
Use Your INSTINCT: INSTruction optimization usIng
Neural bandits Coupled with Transformers

Xiaoqiang Lin*1, Zhaoxuan Wu*23, Zhongxiang Dai†1, Wenyang Hu12, Yao Shu4,
See-Kiong Ng12, Patrick Jaillet5 & Bryan Kian Hsiang Low1

1Department of Computer Science, National University of Singapore
2Institute of Data Science, National University of Singapore

3Integrative Sciences and Engineering Programme, National University of Singapore
4AI Platform Department, Tencent

5Department of Electrical Engineering and Computer Science, MIT
{xiaoqiang.lin, wu.zhaoxuan}@comp.nus.edu.sg, dzx@nus.edu.sg,

wenyang@comp.nus.edu.sg, shuyao95@gmail.com,
seekiong@nus.edu.sg, jaillet@mit.edu, lowkh@comp.nus.edu.sg

Abstract

Large language models (LLMs) have shown remarkable instruction-following ca-
pabilities and achieved impressive performances in various applications. However,
the performances of LLMs depend heavily on the instructions given to them, which
are typically manually tuned with substantial human efforts. Recent work has used
the query-efficient Bayesian optimization (BO) algorithm to automatically optimize
the instructions given to black-box LLMs. However, BO usually falls short when
optimizing highly sophisticated (e.g., high-dimensional) objective functions, such
as the functions mapping an instruction to the performance of an LLM. This is
mainly due to the limited expressive power of the Gaussian process (GP) model
which is used by BO as a surrogate to model the objective function. Meanwhile,
it has been repeatedly shown that neural networks (NNs), especially pre-trained
transformers, possess strong expressive power and can model highly complex
functions. So, we adopt a neural bandit algorithm which replaces the GP in BO by
an NN surrogate to optimize instructions for black-box LLMs. More importantly,
the neural bandit algorithm allows us to naturally couple the NN surrogate with the
hidden representation learned by a pre-trained transformer (i.e., an open-source
LLM), which significantly boosts its performance. These motivate us to propose
our INSTruction optimization usIng Neural bandits Coupled with Transformers
(INSTINCT) algorithm. We perform instruction optimization for ChatGPT and use
extensive experiments to show that our INSTINCT consistently outperforms the
existing methods in different tasks, such as in various instruction induction tasks
and the task of improving the zero-shot chain-of-thought instruction.

1 Introduction

Large language models (LLMs) have recently achieved remarkable performances across a variety of
tasks [1, 2]. This can mainly be attributed to the strong instruction-following capability of LLMs,
which allows their adaptation to various downstream applications [3, 4]. However, it has been widely
observed that the performances of LLMs heavily depend on the instructions/prompts given to them.
These instructions are typically manually designed, which can be a human-intensive and costly

* Equal contribution.
† Corresponding author.

Workshop on Instruction Tuning and Instruction Following at NeurIPS 2023.

process [5, 6]. Therefore, it is of paramount importance to develop efficient methods to automatically
optimize the instructions/prompts to attain the best performance of LLMs. In this work, we refer to
this problem as instruction optimization and use instructions/prompts interchangeably.

Figure 1: Improvements of our
INSTINCT over baselines (in 30 tasks).

Some works have adopted gradient-based methods to
optimize the instructions of LLMs [7, 8, 9]. However,
these methods require access to the gradient of the
LLMs and are hence restricted to white-box (i.e., open-
source) LLMs, whereas the most powerful LLMs nowa-
days are typically black-box (e.g., ChatGPT [10] and
GPT-4 [11]). Furthermore, even for white-box LLMs,
gradient computation becomes resource-intensive and
hence less practical as the models become larger, which
is another limitation of gradient-based methods. There-
fore, recent works have proposed instruction optimiza-
tion methods not requiring the model gradient, which are able to optimize the instructions for
black-box LLMs [12, 13, 14]. However, these methods are based on heuristic local search and
are hence not able to leverage the observation history (i.e., the previously queried instructions and
their scores) when selecting new instructions to query. As a consequence, these methods are not
able to balance exploration of the entire space of instructions (to query instructions whose scores
are uncertain) vs. exploitation of the current observation history (to query instructions predicted to
have high scores based on the observation history). This makes them query-inefficient and hence
impractical when the API calls to black-box LLMs incur costs such as monetary and time expenses.

In this regard, the recent work of Chen et al. [15] has proposed the InstructZero algorithm which
optimizes the instruction using the query-efficient Bayesian optimization (BO) algorithm [16]. To
apply BO, InstructZero uses a separate white-box LLM to convert instruction optimization for
black-box LLMs to a continuous optimization problem, i.e., optimizing the soft prompt which is a
continuous vector (more details in Sec. 2.1). Then, InstructZero uses a Gaussian process (GP) [17] as
a surrogate to model the objective function (i.e., the function mapping a soft prompt to a score), and
sequentially selects the soft prompts to query by maximizing an acquisition function which balances
exploration and exploitation in a theoretically grounded manner. However, it has been shown that
BO often falls short when optimizing highly sophisticated or high-dimensional objective functions
[18], such as the function mapping a soft prompt to the performance (i.e., score) of an LLM. This
important shortcoming of BO is mainly attributed to the limited expressive power of the GP surrogate.
On the other hand, it has been repeatedly shown that neural networks (NNs), especially pre-trained
transformer models [19], possess strong expressive power and can model highly complex functions
with high-dimensional inputs.

Therefore, in this work, we perform instruction optimization for black-box LLMs by adopting a
recently developed neural bandit algorithm: Neural Upper Confidence Bound (NeuralUCB) [20]
(Sec. 2.2). NeuralUCB replaces the GP surrogate in BO with an NN surrogate while preserving
the ability of BO to trade-off exploration vs. exploitation in a principled way. More importantly,
NeuralUCB allows us to naturally couple the NN surrogate with the hidden representation learned by
a pre-trained transformer (i.e., a white-box LLM), which further improves the capability of the NN
surrogate for score prediction and hence boosts the performance of our algorithm. As a result, we
propose our INSTruction optimization usIng Neural bandits Coupled with Transformers (INSTINCT)
algorithm (Sec. 3). In our empirical evaluations, we optimize the instructions for the black-box
LLM ChatGPT [10] and adopt Vicuna [21] as the white-box LLM. We use extensive experiments to
show that our INSTINCT consistently outperforms the existing methods in different tasks (Sec. 4),
such as in various instruction induction tasks (Sec. 4.1) and the task of improving the zero-shot
chain-of-thought (CoT) instruction (Sec. 4.2). We also use ablation studies to unveil interesting
insights about our INSTINCT algorithm (Sec. 5).

2 Background and Problem Settings

2.1 Bayesian Optimization for Instruction Optimization

Instruction Optimization. A black-box LLM f takes as input an instruction ρ prepended to a
test input x, and outputs a sentence ŷ = f(ρ, x). The LLM f is black-box in that we can only
query it via its API and cannot access its parameters. We consider a language task with a validation

2

dataset DV = {(xi, yi)}ni=1 of n pairs of input sentence xi and its corresponding ground truth output
sentence yi. For an instruction ρ and an input xi, a score function s(·, ·) compares the LLM output
sentence ŷi = f(ρ, xi) with the ground truth output sentence yi to return a score s(ŷi, yi). As a
result, instruction optimization can be formulated as the problem of finding the optimal instruction ρ∗

that achieves the highest score averaged over the validation set DV . Note that the performance of the
instruction ρ we find using the validation set DV is evaluated using a separate test set DT .

Directly optimizing the instruction ρ for a black-box LLM f is challenging because of the combi-
natorial nature of the tokens forming the instruction ρ. To this end, InstructZero [15] has used a
separate white-box (i.e., open-source) LLM w to convert this combinatorial optimization problem
(i.e., optimizing ρ) into continuous optimization, i.e., optimizing a soft prompt z. Specifically, a soft
prompt z ∈ Z ⊂ Rd is a d-dimensional continuous vector and corresponds to the token embeddings
of a number Nz of soft tokens [9]. A soft prompt z is prepended to the token embeddings of a
fixed set E of input-output exemplars E = {(xτ , yτ)}κτ=1 for the task. These concatenated embed-
dings are used as the input to the white-box LLM w, which subsequently generates an instruction
ρ(z) = w(z, E). The generated instruction ρ(z) is then prepended to a test input xi (from the
validation dataset DV = {(xi, yi)}ni=1) and used as input to the black-box LLM f to generate an
output sentence ŷi = f(ρ(z), xi), which is then evaluated to produce a score s(ŷi, yi). In doing so,
with a fixed set E of exemplars, the discrete optimization problem of optimizing ρ is converted to the
optimization of a continuous soft prompt z:

z∗ = argmaxz∈Zh
(
ρ(z)

)
, h

(
ρ(z)

)
≜ E(x,y)∈DV

s
(
f
(
ρ(z), x

)
, y
)
= (1/n)

∑n
i=1s

(
ŷi, yi

)
. (1)

Based on this formulation, InstructZero [15] has adopted Bayesian optimization (BO) [16] to maxi-
mize the objective function h

(
ρ(z)

)
(equation 1). To achieve this, a Gaussian process (GP) [17] is

used as a surrogate to model the function h
(
ρ(z)

)
. In every iteration t of BO, the current observation

history is used to update the GP model which is then used to calculate an acquisition function αt(z).
Then, a soft prompt zt is selected by maximizing αt(z): zt = argmaxz∈Z αt(z). Next, the selected
zt is used as input to the white-box LLM w to produce an instruction ρt, which is then evaluated
using the black-box LLM f to produce a score ht (details in Sec. 3.3). Lastly, the newly collected
input-output pair (zt, ht) is added to the observation history to update the GP model, which is then
used to select the soft prompt zt+1 in the next iteration.

The soft prompt z is normally high-dimensional (e.g., d = 5120×Nz when w is Vicuna 13B), which
makes it challenging for BO to optimize. So, InstructZero [15] has adopted the technique of random
projection to reduce the input dimension. That is, given a matrix A ∈ Rd×d′

(d′ ≪ d) with randomly
sampled elements and a d′-dimensional continuous vector ẑ, the vector z = Aẑ is used as the soft
prompt. After substituting the z by Aẑ, the input variable to be optimized in equation 1 is changed to
ẑ and hence the input dimension of the optimization problem is reduced to d′. The reduced input
dimension d′, i.e., the intrinsic dimension, is chosen as d′ = 10 in InstructZero.

2.2 Neural Bandits

Neural bandit algorithms, such as NeuralUCB [20] we have adopted in this work, replace the GP
surrogate in BO (Sec. 2.1) by a neural network (NN) while preserving the principled ability of BO
to trade-off exploration vs. exploitation. The strong expressive power of NNs equips neural bandit
algorithms with the ability to optimize highly complicated objective functions, which is theoretically
justified [18]. In practice, neural bandit algorithms have also been shown to outperform BO especially
in problems with sophisticated objective functions [22]. However, naively applying NeuralUCB to
our problem is challenged by the huge computational costs. This is because every evaluation of the
NeuralUCB acquisition function requires performing an inference using the white-box LLM, which
can be extremely costly since the acquisition function needs to be evaluated many times in every
iteration. So, we use a technique based on pre-computation (Sec. 3.2) to sidestep this expensive
computation and hence make our INSTINCT algorithm scalable. Moreover, we also couple the NN
surrogate in NeuralUCB with the powerful hidden representation learned by a pre-trained transformer
to further improve the performance of our INSTINCT (Sec. 3.1).

3 INSTINCT Algorithm for Instruction Optimization
Overview. In every iteration t of our INSTINCT algorithm (Fig. 2), we firstly use the current observa-
tion history (i.e., pairs of soft prompts and observed scores) to train an NN for score prediction (step

1⃝, Sec. 3.1), and use the trained NN to calculate the NeuralUCB acquisition function (equation 2),

3

Figure 2: Illustration of our INSTINCT algorithm. Every step is described in detail in Sec. 3.

which is then maximized to select the next soft prompt zt to query (step 2⃝, Sec. 3.2). Next, we
feed the selected zt (and a small set E of exemplars for the task) as the input to the white-box LLM,
which then generates an instruction ρt (step 3⃝). Then, ρt is evaluated using the validation set DV

(steps 4⃝ and 5⃝), which produces a score ht. In the subsequent sections, We discuss every step of
our INSTINCT in the following sections, with some technical details deferred to App. E.

3.1 Training Neural Network for Score Prediction (step 1⃝)

In step 1⃝, we use the current observation history to train an NN, i.e., a multi-layer perceptron (MLP),
for score prediction. Here we use g to denote the mapping from a soft prompt z to its corresponding
hidden representation of the last token in the final layer of the pre-trained transformer (i.e., the
white-box LLM w): z′ = g(z).1 Hereafter, we refer to z′ = g(z) as the hidden representation of z
for simplicity. Importantly, thanks to the strong expressive power of the pre-trained transformer, we
can stack an NN (i.e., MLP) on top of the hidden representation z′ = g(z) to achieve accurate
score predictions (more details below). Also note that connecting the hidden representation (of the
last token in the final layer) of a pre-trained transformer with an MLP to perform prediction tasks has
been commonly adopted and proven effective in various applications [23, 24].

We use m(g(z); θ) to denote an NN (i.e., MLP) with parameters θ and input hidden representation
z′ = g(z). Note that although our NN m(g(z); θ) is used to predict a score for every soft prompt z,
we have used z′ = g(z) to represent its input because we freeze the parameters of the pre-trained
transformer model, i.e., the hidden representation z′ = g(z) for every z is fixed. In iteration t,
given the first t− 1 observations {

(
g(zτ), hτ

)
}t−1
τ=1, we train our NN m(g(z); θ) using Adam [25]

to minimize the mean squared error (MSE) loss with an L2 regularization parameter λ. This yields
the updated NN parameters θt−1. Importantly, the resulting NN m(g(z); θt−1) can both leverage the
powerful hidden representation z′ = g(z) learned by the pre-trained white-box LLM and adapt to the
task of score prediction thanks to NN training. So, the trained NN m(g(z); θt−1) is able to accurately
predict the scores of different soft prompts, which is crucial for the compelling performance of our
INSTINCT algorithm. After the NN training, we use it to select the next soft prompt to query via the
NeuralUCB acquisition function, which we discuss in the next section.

3.2 Selecting the Next Soft Prompt zt (Step 2⃝)

In step 2⃝, we choose the next soft prompt zt to query by maximizing the NeuralUCB acquisition
function (Sec. 2.2). Specifically, we use the trained NN m(g(z); θt−1) (Sec. 3.1) to calculate the
acquisition function value NeuralUCBt(z) for every soft prompt z ∈ Z in the domain, which is then
maximized across all z ∈ Z to choose the next soft prompt zt to query:

zt = argmaxz∈ZNeuralUCBt(z), NeuralUCBt(z) ≜ m(g(z); θt−1) + νtσt−1(g(z); θt−1), (2)

1Note that in addition to the soft prompt z, the hidden representation z′ also depends on other factors such as
the set E of exemplars. We have omitted the dependency on these factors here as they are kept fixed for a task.

4

in which m(g(z); θt−1) denotes the predicted score for soft prompt z, σt−1(g(z); θt−1) is a princi-
pled measure of our uncertainty about the function value h(z) at z which is calculated using the
gradient of the NN [26] (see its detailed expression in App. E), and νt is a weighting parameter.
As a result, the acquisition function NeuralUCBt(z) (equation 2) is able to select a soft prompt zt
by simultaneously encouraging both (i) exploitation of the observation history {

(
g(zτ), hτ

)
}t−1
τ=1

to encourage the selection of soft prompts predicted to have high scores m(g(z); θt−1) and (ii)
exploration of entire domain Z of soft prompts by preferring the selection of soft prompts with larger
uncertainty σt−1(g(z); θt−1). Intuitively, we are able to both (i) leverage the accurate score prediction
enabled by the strong expressivity of the NN coupled with the powerful hidden representation learned
by the pre-trained transformer w and (ii) perform principled exploration of the entire domain of
soft prompts thanks to the principled uncertainty measure σt−1(g(z); θt−1), which combine to lead
to the strong practical performance of our INSTINCT algorithm (Sec. 4). We defer more detailed
explanations of NeuralUCBt(z) (equation 2) to App. E.

Pre-Computation to Save Costs. Interestingly, since our INSTINCT algorithm does not require
updating the pre-trained hidden representation z′ = g(z), we can adopt a natural technique to
significantly reduce its computational cost. That is, before running our INSTINCT, we generate a
discrete domain Z̃ of soft prompts (details in the next paragraph) using a scrambled Sobol sequence
following the common practice in BO [27], which ensures that the discrete domain Z̃ has a good
coverage of the original continuous domain Z. Then, we pre-compute the hidden representation
z′ = g(z) for every soft prompt z in this discrete domain Z̃. Given all pre-computed hidden
representations (i.e., z′ = g(z) for all z ∈ Z̃), when selecting the next soft prompt zt during
our algorithm (equation 2), we can instead maximize over the fixed discrete domain Z̃: zt =
argmaxz∈Z̃NeuralUCBt(z). This considerably reduces the computational cost because every hidden
representation g(z) (used in the calculation of NeuralUCBt(z)) has been pre-computed.

Generating the Discrete Domain Z̃. We have also adopted the technique of random projection
(Sec. 2.1) when generating the discrete domain Z̃. Specifically, instead of directly generating a
scrambled Sobol sequence of d-dimensional vectors (d is the dimension of the soft prompt z), we
generate a sequence of d′-dimensional vectors (d′ ≪ d), which constitute a discrete domain in the
d′-dimensional space, denoted as Z̃ ′ (Sec. 2.1). Next, we use a matrix A ∈ Rd×d′

(with randomly
sampled elements) to project every point ẑ ∈ Z̃ ′ in the d′-dimensional discrete domain Z̃ ′ to the
original d-dimensional space: z = Aẑ for all ẑ ∈ Z̃ ′. The resulting projected d-dimensional vectors
constitute our discrete domain Z̃. We have adopted this technique of random projection to generate
Z̃ because it provides us a simple way to adjust the overall magnitudes of the soft prompts in the
discrete domain Z̃ by tuning the intrinsic dimension d′. Intuitively, a larger intrinsic dimension d′ in
general causes the soft prompts z ∈ Z̃ to have larger magnitudes/norms (see detailed explanation
in App. E.2), and different tasks may be suitable for soft prompts with different overall magnitudes.
Therefore, this flexibility to choose d′ allows us to automatically adapt to the task at hand by using
the validation set to tune d′ and hence further boosts the performance of our INSTINCT algorithm.

3.3 Evaluating the Selected Soft Prompt zt (Steps 3⃝- 5⃝)

After the soft prompt zt is selected (Sec. 3.2), we proceed to evaluate its performance. Specifically,
the selected soft prompt zt is prepended to the embeddings of a set E of exemplars (as well as
other texts such as "The instruction was to"), and then the concatenated embeddings are used as the
input to the white-box LLM w to generate an instruction ρt = w(zt, E) (Step 3⃝). Next, for every
input xi in the validation set DV = {(xi, yi)}ni=1, we prepend the generated instruction ρt to xi and
then use them as the input to the black-box LLM f to generate its output sentence ŷi = f(ρt, xi)
(Step 4⃝), which is used to calculate a score s(ŷi, yi). The score ht for ρt is therefore calculated
by averaging over the validation set: ht = (1/n)

∑n
i=1 s(ŷi, yi) (Step 5⃝). Lastly, we extract the

hidden representation of zt: z′t = g(zt) (Step 6⃝), and add the newly collected input-output pair
(g(zt), ht) to the observation history, which is subsequently used to train the NN m(g(z); θt) (Step

1⃝) and then select the soft prompt zt+1 in the next iteration (Step 2⃝).

5

Table 1: Average test accuracy (standard error) achieved by the best instruction discovered by
different algorithms for different tasks (3 independent trials with different random seeds). For better
distinguishability, only the tasks for which any method has an average test accuracy less than 0.8 (i.e.,
more challenging tasks) are included. The results including all tasks are given in Table 9 (App. C.2).

Task APE InstructZero INSTINCT (ours)
antonyms 0.6367(0.1416) 0.8267(0.0072) 0.8467(0.0027)
auto_categorization 0.2500(0.0094) 0.2567(0.0119) 0.2500(0.0330)
auto_debugging 0.2917(0.0340) 0.3750(0.0000) 0.2917(0.0340)
cause_and_effect 0.5733(0.0891) 0.8133(0.0109) 0.5867(0.0871)
common_concept 0.0691(0.0207) 0.0864(0.0398) 0.2129(0.0019)
diff 0.6733(0.2667) 0.6933(0.2224) 1.0000(0.0000)
informal_to_formal 0.5736(0.0026) 0.5310(0.0024) 0.5534(0.0000)
letters_list 1.0000(0.0000) 0.5900(0.1674) 1.0000(0.0000)
negation 0.7533(0.0109) 0.7767(0.0136) 0.8167(0.0027)
object_counting 0.3633(0.0191) 0.3600(0.0929) 0.3400(0.0698)
odd_one_out 0.6333(0.0144) 0.6133(0.0871) 0.7000(0.0163)
orthography_starts_with 0.4567(0.1477) 0.5067(0.0871) 0.6667(0.0272)
rhymes 0.1567(0.0640) 1.0000(0.0000) 1.0000(0.0000)
second_word_letter 0.7467(0.2028) 0.4333(0.1872) 0.1000(0.0411)
sentence_similarity 0.0000(0.0000) 0.0000(0.0000) 0.1400(0.0047)
sum 0.6733(0.2667) 1.0000(0.0000) 1.0000(0.0000)
synonyms 0.3600(0.0759) 0.2767(0.0925) 0.3067(0.0491)
taxonomy_animal 0.3467(0.2341) 0.7167(0.0838) 0.8567(0.0599)
word_sorting 0.3300(0.0374) 0.3100(0.1143) 0.5133(0.0027)
word_unscrambling 0.4400(0.1389) 0.5500(0.0170) 0.6333(0.0072)
best-performing tasks 5 5 13
second-best-performing tasks 5 10 5
average rank 2.25 2.0 1.45

3.4 Strengths of Our INSTINCT

The strengths of our INSTINCT lie in not only its enhanced exploitation (i.e., accurate score
prediction) facilitated by our NN surrogate and its coupling with the hidden representation from
the pre-trained transformer (discussed in Sec. 3.1), but also its better exploration enabled by our
principled uncertainty estimation. In particular, the exploration of BO/neural bandits relies on a good
similarity measure between different pairs of soft prompts. That is, if a pair of soft prompts leads to
similar scores (i.e., function values), a reliable similarity measure should assign a large similarity
value to this pair of soft prompts. However, an important challenge faced by the framework adopted
by both InstructZero and our INSTINCT (Fig. 2) is that different soft prompts can lead to the same
instruction and hence the same score (we verify this in Sec. 5), and these pairs of soft prompts
should be given large similarity values. Unfortunately, InstructZero cannot effectively handle this
issue because it has made use of standard similarity measures from BO (i.e., the Matérn kernel)
to measure similarity in the original space of soft prompts.2 In contrast, our INSTINCT can better
resolve this issue thanks to the use of the hidden representation in our principled uncertainty measure
σt−1(g(z); θt−1) (equation 2): if two soft prompts lead to the same instruction (and hence the same
score), the distance between their hidden representations is also small. We have empirically verified
this in our ablation study (Sec. 5). Therefore, the superiority of our INSTINCT in terms of both
exploitation and exploration helps it achieve consistently better performances than existing methods.

4 Experiments
We perform instruction optimization for ChatGPT and use Vicuna-13B as the white-box LLM w. We
conduct instruction induction tasks using 30 datasets from [15] (Sec. 4.1), and the task of improving
the zero-shot chain-of-thought instruction using 3 arithmetic reasoning datasets: GSM8K [28],
AQUARAT [29] and SVAMP [30] (Sec. 4.2). We compare our INSTINCT with two representative
baselines: APE [12] and InstructZero [15]. Following InstructZero, we initialize our algorithm by
randomly selecting 40 soft prompts, and then run our INSTINCT to query another 125 soft prompts.
For both our INSTINCT and InstructZero, for all tasks unless specifically specified, we use the
validation set DV to perform a grid search over the intrinsic dimension d′ in {10, 50, 100} and the
number Nz of soft tokens in {3, 5, 10} (Sec. 2.1). This ensures that our INSTINCT use the same

2 The instruction-coupled kernel used by InstructZero [15] can only resolve this issue when measuring the
similarity between a pair of already-queried soft prompts. See detailed explanations in App. D.1.

6

Table 3: The best zero-shot CoT instructions found by different algorithms and their scores.
Method Dataset Best Zero-Shot CoT Instruction Score

Kojima et al. [33] GSM8K Let’s think step by step. 0.71797
InstructZero GSM8K Let’s use the instruction to solve the problem. 0.74299

INSTINCT (ours) GSM8K Let’s think about it. 0.74526
Kojima et al. [33] AQUA-RAT Let’s think step by step. 0.52362

InstructZero AQUA-RAT Let’s break down the problem. 0.54331
INSTINCT (ours) AQUA-RAT I have a new solution. 0.54724
Kojima et al. [33] SVAMP Let’s think step by step. 0.7625

InstructZero SVAMP Let’s use the equation. 0.795
INSTINCT (ours) SVAMP Let’s use our brains. 0.81

the total number of queries to the black-box LLM as InstructZero for a fair comparison. For every
algorithm, after finding the best instruction using the validation set DV , we evaluate the discovered
instruction using the separate test set DT and report the test accuracy as the score. More details on
the experiments are deferred to App. C.1.

4.1 Instruction Induction

Table 2: Instruction optimization on
SAMSum dataset (summarization task).

Method ROUGE-1 ROUGE-2 ROUGE-L
APE 0.32549 0.10308 0.30245
InstructZero 0.32595 0.10528 0.30061
INSTINCT 0.35580 0.13350 0.33600

Here we aim to find a task-specific instruction that best
describes the relationship between inputs and outputs of
a given task. We report in Table 1 the test accuracy
achieved by the best instruction discovered by differ-
ent methods for various instruction induction tasks. Our
INSTINCT achieves the highest accuracy in 13 out of the
20 tasks, with an average rank of 1.45 which is signifi-
cantly better than APE and InstructZero. We have shown these 20 tasks here because they allow for
better distinguishability among different algorithms, and the advantage of our INSTINCT is consistent
in the table including all 30 tasks (Table 9 in Appendix). We have also performed a text summarization
task using the SAMSum dataset [31] (Table 2), in which our INSTINCT again performs the best. The
results here demonstrate the superior capability of our INSTINCT for instruction optimization across
a variety of tasks. In the Appendix, we have also illustrated how our INSTINCT algorithm is able to
generate higher-quality instructions across different iteration in Fig. 8, and presented the best final
instruction our INSTINCT discovered for every task in Table 8.

4.2 Improving Zero-Shot Chain-of-Thought Prompt

Chain-of-thought (CoT) reasoning has been found to be an effective technique to boost the perfor-
mance of LLMs in complex tasks that require multiple steps of reasoning [32]. The work of Kojima
et al. [33] has discovered that the performance of LLMs in complicated reasoning tasks can be
significantly improved by simply prepending the zero-shot CoT instruction "Let’s think step by step."
to the questions, which outperforms other manually designed instructions. Here we show that our
INSTINCT algorithm can further improve over this zero-shot CoT instruction across multiple tasks in
Table 3. We defer our detailed experimental design to App. C.3.

5 Ablation Study
Effectiveness of the Hidden Representation. Here we empirically verify that the use of the hidden
representation from the pre-trained transformer when building the NN surrogate (Sec. 3.1) indeed
helps improve the performance of our INSTINCT algorithm. To this end, we compare the evolution
of the performances of our INSTINCT algorithm with and without using the hidden representation
across different iterations. The results in Fig. 3 suggest that in the early iterations with a small
number of observations, the use of the hidden representation allows our NN surrogate to quickly
learn to accurately predict the scores and hence helps our INSTINCT algorithm quickly achieve high
accuracies. After more iterations, our INSTINCT algorithm without using the hidden representation
can also achieve competitive performances after enough observations (i.e., training data) have been
collected such that the NN surrogate can be trained to accurately predict the scores.

Hidden Representation Give Better Similarity Measure. As discussed in Sec. 3.4, an important
challenge faced by both InstructZero [15] and our INSTINCT is that multiple soft prompts can lead
to the same instruction and hence the same score, and this issue cannot be effectively handled

7

Figure 3: The performance of best prompts in early iterations. The tasks plotted are those for which
the performance gap is larger than 0.01 with and without using the hidden representation.

active_to_passive first_word_letter
Figure 4: Pairwise L2 distances between soft prompts (left) and hidden representations (right) for
soft prompts mapping to the same (red) and different (blue) instructions. See details in Sec. 5.

by InstructZero [15] (more explanations in App. D.1).2 In contrast, our INSTINCT can better
resolve this issue because our principled uncertainty measure is calculated based on the hidden
representations. For two soft prompts mapping to the same instruction, the distance between their
hidden representations is small. Here we empirically verify this and show the results in Fig. 4 (more
results in Fig. 10, App. D.1). We firstly construct 2 groups of soft prompts: the soft prompts in the
first group map to the same instruction (referred to as the "Same" group), and the soft prompts in
the second group map to different instructions (the "Different" group). For both the "Same" group
(red color in Fig. 4) and "Different" group (blue color in Fig. 4), for every pair of soft prompts within
a group, we compute the pairwise L2 distance between both the original soft prompts (left figure
for each task in Fig. 4) and their hidden representations (right figure). The right figure for each task
(Fig. 4) show that the pairwise distances between the hidden representations within the "Same"
group (red) are markedly smaller than those for the "Different" group (blue); meanwhile, this
notable difference between the 2 groups is not observed in the left figure for each task (i.e., the
pairwise distances between original soft prompts). This indicates that the hidden representation make
it significantly easier to resolve the above-mentioned issue, and hence our INSTINCT can perform
better exploration. We also use another ablation study (Table 7, App. D.4) to verify that our principled
exploration is necessary for the competitive performance of our INSTINCT.

Improving INSTINCT via One-shot In-Context Learning. Here we show that the performance of
our INSTINCT can be further improved via in-context learning (ICL) [34], which is a widely used
method to boost the performance of LLMs. We propose two methods to incorporate ICL into our
INSTINCT: (i) test-time-only one-shot INSTINCT which only appends an exemplar after the best
instruction discovered by our INSTINCT algorithm (and pass the concatenated instruction-exemplar
to the black-box LLM for evaluation) at test time, and (ii) one-shot INSTINCT which appends an
exemplar after every queried instruction ρt during our INSTINCT algorithm. The results (Table 4)
show that adding an exemplar to the best-discovered instruction (test-time-only one-shot INSTINCT)
improves the performance of our INSTINCT. Additionally adding the one-shot exemplar to every
queried instruction during our INSTINCT (one-shot INSTINCT) further enhances the performance,
which is likely because this improves the alignment between our optimization objective and test
performance. These results demonstrate the compatibility of our INSTINCT with ICL and suggest
wider potential applications of our INSTINCT through its combination with ICL.

Improving INSTINCT with ChatGPT Rephrasing. Here we propose a technique to further improve
the performance of our INSTINCT based on the resampling technique from APE [12]. Specifically, in
every iteration after the instruction ρt is generated by the white-box LLM (Fig. 2), instead of directly
passing ρt to the black-box LLM for evaluation, we firstly pass ρt to ChatGPT and instruct it to
rephrase and improve this instruction ρt to obtain a new instruction ρ′t. Then, the new instruction

8

Table 4: Average test accuracy achieved by (i) INSTINCT, (ii) test-time-only one-shot INSTINCT,
and (iii) one-shot INSTINCT. The results including all tasks are given in Table 5 (App. D.2).

Task test-time-only one-shot one-shot
INSTINCT INSTINCT INSTINCT

antonyms 0.8467(0.0027) 0.8533(0.0027) 0.8633(0.0072)
auto_categorization 0.2500(0.0330) 0.3000(0.0125) 0.3000(0.0216)
auto_debugging 0.2917(0.0340) 0.4583(0.0680) 0.6250(0.0000)
cause_and_effect 0.5867(0.0871) 0.6267(0.0871) 0.7733(0.0109)
common_concept 0.2129(0.0019) 0.2496(0.0019) 0.1812(0.0243)
diff 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
informal_to_formal 0.5534(0.0000) 0.5159(0.0000) 0.5362(0.0139)
letters_list 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
negation 0.8167(0.0027) 0.8567(0.0054) 0.8433(0.0223)
object_counting 0.3400(0.0698) 0.3567(0.0119) 0.4600(0.0216)
odd_one_out 0.7000(0.0163) 0.6333(0.0109) 0.6667(0.0054)
orthography_starts_with 0.6667(0.0272) 0.6667(0.0191) 0.7167(0.0027)
rhymes 1.0000(0.0000) 0.7467(0.2068) 1.0000(0.0000)
second_word_letter 0.1000(0.0411) 0.2433(0.0530) 0.4567(0.0191)
sentence_similarity 0.1400(0.0047) 0.1600(0.0000) 0.2400(0.0573)
sum 1.0000(0.0000) 1.0000(0.0000) 0.9933(0.0054)
synonyms 0.3067(0.0491) 0.3700(0.0694) 0.4600(0.0047)
taxonomy_animal 0.8567(0.0599) 0.8967(0.0495) 0.9233(0.0098)
word_sorting 0.5133(0.0027) 0.6200(0.0047) 0.6200(0.0340)
word_unscrambling 0.6333(0.0072) 0.5833(0.0098) 0.5467(0.0191)
best-performing tasks 7 7 14
average rank 2.2 1.8 1.45

ρ′t is evaluated by the black-box LLM to produce the score ht. We have applied this improved
variant of our INSTINCT algorithm to those instruction induction tasks (Sec. 4.1) with large room for
improvement, i.e., the tasks with average test accuracy below 0.8 (Table. 1). We plot the histogram of
the improvements (i.e., improved average test accuracy − original average test accuracy) in Fig. 5.
The figure shows that this technique to exploit the strong paraphrasing capability of ChatGPT has
the potential to further enhance our INSTINCT algorithm (at the expense of an additional query to
ChatGPT in every iteration). More details on the experiments here are given in App. D.3.

6 Related Work

Figure 5: Improving INSTINCT with
ChatGPT rephrasing.

Instruction Optimization for Black-Box LLMs. The meth-
ods BBT [35], BBTv2 [36] and clip-tuning [37] have pro-
posed to use evolutionary algorithms (EAs) to optimize the
prompts for black-box LLMs. However, these methods are
inapplicable to our setting because they additionally require
access to the input token embeddings and output logits of the
black-box LLMs, whereas the black-box LLMs we consider
only allow query access. GRIPS [13] and APO [14] have
used edit-based operations to propose candidate instructions
and performed instruction optimization in a gradient-free
manner. Diao et al. [38] have applied reinforcement learning
for prompt optimization, and Guo et al. [39] (concurrent to
our paper) have adopted EAs while using an LLM as the evolutionary operator. The recent work
of Zhou et al. [12] has proposed APE, which searches for high-scoring instructions by adopting
an LLM to produce candidate instructions and then using iterative re-sampling to generate other
candidates similar to the promising instructions. However, these methods above are usually query-
inefficient, mostly because they are based on local search and hence cannot effectively handle the
exploration-exploitation trade-off (Sec. 1). Another concurrent work [40] has used an LLM as an
optimizer to solve generic optimization problems and applied their method to instruction optimization.
The previous method most closely related to our paper is InstructZero [15], which has applied the
query-efficient BO algorithm to instruction optimization for black-box LLMs (see Sec. 2.1). We also
discuss the related works on instruction optimization for white-box LLMs (App. B.1), as well as BO
and neural bandits (App. B.3). Moreover, we give a visual summarization of the related works on
instruction optimization in App. B.2.

9

7 Conclusion
We introduce our INSTINCT algorithm to optimize the instructions for black-box LLMs. Our
INSTINCT replaces the GP surrogate in BO by an NN surrogate, and couples the NN surrogate
with the hidden representation learned by a pre-trained transformer. We optimize the instructions
for ChatGPT, and use extensive experiments to show that our INSTINCT consistently outperforms
existing methods in various tasks. A potential limitation of our INSTINCT is that it needs a numeric
score during optimization and hence requires a validation set. Although we have followed the common
practice from previous works, a validation set may not be easy to obtain in some applications, which
will require additional techniques to attain a reliable score to guide our optimization process.

Acknowledgments and Disclosure of Funding

This research/project is supported by the National Research Foundation Singapore and DSO National
Laboratories under the AI Singapore Programme (AISG Award No: AISG2-RP-2020-018).

References
[1] Wayne Xin Zhao, Kun Zhou, Junyi Li, Tianyi Tang, Xiaolei Wang, Yupeng Hou, Yingqian Min,

Beichen Zhang, Junjie Zhang, Zican Dong, et al. A survey of large language models. arXiv
preprint arXiv:2303.18223, 2023.

[2] Hugo Touvron, Thibaut Lavril, Gautier Izacard, Xavier Martinet, Marie-Anne Lachaux, Timo-
thée Lacroix, Baptiste Rozière, Naman Goyal, Eric Hambro, Faisal Azhar, et al. Llama: Open
and efficient foundation language models. arXiv preprint arXiv:2302.13971, 2023.

[3] Pengfei Liu, Weizhe Yuan, Jinlan Fu, Zhengbao Jiang, Hiroaki Hayashi, and Graham Neubig.
Pre-train, prompt, and predict: A systematic survey of prompting methods in natural language
processing. ACM Computing Surveys, 55(9), 2023.

[4] Jiuhai Chen, Lichang Chen, Heng Huang, and Tianyi Zhou. When do you need chain-of-thought
prompting for ChatGPT? arXiv preprint arXiv:2304.03262, 2023.

[5] Laria Reynolds and Kyle McDonell. Prompt programming for large language models: Beyond
the few-shot paradigm. In Extended Abstracts of the 2021 CHI Conference on Human Factors
in Computing Systems, 2021.

[6] Swaroop Mishra, Daniel Khashabi, Chitta Baral, Yejin Choi, and Hannaneh Hajishirzi. Refram-
ing instructional prompts to gptk’s language. ACL Findings, 2021.

[7] Taylor Shin, Yasaman Razeghi, Robert L Logan IV, Eric Wallace, and Sameer Singh. Eliciting
knowledge from language models using automatically generated prompts. In Proc. EMNLP,
2020.

[8] Xiang Lisa Li and Percy Liang. Prefix-tuning: Optimizing continuous prompts for generation.
Proceedings of the 59th Annual Meeting of the Association for Computational Linguistics and
the 11th International Joint Conference on Natural Language Processing (Volume 1: Long
Papers), pages 4582–4597, 2021.

[9] Brian Lester, Rami Al-Rfou, and Noah Constant. The power of scale for parameter-efficient
prompt tuning. In Proc. EMNLP, pages 3045–3059, 2021.

[10] OpenAI. ChatGPT. https://chat.openai.com, 2023.

[11] OpenAI. GPT-4 technical report. arXiv preprint arXiv:2303.08774, 2023.

[12] Yongchao Zhou, Andrei Ioan Muresanu, Ziwen Han, Keiran Paster, Silviu Pitis, Harris Chan,
and Jimmy Ba. Large language models are human-level prompt engineers. In Proc. ICLR, 2023.

[13] Archiki Prasad, Peter Hase, Xiang Zhou, and Mohit Bansal. Grips: Gradient-free, edit-based
instruction search for prompting large language models. arXiv preprint arXiv:2203.07281,
2022.

10

https://chat.openai.com

[14] Reid Pryzant, Dan Iter, Jerry Li, Yin Tat Lee, Chenguang Zhu, and Michael Zeng. Automatic
prompt optimization with "gradient descent" and beam search. arXiv preprint arXiv:2305.03495,
2023.

[15] Lichang Chen, Jiuhai Chen, Tom Goldstein, Heng Huang, and Tianyi Zhou. Instructzero:
Efficient instruction optimization for black-box large language models. arXiv preprint
arXiv:2306.03082, 2023.

[16] Roman Garnett. Bayesian optimization. Cambridge University Press, 2023.

[17] C. E. Rasmussen and C. K. I. Williams. Gaussian Processes for Machine Learning. MIT Press,
2006.

[18] Zhongxiang Dai, Yao Shu, Bryan Kian Hsiang Low, and Patrick Jaillet. Sample-then-optimize
batch neural Thompson sampling. In Proc. NeurIPS, 2022.

[19] Ashish Vaswani, Noam Shazeer, Niki Parmar, Jakob Uszkoreit, Llion Jones, Aidan N Gomez,
Łukasz Kaiser, and Illia Polosukhin. Attention is all you need. In Proc. EMNLP, 2017.

[20] Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural contextual bandits with UCB-based
exploration. In Proc. ICML, pages 11492–11502, 2020.

[21] Wei-Lin Chiang, Zhuohan Li, Zi Lin, Ying Sheng, Zhanghao Wu, Hao Zhang, Lianmin Zheng,
Siyuan Zhuang, Yonghao Zhuang, Joseph E. Gonzalez, Ion Stoica, and Eric P. Xing. Vicuna:
An open-source chatbot impressing GPT-4 with 90%* ChatGPT quality, March 2023. URL
https://lmsys.org/blog/2023-03-30-vicuna/.

[22] Michal Lisicki, Arash Afkanpour, and Graham W Taylor. An empirical study of neural kernel
bandits. In NeurIPS Workshop on Bayesian Deep Learning, 2021.

[23] Alec Radford, Karthik Narasimhan, Tim Salimans, Ilya Sutskever, et al. Improving language
understanding by generative pre-training. 2018.

[24] Alec Radford, Jeffrey Wu, Rewon Child, David Luan, Dario Amodei, Ilya Sutskever, et al.
Language models are unsupervised multitask learners. OpenAI blog, 1(8):9, 2019.

[25] Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

[26] Arthur Jacot, Franck Gabriel, and Clément Hongler. Neural tangent kernel: Convergence and
generalization in neural networks. In Proc. NeurIPS, 2018.

[27] David Eriksson, Michael Pearce, Jacob Gardner, Ryan D Turner, and Matthias Poloczek.
Scalable global optimization via local bayesian optimization. In Proc. NeurIPS, 2019.

[28] Karl Cobbe, Vineet Kosaraju, Mohammad Bavarian, Mark Chen, Heewoo Jun, Lukasz Kaiser,
Matthias Plappert, Jerry Tworek, Jacob Hilton, Reiichiro Nakano, et al. Training verifiers to
solve math word problems. arXiv preprint arXiv:2110.14168, 2021.

[29] Wang Ling, Dani Yogatama, Chris Dyer, and Phil Blunsom. Program induction by ratio-
nale generation: Learning to solve and explain algebraic word problems. arXiv preprint
arXiv:1705.04146, 2017.

[30] Arkil Patel, Satwik Bhattamishra, and Navin Goyal. Are nlp models really able to solve simple
math word problems? arXiv preprint arXiv:2103.07191, 2021.

[31] Bogdan Gliwa, Iwona Mochol, Maciej Biesek, and Aleksander Wawer. Samsum cor-
pus: A human-annotated dialogue dataset for abstractive summarization. arXiv preprint
arXiv:1911.12237, 2019.

[32] Jason Wei, Xuezhi Wang, Dale Schuurmans, Maarten Bosma, Fei Xia, Ed Chi, Quoc V Le,
Denny Zhou, et al. Chain-of-thought prompting elicits reasoning in large language models. In
Proc. NeurIPS, volume 35, 2022.

11

https://lmsys.org/blog/2023-03-30-vicuna/

[33] Takeshi Kojima, Shixiang Shane Gu, Machel Reid, Yutaka Matsuo, and Yusuke Iwasawa. Large
language models are zero-shot reasoners. In Proc. NeurIPS, 2022.

[34] Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
few-shot learners. In Proc. NeurIPS, pages 1877–1901, 2020.

[35] Tianxiang Sun, Yunfan Shao, Hong Qian, Xuanjing Huang, and Xipeng Qiu. Black-box tuning
for language-model-as-a-service. In International Conference on Machine Learning, pages
20841–20855. PMLR, 2022.

[36] Tianxiang Sun, Zhengfu He, Hong Qian, Xuanjing Huang, and Xipeng Qiu. BBTv2: Pure
black-box optimization can be comparable to gradient descent for few-shot learning. arXiv
preprint arXiv:2205.11200, 2022.

[37] Yekun Chai, Shuohuan Wang, Yu Sun, Hao Tian, Hua Wu, and Haifeng Wang. Clip-tuning:
Towards derivative-free prompt learning with a mixture of rewards. In Proc. EMNLP (Findings),
pages 108–117, 2022.

[38] Shizhe Diao, Zhichao Huang, Ruijia Xu, Xuechun Li, LIN Yong, Xiao Zhou, and Tong Zhang.
Black-box prompt learning for pre-trained language models. Transactions on Machine Learning
Research, 2023.

[39] Qingyan Guo, Rui Wang, Junliang Guo, Bei Li, Kaitao Song, Xu Tan, Guoqing Liu, Jiang
Bian, and Yujiu Yang. Connecting large language models with evolutionary algorithms yields
powerful prompt optimizers. arXiv preprint arXiv:2309.08532, 2023.

[40] Chengrun Yang, Xuezhi Wang, Yifeng Lu, Hanxiao Liu, Quoc V Le, Denny Zhou, and Xinyun
Chen. Large language models as optimizers. arXiv preprint arXiv:2309.03409, 2023.

[41] Weijia Shi, Xiaochuang Han, Hila Gonen, Ari Holtzman, Yulia Tsvetkov, and Luke Zettlemoyer.
Toward human readable prompt tuning: Kubrick’s the shining is a good movie, and a good
prompt too? arXiv preprint arXiv:2212.10539, 2022.

[42] Zexuan Zhong, Dan Friedman, and Danqi Chen. Factual probing is [MASK]: Learning vs.
learning to recall. In Proc. NAACL, 2021.

[43] Mingkai Deng, Jianyu Wang, Cheng-Ping Hsieh, Yihan Wang, Han Guo, Tianmin Shu, Meng
Song, Eric Xing, and Zhiting Hu. RLPrompt: Optimizing discrete text prompts with reinforce-
ment learning. In Proc. EMNLP, pages 3369–3391, 2022.

[44] Tor Lattimore and Csaba Szepesvári. Bandit Algorithms. Cambridge University Press, 2020.

[45] Weitong Zhang, Dongruo Zhou, Lihong Li, and Quanquan Gu. Neural Thompson sampling. In
Proc. ICLR, 2021.

[46] Quanquan Gu, Amin Karbasi, Khashayar Khosravi, Vahab Mirrokni, and Dongruo Zhou.
Batched neural bandits. arXiv preprint arXiv:2102.13028, 2021.

[47] Zhongxiang Dai, Yao Shu, Arun Verma, Flint Xiaofeng Fan, Bryan Kian Hsiang Low, and
Patrick Jaillet. Federated neural bandit. In Proc. ICLR, 2023.

[48] Parnian Kassraie, Andreas Krause, and Ilija Bogunovic. Graph neural network bandits. In Proc.
NeurIPS, pages 34519–34531, 2022.

[49] Chin-Yew Lin. Rouge: A package for automatic evaluation of summaries. In Text summarization
branches out, pages 74–81, 2004.

[50] Sanjeev Arora, Simon S Du, Wei Hu, Zhiyuan Li, Ruslan Salakhutdinov, and Ruosong Wang.
On exact computation with an infinitely wide neural net. arXiv preprint arXiv:1904.11955,
2019.

12

A Ethical Considerations

Since our proposed method aims to improve the performance of LLMs (via instruction optimization)
for different tasks, there may exist some ethical implications related to the usage of LLMs. Specifically,
in certain maliciously designed tasks, our method may be used by a malicious party to produce
harmful/inappropriate instructions. This is because currently our method only aims to maximize the
test performance of the black-box LLM when selecting the instructions for any given task. Therefore,
to account for such potential ethical issues and prevent the generation of harmful instructions, we
may explore extensions of our method which can also account for additional objectives or constraints
(e.g., harmfulness) during the optimization process.

B Additional Related Work

B.1 Related Works on Instruction Optimization for White-Box LLMs

AutoPrompt [7] and FluentPrompt [41] have adopted gradient-based methods to search for an optimal
sequence of discrete tokens that form an instruction. To sidestep this combinatorial optimization
problem, several works [9, 8, 42] have used gradient descent to optimize a sequence of continuous
task-specific vectors (i.e., soft prompt) prepended to the input prompt. RLPrompt [43] has instead
trained a task-specific network inserted into a frozen pre-trained LLM via reinforcement learning
(RL) reward signals. However, these methods cannot be used to optimize prompts for black-box
LLMs, which are typically more powerful.

B.2 Summarization of Related Work on Instruction Optimization

Continuous Discrete

B
la

ck
-b

ox

BBT [35]
BBTv2 [36]

Clip-Tuning [37]
InstructZero [15]
INSTINCT (Ours)

GRIPS [13]
APO [14]
APE [12]

EvoPrompt [39]
BDPL [38]
OPRO [40]

W
hi

te
-b

ox Prefix-Tuning [8]
Lester et al. [9]

OptiPrompt [42]

AutoPrompt [7]
FluentPrompt [41]

RLPrompt [43]

B.3 Related Work on Bayesian Optimization and Neural Bandits

Multi-armed bandits algorithms have been extensively studied to address sequential decision-marking
problems by balancing the trade-off between exploration and exploitation [44]. Bayesian optimization
(BO), also known as kernelized bandits, is a type of bandit algorithm which uses a Gaussian process
(GP) [17] to model the objective function (i.e., the reward function in bandits) [16]. Leveraging the
expressive power of neural networks (NNs), recent works such as NeuralUCB [20] and NeuralTS [45]
have been proposed to better model the reward function in bandits using NNs while preserving strong

13

theoretical guarantees. The application of neural bandits has been further extended to batched [46],
federated [47] and graph-structured [48] settings, among others.

C Additional Experimental Details and Results

C.1 Datasets and Implementation Details

We provide comprehensive comparisons between our method and the existing baselines using various
widely-used datasets. All experiments were carried out on a server with AMD EPYC processors and
NVIDIA A100 GPUs.

Prompting Templates. Carefully designed language input prompts are important to elicit expected
responses from the LLMs. We follow InstructZero for the template designs.

For instruction generation, we use the following prompting template with five-shot demonstrations
(Fig. 6) where each [INPUT] and [OUTPUT] pairs are replaced with the input-output pairs from the
exemplar set E = {(xτ , yτ)}κτ=1 when κ = 5. The output from the LLM is our instruction ρ.

Instruction Generation Template

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

The instruction was to

Figure 6: The prompt for our white-box LLM to generate instructions.

To evaluate an instruction, we use the following prompting template on a test input (Fig. 7) where
[INSTRUCTION] is replaced with the instruction ρ and [TEST INPUT] is replaced with test input
from a separate test set DT .

Evaluation Template

Instruction: [INSTRUCTION]

Input: [TEST INPUT]

Output:

Figure 7: The prompt for the black-box LLM to generate answer/output.

Datasets & Preprocessing. The 30 datasets for instruction induction in Sec. 4.1 are the same as
those in InstructZero [15]. We omitted 2 datasets, namely CS Algorithms, and ASCII, because the
test datasets for these two tasks are not open-sourced. For the SAMSum dataset, we select 200 data
points from the original test dataset as a test dataset to save the cost of evaluation (i.e., the cost of
calling ChatGPT API). For the arithmetic reasoning datasets (i.e., GSM8K, AQUARAT, SVAMP),
we process the dataset the same way as APE [12] does. For GSM8K and AQUARAT, we use all
test data from each corresponding test dataset to evaluate the test accuracy of the instruction. For
AQUARAT, we sample 400 data points from its test datasets as DT for evaluating the test accuracy

14

to save the cost of the evaluation. For all arithmetic reasoning datasets, we sample 200 data points
from each corresponding training dataset as the validation dataset DV .

Evaluation Metrics. For instruction induction, we use the F1 score for “common_concept”, “infor-
mal_to_formal” and SAMSum; we use the exact set matching for “orthography_starts_with” and
“taxonomy_animal”; we check whether the output label is contained in the model output for the task
of “synonyms”; and we adopt the “exact match” metric for the rest of instruction induction tasks.
For the SAMSum dataset, we additionally provide ROUGE-1, ROUGE-2, and ROUGE-L [49] as
the evaluation metrics. For the arithmetic reasoning datasets, we use the same way as APE [12] to
extract the answer (e.g., numbers or choices) from the generated text and use accuracy as the metric.

White/Black-box Models. We follow InstructZero to use Vicuna-13B as the default white-box
model for instruction generation and GPT-3.5-turbo as the default black-box model for evaluation.
However, the versions for these models are not specified by the InstructZero paper. Especially
for GPT-3.5-turbo, the model is continually updated by OpenAI. To ensure fair comparison and
reproducibility, we use GPT-3.5-turbo-0301 (which will be supported by OpenAI until at least June
2024) and Vicuna-13B-v1.1 as the default model choices for all the experiments carried out in this
paper.

Hyperparameter Details for the Neural Bandit Algorithm. We set λ = 0.1 (Sec. 3.1) and νt = 1
(Sec. 3.2) in all experiments. When doing the random projection, the elements in the projection
matrix are sampled i.i.d. from Uni(−1, 1). We choose the number of hidden representations in the
discrete domain Z̃ to be 10000 and at each iteration of our INSTINCT, we randomly sample 1000

data points from the Z̃ to evaluate the NeuralUCB acquisition function to accelerate our algorithm.
We stack an MLP on top of the hidden representations of the pre-trained transformer language model.
The MLP has an input dimension of 5120, an output dimension of 1, and a hidden layer of size 100.
We train the MLP following to minimize the mean squared error (MSE) loss for 1000 iterations after
each new observation point. A default learning rate of 0.001 is used.

Repeated Experiments with Seeding. For both our INSTINCT and InstructZero, when we perform a
grid search over the intrinsic dimension (within {10, 50, 100}) and the number of soft tokens (within
{3, 5, 10}) using the validation set for each task, we only conduct this grid search for 1 of the 3 trials,
and directly use the best parameters found in the first trial in the remaining 2 trials. This is done to
save computational costs.

C.2 Instruction Induction

For better distinguishability, we only presented the tasks for which any method has an average test
accuracy less than 0.8 (i.e., more challenging tasks) in the main text. A full comparison including
all tasks is given in Table 9 below. Overall, our INSTINCT significantly outperforms the APE and
InstructZero baselines, achieving the best performance in 19 out of the 30 instruction induction tasks.
To assess the performance of the methods from their ranks in each task, INSTINCT also achieves the
highest average ranking of 1.53 over all instruction induction tasks.

Visualizing the Optimization Process. We additionally investigate the optimization process of our
INSTINCT algorithm in finding the best instruction. Fig. 8 presents the average test performance
(over 3 random seeds) of the best instruction so far over optimization iterations. We partition the
optimization process into three stages, namely stage A, B, C, which corresponds to iteration 30, 90,
150, respectively. We see steady improvements as the optimization progresses, producing better
instructions that capture the input-output relationships of the tasks. The instructions at stage C
matches closely to the task descriptions provided in Fig. 8. Interestingly, we also observe that
the instruction that performs best on LLM does not necessarily correspond to human perception.
For example, in the task of object_counting, the instruction outputted at stage B may seem more
appropriate to a human being as compared to the instruction at stage C. However, the latter achieves
better test performance. This further necessitates an automatic instruction tuning algorithm like
INSTINCT which streamlines the process to generate task-specific instructions that work the best on
a given black-box LLM.

15

Task description: given a sentence and a letter, output the words
that start with the letter in the sentence.

Iteration Instruction
A The instruction was to find a word that could be

formed by rearranging the letters of the given word
B The instruction was to find the word that the input

corresponds to, and output it
C The instruction was to output the word that starts

with the letter that was inputted

Task description: given a sentence, output the number of objects in
the sentence.

Iteration Instruction
A The instruction was to output the number of items

that the speaker has, given the list of items that the
speaker possesses

B The instruction was to output the number of objects
mentioned in the input

C The instruction was to output the number of items
the player has, but the player has entered the num-
ber of items instead

Task description: given a list of shuffled letters, rearrange the letters
to form a meaningful word.

Iteration Instruction
A The instruction was to output the word that the

input word spells when the letters are rearranged
in a specific order

B The instruction was to output the word that is
formed by rearranging the letters of the given word

C The instruction was to output the word that is
formed by rearranging the letters of the given word

Task description: translate the words from English to Spanish.
Iteration Instruction

A The instruction was to translate the words from
Spanish to English

B The instruction was to translate the words from
English to Spanish

C The instruction was to translate the words from
English to Spanish

Figure 8: The test accuracy of the best instruction found as the iteration increases. The quality of the
instruction (i.e., test accuracy) increases as more iterations are used to perform our INSTINCT.

C.3 Improving Zero-Shot Chain-of-Thought Instructions

To improve the chain-of-thought instruction for arithmetic reasoning tasks, we use the following
instruction generation prompt for the white-box LLM. Note that when finding the chain-of-thought
instruction, we fix the intrinsic dimension d′ to be 1000 and search the number of soft tokens Nz over
{3, 5, 10} for both InstructZero and INSTINCT. The intrinsic dimension is set to be higher because we
find that when the intrinsic dimension is smaller than 1000, the variety of the generated instructions
will be small (i.e., different soft prompts will result in the same instruction). Increasing the number of
intrinsic dimensions will increase the L2 norm of the soft prompt (as we will investigate in App. E.2)
and thus affect the generated instruction more (i.e., generating different instructions given different
soft prompts). As shown in Fig. 9, we ask the white-box LLM to generate prompts to solve the math
problems and we provide 3 example chain-of-thought instructions to guide the white-box LLM to
generate chain-of-thought style instructions as similarly used by [40]. These examples are important
since the white-box LLM needs to know what are the possible instructions for other LLMs to do

16

chain-of-thought. The other part of the setting is the same as the setting in the instruction induction
task.

Instruction Generation Template for Chain-of-thought

I have some instruction examples for solving school math problems.

Instruction:
Let’s figure it out!

Instruction:
Let’s solve the problem.

Instruction:
Let’s think step by step.

Write your new instruction that is different from the examples to solve the school math problems.

Instruction:

Figure 9: The prompt for our white-box LLM to generate chain-of-thought instructions.

D More Details on Ablation Study

D.1 Hidden Representations Give Better Similarity Measure (More Details)

informal_to_formal num_to_verbal

Figure 10: Two additional tasks for Fig. 4. See the caption of Fig. 4 for a detailed explanation.

Here we give more discussions as to why the hidden representations lead to better similarity measures
compared with the original soft prompts, which has been verified by our experiments in Sec. 5.

Note that we feed every soft prompt zt (i.e., a continuous vector) to the white-box LLM w to produce
the instruction ρt (i.e., a sentence), which is then passed to the black-box LLM f for evaluation
(Fig. 2). As a result, there exist multiple soft prompts (i.e., continuous vectors) that map to the
same instruction. Therefore, it is important for an instruction optimization algorithm to take this
into account in order to achieve efficient exploration of the space of soft prompts (i.e., to avoid
unnecessary queries at multiple soft prompts which map to the same instruction). Despite their
instruction-coupled kernel [15], InstructZero is unable to account for this issue when computing
the similarity between an already-queried soft prompt and a new soft prompt, because its similarity
measure reduces to the standard L2 distance-based kernel (i.e., the Matérn kernel). In contrast, our
INSTINCT algorithm is able to take this issue into account because it builds the NN surrogate on top
of the hidden representations of the soft prompts (Sec. 3.1) which makes it easier to identify pairs of
soft prompts that map to the same instruction.

Fig. 10 below presents the results for two additional tasks (in addition to the two tasks shown in the
main paper in Fig. 4). The results from these additional figures lead to the same interpretations as
Fig. 4 in the main paper, i.e., for pairs of soft prompts leading to the same instruction, the hidden
representations make it much easier to identify that they should be assigned high similarity values.

17

Table 5: Table containing the results for all tasks in our ablation study on further improving our
INSTINCT algorithm via one-shot in-context-learning (Sec. 5) The results here correspond to Table 4
in Sec. 5 in the main paper.

Task zero-shot test-time-only one-shot one-shot
INSTINCT INSTINCT INSTINCT

active_to_passive 0.9700(0.0245) 1.0000(0.0000) 0.9967(0.0027)
antonyms 0.8467(0.0027) 0.8533(0.0027) 0.8633(0.0072)
auto_categorization 0.2500(0.0330) 0.3000(0.0125) 0.3000(0.0216)
auto_debugging 0.2917(0.0340) 0.4583(0.0680) 0.6250(0.0000)
cause_and_effect 0.5867(0.0871) 0.6267(0.0871) 0.7733(0.0109)
common_concept 0.2129(0.0019) 0.2496(0.0019) 0.1812(0.0243)
diff 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
first_word_letter 0.9300(0.0531) 1.0000(0.0000) 1.0000(0.0000)
informal_to_formal 0.5534(0.0000) 0.5159(0.0000) 0.5362(0.0139)
larger_animal 0.9367(0.0027) 0.9267(0.0027) 0.9300(0.0000)
letters_list 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
negation 0.8167(0.0027) 0.8567(0.0054) 0.8433(0.0223)
num_to_verbal 1.0000(0.0000) 1.0000(0.0000) 1.0000(0.0000)
object_counting 0.3400(0.0698) 0.3567(0.0119) 0.4600(0.0216)
odd_one_out 0.7000(0.0163) 0.6333(0.0109) 0.6667(0.0054)
orthography_starts_with 0.6667(0.0272) 0.6667(0.0191) 0.7167(0.0027)
periodic_elements 0.9267(0.0272) 0.9800(0.0000) 1.0000(0.0000)
rhymes 1.0000(0.0000) 0.7467(0.2068) 1.0000(0.0000)
second_word_letter 0.1000(0.0411) 0.2433(0.0530) 0.4567(0.0191)
sentence_similarity 0.1400(0.0047) 0.1600(0.0000) 0.2400(0.0573)
sentiment 0.8967(0.0144) 0.9167(0.0072) 0.8933(0.0027)
singular_to_plural 1.0000(0.0000) 0.9933(0.0027) 0.8433(0.0650)
sum 1.0000(0.0000) 1.0000(0.0000) 0.9933(0.0054)
synonyms 0.3067(0.0491) 0.3700(0.0694) 0.4600(0.0047)
taxonomy_animal 0.8567(0.0599) 0.8967(0.0495) 0.9233(0.0098)
translation_en-de 0.8400(0.0047) 0.8300(0.0082) 0.8367(0.0027)
translation_en-es 0.8800(0.0000) 0.8700(0.0047) 0.8833(0.0027)
translation_en-fr 0.8300(0.0205) 0.8767(0.0072) 0.8867(0.0119)
word_sorting 0.5133(0.0027) 0.6200(0.0047) 0.6200(0.0340)
word_unscrambling 0.6333(0.0072) 0.5833(0.0098) 0.5467(0.0191)
best-performing tasks 11 11 19
average rank 2.13 1.83 1.53

D.2 Improving INSTINCT via One-Shot In-Context Learning

We have demonstrated in Table 4 (in the main text) the improved performance of instruction induction
when incorporating one-shot in-context learning into our algorithm. Table 5 shows the results of all
30 instruction induction tasks. One-shot INSTINCT is the best-performing method in 19 out of 30
tasks with a highest average ranking of 1.53. Therefore, we draw the same conclusion as the main
text that our INSTINCT is compatible with in-context learning and has wider potential applications of
our INSTINCT through its combination with in-context learning.

Now, we elaborate on the necessary modifications in the implementation to carry out one-shot
in-context learning with INSTINCT. To directly adopt in-context learning at test time (i.e., for our
test-time-only one-shot INSTINCT algorithm), we modify the evaluation template to include one
exemplar as a demonstration. Referring to Fig. 11, [INSTRUCTION] is replaced with the instruction
ρ, [INPUT] and [OUTPUT] pairs are replaced with one exemplar’s input and output, and [TEST
INPUT] is replaced with test input from a separate test set DT . For one-shot INSTINCT, we use the
one-shot evaluation template (Fig. 11) for both validation and test.

18

One-shot Evaluation Template

Instruction: [INSTRUCTION]

Input: [INPUT]
Output: [OUTPUT]

Input: [TEST INPUT]

Output:

Figure 11: The prompt for the black-box LLM to generate answer/output.

D.3 Improve INSTINCT with ChatGPT Rephrasing (More Details)

To rephrase the instruction using ChatGPT to further improve the performance of INSTINCT as
discussed in Sec. 5, we use the prompting template as shown in Fig. 12 to rephrase every instruction
ρt generated by Vicuna in every iteration t. The [INSTRUCTION] in Fig. 12 is replaced by the
instruction ρt generated by Vicuna and the [INPUT] and [OUTPUT] are the same exemplars we used
for generating the instruction from Vicuna (i.e., the set E of exemplars in Fig. 2).

Rephrasing Template

We have an instruction to write an output for each input: [INSTRUCTION]. Here are some
input-output pairs:
Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

Input: [INPUT]
Output: [OUTPUT]

We need a better rephrasing of the instruction to guide a person in writing a correct
output for an input. The rephrased instruction is to

Figure 12: The prompt template for rephrasing instruction generated by INSTINCT using ChatGPT
to further boost the performance.

We also present Table. 6 containing results corresponding to Fig. 5 in the main text. We observe
the potential to further improve difficult tasks by exploiting the strong paraphrasing capability of
ChatGPT.

D.4 Effectiveness of Principled Exploration

We verify the effectiveness of the principled exploration of our INSTINCT algorithm facilitated
by the uncertainty term σ(·, ·) in equation 2, which is one of the important strengths of our
INSTINCT (Sec. 3.4). To achieve this, we compare the performance of our INSTINCT algorithm when
the weighting parameter νt (equation 2) is set to (i) the default value of νt = 1 (i.e., with exploration)
which is used in all our experiments and (ii) νt = 0 (i.e., no exploration). As shown in Table 7,
having principled exploration helps dramatically improve the instruction induction performance,
which verifies the necessity of the principled exploration in our INSTINCT algorithm.

19

Table 6: Test accuracy achieved by our technique of ChatGPT rephrasing (Sec. 5) to further improve
the performance of our INSTINCT. The results here correspond to Fig. 5 in the main paper.

INSTINCT INSTINCT+ChatGPT
auto_categorization 0.2500(0.0330) 0.2800(0.0027)
auto_debugging 0.2917(0.0340) 0.2917(0.0113)
cause_and_effect 0.5867(0.0871) 0.7867(0.0960)
common_concept 0.2129(0.0019) 0.1644(0.0024)
informal_to_formal 0.5534(0.0000) 0.5533(0.0057)
odd_one_out 0.7000(0.0163) 0.7067(0.0048)
object_counting 0.3400(0.0698) 0.5400(0.0072)
orthography_starts_with 0.6667(0.0272) 0.7133(0.0048)
second_word_letter 0.1000(0.0411) 0.9733(0.0059)
sentence_similarity 0.1400(0.0047) 0.1367(0.0524)
synonyms 0.3067(0.0491) 0.2867(0.0398)
word_sorting 0.5133(0.0027) 0.6200(0.0047)
word_unscrambling 0.6333(0.0072) 0.6067(0.0119)

Table 7: Performance of INSTINCT with νt = 1 (with our principled exploration) and νt = 0 (no
exploration). See a detailed explanation in App. D.4.

Algorithm νt = 1 νt = 0
active_to_passive 1.0000 0.9500
antonyms 0.8500 0.8600
auto_categorization 0.3000 0.3200
common_concept 0.2176 0.2105
informal_to_formal 0.5534 0.5534
negation 0.8200 0.8100
object_counting 0.4100 0.3800
odd_one_out 0.7400 0.6800
second_word_letter 0.1600 0.1000
sentence_similarity 0.1500 0.1400
sentiment 0.9300 0.8800
synonyms 0.3900 0.3700
taxonomy_animal 0.9300 0.9500
translation_en-fr 0.8800 0.8200
word_sorting 0.5100 0.5200
word_unscrambling 0.6500 0.4100

E More Technical Details on Our INSTINCT algorithm (Sec. 3)

E.1 More Technical Details on Our Principled Uncertainty Measure

Here we explain the detailed calculation of our principled measure of uncertainty σt−1(g(z); θt−1)
Sec. 3.2), which has been derived based on the theory of neural tangent kernel (NTK) [26, 50] and
neural bandits [20, 45].

We use ∇θm(g(z), θt−1) to represent the gradient of the NN parameters θ evaluated at θt−1, denote
by p the total number of parameters of the NN surrogate, and use Ip×p to represent the p × p-
dimensional identity matrix. In iteration t, i.e., after the first t− 1 observations {

(
g(zτ), hτ

)
}t−1
τ=1

have been collected, we firstly calculate the following p× p-dimensional matrix:

Vt−1 =

t−1∑
τ=1

∇θm(g(z), θt−1)∇θm(g(z), θt−1)
⊤ + λIp×p. (3)

Next, our uncertainty about the function value h(z) at z is calculated as:

σt−1(g(z); θt−1) =
√
∇θm(g(z), θt−1)⊤V

−1
t−1∇θm(g(z), θt−1). (4)

20

Formally, σt−1(g(z); θt−1) is the Gaussian process (GP) posterior standard deviation [17] when the
empirical NTK is used as the kernel: k(z1, z2) = ∇θm(g(z1), θt−1)

⊤∇θm(g(z2), θt−1). Note that
when calculating the uncertainty σt−1(g(z); θt−1) here, we have treated the hidden representation
g(z) as the input, which is justified because the hidden representation is fixed since we freeze the
parameters of the white-box LLM w (i.e., the pre-trained transformer).

The calculation of σt−1(g(z); θt−1) in equation 4 requires inverting the matrix Vt−1 which is usually
computationally prohibitive since the number p of parameters of the NN is usually very large.
Therefore, we have followed the common practice in neural bandits (e.g., adopted by both NeuralUCB
[20] and NeuralTS [45]) to use a diagonal approximation of Vt−1. That is, we only keep the diagonal
elements of Vt−1 and set all other matrix elements to 0, which allows us to sidestep the computational
cost of matrix inversion.

E.2 Detailed Explanation on the Impact of the Intrinsic Dimension

In this section, through both theoretical analysis and empirical demonstrations, we analyze the impact
of the intrinsic dimension d′ of the random variable drawn from the Sobel sequence on the norm of
the soft prompt. Our results here provide justifications for our discussion in Sec. 3.2 in the paragraph
Generating the Discrete Domain Z̃.

Let z′ ∈ Rd′
be the vector drawn from the Sobel sequence where d′ is the intrinsic dimension. Note

that each element of z′ is identically and independently distributed (i.i.d.), i.e., z′j ∼ Uni(0, 1). We
use A ∈ Rd×d′

to denote a random projection matrix where each element Aij ∼ Uni(−1, 1) is also
i.i.d. distributed.

Now, consider z = Az′ and we want to calculate ∥z∥2. We can alternatively express

A =

A1

A2

...
Ad

 , Az′ =

A1z

′

A2z
′

...
Adz

′

where each Ai is a row vector of dimension d′ and Aiz

′ =
∑d′

j=1 Aijz
′
j .

Then,

E
[
∥z∥2

]
= E

[
∥Az′∥2

]
= E

 d∑
i=1

(Aiz
′)2

= E

 d∑
i=1

 d′∑
j=1

Aijz
′
j

2

(a)
=

d∑
i=1

d′∑
j=1

E
[(

Aijz
′
j

)2
]

(b)
= dd′E

[
A2

ij

]
E
[
z′2j

]
where (a) follows from the fact that all elements are independent random variables and (b) follows
from i.i.d. Aij and i.i.d. z′j . Therefore, we have shown that E

[
∥z∥2

]
∝ d′.

We perform a synthetic experiment to verify the result we derived above. Specifically, for a fixed
intrinsic dimension, we sample 1000 Sobol sequences and use random projection to project them to
the soft prompt space. We compute the average square of the L2 norm of the 1000 soft prompts. We
vary the intrinsic dimension from 10 to 1000. As shown in Fig. 13, when increasing the number of
intrinsic dimensions, the square of the L2 norm of the corresponding soft prompts increases linearly
with the number of intrinsic dimensions.

21

Figure 13: The square of the L2 norm of the soft prompt as the number of intrinsic dimensions
increases from 10 to 1000.

22

Table 8: The best instruction discovered by our INSTINCT algorithm for every instruction induction
task (Sec. 4.1).

Task Best instruction
active_to_passive The instruction was to flip the subject and verb in each sentence, but keep the

preposition the same
antonyms The instruction was to take a word and change it to its opposite
auto_categorization The instruction was to create a list of things that the input could be associated with,

and the output would be the category that the input belongs to
auto_debugging The instruction was to add a line of code to the input to change the output
cause_and_effect The instruction was to identify the sentence that is the cause of the effect in the input

sentence pair
common_concept The instruction was to "involve" the objects mentioned in the input, so the answer

would be "involve oscillations" for the input "guitars, pendulums"
diff The instruction was to be:. Input: 41 13. Output: 28. The instruction was to be:.

Input: 72 31. Output: 41. The instruction was to be:. Input: 125 35. Output: 90.
first_word_letter The instruction was to input the word "year" into the computer and the output was

"y". The instruction was to input the word "trust" into the computer and the output
was "t". The instruction was to input the word "qualification" into the computer and
the output was "q".

informal_to_formal The instruction was to convert the input sentence into an output sentence that is
grammatically correct and idiomatic in English

larger_animal The instruction was to create a program that takes an input of two animals and
outputs the animal that is bigger

letters_list The instruction was to output the input with a space after each letter
negation The instruction was to make the output false by adding the word "not" to the input
num_to_verbal The instruction was to convert numbers to words
object_counting The instruction was to output the number of objects in the input list, but the number

of objects was not limited to just whole numbers
odd_one_out The instruction was to find the word that is most dissimilar to the others in the group
orthography_starts_with The instruction was to output the word that starts with the letter that was inputted
periodic_elements The instruction was to write a program that takes an input of a number and outputs

the name of the element that corresponds to that number on the periodic table
rhymes The instruction was to output the first word that appeared in the input text, with no

extra spaces
second_word_letter The instruction was to input the word ’year’ and output the word ’e’. The input ’year’

was not found in the list of words provided
sentence_similarity The instruction was to classify the following sentences based on their degree of

certainty, using the following scale:. 1 - probably. 2 - possibly. 3 - probably not. The
results are as follows:. Sentence 1: 3 - probably not. Sentence 2: 2 - possibly.

sentiment The instruction was to output positive or negative based on the sentiment of the
review, regardless of whether the review was actually positive or negative

singular_to_plural The instruction was to add -s to the end of each word, which indicates plural
sum The instruction was to add the numbers of the two input numbers
synonyms The instruction was to create a list of words that could be used in the same way as

the original words
taxonomy_animal The instruction was to output the name of an animal that starts with the letter "H".

Input: horse, pajamas, scarf, hippo, egg, whale. Output: whale, horse, pajamas, scarf,
hippo. The instruction was to output the name of an animal

translation_en-de The instruction was to translate the input words into German, and the output was the
German word that corresponded to the input word

translation_en-es The instruction was to translate the following text:. Input: press. Output: prensa.
Input: participant. Output: participante. Input: company. Output: compañía. Input:
outline. Output: contorno. Input: label. Output: etiquetar. The translation is not
accurate, the output does

translation_en-fr The instruction was to be given in French, but the words were often mispronounced,
and the. Input: student. Output: étudiant. Input: doctor. Output: médecin. Input:
lawyer. Output: avocat. Input: engineer. Output: ingénieur. Input: chef. Output:
chef

word_sorting The instruction was to "List: Serve wittgenstein emissive explicable ahmedabad
grebe" and the output was "ahmedabad emissive explicable grebe serve wittgenstein"

word_unscrambling The instruction was to output the word that is formed by rearranging the letters of
the given word

23

Table 9: Test accuracy (standard error) for the best instruction discovered by different algorithms for
all instruction induction tasks (Sec. 4.1). The results are obtained using 3 independent trials with
different random seeds. The Table corresponds to Table 1 in the main paper, except that all tasks are
shown here.

Algorithm APE InstructZero INSTINCT
active_to_passive 1.0000(0.0000) 0.9967(0.0027) 0.9700(0.0245)
antonyms 0.6367(0.1416) 0.8267(0.0072) 0.8467(0.0027)
auto_categorization 0.2500(0.0094) 0.2567(0.0119) 0.2500(0.0330)
auto_debugging 0.2917(0.0340) 0.3750(0.0000) 0.2917(0.0340)
cause_and_effect 0.5733(0.0891) 0.8133(0.0109) 0.5867(0.0871)
common_concept 0.0691(0.0207) 0.0864(0.0398) 0.2129(0.0019)
diff 0.6733(0.2667) 0.6933(0.2224) 1.0000(0.0000)
first_word_letter 1.0000(0.0000) 1.0000(0.0000) 0.9300(0.0531)
informal_to_formal 0.5736(0.0026) 0.5310(0.0024) 0.5534(0.0000)
larger_animal 0.8967(0.0054) 0.9000(0.0408) 0.9367(0.0027)
letters_list 1.0000(0.0000) 0.5900(0.1674) 1.0000(0.0000)
negation 0.7533(0.0109) 0.7767(0.0136) 0.8167(0.0027)
num_to_verbal 0.9967(0.0027) 1.0000(0.0000) 1.0000(0.0000)
object_counting 0.3633(0.0191) 0.3600(0.0929) 0.3400(0.0698)
odd_one_out 0.6333(0.0144) 0.6133(0.0871) 0.7000(0.0163)
orthography_starts_with 0.4567(0.1477) 0.5067(0.0871) 0.6667(0.0272)
periodic_elements 0.9267(0.0218) 0.8667(0.0606) 0.9267(0.0272)
rhymes 0.1567(0.0640) 1.0000(0.0000) 1.0000(0.0000)
second_word_letter 0.7467(0.2028) 0.4333(0.1872) 0.1000(0.0411)
sentence_similarity 0.0000(0.0000) 0.0000(0.0000) 0.1400(0.0047)
sentiment 0.9133(0.0144) 0.8767(0.0242) 0.8967(0.0144)
singular_to_plural 1.0000(0.0000) 0.9867(0.0109) 1.0000(0.0000)
sum 0.6733(0.2667) 1.0000(0.0000) 1.0000(0.0000)
synonyms 0.3600(0.0759) 0.2767(0.0925) 0.3067(0.0491)
taxonomy_animal 0.3467(0.2341) 0.7167(0.0838) 0.8567(0.0599)
translation_en-de 0.8400(0.0047) 0.8233(0.0098) 0.8400(0.0047)
translation_en-es 0.8700(0.0000) 0.8733(0.0054) 0.8800(0.0000)
translation_en-fr 0.8867(0.0027) 0.8767(0.0027) 0.8300(0.0205)
word_sorting 0.3300(0.0374) 0.3100(0.1143) 0.5133(0.0027)
word_unscrambling 0.4400(0.1389) 0.5500(0.0170) 0.6333(0.0072)
#tasks that perform the best 12 7 19
#tasks that perform the second 5 14 6
Average ranking 2.03 2.07 1.53

24

	Introduction
	Background and Problem Settings
	Bayesian Optimization for Instruction Optimization
	Neural Bandits

	INSTINCT Algorithm for Instruction Optimization
	Training Neural Network for Score Prediction (step 1⃝)
	Selecting the Next Soft Prompt zt (Step 2⃝)
	Evaluating the Selected Soft Prompt zt (Steps 3⃝-5⃝)
	Strengths of Our INSTINCT

	Experiments
	Instruction Induction
	Improving Zero-Shot Chain-of-Thought Prompt

	Ablation Study
	Related Work
	Conclusion
	Ethical Considerations
	Additional Related Work
	Related Works on Instruction Optimization for White-Box LLMs
	Summarization of Related Work on Instruction Optimization
	Related Work on Bayesian Optimization and Neural Bandits

	Additional Experimental Details and Results
	Datasets and Implementation Details
	Instruction Induction
	Improving Zero-Shot Chain-of-Thought Instructions

	More Details on Ablation Study
	Hidden Representations Give Better Similarity Measure (More Details)
	Improving INSTINCT via One-Shot In-Context Learning
	Improve INSTINCT with ChatGPT Rephrasing (More Details)
	Effectiveness of Principled Exploration

	More Technical Details on Our INSTINCT algorithm (Sec. 3)
	More Technical Details on Our Principled Uncertainty Measure
	Detailed Explanation on the Impact of the Intrinsic Dimension

