infrequent (small
c2) facts uniformly. Comparing this with the linear associative memory

∑K
i=1 eoie

⊤
si , we see that

Muon updates all “orthogonal” facts at the same rate. Later, we will see that the singular values S
of the gradient G encode the frequencies of knowledge in the training data under cross-entropy loss
in Sections 3.3 and 4. By normalizing away S to form its update, Muon can therefore learn both
frequent and infrequent facts more uniformly than gradient-magnitude-based optimizers like Adam.

We verify this insight from two perspectives. First, from the view of weight spectra, the weight ma-
trices learned with Muon exhibit a more isotropic singular-value spectrum than those learned with
Adam, indicating that knowledge, regardless of its frequency, is represented with comparable mag-
nitude. Second, at the level of overall knowledge acquisition, Muon yields more balanced learning
across entities and frequencies (head and tail) than Adam. We examine these two consequences in
the following sections.

3.2 MUON CONSISTENTLY LEARNS MORE ISOTROPIC WEIGHTS THAN ADAM

To validate that Muon can shape the weight matrices more evenly across directions, we conducted a
spectral analysis of them. For a weight matrix with n non-zero singular values σ = (σ1, σ2, . . . , σn),
we define the normalized singular energy distribution q = (q1, q2, . . . , qn), where each compo-
nent qi is qi = σ2

i /
∑n

j=1 σ
2
j . This distribution represents the fraction of energy captured by

each corresponding singular vector. Based on this, we introduce several metrics to characterize the
isotropy of the spectrum: normalized SVD entropy defined as Hnorm(σ) = − 1

logn

∑n
i=1 qi log qi,

effective rank defined as eRank(σ) = exp (−
∑n

i=1 qi log qi), Top-k energy fraction defined as
TopEk(σ) =

∑k
i=1 σ

2
i /

∑n
j=1 σ

2
j , and eigenvalue quantile ratio defined as {σ2

i }ni=1:Q75/25(σ) =

Q3({σ2
i })/Q1({σ2

i }). Detailed explanations of these metrics are in Appendix F.2. Intuitively, more
isotropic weights correspond to larger values of normalized SVD entropy and effective rank, and
smaller Top-k energy fraction and eigenvalue quantile ratio.

The spectral analysis in Figure 2, focusing on the key associative memory components from Ob-
servation 1, shows that Muon systematically reshapes the learned weight matrices relative to Adam.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Training Steps

0.2

0.4

0.6

0.8

SV
D

 e
nt

ro
py

 (
)

SVD entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
p1

0E
 (

)

Top10E ()

0 2000 4000 6000 8000 10000
Training Steps

0

100

200

300

400

eR
an

k
(

)

eRank ()

0 2000 4000 6000 8000 10000
Training Steps

101

102

103

Q
75

/Q
25

 R
at

io
 (

)

Q75/Q25 Ratio ()

(a) VO(Non-gated FFN)

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

SV
D

 e
nt

ro
py

 (
)

SVD entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
p1

0E
 (

)

Top10E ()

0 2000 4000 6000 8000 10000
Training Steps

0

200

400

600

eR
an

k
(

)

eRank ()

0 2000 4000 6000 8000 10000
Training Steps

101

102

103

Q
75

/Q
25

 R
at

io
 (

)

Q75/Q25 Ratio ()

(b) Wout(Non-gated FFN)

Figure 2: Spectral Dynamics of Transformer Weight Matrices During Training. Each panel reports
four metrics characterizing singular value distributions: SVD entropy, Top10E, eRank, and Q75/Q25
ratio. The four subplots correspond to different weight matrix groups: (a) VO and (b) Wout.

The results, averaged over 10 random seeds, demonstrate that: (i) Muon produces a much more
isotropic singular spectrum than Adam from the start of training, whereas Adam’s isotropy fluctu-
ates significantly over the course of optimization. (ii) The isotropy of Muon is stable across random
initializations, as indicated by the negligible error bars in Figure 2, while Adam is more sensitive
to initialization. These findings suggest that Muon consistently promotes richer and more diverse
features in the model’s most critical memory components, a conclusion we summarize below. The
results for the gated FFN architecture and other weights are in Appendix G.3 and G.5, respectively.

Observation 2: Muon consistently yields more isotropic weight matrices with broadly distributed
spectral energy than Adam, both throughout training and across random initializations, thereby sup-
porting richer feature representations.

Empirically, we also find that Muon learns more isotropic QK weights than Adam. However, as
discussed in Section 3.1, QK weights are not part of the linear associative memory mechanism and
are therefore not expected to benefit from the isotropic property of the weight matrices.

Our results differ fundamentally from the spectral analysis in Liu et al. (2025) for three reasons.
First, we decompose the parameters according to associative memories, whereas Liu et al. (2025)
aggregates them, obscuring the essential components driving Muon’s behavior. Second, we
investigate the instability of Adam under random initialization (i.e., random seeds), which we
further establish theoretically in Section 4. Finally, our analysis focuses on dense architectures,
while Liu et al. (2025) centers on Mixture-of-Experts (MoE) models.

3.3 MUON ACQUIRES KNOWLEDGE MORE EVENLY COMPARED TO ADAM

Our previous findings indicate that the Muon optimizer is particularly important for the associative
memory components of the model, where it learns more isotropic weights. To examine the overall
effects of learning associative memories, we turn to a knowledge-intensive question-answering (QA)
task. The task is based on a synthetic QA dataset containing biographical information (e.g., name,
birthday, and company) for over 200,000 individuals (Allen-Zhu & Li, 2024). To capture the heavy-
tailed nature of real-world knowledge, we control the frequency of each individual’s appearance in
the training set so that it follows a power-law distribution (Figure 3(a)), thereby inducing varying
levels of difficulty in learning knowledge about different individuals. A 160M NanoGPT model is
trained to answer questions about this biographical information. The performance is evaluated via
the First Token Accuracy (FTA) on the answers, following Allen-Zhu & Li (2024). Further details
on the dataset are provided in Appendix F.3. We include SGD as a baseline for Adam and Muon.

The results in Figure 3 lead to an unequivocal conclusion about the efficacy of different optimizers
under data imbalance. In high-frequency (head) classes, all optimizers perform well, with Muon,

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

100 101 102 103 104

Class index (sorted)

101

102

103

104

105

Q

A
 S

am
pl

es

Class Groups
Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7

Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

(a) Sample/class

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(b) Muon

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(c) Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(d) SGD+Momentum

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(e) Muon(VO,FFN)/Adam(QK)

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(f) Muon(QK)/Adam(VO,FFN)

Figure 3: Performance comparison of different optimizers for transformers with non-gated FFN
on a heavy-tailed knowledge task. (a) Sample distribution per class, following a power law. (b–d)
Performance of Muon, Adam, and SGD+Momentum. (e) Muon applied to VO and FFN, with Adam
on QK. (f) Muon applied to QK, with Adam on VO and FFN.

Adam, and even SGD+Momentum rapidly reaching near-perfect accuracy (Figure 3(b–d)). Consis-
tent with prior work on heavy-tailed distributions (Kunstner et al., 2024), Adam maintains a clear
advantage over SGD, which struggles with tail classes. Our key finding, however, is that Muon sub-
stantially outperforms Adam on low-frequency (tail) data, achieving faster and more uniform con-
vergence across all frequencies. Moreover, the consistently tighter error bars for Muon—especially
relative to Adam—reflect lower variance and a more stable learning process.

Furthermore, the hybrid configurations in Figure 3(e–f) clarify where Muon matters most. Applying
Muon to VO+FFN (with QK on Adam) yields strong gains on rare classes and markedly reduces the
head–tail gap, whereas applying Muon only to QK (with VO+FFN on Adam) yields only limited
improvement. This mirrors Observation 1: VO+FFN is the most effective target set, as it concen-
trates the model’s associative memory. Results for the gated FFN, which show the same pattern, are
provided in Appendix G.7. Additional experiments in Appendix G.8 vary the degree of fact imbal-
ance, and show that the average FTA gap between Muon and Adam shrinks as the data distribution
becomes more uniform. Together with the Wikitext103 results in Appendix G.9, which exhibit the
same qualitative behavior on a standard language modeling benchmark, these findings further sup-
port the view that Muon’s advantage is tightly linked to heavy-tailed imbalance. We summarize
these findings as Observation 3.

Observation 3: In heavy-tailed, knowledge-intensive tasks, Muon matches Adam’s strong perfor-
mance in the head classes while substantially improving learning on tail classes, narrowing the
head-tail gap and accelerating convergence.

In addition to the knowledge acquisition task, whose success primarily depends on learning the
associative-memory parameters (VO and FFN), we also evaluate an in-context linear regression task
in Appendix G.10, which primarily depends on learning the QK parameters. In contrast to the above
observation, Muon achieves performance on the tail class similar to that of Adam in this task. This
is consistent with Observation 1, which indicates that the QK parameters are not the main source of
Muon’s superiority.

4 CASE STUDY OF ONE-LAYER MODELS

We now analyze three optimizers—Adam, Muon, and Gradient Descent (GD) (as a baseline)—to
complement the preceding empirical observations. We first introduce an abstraction that captures

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

5 10 15 20 25
Layer Index

0

15

30

45

60

75

90

Av
g.

 A
ng

le
s

B
et

w
ee

n
E

m
be

dd
in

gs
 (D

eg
re

es
)

Ei

Ei

(a) Average Angles Between Ei/Ẽi

10 1100101

Population Loss

0

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

(W
)

GD, De/Coupled
SignGD, Coupled
SignGD, Decoupled
Muon, Decoupled
Muon, Coupled

5 × 10 210 110 4

10 3

(b) One-step Optimization Results

10 1100

Population Loss

0

1e-6

1e-5

1e-4

1e-3

1e-2

1e-1

1e+0

(W
)

GD, De/Coupled
SignGD, Coupled
SignGD, Decoupled
Muon, Decoupled
Muon, Coupled

5 × 10 210 110 4

10 3

(c) Multi-step Optimization Results

Figure 4: (a) Average angles between Ei or Ẽi in FFN at layers 5, 10, 15, 20, 25 of Llama3-
8b-instruct. (b) Results of one-step GD, SignGD, and Muon with both coupled and decoupled
embeddings. For GD, the outcomes under the two embedding types coincide. We use different step
sizes to obtain different levels of population loss and ∆(W).(c) Results of multi-step GD, SignGD,
and Muon with both coupled and decoupled embeddings. We use different numbers of optimization
steps to obtain different levels of population loss and ∆(W).

their key dynamics and then present both empirical and theoretical results. As shown in Eqns. (2.1)
and (2.2), a structural property of associative memory parameters is that their output is added
directly to the hidden states, which are subsequently processed by the language model head.
Motivated by this property, our abstraction retains the associative memory and language model
head, while replacing all preceding modules with given feature embeddings.

Consider K triplets {(si, ri, oi)}Ki=1 (introduced in Section 2), where subject-relation pairs (si, ri)
and objects oi are embedded into the columns of matrices E∈Rds×K and Ẽ∈Rdo×K , respectively.
A linear associative memory W ∈ Rdo×ds predicts the object for a query Ek with probabilities
fW (Ek) = sm(Ẽ⊤WEk) ∈ RK . The objective is to minimize the population cross-entropy loss
L(W)=−

∑K
k=1 pk log[fW (Ek)]k, where pk is the frequency or probability of the k-th triplet. We

analyze three optimizers initialized at W0 = 0, all simplified by disabling momentum for clarity. (i)
GD: Wt+1 = Wt−η∇WL(Wt). (ii) Adam: Following prior work (Kunstner et al., 2024; Bernstein
& Newhouse, 2024), we set β1 = β2 = 0, reducing it to SignGD: Wt+1 = Wt−η sign(∇WL(Wt)).
(iii) Muon: The update is Wt+1 = Wt − ηUtV

⊤
t , where UtΣtV

⊤
t is the SVD of ∇WL(Wt). This

simplified form, UtV
⊤
t , is the projection of the gradient onto the nearest orthogonal matrix. We then

state the assumptions for our results.

Assumption 4.1. The embeddings E and Ẽ are orthonormal, i.e., E⊤E = Ẽ⊤Ẽ = IK,K .

The unit-norm requirement rules out feature-level imbalance, which would otherwise couple with
the imbalance induced by pk and complicate the analysis. Our techniques can be directly applied
even without this unit-norm requirement. The orthogonality assumption is intuitively plausible, as
different concepts are independent and do not influence one another. We empirically verify this on
Llama3-8b-instruct (Dubey et al., 2024). Following Fang et al. (2024), we extract Ei and Ẽi in FFN
across layers for 3, 000 knowledge items of Counterfact (Meng et al., 2022a) and compute average
angles between them (see Appendix F.4 for details). As shown in Figure 4(a), these angles are near
90◦, confirming approximate orthogonality. For K independent concepts, orthogonality requires
dr, ds ≥ K. For simplicity, we set dr = ds = K in what follows.

Assumption 4.2. The first L triplets share the same probability and together contribute a total mass
of α, i.e., pk = α/L for k ∈ [L]. The remaining triplets also share the same probability and together
contribute a total mass of 1− α, i.e., pk = (1− α)/(K − L) for k > L.

This assumption states that the data imbalance is between two classes among the K triplets. Defining
β = L/K, the ratio α/β quantifies the degree of balance: if α > β, the first L triplets appear more
frequently during learning, and vice versa. This simplified two-class setting is sufficient to capture
the primary differences between optimizers; the multi-class case follows directly from our proof by
extending the SVD calculation.
Throughout Section 4 we will also refer to the imbalance ratio, defined as the ratio between the
minimal and maximal frequencies of triplets, i.e., r :=

mink∈[K] pk

maxk∈[K] pk
∈ (0, 1]. Under Assumption 4.2

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

with parameters α and β = L/K, this reduces to r(α, β) = min
{

α(1−β)
β(1−α) ,

β(1−α)
α(1−β)

}
. We keep the

two-mass (α, β) parametrization because it allows us to write the gradient and its SVD in closed
form while capturing the same dependence on class imbalance as using r directly; the multiclass
case follows from the same SVD calculation.

4.1 EXPERIMENTAL RESULTS

Under Assumptions 4.1 and 4.2, we evaluate GD, SignGD, and Muon for α = 0.8, β = 0.2,
considering two embeddings for E and Ẽ: (i) support-decoupled: the supports (indices of non-
zero entries) of different Ei or Ẽi are disjoint; (ii) support-coupled: supports may overlap. We
study two optimization protocols, initializing W0 = 0do×ds : (i) one-step: take a single update
with a scaled step size to obtain a range of L(W) values; (ii) multi-step: run multiple updates to
reduce L(W), varying the number of steps. Experimental details are in Appendix F.5. To quantify
learning imbalance across K knowledge items, we examine the relationship between population loss
L(W) and maximal probability gap ∆(W) := maxi,j∈[K][fW (Ei)]i−[fW (Ej)]j , where [fW (Ei)]i
denotes the probability assigned to the correct item i. A larger ∆(W) indicates greater imbalance.

Across both optimization-step protocols and embeddings (Figures 4(b), 4(c)), we observe that (i) For
all optimizers, ∆(W) first increases and then decreases as L(W) decreases. Early in training, when
correct probabilities are near 0, imbalance is pronounced; later, when all items are well learned (e.g.,
probabilities ≥ 0.9), imbalance diminishes. (ii) For both embedding regimes, GD and Muon behave
consistently: GD exhibits a substantial imbalance, whereas Muon remains much more balanced
across items. (iii) SignGD also demonstrates unstable behavior; its imbalance resembles GD in the
coupled embedding case and Muon in the decoupled embedding case.

Because one-step and multi-step experiments align qualitatively, we first analyze the one-step set-
ting for clarity. This simplification is common in theoretical studies of neural network dynamics (Ba
et al., 2022; Dandi et al., 2023), and our techniques extend directly—albeit with more algebra—to
the multi-step case. As a demonstration, Theorem 4.4 provides a multi-step analysis of Muon.

4.2 THEORETICAL RESULTS

For each optimizer, we choose a step size η so that some class already attains correct-class proba-
bility at least 1− ϵ after one update, and then we report the smallest correct-class probability across
classes at the same η. Equation 4.1 formalizes this procedure.

ϱϵopt = inf
η≥0

{
min
k∈[K]

[fWη (Ek)]k

∣∣∣ max
k∈[K]

[fWη (Ek)]k ≥ 1− ϵ, Wη = W0 − η ·Gopt(W0)
}
. (4.1)

where opt ∈ {GD, SignGD,Muon} and Gopt(W0) denotes the parameter update of optimizer opt at
W0; and Wη denotes the parameter obtained after one step of optimizer opt with step size η starting
from W0, i.e., Wη = W0 − η · Gopt(W0). Specifically, GGD(W0) = ∇WL(W0), GSignGD(W0) =

sign(∇WL(W0)), and GMuon(W0) = U0norm(Σ0)V
⊤
0 where U0Σ0V

⊤
0 is the SVD of ∇WL(W0).

Note that ϱϵopt ∈ [0, 1− ε] and ∆(W) are related as ∆(W) = 1− ϵ− ϱϵopt ≥ 0. When ϱϵopt ≈ 1− ϵ,
opt achieves balanced learning across facts; in contrast, when ϱϵopt ≈ 0, imbalanced learning ensues.

Theorem 4.3. Let r := mink∈[K] pk / maxk∈[K] pk (under Assumption 4.2, r = r(α, β)). If
Assumptions 4.1 and 4.2 hold, with fixed α, β such that α ̸= β, and K goes to infinity, we obtain
the following results for one-step GD, Muon, and Adam.

• GD: For any Ẽ and E satistifying Assumption 4.1, we have

ϱϵGD = O(ϵ−r(α,β)Kr(α,β)−1), where r(α, β)=
mink pk
maxk pk

= min

{
α(1− β)

β(1− α)
,
β(1− α)

α(1− β)

}
< 1.

• Muon: For any Ẽ and E satistifying Assumption 4.1, we have

ϱϵMuon ≥ 1− ϵ

(
1 +O

(
logK

K

))
, and GMuon(W0) = −ẼE⊤ +O

(
1

K
ẼJK,KE⊤

)
,

where JK,K ∈ RK×K is the matrix with all elements equal to 1. The big-O notation for matrices
means that for A = O(B), each entry satisfies Aij = O(Bij) for all i, j.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

• Adam: There exist Ẽ and E satisfying Assumption 4.1 such that ϱϵSignGD ≥ 1− ϵ. There also exist
Ẽ′ and E′ satisfying Assumption 4.1 such that

ϱϵSignGD = O(ϵ−0.7K−0.3), and
σmin

(
GSignGD(W0)

)
σmax

(
GSignGD(W0)

) ≤ 25%,

where σmax and σmin are the largest and smallest singular values, respectively.

Interpretation of Theorem 4.3. These theoretical results align with Observations 2 and 3, and
Figures 4(b) and 4(c): Muon maintains balanced learning with near-isotropic updates, GD is highly
sensitive to data imbalance, and Adam varies widely across embeddings. At the one-step update,
when the maximum correct-class probability across items is at least 1−ϵ, the item with the minimum
correct-class probability satisfies: (i) Muon: ≥ 1 − ϵ

(
1 + O(logK

K)
)
, which indicates learning is

essentially balanced across items with a near-isotropic update (singular values nearly equal); (ii)
GD: O

(
ϵ−r(α,β)Kr(α,β)−1

)
, which is strongly controlled by data imbalance via r(α, β) (balanced

when r = 1, severe imbalance when r ≪ 1); (iii) Adam: embedding dependent; it can match Muon
with disjoint supports (e.g., Ẽ = E = IK,K), achieving 1− ϵ, but can drop to O(ϵ−0.7K−0.3) with
overlap; its update may exhibit pronounced spectral decay (σmin/σmax ≤ 25%), unlike the near-
uniform singular values of Muon. A detailed discussion of Theorem 4.3 is provided in Appendix E.

In the following, we extend our techniques of one-step analysis to the multi-step analysis of Muon.
Parallel to Eqn. (4.1), we define the infimum correct-class probability for the multi-step optimizer
as ϱϵopt = inft{mink∈[K][fWt

(Ek)]k | maxk∈[K][fWt
(Ek)]k ≥ 1 − ϵ, where Wt = Wt−1 − ηt ·

Gopt(Wt−1)}. Here, we assume that the learning rates {ηt}t≥1 are determined by a fixed schedule
prior to optimization. Although the quantity implicitly depends on this schedule, we omit it from
the notation for ϱϵopt for brevity. We emphasize that different schedules may affect the value of t that
attains the infimum in ϱϵopt, but they do not influence the balance behavior that we present.
Theorem 4.4. If Assumptions 4.1 and 4.2 hold, then multi-step Muon achieves

ϱϵMuon ≥ 1− ϵ

(
1 +O

(
logK

K

))
, and GMuon(Wt) = −ẼE⊤ +O

(
1

K
ẼJK,KE⊤

)
for any t ≥ 0.

The proof is provided in Appendix I. We note that the multi-step analysis of Muon shares similar
characteristics as the one-step version in Theorem 4.3.

5 CONCLUSION

Our work takes the first step toward unveiling why and how Muon outperforms Adam. Through
ablations of Muon’s effect on different Transformer components and by relating these results to the
balanced learning of associative memories, we conclude that the Muon update rule is aligned with
the outer-product structure of linear associative memories, enabling more balanced and effective
learning of tail classes in heavy-tailed distributions. Intuitively, this property of Muon may extend
beyond outer products to higher-order tensor products, an exciting direction for future work.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

REFERENCES

Ruslan Abdulkadirov, Pavel Lyakhov, and Nikolay Nagornov. Survey of optimization algorithms in
modern neural networks. Mathematics, 11(11):2466, 2023.

Zeyuan Allen-Zhu and Yuanzhi Li. Physics of language models: Part 3.3, knowledge capacity
scaling laws. arXiv preprint arXiv:2404.05405, 2024.

Orly Alter, Patrick O Brown, and David Botstein. Singular value decomposition for genome-wide
expression data processing and modeling. Proceedings of the National Academy of Sciences, 97
(18):10101–10106, 2000.

Kang An, Yuxing Liu, Rui Pan, Yi Ren, Shiqian Ma, Donald Goldfarb, and Tong Zhang. Asgo:
Adaptive structured gradient optimization. arXiv preprint arXiv:2503.20762, 2025.

Anonymous. Convergence of muon with newton-schulz, 2025. URL https://openreview.
net/forum?id=IJSfxtLpLm. Under review for ICLR 2026.

Jimmy Ba, Murat A Erdogdu, Taiji Suzuki, Zhichao Wang, Denny Wu, and Greg Yang. High-
dimensional asymptotics of feature learning: How one gradient step improves the representation.
Advances in Neural Information Processing Systems, 35:37932–37946, 2022.

Jeremy Bernstein and Laker Newhouse. Old optimizer, new norm: An anthology. arXiv preprint
arXiv:2409.20325, 2024.

Alberto Bietti, Vivien Cabannes, Diane Bouchacourt, Herve Jegou, and Leon Bottou. Birth of a
transformer: A memory viewpoint. Advances in Neural Information Processing Systems, 36:
1560–1588, 2023.

Xiangyi Chen, Sijia Liu, Ruoyu Sun, and Mingyi Hong. On the convergence of a class of adam-type
algorithms for non-convex optimization. In International Conference on Learning Representa-
tions, 2019. URL https://openreview.net/forum?id=H1x-x309tm.

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, Baobao Chang, and Furu Wei. Knowledge neurons in
pretrained transformers. arXiv preprint arXiv:2104.08696, 2021.

Yatin Dandi, Florent Krzakala, Bruno Loureiro, Luca Pesce, and Ludovic Stephan. How two-layer
neural networks learn, one (giant) step at a time. arXiv preprint arXiv:2305.18270, 2023.

Alexandre Défossez, Léon Bottou, Francis Bach, and Nicolas Usunier. A simple convergence proof
of adam and adagrad. arXiv preprint arXiv:2003.02395, 2020.

Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
arXiv e-prints, pp. arXiv–2407, 2024.

Junfeng Fang, Houcheng Jiang, Kun Wang, Yunshan Ma, Shi Jie, Xiang Wang, Xiangnan He, and
Tat-Seng Chua. Alphaedit: Null-space constrained knowledge editing for language models. arXiv
preprint arXiv:2410.02355, 2024.

Shivam Garg, Dimitris Tsipras, Percy S Liang, and Gregory Valiant. What can transformers learn
in-context? a case study of simple function classes. Advances in neural information processing
systems, 35:30583–30598, 2022.

Mor Geva, Roei Schuster, Jonathan Berant, and Omer Levy. Transformer feed-forward layers are
key-value memories. arXiv preprint arXiv:2012.14913, 2020.

Ekaterina Grishina, Matvey Smirnov, and Maxim Rakhuba. Accelerating newton-schulz iteration
for orthogonalization via chebyshev-type polynomials. arXiv preprint arXiv:2506.10935, 2025.

John J Hopfield. Neural networks and physical systems with emergent collective computational
abilities. Proceedings of the national academy of sciences, 79(8):2554–2558, 1982.

11

https://openreview.net/forum?id=IJSfxtLpLm
https://openreview.net/forum?id=IJSfxtLpLm
https://openreview.net/forum?id=H1x-x309tm

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Keller Jordan, Yuchen Jin, Vlado Boza, You Jiacheng, Franz Cecista, Laker Newhouse, and
Jeremy Bernstein. Muon: An optimizer for hidden layers in neural networks, 2024. URL
https://kellerjordan. github. io/posts/muon, 6, 2024.

Aishwarya Kamath, Johan Ferret, Shreya Pathak, Nino Vieillard, Ramona Merhej, Sarah Perrin,
Tatiana Matejovicova, Alexandre Ramé, Morgane Rivière, et al. Gemma 3 technical report. arXiv
preprint arXiv:2503.19786, 2025.

Diederik P Kingma and Jimmy Lei Ba. Adam: A method for stochastic gradient descent. In ICLR:
international conference on learning representations, pp. 1–15, 2015.

Teuvo Kohonen. Correlation matrix memories. IEEE transactions on computers, 100(4):353–359,
2009.

Dmitry Kovalev. Understanding gradient orthogonalization for deep learning via non-euclidean
trust-region optimization. arXiv preprint arXiv:2503.12645, 2025.

Frederik Kunstner, Alan Milligan, Robin Yadav, Mark Schmidt, and Alberto Bietti. Heavy-tailed
class imbalance and why adam outperforms gradient descent on language models. Advances in
Neural Information Processing Systems, 37:30106–30148, 2024.

Tim Tsz-Kit Lau, Qi Long, and Weijie Su. Polargrad: A class of matrix-gradient optimizers from a
unifying preconditioning perspective. arXiv preprint arXiv:2505.21799, 2025.

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke Zettlemoyer. Zero-shot relation extraction via
reading comprehension. arXiv preprint arXiv:1706.04115, 2017.

Haochuan Li, Alexander Rakhlin, and Ali Jadbabaie. Convergence of adam under relaxed assump-
tions. Advances in Neural Information Processing Systems, 36:52166–52196, 2023.

Jiaxiang Li and Mingyi Hong. A note on the convergence of muon and further. arXiv e-prints, pp.
arXiv–2502, 2025.

Chi-Heng Lin, Shangqian Gao, James Seale Smith, Abhishek Patel, Shikhar Tuli, Yilin Shen,
Hongxia Jin, and Yen-Chang Hsu. Modegpt: Modular decomposition for large language model
compression. arXiv preprint arXiv:2408.09632, 2024.

Jingyuan Liu, Jianlin Su, Xingcheng Yao, Zhejun Jiang, Guokun Lai, Yulun Du, Yidao Qin,
Weixin Xu, Enzhe Lu, Junjie Yan, et al. Muon is scalable for llm training. arXiv preprint
arXiv:2502.16982, 2025.

Kevin Meng, David Bau, Alex Andonian, and Yonatan Belinkov. Locating and editing factual
associations in gpt. Advances in neural information processing systems, 35:17359–17372, 2022a.

Kevin Meng, Arnab Sen Sharma, Alex Andonian, Yonatan Belinkov, and David Bau. Mass-editing
memory in a transformer. arXiv preprint arXiv:2210.07229, 2022b.

Eshaan Nichani, Jason D Lee, and Alberto Bietti. Understanding factual recall in transformers via
associative memories. arXiv preprint arXiv:2412.06538, 2024.

Antonio Orvieto, Samuel L Smith, Albert Gu, Anushan Fernando, Caglar Gulcehre, Razvan Pas-
canu, and Soham De. Resurrecting recurrent neural networks for long sequences. In International
Conference on Machine Learning, pp. 26670–26698. PMLR, 2023.

Yan Pan and Yuanzhi Li. Toward understanding why adam converges faster than sgd for transform-
ers. arXiv preprint arXiv:2306.00204, 2023.

Thomas Pethick, Wanyun Xie, Kimon Antonakopoulos, Zhenyu Zhu, Antonio Silveti-Falls, and
Volkan Cevher. Training deep learning models with norm-constrained lmos. arXiv preprint
arXiv:2502.07529, 2025.

Olivier Roy and Martin Vetterli. The effective rank: A measure of effective dimensionality. In 2007
15th European signal processing conference, pp. 606–610. IEEE, 2007.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Naoki Sato, Hiroki Naganuma, and Hideaki Iiduka. Analysis of muon’s convergence and critical
batch size. arXiv preprint arXiv:2507.01598, 2025.

Ishaan Shah, Anthony M Polloreno, Karl Stratos, Philip Monk, Adarsh Chaluvaraju, Andrew Hojel,
Andrew Ma, Anil Thomas, Ashish Tanwer, Darsh J Shah, et al. Practical efficiency of muon for
pretraining. arXiv preprint arXiv:2505.02222, 2025.

Wei Shen, Ruichuan Huang, Minhui Huang, Cong Shen, and Jiawei Zhang. On the convergence
analysis of muon. arXiv preprint arXiv:2505.23737, 2025.

Chongjie Si, Debing Zhang, and Wei Shen. Adamuon: Adaptive muon optimizer. arXiv preprint
arXiv:2507.11005, 2025.

Kimi Team, Yifan Bai, Yiping Bao, Guanduo Chen, Jiahao Chen, Ningxin Chen, Ruijue Chen,
Yanru Chen, Yuankun Chen, Yutian Chen, et al. Kimi k2: Open agentic intelligence. arXiv
preprint arXiv:2507.20534, 2025.

Bhavya Vasudeva, Puneesh Deora, and Christos Thrampoulidis. On generalization of spectral gra-
dient descent: A case study on imbalanced data. In High-dimensional Learning Dynamics 2025,
2025.

Jinbo Wang, Mingze Wang, Zhanpeng Zhou, Junchi Yan, Lei Wu, et al. The sharpness dis-
parity principle in transformers for accelerating language model pre-training. arXiv preprint
arXiv:2502.19002, 2025.

Kaiyue Wen, David Hall, Tengyu Ma, and Percy Liang. Fantastic pretraining optimizers and where
to find them. arXiv preprint arXiv:2509.02046, 2025.

David J Willshaw, O Peter Buneman, and Hugh Christopher Longuet-Higgins. Non-holographic
associative memory. Nature, 222(5197):960–962, 1969.

Greg Yang, James B Simon, and Jeremy Bernstein. A spectral condition for feature learning. arXiv
preprint arXiv:2310.17813, 2023.

Yushun Zhang, Congliang Chen, Naichen Shi, Ruoyu Sun, and Zhi-Quan Luo. Adam can converge
without any modification on update rules. Advances in neural information processing systems,
35:28386–28399, 2022.

Yushun Zhang, Congliang Chen, Tian Ding, Ziniu Li, Ruoyu Sun, and Zhiquan Luo. Why trans-
formers need adam: A hessian perspective. Advances in neural information processing systems,
37:131786–131823, 2024a.

Yushun Zhang, Congliang Chen, Ziniu Li, Tian Ding, Chenwei Wu, Diederik P Kingma, Yinyu
Ye, Zhi-Quan Luo, and Ruoyu Sun. Adam-mini: Use fewer learning rates to gain more. arXiv
preprint arXiv:2406.16793, 2024b.

Zeyu Zhang, Akide Liu, Ian Reid, Richard Hartley, Bohan Zhuang, and Hao Tang. Motion mamba:
Efficient and long sequence motion generation. In European Conference on Computer Vision, pp.
265–282. Springer, 2024c.

Rosie Zhao, Depen Morwani, David Brandfonbrener, Nikhil Vyas, and Sham Kakade. Deconstruct-
ing what makes a good optimizer for language models. arXiv preprint arXiv:2407.07972, 2024.

Dongruo Zhou, Jinghui Chen, Yuan Cao, Ziyan Yang, and Quanquan Gu. On the convergence of
adaptive gradient methods for nonconvex optimization. arXiv preprint arXiv:1808.05671, 2018.

Fangyu Zou, Li Shen, Zequn Jie, Weizhong Zhang, and Wei Liu. A sufficient condition for conver-
gences of adam and rmsprop. In Proceedings of the IEEE/CVF Conference on computer vision
and pattern recognition, pp. 11127–11135, 2019.

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

A USE OF LARGE LANGUAGE MODELS (LLMS)

Large language models (LLMs) were used solely to aid and polish the writing of this paper. The
authors generated all research ideas, methods, analyses, and results independently. LLM assistance
was limited to improving clarity, grammar, and readability of the manuscript text. No content was
fabricated or introduced by the LLM beyond these language refinements.

B NOTATIONS

Let [N] for the set {1, . . . , N}. For a matrix X ∈ Rd×N , Xi is its i-th column and X:,−1 is its last
column. IK,K is the K ×K identity matrix, IK is all-ones vector and JK,K is the all-ones matrix.
⊙ denotes the element-wise product.

C RELATED WORKS

Adam, proposed by Kingma & Ba (2015), was designed to make GD adaptive to the complex
optimization landscape of neural networks. Existing works analyze Adam from two primary per-
spectives: online optimization and feature learning. The online convex optimization view focuses
on Adam’s properties when optimizing convex or non-convex loss functions. From this perspective,
Chen et al. (2019) and Zhou et al. (2018) derive non-convex convergence results for Adam, and a
series of subsequent works continuously relaxed the required assumptions for Adam’s convergence
while tightening its convergence rate. For instance, Zou et al. (2019) proposes a set of easy-to-verify
sufficient conditions for Adam’s update rules to guarantee convergence. Défossez et al. (2020) de-
rives the tightest dependency on the heavy ball momentum parameters. More recently, Zhang et al.
(2022) demonstrates that Adam can converge without modification of its procedures, and Li et al.
(2023) relaxes the smoothness assumption by employing an adaptive Lipschitz constant for gradi-
ents. The feature learning view, on the other hand, highlights the relationship between deep learning
characteristics and Adam, focusing more on how Adam’s mechanisms influence the properties of
learned features within deep networks. For example, Pan & Li (2023) examines the sharpness of
GD and Adam and relates Adam’s superiority to its low sharpness. Kunstner et al. (2024) finds that
Adam is better at learning heavy-tailed distributions than GD. Furthermore, Zhang et al. (2024a)
shows that Adam is adaptive to heterogeneous Hessian structures, thus optimizing faster than GD.
In a spirit similar to our work, recent studies have also used ablation experiments to deconstruct
Adam’s effectiveness. For instance, Zhao et al. (2024) and Zhang et al. (2024b) conduct detailed
ablations on Adam’s hyperparameters and components, identifying that its benefits are particularly
pronounced for the first and last embedding layers of language models. While these works focus
on understanding Adam’s existing components, our study applies a similar ablation methodology
to understand the impact of a different optimizer, Muon, on the internal modules of a Transformer.
More literature on Adam is included in the survey by Abdulkadirov et al. (2023).

Muon, proposed by Jordan et al. (2024), applies spectral normalization of the gradient to update
parameters. At a high level, Muon can be understood as steepest descent with respect to the matrix
operator norm (Bernstein & Newhouse, 2024). Alternatively, it can be viewed as maximizing the
feature update subject to a parameter update constraint (Yang et al., 2023). Experiments show that
Muon consistently outperforms Adam across diverse model sizes and architectures, including dense
transformers and Mixture-of-Experts (Liu et al., 2025; Jordan et al., 2024). Building on this, Si
et al. (2025) introduces an adaptive variant of Muon. To explain its advantages, Lau et al. (2025)
introduces a unifying preconditioning framework, distinguishing optimizers that address curvature
anisotropy (like Adam) from those that address gradient anisotropy (like Muon), and proposes a
generalized optimizer class named PolarGrad. Sato et al. (2025) and Shah et al. (2025) examine the
critical batch size of Muon, while other works analyze its convergence in convex and non-convex
settings (Li & Hong, 2025; An et al., 2025; Kovalev, 2025; Pethick et al., 2025; Shen et al., 2025).
Anonymous (2025) derives the convergence bound of Muon, including the influence of NS steps.
Furthermore, Grishina et al. (2025) proposes accelerating these NS steps via Chebyshev-optimized
coefficients. Concurrently, Vasudeva et al. (2025) study Muon on shallow ViTs for computer vi-
sion, grounding their results for gradient descent and Muon in linear regression. In contrast, we
investigate Muon in the context of LLMs, focusing on its effects on associative memory in next-
token prediction. Recent works have also investigated the scalability of the Muon optimizer. For

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

instance, Wen et al. (2025) reports that the benefits of Muon diminish with scale (dropping from
1.4× gain at 0.1B to 1.1× at 1.2B), whereas Liu et al. (2025) observes that Muon maintains a ≈ 2×
FLOP-efficiency advantage over Adam even on 32B models.

Associative Memories have a long history in neural network design and knowledge storage (Hop-
field, 1982; Kohonen, 2009; Willshaw et al., 1969). They have inspired architectures capable of
retaining long histories, including RNNs (Orvieto et al., 2023) and Mamba (Zhang et al., 2024c).
With the success of transformers, recent work has examined them through the lens of associative
memories. Geva et al. (2020) and Dai et al. (2021) show that feed-forward modules store knowledge
in Wout, while Bietti et al. (2023) demonstrates that the attention output matrix WO also encodes
associations of knowledge. Building on these findings, a series of works edit knowledge directly by
modifying these weights (Meng et al., 2022b; Fang et al., 2024). Beyond empirical results, theo-
retical analyses have further clarified how transformers leverage associative memories: Bietti et al.
(2023) conducts a dynamic analysis of memory formation, while Nichani et al. (2024) constructs
explicit associative memory mechanisms in both attention and feed-forward modules.

D STEEPEST DESCENT VIEW UNDERSTANDING MUON AND ADAM

Bernstein & Newhouse (2024) showed that many popular deep learning optimizers can be under-
stood through the unifying framework of steepest descent, once their exponential moving averages
(EMAs) are disabled. This perspective shifts the focus from heuristic or second-order motivations to
a more fundamental, geometric view: the choice of an optimizer is equivalent to choosing a specific
norm to measure the “size” of the weight update.

The Steepest Descent Framework. The core idea is to find a weight update, ∆w, that minimizes a
local quadratic approximation of the loss function. This is formulated as the following optimization
problem:

∆w∗ = argmin
∆w

[
g⊤∆w +

λ

2
∥∆w∥2

]
,

where g is the gradient of the loss, λ > 0 is a “sharpness” parameter that controls the step size, and
∥ · ∥ is a chosen norm.

The solution to this problem can be expressed as:

∆w∗ = −η · d,

where the step size η = ∥g∥∗
λ and the update direction d = argmax∥t∥=1 g

⊤t. Here, ∥ · ∥∗ denotes
the dual norm of ∥ · ∥ (defined as ∥y∥∗ = sup∥x∥≤1 y

⊤x). The key insight is that different choices
of the norm ∥ · ∥ lead to different update directions d, recovering the update rules of well-known
optimizers.

Muon as Steepest Descent under Spectral Norm. The update rule of the Muon optimizer is
derived by applying the steepest descent framework to weight matrices equipped with the spectral
norm, denoted in the paper as the ∥ · ∥ℓ2→ℓ2 operator norm (defined as its largest singular value,
∥A∥ℓ2→ℓ2 = σmax(A) = sup∥x∥2=1 ∥Ax∥2). For a gradient matrix G, the problem is to find the
update ∆W that solves:

∆W∗ = argmin
∆W

[
⟨G,∆W⟩F +

λ

2
∥∆W∥2ℓ2→ℓ2

]
.

The solution to this problem is directly determined by the Singular Value Decomposition (SVD) of
the gradient, G = UΣV⊤. The resulting update direction, which maximizes alignment with the
gradient under the spectral norm constraint, is shown to be UV⊤. The corresponding dual norm
of the gradient, ∥G∥∗ℓ2→ℓ2

, which scales the step size, is found to be tr(Σ), the sum of the singular
values. Combining these components yields the final steepest descent update rule:

∆W∗ = − tr(Σ)

λ
·UV⊤.

This demonstrates that Muon’s core operation is a principled descent step where the singular vectors
of the gradient determine the direction, and the sum of its singular values scales the step size.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Adam as Steepest Descent under ℓ∞ Norm. Adam can be understood as steepest descent on the
flattened parameter vector w when the space is equipped with the vector infinity norm (ℓ∞) (defined
as the maximum absolute value of its elements, ∥x∥∞ = maxi |xi|). For a gradient vector g, the
optimization problem is to find the update ∆w that solves:

∆w∗ = argmin
∆w

[
g⊤∆w +

λ

2
∥∆w∥2∞

]
.

The update direction that maximizes alignment with the gradient g under the infinity norm constraint
is the sign of the gradient, sign(g). The corresponding dual norm of the gradient, ∥g∥∗∞, which
scales the step size, is the ℓ1 norm, ∥g∥1 (the sum of the absolute values of its elements, ∥x∥1 =∑

i |xi|). Combining these components yields the final steepest descent update rule:

∆w∗ = −∥g∥1
λ

· sign(g).

This reveals that Adam’s fundamental operation corresponds to a descent step where each parameter
moves with the same magnitude, determined only by its gradient’s sign.

E DETAILED DISCUSSION OF THE THEOREM 4.3

The proof of Theorem 4.3 is provided in Appendix H. We now explain the results for the three
optimizers separately. For GD, the quantity r(α, β) ≤ 1 measures the imbalance of the data dis-
tribution: r(α, β) = 1 corresponds to perfectly balanced data, while r(α, β) ≪ 1 indicates severe
imbalance. The results show that if one set of (s, r, o) triplets is learned with the correct-class prob-
ability [fW (Ek)]k of at least 1 − ϵ, then there exists another triplet whose correct-class probability
is O(ϵ−r(α,β)Kr(α,β)−1). Thus, GD is highly sensitive to data imbalance: as the training distribu-
tion becomes more imbalanced, the dispersion of correct-class probabilities across items increases,
i.e., the maximal probability gap ∆(W) grows and mink∈[K][fW (Ek)]k decreases. This mirrors the
message in Figure 4(b), 4(c), and Figure 3(d) in Section 3.3.

In contrast, Muon learns in a balanced fashion, unaffected by data imbalance for any embeddings
Ẽ and E. Our results show that when the best-learned triplet achieves a correct-class probability of
at least 1− ϵ, the worst-learned triplet has a comparable correct-class probability at least 1− ϵ(1 +
O(logK/K)). This justifies Observation 3. Furthermore, consistent with Observation 2, Muon’s
update GMuon rule allocates equal strength to all update directions; equivalently, the singular values
of GMuon(W0) are nearly identical.

Our analysis shows that Adam’s performance is unstable with respect to the embeddings Ẽ and E,
as reflected by the large error bars in Observations 2 and 3. Adam’s element-wise normalization
disrupts the inherent matrix structure of the gradient. When embeddings of different triplets have
disjoint supports (e.g., Ẽ = E = IK,K), Adam can optimize parameters in a balanced manner.
However, when embeddings overlap, the sign operator in Adam can introduce imbalance. In par-
ticular, the worst-optimized triplet may then have correct-class probability O(ϵ−0.7K−0.3). These
exponents (0.3, 0.7) are intrinsic to Adam’s update under certain embeddings and are independent
of α or β. Moreover, the Adam update GSignGD(W0) exhibits pronounced spectral decay—for ex-
ample, its smallest singular value can be less than 25% of the largest—unlike the nearly uniform
singular values of Muon. This spectral decay explains the poor isotropy reported in Observation 2.

F EXPERIMENTAL DETAILS

F.1 EXPERIMENTAL DETAILS OF TRAINING ON FINEWEB

When training 160M models on FineWeb, we disable weight decaying and Nesterov acceleration for
both Adam and Muon. Thus, we only compare their performance along. To set the learning rate, we
conduct a grid search on 1×10−1, 5×10−2, 2×10−2, 1×10−2, 5×10−3, 2×10−3, 1×10−3, 5×
10−4, 2 × 10−4. When conducting the “Independent Blocks ” and “Combined Configuration ”
experiments in Section 3.1, we just fix the learning rate of Muon. We set β1 = 0.8, β2 = 0.95
for Adam and set β = 0.95 for Muon. When training 0.7B models on FineWeb, we conduct a grid

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

search of learning rate on 2× 10−3, 1× 10−3, 5× 10−4, 2× 10−4. We set β1 = 0.9, β2 = 0.95 for
Adam and set β = 0.95 for Muon. We do not adopt group query attention in the structure; thus, the
parameter sizes of WQ, WK , WV , and WO are the same. We conduct experiments on 8 A100 with
80 GB memory.

F.2 ISOTROPICITY METRICS EXPLANATIONS

Normalized SVD Entropy. This metric, adapted from Alter et al. (2000), quantifies the uniformity
of the singular energy distribution. A higher entropy value indicates a more isotropic matrix where
energy is distributed evenly across many directions. It is defined as the Shannon entropy of the
distribution q, normalized by the maximum possible entropy: Hnorm(σ) = − 1

logn

∑n
i=1 qi log qi.

Effective Rank. The effective rank (Roy & Vetterli, 2007) provides a continuous measure of the
number of significant singular dimensions used by the matrix. It is calculated as the exponentiation
of the unnormalized Shannon entropy, which corresponds to the perplexity of the energy distribution:
eRank(σ) = exp (−

∑n
i=1 qi log qi).

Top-k Energy Fraction. This metric measures the concentration of energy within the Top-
k principal singular components. Assuming the singular values are sorted in descending order
(σ1 ≥ σ2 ≥ · · · ≥ σn), it is the cumulative sum of the first k energy fractions: TopEk(σ) =

∑k
i=1 σ2

i∑n
j=1 σ2

j
.

Eigenvalue Quantile Ratio. To measure the spread of the singular energy distribution while being
robust to extreme outliers, we compute the ratio of the 75th percentile (Q3) to the 25th percentile
(Q1) of the eigenvalues {σ2

i }ni=1: Q75/25(σ) =
Q3({σ2

i })
Q1({σ2

i })
.

F.3 DATASET DETAILS FOR THE HEAVY-TAIL KNOWLEDGE TASK

Following Allen-Zhu & Li (2024), the foundation of our knowledge-intensive task is a set of
question-answering (QA) pairs derived from synthetically generated biographies. Each biography
is constructed from a combination of seven key attributes: name, birthdate, birthplace, educational
institution, major, employer, and workplace. The attribute values are sampled from predefined lists,
creating a diverse set of entities. Specifically, we use approximately 400 first names, 1000 surnames,
300 educational institutions, 100 majors, and 300 employers. Each synthetic individual is assigned
a unique combination of these attributes, forming a distinct biographical profile. For example, a
generated biography might look like this:

Ashton Hilda Older has a birthday that falls on February 01, 2063. Miami, FL is
the birthplace of he. He is an alumnus of Saddleback College. He has a General
Literature education. He works closely with BlockFi. For professional growth,
he chose to relocate to Jersey City.

This text is generated by combining the structured attributes (name, date, location, etc.) with a set
of sentence templates.

A predefined set of QA templates is then used to generate the final training data. These templates
contain placeholders corresponding to the biographical attributes. By formatting these templates
with the information from each synthetic biography, we generate a collection of concrete QA pairs
for each entity. For example, for the entity “Ashton Hilda Older”, we can generate the following six
QA pairs:

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

1. What is the birth date of Ashton Hilda
Older?
Answer: February 01, 2063.

2. What is the birth city of Ashton Hilda
Older?
Answer: Miami, FL.

3. Which university did Ashton Hilda Older
study?
Answer: Saddleback College.

4. What major did Ashton Hilda Older
study?
Answer: General Literature.

5. Which company did Ashton Hilda Older
work for?
Answer: BlockFi.

6. Where did Ashton Hilda Older work?
Answer: Jersey City.

To evaluate the optimizers on a knowledge-intensive task with data imbalance, we constructed a
synthetic dataset where the number of question-answering (QA) samples per class follows a power-
law distribution. This is designed to simulate real-world scenarios where a few entities (the “head”)
are highly represented, while most entities (the “tail”) are rare.

The generation process is controlled by an integer parameter, m. The classes are organized into
m+ 1 groups, indexed from g = 0 to m.

• Group g contains Ng classes, where N0 = 1 and Ng = 2g−1 for g > 0.

• Each class within group g is allocated a specific number of “selections,” Sg = 2m−g .

• For each selection, we generate nqa unique QA pairs by formatting templates with bio-
graphical information corresponding to that class.

Thus, the total number of QA samples for any given class in group g is Sg × nqa. This structure
ensures that the single class in group 0 has the most samples, while the numerous classes in group
m have the fewest.

In our experiment, we set the parameters to m = 15 and nqa = 6. This results in a dataset with a
total of 215 = 32, 768 classes. The number of samples per class ranges from 196, 608 for the head
class (group 0) down to just 6 for each of the 16, 384 tail classes (group 15). The final distribution
is visualized in Figure 3(a) in the main text.

To evaluate the model’s performance on this pure memory task, we measure the First Token Accu-
racy (FTA) on the answers. This metric assesses the model’s ability to correctly recall information
by checking if the first generated token of the answer matches the ground truth. Furthermore, to un-
derstand how optimizers handle data imbalance, we analyze the FTA across different data frequency
groups, from high-frequency (head) to low-frequency (tail) data.

F.4 EXPERIMENTAL DETAILS ABOUT ANGLES BETWEEN ASSOCIATIVE MEMORIES
EMBEDDINGS

Following Fang et al. (2024), we analyze the associative memories in the FFN modules. To obtain
Ei, we use the activations within the feed-forward modules, and for Ẽi, we take the corresponding
module outputs. We evaluate knowledge items from two widely used datasets: Counterfact (Meng
et al., 2022a) and ZsRE (Levy et al., 2017). Results on Counterfact are shown in Figure 4(a), while
results on ZsRE are provided in Figure 18 in Appendix G.11.

F.5 EXPERIMENTAL DETAILS OF ONE-LAYER MODELS

We set the hyperparameters as K = d = 999, α = 0.8, β = 0.2. For the support-decoupled setting,
we set E and Ẽ as identity matrices. For the support-coupled setting, we set E and Ẽ according to
the construction presented in the proof of Theorem 4.3 in Appendix H.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

G ADDITIONAL EXPERIMENTAL RESULTS

G.1 MAXLOGIT PER LAYER ON THE 160M NANOGPT MODEL VIA MUON OPTIMIZER

In this subsection, we present the MaxLogit values for each layer of the 160M NanoGPT model
trained using the Muon Optimizer. Following Gemma 3 (Kamath et al., 2025), we introduce RM-
SNorm to the attention mechanism. The attention mechanism in our model is defined as follows:

O = softmax(Q̃K̃T)V, Q̃ = RMSNorm(Q), K̃ = RMSNorm(K)

where RMSNorm is defined as RMSNorm(x) = x√
1
d

∑d
i=1 x2

i

, with d being the dimension of x.

MaxLogit is defined as:

Smax = max
i,j

q̃i · k̃j

representing the maximum value in the attention scores before softmax normalization.

The MaxLogit values for each layer are summarized in Table 1.

Table 1: MaxLogit values per layer on the 160M NanoGPT model via Muon Optimizer.

Layer 1 2 3 4 5 6 7 8 9 10 11 12
MaxLogit 8.396 6.880 6.009 7.676 6.349 5.890 7.688 6.314 6.205 5.613 6.033 6.371

Recent reports Team et al. (2025) have shown a potential “MaxLogit explosion” phenomenon, where
Smax grows steadily (often near-linearly) during training, leading to overly peaked attention, gra-
dient spikes, and degraded optimizer comparisons. We included this measurement to rule out the
possibility that Muon’s comparatively smaller impact on the QK blocks (relative to VO/FFN) is sim-
ply due to suppressing such an instability. In our 160M setting, with RMSNorm applied to both Q
and K (following Gemma 3), the per-layer MaxLogit values remain moderate and show no runaway
growth. Thus, for this model size and normalization scheme, differences in Muon’s effectiveness
across components cannot be attributed to avoiding a MaxLogit explosion in attention.

G.2 CONTROLLING FOR PARAMETER COUNT IN COMPONENT-WISE ABLATIONS

A potential confounding factor in our ablation studies (Section 3.1) is that different model compo-
nents contain different numbers of parameters. One might argue that applying Muon to a larger
component naturally yields greater gains simply because more parameters are being optimized dif-
ferently. To disentangle the effect of component type from the effect of parameter count, we measure
the performance gain per parameter.

We measure the validation-loss improvement at 10,000 steps when applying Muon to a single com-
ponent (QK, VO, Win, or Wout) relative to a full-Adam baseline. This gain is then normalized by the
number of parameters in that specific component. For the 160M model, the parameter counts satisfy
|WV | = |WO| = |WQ| = |WK | and |Win| = |Wout| = 4× |WQ|.
Figure 5(a) reports the validation loss at 10,000 steps, normalized by the number of parameters in
each component. This result shows that the normalized gain for VO Attn is approximately 5 times
greater than that for QK Attn, even though both components have the same number of parameters.
The gains for Win and Wout are also substantially higher (over 3x) than for QK Attn. Although Win
and Wout have twice as many parameters as QK, their normalized gains are far more than half the
gain of QK.

To provide even more direct evidence, we designed the second experiment where the number of
parameters optimized by Muon is held exactly equal across different components. We achieve this
by comparing three configurations: Muon applies to QK matrices in all layers; but Muon applies to
Win and Wout matrices in only the odd-numbered layers. In this setup, the total number of parameters
of QK, Win and Wout optimized by Muon are identical. The results in Figure 5(b) show that even
when optimizing an identical number of parameters, the gain from applying Muon to Win or Wout is
much more than the gain from applying it to the QK blocks.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Training Steps

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Va
lid

at
io

n
Lo

ss

Muon(All Attn, FFN)
All Adam
Muon(QK Attn)&Adam(VO Attn, FFN)
Muon(VO Attn)&Adam(QK Attn, FFN)
Muon(V Attn)&Adam(QKO Attn, FFN)
Muon(O Attn)&Adam(QKV Attn, FFN)
Muon(Win)&Adam(All Attn, Wout, Wgate)
Muon(Wgate)&Adam(All Attn, Wout, Win)
Muon(Wout)&Adam(All Attn, Win, Wgate)

8000 10000
3.51

3.99

(a) Independent Blocks with Gated FFN

0 2000 4000 6000 8000 10000
Training Steps

3.5

4.0

4.5

5.0

5.5

6.0

6.5

7.0

Va
lid

at
io

n
Lo

ss

Muon(All Attn, FFN)
All Adam
Muon(VO Attn, FFN)&Adam(QK Attn)
Muon(VO Attn, Win, Wgate)&Adam(QK Attn, Wout)
Muon(VO Attn, Wout, Wgate)&Adam(QK Attn, Win)
Muon(VO Attn, Win, Wout)&Adam(QK Attn, Wgate)
Muon(V Attn, FFN)&Adam(QKO Attn)
Muon(O Attn, FFN)&Adam(QKV Attn)

8000 10000
3.51

3.99

(b) Combined Configuration with Gated FFN

Figure 6: Validation loss comparison on the 160M NanoGPT model with gated FFN under different
Muon/Adam assignments. Panels (a) and (b) show the validation loss over training steps for the
Independent Blocks and Combined Configurations settings, respectively.

Muon(QK Attn) Muon(VO Attn) Muon(Win) Muon(Wout)
2×10 2

5×10 2

10 1

N
or

m
al

iz
ed

 G
ai

n
vs

 A
da

m

0.032

0.160

0.104
0.111

(a) Val. loss gain per parameter.

Muon(QK Attn) Muon(Win) Muon(Wout)
2×10 2

5×10 2

10 1
G

ai
n

vs
 A

da
m

0.032

0.078
0.084

(b) Val. loss gain under equal parameter budget.

Figure 5: Component-wise validation-loss gain of Muon over Adam at 10,000 steps.

These results demonstrate that Muon’s effectiveness is not simply about the quantity of parameters,
but is highly specific to the function of the parameters. The associative memory components (VO,
Win, Wout) derive a much larger benefit per parameter, reinforcing our central claim that Muon excels
at optimizing these specific parts of the Transformer architecture.

G.3 ADDITIONAL RESULTS FOR GATED FFN ON FINEWEB

To verify that our findings in Section 3.1 are not specific to the non-gated FFN architecture, we
repeat the same “Independent Blocks” and “Combined Configurations” experiments on the 160M
NanoGPT model with a gated FFN. The results are presented in Figure 6.

The conclusions are almost identical to those from the non-gated setting (Figure 1). Specifically, in
both the independent and combined settings, applying Muon to VO+FFN yields the most significant
validation loss reduction, closely tracking the performance of full Muon. In contrast, applying Muon
only to the QK blocks provides minimal benefit over the Adam baseline. This confirms that our
finding—that the associative memory components (VO and FFN) are the primary beneficiaries of
Muon—is robust to variations in the Transformer architecture, holding for both gated and non-gated
FFNs.

Furthermore, we analyze the spectral dynamics of the weight matrices for the gated FFN model,
with results for the VO and Wout matrices shown in Figure 7. The trends are consistent with Ob-
servation 2 from the main text: for both matrices, Muon leads to significantly higher SVD entropy
and effective rank (eRank) compared to Adam. This indicates that Muon encourages the learning

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Training Steps

0.2

0.4

0.6

0.8

SV
D

 e
nt

ro
py

 (
)

SVD entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

To
p1

0E
 (

)

Top10E ()

0 2000 4000 6000 8000 10000
Training Steps

0

100

200

300

400

eR
an

k
(

)

eRank ()

0 2000 4000 6000 8000 10000
Training Steps

101

102

103

Q
75

/Q
25

 R
at

io
 (

)

Q75/Q25 Ratio ()

(a) VO(Gated FFN)

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

SV
D

 e
nt

ro
py

 (
)

SVD entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

To
p1

0E
 (

)

Top10E ()

0 2000 4000 6000 8000 10000
Training Steps

0

200

400

600

eR
an

k
(

)

eRank ()

0 2000 4000 6000 8000 10000
Training Steps

101

102

103

Q
75

/Q
25

 R
at

io
 (

)

Q75/Q25 Ratio ()

(b) Wout(Gated FFN)

Figure 7: Spectral Dynamics of Transformer Weight Matrices During Training. Each panel reports
four metrics characterizing singular value distributions: SVD entropy, Top10E, eRank, and Q75/Q25
ratio. The four subplots correspond to different weight matrix groups: (a) VO and (b) Wout.

of more distributed, higher-dimensional representations in the associative memory components, a
finding that holds true for the gated FFN architecture as well.

G.4 SCALING TO THE 0.7B NANOGPT MODEL

To evaluate the scalability of our findings, we extend our experiments from the 160M model to a
larger 0.7B parameter model. This section presents the results of this scaled-up analysis, examining
whether the advantages of Muon observed in the smaller model persist at a larger scale.

0 2000 4000 6000 8000 10000
Training Steps

3.0

3.5

4.0

4.5

5.0

5.5

6.0

6.5

Va
lid

at
io

n
Lo

ss

Muon(All Attn, FFN)
All Adam
Muon(QK Attn)/Adam(VO Attn, FFN)
Muon(VO Attn, FFN)/Adam(QK Attn)
Muon(O Attn, FFN)/Adam(QKV Attn)
Muon(V Attn, FFN)/Adam(QKO Attn)

8000 10000

2.91

3.07

(a) Non-gated FFN

0 2000 4000 6000 8000 10000
Training Steps

3.0

3.5

4.0

4.5

5.0

5.5

Va
lid

at
io

n
Lo

ss

Muon(All Attn, FFN)
All Adam
Muon(QK Attn)/Adam(VO Attn, FFN)
Muon(VO Attn, FFN)/Adam(QK Attn)
Muon(O Attn, FFN)/Adam(QKV Attn)
Muon(V Attn, FFN)/Adam(QKO Attn)

8000 10000

2.96

3.15

(b) Gated FFN

Figure 8: Validation loss comparison on the 0.7B NanoGPT model. (a) Combined configuration with
non-gated feed-forward networks.(b) Combined configuration with gated feed-forward networks.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

0 2000 4000 6000 8000 10000
Training Steps

0.5

0.6

0.7

0.8

0.9

SV
D

 E
nt

ro
py

 (
)

VO - SVD Entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.88

0.90

0.92

0.94

0.96

0.98

SV
D

 E
nt

ro
py

 (
)

Win - SVD Entropy ()

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

SV
D

 E
nt

ro
py

 (
)

Wout - SVD Entropy ()

0 2000 4000 6000 8000 10000
Training Steps

300

400

500

600

eR
an

k
(

)

VO - eRank ()

0 2000 4000 6000 8000 10000
Training Steps

600

700

800

900

1000

1100

eR
an

k
(

)

Win - eRank ()

0 2000 4000 6000 8000 10000
Training Steps

0

200

400

600

800

1000

eR
an

k
(

)

Wout - eRank ()

Figure 9: Spectral Dynamics of Weight Matrices During Training on the 0.7B NanoGPT model.

0 2000 4000 6000 8000 10000
Training Steps

0.5

0.6

0.7

0.8

0.9

SV
D

 E
nt

ro
py

 (
)

VO - SVD Entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.960

0.965

0.970

0.975

0.980

SV
D

 E
nt

ro
py

 (
)

Win - SVD Entropy ()

0 2000 4000 6000 8000 10000
Training Steps

0.972

0.974

0.976

0.978

0.980

0.982

SV
D

 E
nt

ro
py

 (
)

Wgate - SVD Entropy ()

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

SV
D

 E
nt

ro
py

 (
)

Wout - SVD Entropy ()

0 2000 4000 6000 8000 10000
Training Steps

400

450

500

550

600

650

eR
an

k
(

)

VO - eRank ()

0 2000 4000 6000 8000 10000
Training Steps

950

1000

1050

1100

eR
an

k
(

)

Win - eRank ()

0 2000 4000 6000 8000 10000
Training Steps

1060

1080

1100

1120

eR
an

k
(

)

Wgate - eRank ()

0 2000 4000 6000 8000 10000
Training Steps

0

200

400

600

800

1000

eR
an

k
(

)
Wout - eRank ()

Figure 10: Spectral Dynamics of Weight Matrices During Training on the 0.7B NanoGPT model
with the Gated FFN.

Figure 8 shows the validation loss curves for various optimizer configurations. Consistent with our
findings on the 160M model, applying Muon to all components achieves the lowest validation loss,
outperforming Adam baseline. The hybrid experiments further reinforce our earlier conclusions:
applying Muon to only the VO and FFN components yields performance nearly identical to that of
the full Muon optimizer, whereas applying it only to the QK components offers little advantage over
Adam.

The spectral dynamics, shown in Figures 9 and 10, also align with Observation 2. For the VO,
Win, Wgate (in model with Gated FFN) and Wout matrices, Muon leads to higher SVD entropy and
eRank compared to Adam, indicating that it encourages the learning of more distributed, higher-
dimensional representations. Overall, these results demonstrate that the benefits of Muon and the
underlying mechanisms scale to larger models.

G.5 ADDITIONAL RESULTS ABOUT SPECTRAL DYNAMICS OF TRANSFORMER WEIGHT
MATRICES DURING TRAINING

To complement the main-text analysis (Fig. 2), we also evaluate spectral dynamics during training
for the 160M NanoGPT model with both non-gated and gated feed-forward networks (Fig. 11).

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The analysis includes Win for both configurations, as well as the gate matrix Wgate for the gated
version. The conclusions are consistent across all three matrices and mirror the non-gated setting:
with Muon, SVD entropy and eRank increase, while Top-k energy and the Q75/25 ratio decrease,
consistent with Observation 2 in the main text.

0 2000 4000 6000 8000 10000
Training Steps

0.4

0.6

0.8

1.0

SV
D

 e
nt

ro
py

 (
)

SVD entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

To
p1

0E
 (

)

Top10E ()

0 2000 4000 6000 8000 10000
Training Steps

0

200

400

600

eR
an

k
(

)

eRank ()

0 2000 4000 6000 8000 10000
Training Steps

101

3 × 100

4 × 100

6 × 100

2 × 101

Q
75

/Q
25

 R
at

io
 (

)

Q75/Q25 Ratio ()

(a) Win (Non-Gated FFN)

0 2000 4000 6000 8000 10000
Training Steps

0.4

0.6

0.8

1.0

SV
D

 e
nt

ro
py

 (
)

SVD entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

To
p1

0E
 (

)

Top10E ()

0 2000 4000 6000 8000 10000
Training Steps

0

200

400

600

eR
an

k
(

)

eRank ()

0 2000 4000 6000 8000 10000
Training Steps

101

3 × 100

4 × 100

6 × 100

Q
75

/Q
25

 R
at

io
 (

)

Q75/Q25 Ratio ()

(b) Win (Gated FFN)

0 2000 4000 6000 8000 10000
Training Steps

0.4

0.6

0.8

1.0

SV
D

 e
nt

ro
py

 (
)

SVD entropy ()

Muon(All Attn, FFN)
All Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

To
p1

0E
 (

)

Top10E ()

0 2000 4000 6000 8000 10000
Training Steps

0

200

400

600

eR
an

k
(

)

eRank ()

0 2000 4000 6000 8000 10000
Training Steps

101

3 × 100

4 × 100

6 × 100

Q
75

/Q
25

 R
at

io
 (

)

Q75/Q25 Ratio ()

(c) Wgate

Figure 11: Spectral Dynamics of FFN Weight Matrices During Training on the 160M NanoGPT
model. Each panel reports four metrics characterizing singular value distributions: SVD entropy,
Top10E, eRank, and Q75/Q25 ratio. The subplots correspond to different weight matrices: (a) Win
(non-gated), (b) Win (gated), and (c) Wgate (gated).

G.6 DETAILED EXPERIMENT RESULTS ABOUT HEAVY-TAIL IMBALANCE KNOWLEDGE
TASK

To complement the qualitative trends shown in Section 3.3 (Fig. 3), we report the exact First Token
Accuracy (FTA) for selected tail groups at three training checkpoints (2k, 5k, 10k steps). We focus
on groups g = 11, 13, 15, which represent increasingly rare (mid–tail, tail, extreme tail) frequency
bands in the power-law distribution (recall that larger g implies fewer samples per class). The
tables contrast full Muon, Adam, SGD+Momentum, and two hybrid configurations (Muon applied
only to VO&FFN or only to QK). The numbers highlight: (i) Muon’s rapid convergence on rare
groups (already strong by 2k, near-saturated by 5k), (ii) Adam’s persistent head–tail gap, and (iii) the
dominant contribution of applying Muon to VO&FFN for tail generalization (the VO&FFN hybrid
closely tracks full Muon, whereas the QK-only hybrid lags). These quantitative results substantiate
Observation 3 that Muon delivers more balanced learning.

Table 2: Heavy-tail knowledge task: Group performance by optimizer (2,000 steps)

Group Optimizer

Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 0.854 ± 0.029 0.312 ± 0.043 0.156 ± 0.037 0.814 ± 0.022 0.472 ± 0.041
13 0.386 ± 0.029 0.146 ± 0.015 0.120 ± 0.012 0.256 ± 0.030 0.154 ± 0.032
15 0.140 ± 0.027 0.090 ± 0.031 0.082 ± 0.013 0.114 ± 0.023 0.086 ± 0.037

Table 3: Heavy-tail knowledge task: Group performance by optimizer (5,000 steps)

Group Optimizer

Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 0.996 ± 0.006 0.936 ± 0.039 0.314 ± 0.021 0.992 ± 0.005 0.970 ± 0.007
13 0.964 ± 0.023 0.298 ± 0.074 0.148 ± 0.013 0.934 ± 0.015 0.354 ± 0.032
15 0.320 ± 0.028 0.110 ± 0.027 0.084 ± 0.011 0.254 ± 0.026 0.118 ± 0.019

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 4: Heavy-tail knowledge task: Group performance by optimizer (10,000 steps)

Group Optimizer

Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 1.000 ± 0.000 1.000 ± 0.000 0.422 ± 0.023 1.000 ± 0.000 1.000 ± 0.000
13 1.000 ± 0.000 0.890 ± 0.042 0.294 ± 0.013 0.998 ± 0.002 0.940 ± 0.034
15 0.976 ± 0.006 0.264 ± 0.048 0.126 ± 0.021 0.954 ± 0.021 0.286 ± 0.039

G.7 ADDITIONAL EXPERIMENT RESULTS ABOUT HEAVY-TAIL IMBALANCE KNOWLEDGE
TASK WITH GATED FEED-FORWARD NETWORKS

This subsection complements the main heavy-tail results in Section 3.3 by studying the gated feed-
forward networks (Gated FFN) variant. We follow the same presentation order as in the main text:
first an overview figure (sample distribution and learning curves under different optimizers), then
tables reporting the exact First-Token Accuracy (FTA) for tail groups g ∈ {11, 13, 15} at three
training checkpoints (2k, 5k, 10k steps). The findings mirror the non-gated setting: (i) full Muon
consistently outperforms Adam and SGD+Momentum on rare classes and reaches high accuracy
earlier; (ii) the VO&FFN-hybrid (Muon applied to VO and FFN while Adam is used for QK) closely
tracks full Muon, indicating that VO&FFN are the primary levers for tail generalization; (iii) the QK-
only hybrid offers limited gains. Overall, the gated FFN does not change the qualitative conclusions
about where Muon helps most. See Fig. 12 and Tables 5–7 for details.

100 101 102 103 104

Class index (sorted)

101

102

103

104

105

Q

A
 S

am
pl

es

Class Groups
Group 0
Group 1
Group 2
Group 3
Group 4
Group 5
Group 6
Group 7

Group 8
Group 9
Group 10
Group 11
Group 12
Group 13
Group 14
Group 15

(a) Sample/class

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(b) Muon

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(c) Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(d) SGD+Momentum

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(e) Muon(VO, FFN)/Adam(QK)

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

A
cc

ur
ac

y
(F

TA
)

(f) Muon(QK)/Adam(VO,FFN)

Figure 12: Performance comparison of different optimizers on a heavy-tailed knowledge task with
gated feed-forward networks. (a) The distribution of samples per class follows a power law. (b-d)
Performance of Muon, Adam, and SGD+Momentum optimizers. (e) Muon (VO, FFN)/Adam (QK).
(f) Muon (QK)/Adam (VO, FFN).

Table 5: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (2,000
steps)

Group Optimizer

Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 0.896 ± 0.009 0.214 ± 0.063 0.146 ± 0.018 0.892 ± 0.021 0.330 ± 0.042
13 0.478 ± 0.034 0.116 ± 0.030 0.110 ± 0.007 0.458 ± 0.037 0.140 ± 0.019
15 0.178 ± 0.018 0.086 ± 0.013 0.074 ± 0.009 0.166 ± 0.017 0.090 ± 0.020

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Table 6: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (5,000
steps)

Group Optimizer

Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 0.998 ± 0.002 0.928 ± 0.024 0.252 ± 0.016 0.990 ± 0.010 0.960 ± 0.032
13 0.990 ± 0.010 0.216 ± 0.052 0.156 ± 0.024 0.968 ± 0.028 0.290 ± 0.046
15 0.510 ± 0.039 0.092 ± 0.015 0.080 ± 0.016 0.468 ± 0.016 0.098 ± 0.013

Table 7: Heavy-tail knowledge task with the Gated FFN: Group performance by optimizer (10,000
steps)

Group Optimizer

Muon Adam SGD+Mom. Muon(VO, FFN) Muon(QK)

11 1.000 ± 0.000 0.998 ± 0.002 0.322 ± 0.011 1.000 ± 0.000 1.000 ± 0.000
13 1.000 ± 0.000 0.948 ± 0.027 0.304 ± 0.017 1.000 ± 0.000 0.946 ± 0.026
15 0.994 ± 0.006 0.244 ± 0.085 0.148 ± 0.015 0.990 ± 0.010 0.274 ± 0.042

G.8 IMPACT OF DATA IMBALANCE LEVEL

To further investigate how the degree of data imbalance affects the performance gap between Muon
and Adam, we conduct an ablation study on the heavy-tail knowledge task with varying levels of
class imbalance. We compare three settings:

• High Imbalance (base = 2.0): This is the default setting used in our main experiments
(Section 3), where the number of samples per class follows the power-law construction in
Section F.3 with base 2.0.

• Medium Imbalance (base = 1.2): A less skewed version of the same construction, where
the base is reduced to 1.2 so that the head–tail ratio is smaller.

• Uniform: A balanced setting where each group contains the same number of classes and
each class is assigned the same number of QA samples.

The results are presented in Figure 13. From left to right, the panels correspond to the high-
imbalance, medium-imbalance, and uniform settings, each plotting the average First Token Ac-
curacy (FTA) over all groups for Adam and Muon. As the data distribution becomes more uniform,
the performance gap between Muon and Adam steadily shrinks, and in the uniform case the two
optimizers behave very similarly, indicating that Muon’s advantage is most pronounced in highly
imbalanced, heavy-tailed regimes.

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll

FT
A

High-Imbalance

Muon
Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll

FT
A

Median-Imbalance

Muon
Adam

0 2000 4000 6000 8000 10000
Training Steps

0.0

0.2

0.4

0.6

0.8

1.0

O
ve

ra
ll

FT
A

Uniform

Muon
Adam

Figure 13: Comparison of Muon and Adam under different levels of class imbalance on the
heavy-tail knowledge task. From left to right, the panels correspond to the High Imbalance (base =
2.0), Medium Imbalance (base = 1.2), and Uniform settings.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

The datasets mixed with different levels of heavy-tailedness exhibit two properties: (1) Figure 14(a)
shows that the single-token distributions are not exactly the same, i.e., facts and tokens cannot be
perfectly decoupled; and (2) the token distribution in the uniform mixture still follows Zipf’s law
(Figure 14(b)). Thus, we conclude that, under different levels of heavy-tailedness in the pretraining
data, the benefit of Muon over Adam varies even when the token distribution remains close to Zipf’s
law: the more uniform the mixture, the smaller the gain of Muon over Adam.

0 500 1000 1500 2000 2500 3000 3500
Token Rank (sorted by Power-law freq.)

100

101

102

103

104

105

106

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

Power-law Mixing
Uniform Mixing

(a) Freq. Comparison (Sorted by Power-law Rank)

0 500 1000 1500 2000 2500 3000 3500
Token Rank (sorted by Uniform Mixing freq.)

101

102

103

104

105

106

Fr
eq

ue
nc

y
(lo

g
sc

al
e)

Uniform Mixing

(b) Uniform Mixing (Sorted by Uniform Rank)

Figure 14: Token-frequency profiles for the synthetic heavy-tail QA task. (a) Compares the token
frequencies of the original Power-law mixing (red curve) and a fact-balanced Uniform mixing (blue
dots), using the token rank from the power-law mixing. (b) Shows the token frequency profile for
the Uniform mixing data, re-sorted by its own token frequencies.

G.9 ADDITIONAL RESULTS ON WIKITEXT103

To verify that our observations on FineWeb and the synthetic heavy-tail knowledge task transfer to
a more standard language modeling benchmark, we additionally train 160M NanoGPT models on
the Wikitext103 dataset. We keep the model architecture and most hyperparameters identical to the
FineWeb setup and only retune the learning rate for each optimizer with a small grid search.

Figure 15 provides an overview of this setting. Panel (a) shows the empirical token frequency
distribution of Wikitext103, which exhibits a clear heavy-tail pattern: a small number of tokens
appear very frequently, while many tokens are rare. In the plot, the vocabulary is partitioned into ten
frequency-based groups, each containing approximately 10% of the tokens (from most frequent to
rarest), to make head and tail behavior more comparable. Panels (b) and (c) report the training loss
curves for Adam and Muon, respectively. Consistent with our main results, Muon converges faster
and reaches a lower training loss than Adam.

Figure 16 further highlights the difference between the two optimizers by plotting their training
losses on the same axes. Looking from the head group to the tail group, the performance gap between
Muon and Adam steadily widens: while the two optimizers behave similarly on high-frequency
(head) tokens, Muon remains much stronger on mid- and low-frequency (tail) tokens. In addition,
the error bars for Adam grow substantially toward the tail, indicating unstable generalization on rare
tokens, whereas Muon stays consistently stable across all groups.

Figure 16 also reports the two hybrid configurations. The Muon(VO, FFN) variant, which applies
Muon only to the value/output and feed-forward blocks while keeping Adam on QK, almost overlaps
with the full Muon curve, showing that most of the improvement comes from these components. In
contrast, the Muon(QK)-only variant is very close to the Adam baseline, suggesting that using Muon
solely on the QK blocks brings limited benefit.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

100 101 102 103 104

Class index (sorted)

100

101

102

103

104

105

106

107

#
 S

am
pl

es

(a) Token frequency

0 2000 4000 6000 8000 10000
Training Steps

2

4

6

8

10

Tr
ai

n
Lo

ss

Group 0
Group 1
Group 2
Group 3
Group 4

Group 5
Group 6
Group 7
Group 8
Group 9

(b) Muon

0 2000 4000 6000 8000 10000
Training Steps

2

4

6

8

10

12

Tr
ai

n
Lo

ss

Group 0
Group 1
Group 2
Group 3
Group 4

Group 5
Group 6
Group 7
Group 8
Group 9

(c) Adam

Figure 15: Performance comparison of different optimizers on Wikitext103. (a) Token frequency
distribution in the Wikitext103 training corpus, showing a pronounced heavy-tail structure. (b)
Training loss curve for Muon. (c) Training loss curve for Adam.

0 2000 4000 6000 8000 10000
Training Steps

2

4

6

8

10

Tr
ai

n
Lo

ss

Group 0
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

2

4

6

8

10

Tr
ai

n
Lo

ss

Group 1
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

2

4

6

8

10
Tr

ai
n

Lo
ss

Group 2
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

2

4

6

8

10

Tr
ai

n
Lo

ss

Group 3
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

4

6

8

10

Tr
ai

n
Lo

ss

Group 4
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

4

6

8

10

Tr
ai

n
Lo

ss

Group 5
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

4

6

8

10

Tr
ai

n
Lo

ss

Group 6
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

4

5

6

7

8

9

10

11

Tr
ai

n
Lo

ss

Group 7
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

5

6

7

8

9

10

11
Tr

ai
n

Lo
ss

Group 8
Muon
Adam
Muon(QK)
Muon(VO, FFN)

0 2000 4000 6000 8000 10000
Training Steps

7

8

9

10

11

12

13

Tr
ai

n
Lo

ss

Group 9
Muon
Adam
Muon(QK)
Muon(VO, FFN)

Figure 16: Training loss comparison on Wikitext103 across head and tail token groups under dif-
ferent optimizer configurations. The curves correspond to Adam, Muon, and two hybrid variants
that apply Muon only to VO&FFN or only to QK. In these figures, the results of Muon(VO, FFN)
coincide with those of Muon, while the results of Muon(QK) coincide with those of Adam.

G.10 ADDITIONAL RESULTS ON LINEAR REGRESSION

0 2000 4000 6000 8000 10000
Training Steps

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

Av
er

ag
e

Va
lid

at
io

n
Lo

ss

Adam: Tail
Adam: Mid

Adam: Head
Muon: Tail

Muon: Mid
Muon: Head

Figure 17: Validation loss on linear regression across head and tail groups under different Adam and
Muon.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

To further demonstrate that Muon is ineffective at optimizing the QK parameters in the attention
module, we consider an in-context linear regression task (Garg et al., 2022), which heavily relies on
the QK parameters. In this task, the model is prompted with a number of demonstrations (xi, yi)

K
i=1

with yi = x⊤
i w and a query xq , where xi ∈ Rd for i ∈ [K] and xq, w ∈ Rd. The model is expected

to output x⊤
q w. Intuitively, the QK parameters capture the correlations between the demonstrations

and the query and use them to estimate x⊤
q w. Following (Garg et al., 2022), we train the model with

ℓ2 loss. To test the efficacy of the optimizers under a heavy-tailed task distribution, we partition
w into groups supported on mutually orthogonal subspaces, which appear in the training data with
different frequencies. We perform a grid search over learning rates for Adam and Muon and report
the results in Figure 17.

Figure 17 shows that Adam and Muon achieve similar performance across different groups. In
particular, both optimizers effectively learn the head class but barely improve on the tail class. This
behavior is in sharp contrast to the results in Section 3.3, where Muon substantially outperforms
Adam on tail classes. Hence, the linear regression experiment further supports our claim that the
main benefit of Muon does not come from optimizing the QK parameters.

G.11 ADDITIONAL RESULTS ABOUT ANGLES BETWEEN ASSOCIATIVE MEMORIES
EMBEDDINGS

5 10 15 20 25
Layer Index

0

15

30

45

60

75

90

Av
g.

 A
ng

le
s

B
et

w
ee

n
E

m
be

dd
in

gs
 (D

eg
re

es
)

Ei

Ei

Figure 18: Average angles between es or eo for items in ZsRE at layers 5, 10, 15, 20, 25 of Llama3-
8b-instruct.

H PROOF OF THEOREM 4.3

We separately derive the results for GD, Muon, and Adam in the following proof. For all of them,
we define

ηϵopt = inf
{
η ≥ 0

∣∣∣ 1− max
k∈[K]

[
fW (Ek)

]
k
≤ ϵ, where W = W0 − η ·Gopt(W0)

}
. (H.1)

The quantity ηϵopt represents the minimal step size for at least one triplet to be learned with error
probability less than ϵ. From the definition, we have that

ϱϵopt ≤ min
k∈[K]

[
f−ηϵ

optGopt(Ek)
]
k
.

Step 1: Calculations of GD.

We define the score of k′-th object for the k-th subject-relation pair with the parameter W as

s(k′, k,W) =
exp(Ẽ⊤

k′WEk)∑K
k′′=1 exp(Ẽ

⊤
k′′WEk)

.

At W0 = 0do,ds , we have that

s(k′, k,W0) =
1

K
for all k, k′ ∈ [K].

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Proposition J.1 shows that the gradient is

−∇WL(W0) =
α

L
Ẽ1:LE

⊤
1:L +

1− α

K − L
ẼL+1:KE⊤

L+1:K − α

LK
ẼJK,LE

⊤
1:L

− 1− α

(K − L)K
ẼJK,K−LE

⊤
L+1:K . (H.2)

From the gradient, it is easy to see that the first L triplets (s, r, o) share the same learning behavior,
and the last K − L triplets also share the same behavior. Thus, we calculate the results for k = 1
and k = L + 1. The calculation for k = 1 depends on evaluating its score function, which takes
the form η · Ẽ⊤

k′′ [−∇WL(W0)]E1, for k′′ ∈ {1, . . . ,K}. Based on the gradient in (H.2) and the
orthonormality of the embeddings, it evaluates to α/L for the case k′′ = 1, and to 0 for all k′′ ̸= 1.

This leads to a numerator in the softmax score of exp(η ·α/L), while the denominator sum consists
of one term exp(η ·α/L) and K−1 terms of exp(0) = 1. A similar calculation for k = L+1 shows
that the argument of the exponent for the correct object, η · Ẽ⊤

L+1[−∇WL(W0)]EL+1, evaluates to
η · (1 − α)/(K − L). By defining γ1 = α/(βK) and γ2 = (1 − α)/((1 − β)K) based on the
problem setup (L = βK), we have that

[
f−η∇WL(E1)

]
1
=

exp(ηγ1)

exp(ηγ1) +K − 1
,

[
f−η∇WL(EL+1)

]
L+1

=
exp(ηγ2)

exp(ηγ2) +K − 1
,

where γ1 and γ2 are defined as

γ1 =
α

βK
, γ2 =

1− α

(1− β)K
.

Then we derive that

ηϵGD =
1

max{γ1, γ2}
log

[
(ϵ−1 − 1)(K − 1)

]
. (H.3)

To calculate the desired quantity, we define the quantity r(α, β) to evaluate the balance of data as

r(α, β) = min{γ1/γ2, γ2/γ1} = min

{
α(1− β)

β(1− α)
,
β(1− α)

α(1− β)

}
.

Some basic calculations show that

1− min
k∈[K]

[
f−ηϵ

GDGGD(Ek)
]
k
=

ϵ

ϵ+ (1− ϵ)r(α,β)ϵ1−r(α,β)(K − 1)r(α,β)−1
. (H.4)

When r < 1, with the fact that 1
x+1 = 1− x+O(x2) as x → 0, we have that

min
k∈[K]

[
f−ηϵ

GDGGD(Ek)
]
k
= O(ϵ−r(α,β)Kr(α,β)−1).

Thus, the proof for the convergence of GD has been established.

Step 2: Calculations of Muon.

For Muon, we first calculate the SVD of the gradient. In fact, we can write the gradient in Eqn. (H.2)
as

−∇WL(W0) = Ẽ

{
diag

(
α

L
IL,

1− α

K − L
IK−L

)
− 1

K
IK ·

[
α

L
I⊤L ,

1− α

K − L
I⊤K−L

]⊤}
E⊤

= ẼXE⊤.

The SVD calculation of X = UΣV ⊤ can be directly derived from Proposition J.3. Thus, the
SVD of the gradient is −∇WL(W0) = (Ẽ · U)Σ(E · V)⊤. The update quantity GMuon(W0) =

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

U0norm(Σ0)V
⊤
0 of Muon is

−GMuon(W0)

= Ẽ1:LRL,L−1R
⊤
L,L−1E

⊤
1:L + ẼL+1:KRK−L,K−L−1R

⊤
K−L,K−L−1E

⊤
L+1:K

+
1√

K
[
α2(K − L)3 + (1− α)2L3

]((K − L)Ẽ1:LIL − LẼL+1:KIK−L

)
·
(
(K − L)α

L
I⊤LE⊤

1:L − L(1− α)

K − L
I⊤K−LE

⊤
L+1:K

)
= Ẽ1:LE

⊤
1:L + ẼL+1:KE⊤

L+1:K

+
1

K

{
1

β

(
(1− β)2α

λ
− 1

)
Ẽ1:LJL,LE

⊤
1:L

+
1

1− β

(
β2(1− α)

λ
− 1

)
ẼL+1:KJK−L,K−LE

⊤
L+1:K

− β(1− α)Ẽ1:LJL,K−LE
⊤
L+1:K − α(1− β)ẼL+1:KJK−L,LE

⊤
1:L

}
, (H.5)

where λ =
√
α2(1− β)3 + (1− α)2β3, the matrices RL,L−1 and RK−L,K−L−1 are defined in

Proposition J.3, and the second equality results from the following facts

RL,L−1R
⊤
L,L−1 = IL,L − 1

L
ILI⊤L ,

RK−L,K−L−1R
⊤
K−L,K−L−1 = IK−L,K−L − 1

K − L
IK−LI⊤K−L.

Although the gradient is composed of heterogeneous components from Ẽ1:L, E1:L and
ẼL+1:K , EL+1:K , we can bound the convergence rate of [f−ηGMuon(Ek)]k for any k: an upper (resp.
lower) bound is obtained by increasing (resp. decreasing) the coefficient of ẼkE

⊤
k while decreasing

(resp. increasing) that of Ẽk′E⊤
k for k′ ̸= k. In fact, Eqn. (H.5) implies that there exists a constant

C > 0 such that the dynamics of the fastest- and slowest-learning triplets are bounded by those
along the following two update directions.

−G+
Muon(W0) =

(
1 +

2C

K

)
(Ẽ1:LE

⊤
1:L + ẼL+1:KE⊤

L+1:K)− C

K
· ẼJK,KE⊤

−G−
Muon(W0) =

(
1− 2C

K

)
(Ẽ1:LE

⊤
1:L + ẼL+1:KE⊤

L+1:K) +
C

K
· ẼJK,KE⊤.

Concretely, the rate of score increase for the correct object of the k-th triplet, which is given by
the term Ẽ⊤

k [−GMuon(W0)]Ek in the exponent of the softmax score, is bounded. The rate for the
fastest-learning triplet is lower-bounded by the corresponding rate derived from −G+

Muon(W0), while
the rate for the slowest-learning triplet is upper-bounded by that from −G−

Muon(W0). Thus, we only
need to focus on G+

Muon(W0) and G−
Muon(W0) to calculate the desired quantity. Following the similar

procedures for GD to derive Eqn. (H.4), we have that for any η such that maxk∈[K]

[
fWη

(Ek)
]
k
≥

1− ϵ (where Wη = W0 − η ·GMuon(W0)), the following holds

1− min
k∈[K]

[
fWη (Ek)

]
k
≤ ϵ

ϵ+ (1− ϵ)r(K)ϵ1−r(K)(K − 1)r(K)−1
, (H.6)

where r(K) = (K − 2C)/(K + 2C). We further have that

(1− ϵ)r(K)ϵ1−r(K)(K − 1)r(K)−1

= (1− ϵ) exp

(
4C

K + 2C

(
log

ϵ

1− ϵ
− log(K − 1)

))
= (1− ϵ)

[
1 +

4C

K + 2C

(
log

ϵ

1− ϵ
− log(K − 1)

)
+O

(
(logK)2

K2

)]
= (1− ϵ) +O

(
logK

K

)
, (H.7)

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

where the first equality results from the basic calculations, the second equality results from that
exp(x) = 1 + x+O(x2) when x → 0. Combining Eqn. (H.6) and (H.7), we have that

ϱϵMuon ≥ 1− ϵ

(
1 +O

(
logK

K

))
.

Thus, we prove the desired results for Muon.

Step 3: Calculations of Adam.

The proof of the results for Adam is conducted under two cases. We will construct different embed-
dings Ẽ and E in these two cases. In the first case, we set Ẽ = E = IK,K . With such embedding
and sufficiently large K, we have that

−GSignGD(W0) = − sign(∇WL(W0)) = 2IK,K − JK,K .

Under such a setting, all triplets share the same dynamic. Thus, we have that

ϱϵSignGD = 1− ϵ.

In the second case, we set Ẽ and E as block-wise diagonal matrices. Here we set the block size as 3,
i.e., requiring that K mod 3 = 0. Such a requirement can be satisfied infinitely often when K → ∞.
Then the sufficient and necessary condition of Assumption 4.1 is that each 3 × 3 block contains an
orthonormal basis. To achieve this, we define the following matrix.

R(a, b, c) =

[
cos a cos b cos c− sin a sin c − cos a cos b sin c− sin a cos c cos a sin b
sin a cos b cos c+ cos a sin c − sin a cos b sin c+ cos a cos c sin a sin b

− sin b cos c sin b sin c cos b

]
.

It is obvious that R(a, b, c)⊤R(a, b, c) = I3,3. Then we set Ẽ and E as

Ẽ = IK/3,K/3 ⊗R(3.638, 2.949, 5.218), E = IK/3,K/3 ⊗R(1.715, 0.876, 3.098),

where ⊗ is the Kronecker product. With these specifications and sufficiently large K, the Adam
update matrix is

−GSignGD(W0) = IK/3,K/3 ⊗A+ JK/3,K/3 ⊗B,

where A and B are specified as

A =

[
2 0 0
2 0 2
−2 −2 −2

]
, B =

[−1 −1 −1
−1 −1 −1
1 1 1

]
.

These show that the diagonal block of −GSignGD(W0) is

A+B =

[
1 −1 −1
1 −1 1
−1 −1 −1

]
.

Since the k-th and (k+3)-th triplets share the same learning dynamics for all k ∈ [K−3], we focus
on the learning dynamics of k = 1, 2, 3. We have that

R(3.638, 2.949, 5.218)⊤ · (A+B) ·R(1.715, 0.876, 3.098)

=

[
1.46552253 1.0132908 −0.11179563
−0.0732561 1.00709257 −1.26935805
0.0544114 0.89611102 1.54147329

]
,

R(3.638, 2.949, 5.218)⊤ ·B ·R(1.715, 0.876, 3.098)

=

[−0.19288146 −1.24460331 −1.4058011
−0.20112175 −1.2977753 −1.46585978
−0.12780259 −0.82466989 −0.93147899

]
.

From the last columns of these two matrices, following the similar procedures for GD to derive
Eqn. (H.3), we have that

ηϵSignGD ≤ 1

1.541 + 0.930
log

[
(ϵ−1 − 1)(K − 1)

]
=

1

2.471
log

[
(ϵ−1 − 1)(K − 1)

]
.

31

1674
1675
1676
1677
1678
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1720
1721
1722
1723
1724
1725
1726
1727

Under review as a conference paper at ICLR 2026

Then, from the first columns of these matrices, we have that

1− min
k∈[K]

[
f−ηϵ

SignGDGSignGD(Ek)
]
k
≥ ϵ

ϵ+ (1− ϵ)rϵ1−r(K − 1)r−1
,

where r = 1.466+0.202
2.471 = 1.668

2.471 .

Thus, we have that

ϱϵSignGD ≤ O(ϵ−rKr−1) ≤ O(ϵ−0.7K−0.3).

Then we calculate the singular values of −GSignGD(W0). We define the eigen vectors of IK,K as
Ũ , i.e., Ũ⊤IK/3,K/3Ũ = diag(K/3, 0 · · · , 0). Using the orthogonal invariance of singular values,
−GSignGD(W0) shares the singular values with the following matrix

(Ũ⊤ ⊗ I3,3)
(
−GSignGD(W0)

)
(Ũ ⊗ I3,3)

= IK/3,K/3 ⊗A+ (Ũ⊤IK/3,K/3Ũ)⊗B

= diag(A−KB/3, A, · · · , A).

Thus, the singular values of A are also the singular values of GSignGD(W0). We have that

σmin

(
GSignGD(W0)

)
σmax

(
GSignGD(W0)

) ≤ σmin(A)

σmax(A)
≤ 25%.

Thus, we conclude the proof of Theorem 4.3.

I PROOF OF THEOREM 4.4

The proof of Theorem 4.4 takes two steps. In the first step, we derive the share form of Wt along the
whole optimization trajectory. In the second step, we build the desired results on the basis of step 1.
Throughout the proof, we will write WMuon

t as Wt for the ease of presentation.

Step 1: Derive the shared forms of Wt and GMuon.

We will derive the forms of Wt along the optimization trajectory via the induction method. We first
state our hypothesis and then prove it.
Hypothesis 1 . For any optimization step index t ∈ [T], the parameters Wt can be expressed as

Wt = ẼXtE, Xt = Λt + Ct,

where Λt and Ct are

Λt = diag(at · IL, bt · IK−L), Ct =

[
c11t · JL,L c12t · JL,K−L

c21t · JK−L,L c22t · JK−L,K−L

]
,

where at, bt, c
11
t , c12t , c21t , c22t ∈ R are real numbers such that (1) at = bt ≥ 0, and (2) cijt =

O(at/K) for i, j ∈ [2].

When t = 0, it is obvious to verify that W0 = 0do,ds
satisfying this hypothesis with at = bt =

c11t = c12t = c21t = c22t = 0. Then we assume that this hypothesis holds for {1, · · · , t}, and we
will prove that it holds for t + 1. Since Wt+1 = Wt − ηt+1Utnorm(Σt)V

⊤
t , we need to show

that −ηt+1Utnorm(Σt)V
⊤
t satisfies the hypothesis. We define the score of k′-th object for the k-th

subject-relation pair with the parameter W as

s(k′, k,W) =
exp(Ẽ⊤

k′WEk)∑K
k′′=1 exp(Ẽ

⊤
k′′WEk)

.

According to the symmetry of Wt, we have that

• s(k, k,Wt) = s(1, 1,Wt) for all k ≤ L.
• s(k, k,Wt) = s(K,K,Wt) for all k > L.

32

1728
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1780
1781

Under review as a conference paper at ICLR 2026

• s(k′, k,Wt) = s(2, 1,Wt) for all k, k′ ≤ L, k′ ̸= k.

• s(k′, k,Wt) = s(K, 1,Wt) for all k ≤ L, k′ > L.

• s(k′, k,Wt) = s(K − 1,K,Wt) for all k, k′ > L, k′ ̸= k.

• s(k′, k,Wt) = s(1,K,Wt) for all k > L, k′ ≤ L.

Thus, Proposition J.1 shows that the gradient of Wt is

−∇WL(Wt) = Ẽ(Γt +Bt)E
⊤,

where Γt and Bt are defined as

Γt = diag

(
α

L

(
1 + s(2, 1,Wt)− s(1, 1,Wt)

)
IL,

1− α

K − L

(
1 + s(K − 1,K,Wt)− s(K,K,Wt)

)
IK−L

)
,

Bt =

[
−α

Ls(2, 1,Wt) · JL,L − 1−α
K−Ls(1,K,Wt) · JL,K−L

−α
Ls(K, 1,Wt) · JK−L,L − 1−α

K−Ls(K − 1,K,Wt) · JK−L,K−L

]
.

Thus, Proposition J.2 shows that

−GMuon(Wt) = Ẽ

(
diag(IK) +

[
C11 · JL,L C12 · JL,K−L

C21 · JK−L,L C22 · JK−L,K−L

])
E⊤,

where

C11 =
Ũ1,1Ṽ1,1 + Ũ1,2Ṽ1,2 − 1

βK
, C12 =

Ũ1,1Ṽ2,1 + Ũ1,2Ṽ2,2√
β(1− β)K

,

C21 =
Ũ2,1Ṽ1,1 + Ũ2,2Ṽ1,2√

β(1− β)K
, C22 =

Ũ2,1Ṽ2,1 + Ũ2,2Ṽ2,2 − 1

(1− β)K
.

where Ũ , Ṽ ∈ R2×2 are the orthonormal matrices defined in Proposition J.2. Since Wt+1 = Wt −
ηt+1GMuon(Wt), it is obvious that at+1 = bt+1. The orthonormality of Ũ and Ṽ implies that
|Ũi,j |, |Ṽi,j | ≤ 1. Thus, we have

Ũ1,1Ṽ1,1 + Ũ1,2Ṽ1,2 − 1

βK
= O

(
1

K

)
.

This further implies that c1,1t+1 = O(at+1/K). The proofs for other cijt+1 are similar. This completes
the proof.

Step 2: Establish the convergence results.

We note that this analysis is very similar to the proof of Muon in Theorem 4.3. Concretely, for Wt,
the coefficients at, bt, c11t , c12t , c21t , c22t from multiple-step optimization share the same property with
those of the one-step results. It means that there exists a constant C > 0 such that the dynamics
of the fastest- and slowest-learning triplets are bounded by those along the following two update
directions in only one step.

−G+
Muon =

(
1 +

2C

K

)
(Ẽ1:LE

⊤
1:L + ẼL+1:KE⊤

L+1:K)− C

K
· ẼJK,KE⊤

−G−
Muon =

(
1− 2C

K

)
(Ẽ1:LE

⊤
1:L + ẼL+1:KE⊤

L+1:K) +
C

K
· ẼJK,KE⊤.

The remaining analysis is then exactly the same as that of Theorem 4.3. Thus, we conclude the proof
of Theorem 4.4.

33

1782
1783
1784
1785
1786
1787
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1830
1831
1832
1833
1834
1835

Under review as a conference paper at ICLR 2026

J SUPPORTING PROPOSITIONS

Proposition J.1. We define the score of k′-th object for the k-th subject-relation pair with the pa-
rameter W as

s(k′, k,W) =
exp(Ẽ⊤

k′WEk)∑K
k′′=1 exp(Ẽ

⊤
k′′WEk)

.

When the parameter W is trained with loss

L(W) = −
K∑

k=1

pk · log
[
fW (Ek)

]
k
,

the gradient of W is

∇WL(W) = −
K∑

k=1

pk

{[
1− s(k, k,W)

]
ẼkE

⊤
k −

∑
k′ ̸=k

s(k′, k,W)Ẽk′E⊤
k

}
.

Proof of Proposition J.1. The proof just follows from the basic calculus. Thus, we omit them here.

Proposition J.2. Let X = Λ + C ∈ RK×K . The matrix Λ = diag(a · IL, b · IK−L) is a diagonal
matrix whose first L diagonal elements are a and the last K − L elements are b with a, b > 0. The
matrix C is a block-wise constant matrix defined as

C =

[
c11 · JL,L c12 · JL,K−L

c21 · JK−L,L c22 · JK−L,K−L

]
.

Then X = UΣV ⊤. Here Σ, V, U are defined as follows. All of them can be decomposed into three
blocks, each corresponding to a subspace. The first subspace is

S1 =

{[
x

0K−L

] ∣∣∣∣x⊤IL = 0, and x ∈ RL

}
.

The dimension of this space is L− 1. The singular value of X corresponding to this subspace is a.
The block of columns in both U and V that forms an orthonormal basis for this subspace is given by[

RL,L−1

0K−L,L−1

]
,

where the columns of the matrix RL,L−1 ∈ RL×(L−1) form an orthonormal basis for the subspace
{x ∈ RL|x⊤IL = 0}. The second subspace is

S2 =

{[
0L
y

] ∣∣∣∣ y⊤IK−L = 0, and y ∈ RK−L

}
.

The dimension of this space is K − L− 1. The singular value of X corresponding to this subspace
is b. The block of columns in both U and V that forms an orthonormal basis for this subspace is
given by [

0L,K−L−1

RK−L,K−L−1

]
,

where the columns of the matrix RK−L,K−L−1 ∈ R(K−L)×(K−L−1) form an orthonormal basis for
the subspace {y ∈ RK−L|y⊤IK−L = 0}. The remaining 2-dimensional subspace is induced by a
2× 2 matrix M defined as

M =

[
α β
γ δ

]
= Ũdiag(s1, s2)Ṽ

⊤,

where the elements of M are defined as

α = a+ Lc11, β =
√
L(K − L) c12, γ =

√
L(K − L) c21, δ = b+ (K − L)c22.

34

1836
1837
1838
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1889

Under review as a conference paper at ICLR 2026

The singular values s1, s2 are

s1,2 =

√
T ±

√
T 2 − 4∆

2
, T = α2 + β2 + γ2 + δ2, ∆ = (αδ − βγ)2.

The singular values of X in this subspace are s1 and s2. The corresponding right singular vectors
(vi) and left singular vectors (ui), which form columns of V and U respectively, are given by:

vi = Ṽ1,ie1 + Ṽ2,ie2, ui = Ũ1,ie1 + Ũ2,ie2 for i = 1, 2,

where the vectors e1 and e2 are defined as

e1 =

[
1√
L
IL

0K−L

]
, e2 =

[
0L

1√
K−L

IK−L

]
.

In summary, the SVD of X is

Σ = diag(a · IL−1, b · IK−L−1, s1, s2),

V =

[[
RL,L−1

0K−L,L−1

]
,

[
0L,K−L−1

RK−L,K−L−1

]
, v1, v2

]
,

U =

[[
RL,L−1

0K−L,L−1

]
,

[
0L,K−L−1

RK−L,K−L−1

]
, u1, u2

]
.

Proof of Proposition J.2. We first prove the results for S1. For any vector v in S1, it is direct to
verify that

X⊤X

[
v

0K−L

]
= a2

[
v

0K−L

]
.

Thus, the singular value of X corresponding to the subspace spanned by the vector [v⊤, 0⊤K−L]
⊤ is

a, and the corresponding columns of V form an orthonormal basis for S1. For the U calculation, we
have that

X

[
v

0K−L

]
= a

[
v

0K−L

]
.

Thus, the corresponding left singular vectors (columns of U) are identical to the right singular vectors
for this subspace. A similar calculation can be done for S2. The remaining vectors are orthogonal
to both S1 and S2 and thus take the form of

vi = p1e1 + p2e2, ui = p3e1 + p4e2 for i = 1, 2 with p1, p2, p3, p4 ∈ R.

By solving the equation X⊤Xvi = λvi, we can show that the corresponding singular values and
coefficients p1, p2, p3, p4 coincide with those in the SVD of M , as can be verified by simple calcu-
lations. Thus, we conclude the proof of Proposition J.2.

Proposition J.3. Let x = [a · I⊤L , b · I⊤K−L]
⊤ ∈ RK , and X = diag(x) −K−1IK · x⊤ ∈ RK×K ,

where a, b > 0. Then the SVD of X = UΣV T is that

Σ = diag

(
a · IL−1, b · IK−L−1,

√
a2 · (K − L) + b2 · L

K
, 0

)
,

V =

[[
RL,L−1

0K−L,L−1

]
,

[
0L,K−L−1

RK−L,K−L−1

]
, v1, v2

]
,

U =

[[
RL,L−1

0K−L,L−1

]
,

[
0L,K−L−1

RK−L,K−L−1

]
, u1, u2

]
.

Here, the columns of the matrix RL,L−1 ∈ RL×(L−1) form an orthonormal basis for the subspace of
vectors in RL orthogonal to IL. Similarly, the columns of RK−L,K−L−1 ∈ R(K−L)×(K−L−1) form

35

1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2026

an orthonormal basis for the subspace of vectors in RK−L orthogonal to IK−L. These correspond
to the subspaces S1 and S2 defined as:

S1 =

{[
x

0K−L

] ∣∣∣∣x⊤IL = 0, and x ∈ RL

}
, S2 =

{[
0L
y

] ∣∣∣∣ y⊤IK−L = 0, and y ∈ RK−L

}
.

The vectors v1, v2, u1, u2 are

v1 =
1√

a2(K − L) + b2L

(
a
√
K − L√
L

[
IL

0K−L

]
− b

√
L√

K − L

[
0L

IK−L

])
v2 =

1√
a2(K − L) + b2L

(
b

[
IL

0K−L

]
+ a

[
0L

IK−L

])
u1 =

1√
KL(K − L)

(
(K − L)

[
IL

0K−L

]
− L

[
0L

IK−L

])
u2 =

1√
K

IK .

Proof of Proposition J.3. This proposition is a direct corollary of Proposition J.2. The matrix X =
diag(x)−K−1IK · x⊤ is an instance of the general form Λ + C from Proposition J.2.

The diagonal part is Λ = diag(x) = diag(a · IL, b · IK−L). The off-diagonal part is C = −K−1IK ·
x⊤. We can write C in block form:

C = − 1

K

[
IL

IK−L

] [
aI⊤L bI⊤K−L

]
= − 1

K

[
aJL,L bJL,K−L

aJK−L,L bJK−L,K−L

]
.

This corresponds to setting the block-wise constants in Proposition J.2 to:

c11 = −a/K, c12 = −b/K, c21 = −a/K, c22 = −b/K.

Substituting these into the formulas for α, β, γ, δ from Proposition J.2 gives:

α = a+ L(−a/K) = a(K − L)/K

β =
√
L(K − L)(−b/K)

γ =
√
L(K − L)(−a/K)

δ = b+ (K − L)(−b/K) = bL/K

These coefficients define the 2 × 2 matrix M from Proposition J.2 for this specific case. We now
analyze this matrix M . A key observation is that its determinant is zero:

det(M) = αδ − βγ =
a(K − L)

K

bL

K
−
(
L(K − L)

K2

)
(−b)(−a) = 0.

Since the determinant is zero, one of its singular values must be zero. The other singular value, s1,
can be calculated from the squared Frobenius norm (sum of squares of elements), which is also the
sum of squared singular values (s21 + s22):

s21 + 02 = α2 + β2 + γ2 + δ2 =
a2(K − L)2

K2
+

L(K − L)b2

K2
+

L(K − L)a2

K2
+

b2L2

K2

=
a2(K − L) + b2L

K
.

This confirms the singular values stated in the proposition. The singular vectors v1, v2, u1, u2 can
be derived by performing the SVD on this specific 2× 2 matrix M .

36

1944
1945
1946
1947
1948
1949
1950
1951
1952
1953
1954
1955
1956
1957
1958
1959
1960
1961
1962
1963
1964
1965
1966
1967
1968
1969
1970
1971
1972
1973
1974
1975
1976
1977
1978
1979
1980
1981
1982
1983
1984
1985
1986
1987
1988
1989
1990
1991
1992
1993
1994
1995
1996
1997

Under review as a conference paper at ICLR 2026

K HEAVY-TAILEDNESS OF GRADIENT OF LLMS

In this section, we discuss how our insight about the gradient in the one-layer model generalizes to
the multi-layer model. In the following analysis, we focus on the FFN modules in the model, and
the attention module can be similarly analyzed. The illustration of this multi-layer model of FFN
modules is shown in the following Figure 19.

Later Layers
𝑦 = ℎ(𝑊𝑔(𝐸𝑘))

LM Head
𝑦 = s𝑚(෨𝐸𝑇𝑥)

Residual link

𝐸𝑘

𝑓𝑊(𝐸𝑘)

Current FFN
𝑦 = 𝑊𝑜𝑢𝑡 𝑔 𝐸𝑘 ,
𝑔 𝐸𝑘 = 𝜎(𝑊𝑖𝑛𝐸𝑘)

+

+

Residual link

Previous Layers

Figure 19: The illustration of the multi-layer model of FFN modules.

We abstract the feature extraction role of all the previous layers and the in-projection of the current
FFN as a function as follows.

y = Woutσ(Winx) = Woutg(x),

where Wout,Win ∈ Rd×d are weight matrices, x ∈ Rd is the output of all the previous layers, and
g : Rd → Rd abstracts the role of feature learned in Win. Abstracting all the later layers as a function
h : Rd → Rd, the function h may also take all previous tokens as inputs, which we omit from the
notation for brevity. The whole model is written as

fW (Ek) = sm

(
Ẽ⊤

[
Wg(Ek) + h

(
Wg(Ek)

)])
,

where Ẽ ∈ Rd×K is the parameter of the language model head, K is the alphabet size, and Ek is the
hidden state of the last token in the training context that precedes the k-th token in the alphabet, at
the layer where associative memory is present. Without loss of generality, we assume that the next
token is the k-th token in Ẽ. Then the loss function on the pretraining data is

L(W) = −
K∑

k=1

pk log[fW (Ek)]k,

where pk is the frequency of k-th token. We note that this is a simplification of what happens
in the pretraining, where the frequencies of token associations instead of the single token matter.
However, such simplification does not influence our main message. In the heavy-tailed dataset, e.g.,

37

1998
1999
2000
2001
2002
2003
2004
2005
2006
2007
2008
2009
2010
2011
2012
2013
2014
2015
2016
2017
2018
2019
2020
2021
2022
2023
2024
2025
2026
2027
2028
2029
2030
2031
2032
2033
2034
2035
2036
2037
2038
2039
2040
2041
2042
2043
2044
2045
2046
2047
2048
2049
2050
2051

Under review as a conference paper at ICLR 2026

WikiText103, pk decays as pk = α · k−1 for k ∈ [K]. Then the gradient of W is

∇WL(W) = −
K∑

k=1

pk∇W log[fW (Ek)]k,

∇W log[fW (Ek)]k =
(
Id,d + Jh

(
Wg(Ek)

))⊤[
Ẽkg(Ek)

⊤ −
K∑
i=1

[fW (Ek)]i · Ẽig(Ek)
⊤
]
,

where Id,d ∈ Rd×d is the identity matrix and Jh is the Jacobian of the function h. Two structural
properties of the gradient are worth highlighting. First, ∇WL(W) is heavy-tailed, since it is a
weighted sum of per-token gradients with geometrically decaying weights pk = α ·k−1 for k ∈ [K].
Second, the gradient decomposes as a sum of outer products Ẽk g(Ek)

⊤. Our theoretical analysis in
Section 4 focuses on the simplified setting h = 0 and g(x) = x. For general h and g, the Jacobian
Jh acts as a preconditioner on the gradient, and each outer product is formed between the feature in
the language-model head Ẽ and the transformed feature g in each layer. Thus, our intuition extends
to this more general multi-layer setting.

38

	Introduction
	Preliminaries
	Main Results
	Associative Memories Are Main Beneficiaries of Muon
	Muon Consistently Learns More Isotropic Weights Than Adam
	Muon Acquires Knowledge More Evenly Compared To Adam

	Case Study of One-Layer Models
	Experimental Results
	Theoretical Results

	Conclusion
	Use of Large Language Models (LLMs)
	Notations
	Related Works
	Steepest Descent View Understanding Muon and Adam
	Detailed Discussion of the Theorem 4.3
	Experimental Details
	Experimental Details of Training on FineWeb
	Isotropicity Metrics Explanations
	Dataset Details for the Heavy-Tail Knowledge Task
	Experimental Details About Angles Between Associative Memories Embeddings
	Experimental Details of One-layer Models

	Additional Experimental Results
	MaxLogit per Layer on the 160M NanoGPT model via Muon Optimizer
	Controlling for Parameter Count in Component-wise Ablations
	Additional Results for Gated FFN on FineWeb
	Scaling to the 0.7B NanoGPT Model
	Additional Results about Spectral Dynamics of Transformer Weight Matrices During Training
	Detailed Experiment Results about Heavy-Tail Imbalance Knowledge Task
	Additional Experiment Results about Heavy-Tail Imbalance Knowledge Task with Gated Feed-Forward Networks
	Impact of Data Imbalance Level
	Additional Results on Wikitext103
	Additional Results on Linear Regression
	Additional Results about Angles Between Associative Memories Embeddings

	Proof of Theorem 4.3
	Proof of Theorem 4.4
	Supporting Propositions
	Heavy-tailedness of Gradient of LLMs

