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Abstract

Do language models have beliefs about the001
world? Dennett (1995) famously argues that002
even thermostats have beliefs, on the view that003
a belief is simply an informational state decou-004
pled from any motivational state. In this pa-005
per, we discuss approaches to detecting when006
models have beliefs about the world, updating007
model beliefs, and visualizing beliefs graphi-008
cally. Our main contributions include: (1) new009
metrics for evaluating belief-updating methods010
focusing on the logical consistency of beliefs,011
(2) a training objective for Sequential, Lo-012
cal, and Generalizing updates (SLAG) that im-013
proves the performance of learned optimizers014
for updating beliefs, and (3) the introduction of015
the belief graph, a new form of interface with016
language models showing the interdependen-017
cies between model beliefs. Our experiments018
suggest that models possess belief-like quali-019
ties to only a limited extent, but update meth-020
ods can both fix incorrect model beliefs and021
greatly improve their consistency. Although022
off-the-shelf optimizers are surprisingly strong023
belief-updating baselines, our learned optimiz-024
ers can outperform them in more difficult set-025
tings than have been considered in past work.1026

1 Introduction027

Language models (LMs) may not have beliefs in028

the same sense that people do, but there are a few029

reasons to analyze LMs in terms of the beliefs030

they may possess. For one, this is a useful way031

to speak about how LMs behave. When discussing032

whether animals have beliefs (raccoons, in particu-033

lar), philosopher Daniel Dennett (1995) writes:034

You might as well call the state of the raccoon035

a belief, since if you call it a “registration” or036

a “data-structure” in the “environmental infor-037

mation store” or some other technical term, the038

logic you use to draw inferences about the ani-039

1All supporting code for experiments in this paper is pro-
vided in the Supplement.

mal’s behavior, given its internal states, will be 040

the standard, “intentionalistic” logic of belief. 041

Dennett bases this conclusion in the fact that we 042

can and do draw accurate inferences about animal 043

behavior by first understanding their beliefs. We 044

are drawn to speak about the beliefs of LMs in the 045

same “maximally bland (but maximally useful!)” 046

sense. To the extent that these neural networks 047

act intelligently in response to stimuli, we may 048

form more accurate theories of how they work by 049

understanding their beliefs. 050

A second reason for ascribing beliefs to language 051

models is that many of the stricter definitions of 052

belief incidentally exclude many real beliefs held 053

by real people. Following Dennett (1995), Newen 054

and Starzak (2020) define a belief as an informa- 055

tional state decoupled from any motivational state 056

with a few additional properties: beliefs should 057

(1) be recombinable with motivational states and 058

other informational states and (2) have some min- 059

imal kind of logical consistency. Both of these 060

properties come in degrees, and setting the bar too 061

high will exclude many of the statements that peo- 062

ple earnestly express to others in their everyday 063

lives. Meanwhile, animals and neural networks 064

alike store information in accordance with these 065

properties to at least some extent. 066

In the remainder of this paper, we turn our atten- 067

tion to three practical endeavors: detecting, updat- 068

ing, and visualizing beliefs in LMs. We build on 069

work on editing models after training, an exciting 070

recent direction of research with many potentially 071

valuable use cases (Sinitsin et al., 2020; Zhu et al., 072

2020; De Cao et al., 2021; Mitchell et al., 2021). 073

For LMs, uses include fixing factually inaccurate 074

outputs and preventing other unwanted model out- 075

puts (e.g. toxic generated text) without expensive 076

data curation and retraining efforts. These are im- 077

portant applications given that LMs (1) struggle 078

with future data when trained on data from the past 079

(Lazaridou et al., 2021; Dhingra et al., 2021), (2) 080
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SLAG: Sequential, Local, and Generalizing Model Updates

(Main Input)

(Entailed Data)

(Local Neutral Data)

(Paraphase Data)

(Random Data)

A viper is a vertebrate.

A viper has a brain.

A viper is venemous.

Chile is a country.

Vipers are vertebrates. 

Figure 1: Relying only on a Main Input Mi, we want to make a targeted update to a language model that (1)
changes the output for input Mi to a desired label y∗i (e.g. True/False, or an answer to a question), (2) changes
the output for equivalent paraphrases of Mi, (3) appropriately changes outputs for data Ei entailed by the tuple
(Mi, y

∗
i ), and (4) does not change outputs for other logically neutral data LNi, even if it is similar (local) to Mi.

often generate morally undesirable text (Gehman081

et al., 2020; Bender et al., 2021), and (3) simply082

give inaccurate outputs for tasks like question an-083

swering (Lin et al., 2021). Notably, there is good084

evidence that scaling models to larger sizes will not085

fix these particular problems or may even exacer-086

bate them (Lazaridou et al., 2021; Gehman et al.,087

2020; Lin et al., 2021). We next outline a few key088

contributions of the paper. Figure 1 represents the089

core ideas behind these contributions.090

Detecting beliefs. We measure the degree to which091

LMs exhibit several properties of belief-possessing092

systems, using models finetuned on fact verifica-093

tion and question answering tasks. Beyond simply094

checking individual model responses, we want to095

assess the structural properties of model outputs:096

Are they consistent under paraphrase? Are they097

logically consistent? Does changing one belief098

correctly change other entailed beliefs? Does it099

erroneously change other unrelated beliefs? Past100

work has focused primarily on consistency under101

paraphrase (Elazar et al., 2021; De Cao et al., 2021;102

Mitchell et al., 2021). Here, we adapt data from103

Talmor et al. (2020) to measure consistency under104

entailment (including for contrapositives), and we105

use the Wikidata5m dataset (Wang et al., 2021b) to106

construct logically neutral belief pairs for checking107

that models do treat these beliefs as independent.108

Updating beliefs. We propose a Sequential, Local,109

and Generalizing belief update objective (SLAG)110

that substantially improves the performance of the111

KNOWLEDGEEDITOR method from De Cao et al.112

(2021). KNOWLEDGEEDITOR is a learned opti-113

mizer that edits a model’s weights to change its pre-114

diction on an input while satisfying other desider-115

ata, like consistency under paraphrase. Principally,116

we use more difficult training data for the learned 117

optimizer, and we learn to apply many small edits 118

rather than one big edit. These changes markedly 119

improve the update success rate and lower the 120

rate at which other beliefs are corrupted. We also 121

find that KNOWLEDGEEDITOR almost totally fails 122

when updating multiple beliefs in a row as opposed 123

to a changing a single belief. However, by explic- 124

itly training the optimizer to update multiple beliefs 125

sequentially, we recover much of the lost perfor- 126

mance. Lastly, we advocate that these methods be 127

evaluated for their ability to fix false or morally 128

undesirable model beliefs, rather than to arbitrarily 129

change beliefs to plausible alternatives as in past 130

work (De Cao et al., 2021; Mitchell et al., 2021). 131

Visualizing belief graphs. We explore a new form 132

of interface with LMs, the belief graph. Given a 133

set of beliefs, we construct belief graphs by chang- 134

ing each model belief and checking what other 135

beliefs are sensitive to those changes. Each belief 136

becomes a node, and directed edges between nodes 137

show that updating one belief changes the other. 138

We discuss graph metrics that help summarize the 139

dependencies between model beliefs. 140

We summarize our main conclusions as follows: 141

1. ∼100M parameter models exhibit limited belief- 142

like qualities, as paraphrase consistency scores 143

are under 70%, and models show mixed levels 144

of consistency under entailment (Sec. 5.1). 145

2. Off-the-shelf optimizers are quite effective up- 146

date methods, often outperforming learned opti- 147

mizers when updating a single belief (Sec. 5.2). 148

3. When updating multiple beliefs in a row, per- 149

formance greatly declines across methods, but 150

SLAG can improve learned optimizers’ perfor- 151

mance beyond the baselines (Sec. 5.2). 152
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4. Belief graphs reveal many nonsensical depen-153

dencies between model beliefs, but updates are154

most likely to change already incorrect model155

beliefs, and there are highly connected beliefs156

that influence a large fraction of beliefs (Sec. 6).157

158

2 Related Work159

Detecting beliefs in language models. Much past160

work has explored how information is stored and161

represented in pretrained language models (Rogers162

et al., 2020), though few discuss what qualifies in-163

formation as a model belief. Petroni et al. (2019)164

provide evidence that LMs store relational infor-165

mation between entities, and Roberts et al. (2020)166

show that LMs can answer open-ended questions.167

Subsequent work has explored how much knowl-168

edge is stored in LMs (Heinzerling and Inui, 2021),169

approaches to querying models for knowledge (He-170

witt and Liang, 2019; Jiang et al., 2020; West et al.,171

2021), and methods for learning more knowledge172

during pretraining (Wang et al., 2021b,a). Most rel-173

evant to our work are studies from Talmor et al.174

(2020) and Elazar et al. (2021). Talmor et al.175

(2020) train LMs to perform True/False classifi-176

cation of factual claims, and they measure how177

beliefs correlate between entailed facts. We use178

their LeapOfThought data as a part of our SLAG179

objective (Eq. 1) and to measure model consis-180

tency under entailment before and after updating181

beliefs in models. Meanwhile, Elazar et al. (2021)182

measure the consistency of model predictions for183

paraphrased inputs. We adopt their metric for para-184

phrase consistency as a measure of belief. In con-185

current work, Kassner et al. (2021) discuss con-186

sistency under entailment and paraphrase as con-187

ditions for belief, and they measure consistency188

under entailment with a new dataset, BeliefBank.189

Updating beliefs in language models. Ap-190

proaches to making targeted updates to model be-191

liefs vary along a few dimensions. First is whether192

the methods alter model training or operate in a193

post-training setting. Sinitsin et al. (2020) use a194

meta-learning objective during training to encour-195

age ease of editing afterwards. A larger family of196

methods perform post-training model updates: Dai197

et al. (2021) propose a hand-crafted algorithm that198

edits model weights, while Zhu et al. (2020) use199

projected gradient descent for batches of points.200

De Cao et al. (2021) and Mitchell et al. (2021)201

train hypernetworks (learned optimizers) that pro-202

cess model gradients in order to produce a new203

model that (1) gives the desired output for an input, 204

while (2) satisfying other objectives like minimiz- 205

ing changes in predictions for other data. Here, we 206

build directly upon the method from De Cao et al. 207

(2021), showing where it fails and providing an im- 208

proved training objective (SLAG). Lastly, Kassner 209

et al. (2021) “update” model beliefs by adding in 210

relevant information to the input at test time. But 211

this approach does not change the model weights 212

and hence does not influence model outputs on all 213

other potentially relevant inputs. 214

3 Updating Beliefs in Language Models 215

Here we describe the problem of updating model 216

beliefs and our learned optimizer method. We dis- 217

cuss metrics for detecting beliefs in Sec. 5.1 and 218

our Belief Graphs in Sec. 6. 219

Problem statement and metrics. We suppose we 220

have a model fθ = pθ(y|x) parametrized by θ. For 221

an input xi that has some undesired model out- 222

put ŷi = arg maxy pθ(y|x), we wish to obtain a 223

new model θ∗ that produces a desired output y∗i 224

for xi. This new model θ∗ should also fulfill a 225

few other desiderata. As in past work (De Cao 226

et al., 2021; Mitchell et al., 2021), we operational- 227

ize these desiderata in the following metrics: 228

1. Update Success Rate (Main Input): How often 229

the updated model gives the desired output y∗i 230

for the Main Input xi. 231

2. Update Success Rate (Paraphrase): How of- 232

ten the updated model gives the same new 233

prediction for xi and for paraphrases of xi. 234

3. Retain Rate (All Data): How often the up- 235

dated model’s predictions are unchanged for 236

all other data besides the Main Input. 237

4. ∆-Acc (All Data): The change in accuracy on 238

all other data besides the Main Input. 239

In practice, Retain Rate (All Data) and ∆-Acc are 240

computed with random subsets of a dataset, since 241

these must be computed after every belief update. 242

We add two metrics to those used in past work: 243

5. Update Success Rate (Entailed Data): The 244

new model’s accuracy on data that is logically 245

entailed by the new Main Input prediction. 246

6. Retain Rate (Local Neutral): How often new 247

predictions are unchanged for data similar to 248

the Main Input but still logically neutral. 249
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Dataset Data Type Input Label(s)

zsRE Main Input Player Ali Kanaan plays for what team? {Sporting Al Riyadi Beirut}Paraphrase What team is Ali Kanaan associated with?

Wikidata5m

Main Input Mary Good has relation ‘award received’ to {Garvan-Olin Medal; Arkansas
Women’s Hall of Fame; etc.}Paraphrase Mary Lowe Good has relation ‘winner of’ to

Local Neutral Mary Good has relation ‘educated at’ to {The University of Arkansas; U
Arkansas; etc.}

FEVER Main Input Tardigrades are also known as space bears. True
Main Input The Lion belongs to the genus Vulpes. False

LeapOfThought Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Table 1: Example datapoint from each dataset, and auxiliary data that accompanies the Main Input.

We use Update Success Rate (Entailed Data) to250

measure logical consistency for an updated model,251

since changing one belief entails changes in logi-252

cally entailed beliefs. Retain Rate (Local Neutral)253

uses special Local Neutral data. Unlike random254

data, Local Neutral data is guaranteed to be log-255

ically independent of the Main Input, while still256

being similar (local) to it. Together, these six met-257

rics better cover the criteria for belief outlined by258

Newen and Starzak (2020). We compute the met-259

rics using data of the kind shown in Table 1.260

Evaluation procedure. To date, methods have261

been evaluated on the basis of their ability to262

change model predictions for all data. Moreover,263

the desired labels {y∗i }ni=1 on sequence prediction264

tasks have each been selected from the model’s pre-265

dictive beam search (De Cao et al., 2021; Mitchell266

et al., 2021). We propose for evaluation to focus267

on a more valuable but difficult setting: changing268

the predictions on incorrect points to be correct.269

Sequential updates. The standard evaluation in270

past work is to update a single model belief, evalu-271

ate the new model, then rollback the update before272

repeating the process for each test point. We ob-273

tain sequential versions of all metrics by applying r274

model updates in a row before checking the metrics,275

meaning there are floor(n/r) measurements for a276

test set of n points. We consider it important to277

evaluate a sequential setting because, in practice, it278

is likely that model developers will want to update279

many beliefs of a trained model over time.280

Belief updating method. We use the KNOWL-281

EDGEEDITOR architecture from De Cao et al.282

(2021) with our training objective, SLAG. For the283

details of this architecture, we refer readers to Sup-284

plement A. Let it suffice for now to observe that a285

new model is given as a differentiable function286

θ∗ = θ + gφ(xi, ŷi, y
∗
i , θ)287

using the learned optimizer gφ, current LM weights 288

θ, Main Input xi, current prediction ŷi, and desired 289

model output y∗i . We package the above update 290

as θ(k+1) = θ(k) + gφ(xi, ŷi, y
∗
i , θ

(k)), and obtain 291

new model parameters via a looped update, 292

θ∗ = θ(k) +

K−1∑
j=0

gφ(xi, ŷi, y
∗
i , θ

(k+j)) 293

= Update(xi, ŷi, y
∗
i , θ

(k);φ,K) 294

taking K small steps from initial parameters θ(k). 295

Learned optimizer training. The training objec- 296

tive for KNOWLEDGEEDITOR includes differen- 297

tiable terms corresponding to Update Success for 298

the Main Input and paraphrases, as well as Retain 299

Rate for all other data. We also consider terms 300

for Update Success on entailed data and the Local 301

Neutral Retain Rate, when this is possible given 302

available data. The overall objective requires sev- 303

eral kinds of additional data for each point, which 304

we denote by DR for other random data, DLN for 305

local neutral data,DE for entailed data, andDP for 306

paraphrases of xi. For a data point xi with desired 307

prediction y∗i , the full objective is then: 308

L(φ;xi, ŷi, y
∗
i , θ) = λ1LTask(fθ∗(xi), y

∗
i )

+ λ2
1

|DP |
∑

xP∈DP

LTask(fθ∗(xP ), y∗i )

+ λ3
1

|DE |
∑

xE ,yE∈DE

LTask(fθ∗(xE), yE)

+ λ4
1

|DLN |
∑

xLN∈DLN

KL(fθ∗(xLN )||fθ(xLN ))

+ λ5
1

|DR|
∑

xR∈DR

KL(fθ∗(xR)||fθ(xR)) (1)

309

where LTask is the loss used to get gradients for fθ. 310

We use the Cross Entropy loss for binary classifica- 311

tion and sequence-to-sequence tasks. 312
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We optimize this objective w.r.t. φ using313

AdamW (Loshchilov and Hutter, 2019). To obtain314

update labels {y∗i }ni=1, we always use the oppo-315

site class in binary classification. For sequence-to-316

sequence tasks, we use the correct label when ŷi317

is incorrect, and when ŷi is correct, we randomly318

select another label from the training data. This319

choice is in contrast to De Cao et al. (2021) and320

Mitchell et al. (2021), who use samples from the321

model beam search as update labels for all points.322

SLAG objective. To prepare the update method323

for a sequential-update setting, we consider train-324

ing gφ to update multiple datapoints in a row. Using325

the per-datapoint loss in Eq. 1, we obtain our Se-326

quential, Local, and Generalizing (SLAG) loss for327

a set of r Main Inputs D = {xi, ŷi, y∗i }ri=1 as328

LSequential(φ;D, θt)=
r∑
i=1

L(φ;xi, ŷi, y
∗
i , θt+i) (2)329

where θt+i = Update(xi, ŷi, y
∗
i , θt+i−1;φ,K) are330

the model parameters obtained from updating on331

the first i points in D (starting from θt). This objec-332

tive allows us to train gφ to update multiple beliefs333

in a row. By avoiding backpropagating through334

past time steps in this objective, our memory use335

remains constant in r (see Supplement Fig. 4).336

4 Experiment Setup337

Datasets. We run experiments with four datasets338

(example data shown in Supplement Table 15). (1)339

FEVER includes 115,409 True/False factual claims340

(Thorne et al., 2018). We use the original test set341

of 10,444 points, and we randomly split the train-342

ing data into 94,469 train points and 10,496 dev343

points. (2) zsRE includes 151,631 questions based344

on relational knowledge from Wikipedia, which345

we randomly shuffle into train/dev/test splits with346

80/10/10% of the data (Levy et al., 2017). Tal-347

mor et al. (2020) introduce (3) the LeapOfThought348

dataset, consisting of factual claims that are en-349

tailed to be true or false depending on a context350

fact. We filter the data so that the context facts are351

unique, then shuffle the resulting 14,939 points into352

train/dev/test splits with 60/10/30% of the data.353

In order to get Local Neutral data, we construct354

(4) a sequence prediction task using Wikidata5m,355

a relational knowledge base with over 20 million356

triplets (Wang et al., 2021b). Each input consists357

of an entity e1 and relation r, and the label is an-358

other entity e2 that completes the triplet. All inputs359

Belief Consistency ↑

Dataset Paraphrase Entailed Contrapos.

LeapOfThought - 85.6 (1.1) 16.5 (2.7)
zsRE 69.5 (1.1) - -
Wikidata5m 25.8 (0.5) - -

Table 2: Belief metric results across datasets.

Paraphrase Consistency ↑

Dataset Model Incorrect Model Correct

zsRE 61.39 (1.33) 91.82 (1.17)
Wikidata5m 24.55 (0.48) 37.20 (2.06)

Table 3: Paraphrase consistency by the correctness of
the model prediction on the Main Input.

come in pairs that share the same entity e1 but use 360

different relations with different labels. In general, 361

the completion e2 to the Main Input triplet (e1, r1, 362

e2) has no logical consequences for its paired in- 363

put, (e1, r2, ?). The paired points are also local to 364

the Main Input, i.e. they pertain to the same entity 365

e1 as the Main Input. We obtain four paraphrases 366

for each Main Input using different aliases for the 367

entity and synonyms of the relation. We construct 368

a train set of 150k points and dev/test sets of 10k 369

points each. See Supp. B for further details. 370

Models. We train five models with different ran- 371

dom seeds for each dataset, using RoBERTa-base 372

for binary tasks and BART-base for sequence-to- 373

sequence tasks (accuracies in Supp. Table 14). For 374

each of the five models, we train one learned op- 375

timizer using SLAG and one with the objective 376

from De Cao et al. (2021), which we list as KE in 377

tables below. Our model selection criterion is the 378

mean of: the average Update Success Rate (across 379

data types), Retain Rate (only for Local Neutral 380

data), and ∆-Acc for All Data. We tune the choice 381

of SLAG objective terms for each task separately 382

(see Supp. Table 10 for final selections; results 383

discussed in Supp. E). Other hyperparameters are 384

given in Supp. B. To summarize the differences 385

between SLAG and KNOWLEDGEEDITOR: (1) we 386

use Ktrain = Ktest rather than Ktrain = 1; (2) we 387

adopt training labels using real data labels rather 388

than alternatives from the model’s beam search; 389

and (3) our objective terms differ following tuning. 390

Baselines. We use off-the-shelf optimizers as base- 391

lines. We tune the baseline hyperparameters sep- 392

arately for each dataset, selecting among several 393

kinds of optimizers, learning rates, and the num- 394

ber of update steps. The selection criterion is the 395

same as the criterion outlined for learned optimiz- 396
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Single-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
AdamW 100 (0.0) - - - 98.80 (0.2) 0.22 (0.1)
KE 99.98 (<0.1) - - - 98.28 (0.3) -0.24 (0.1)
SLAG 99.99 (<0.1) - - - 98.41 (0.2) -0.20 (0.1)

LeapOfThought
SGD 100 (0.0) - 72.48 (4.6) - 95.52 (0.4) 1.23 (0.8)
KE 99.78 (0.4) - 74.48 (4.4) - 93.50 (1.3) -1.33 (1.1)
SLAG 100 (0.0) - 75.50 (4.3) - 94.92 (1.4) -1.31 (1.2)

zsRE
SGD 99.36 (0.1) 94.44 (0.6) - - 74.73 (0.4) -0.43 (0.1)
KE 84.73 (1.4) 89.26 (1.8) - - 71.55 (2.4) -2.19 (0.4)
SLAG 94.29 (0.4) 94.71 (0.5) - - 80.48 (1.3) -0.29 (0.1)

Wikidata5m
SGD 98.05 (0.3) 68.78 (0.8) - 41.46 (1.0) 58.62 (0.6) -1.97 (0.3)
KE 74.57 (2.9) 58.05 (2.2) - 40.84 (1.8) 53.58 (2.2) -3.03 (0.5)
SLAG 87.59 (0.6) 80.70 (0.9) - 47.85 (1.0) 63.51 (1.3) -1.71 (0.3)

Table 4: Belief update metrics for off-the-shelf optimizers, KNOWLEDGEEDITOR (KE) from De Cao et al. (2021),
and SLAG, with rtest = 1. Bolded numbers are the best in their group at a statistical significance threshold of
p < .05 (or lower). Our SLAG objective improves over KE, but off-the-shelf optimizers perform surprisingly well.

Update Success Rate ↑ ∆-Acc ↑

Desired Label Main Input Paraphrase All Data

Beam Label 97.41 (0.3) 97.03 (0.4) -0.30 (0.1)
Correct Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table 5: Evaluation difficulty by desired model output,
for a learned optimizer trained with SLAG on zsRE.

ers above. The resulting baselines are surprisingly397

strong (see Supp. Table 12 for final selections).398

Hypothesis testing. We obtain 95% confidence399

intervals and perform hypothesis tests via block400

bootstrap, resampling model seeds and data points401

(Efron and Tibshirani, 1994). For ablation experi-402

ments, we run only one model seed per condition.403

5 Experiment Results404

5.1 Do LMs have beliefs about the world?405

We measure Paraphrase Consistency, Entailment406

Acc, and Contrapositive Acc for finetuned task407

models. Paraphrase Cons. is the fraction of para-408

phrase pairs where the model produces the same409

output (Elazar et al., 2021). Entailment Acc is the410

model accuracy on data that is entailed by the Main411

Input. On LeapOfThought, “Main Input xi is true”412

implies “entailed input xE has label yE .” There-413

fore, we compute Entailment Acc for data where414

the Main Input prediction is correct. The contrapos-415

itive also holds: “Entailed input xE does not have416

label yE” implies that “Main Input xi is false.” So417

Contrapositive Acc measures how often the model418

follows this rule, when the antecedent holds.419

Belief measurement results. Table 2 shows the420

belief metrics for each dataset. We find that421

∼100M parameter models show limited evidence422

of having beliefs about the world. Paraphrase con- 423

sistency is 69.50% (± 1.09) for zsRE and much 424

lower for Wikidata5m (25.84%±0.53). While 425

entailment accuracy is high for LeapOfThought 426

(85.63%±1.08), the model is consistent under the 427

contrapositive only 16.51% (± 2.71) of the time. 428

One might reasonably set the bar for qualifying as a 429

“belief” higher than these scores. But since belief- 430

likeness comes in degrees, we continue to refer to 431

model beliefs for the rest of the paper. Interest- 432

ingly, the metrics are much higher when the model 433

prediction on the Main Input is correct (Table 3). 434

5.2 Can we update beliefs in LMs? 435

First, we compare two evaluation procedures for 436

sequence prediction tasks: correcting model be- 437

liefs versus changing them to an alternative from 438

the model’s beam search. We do so for zsRE us- 439

ing SLAG. Next, we compare belief update per- 440

formance between KNOWLEDGEEDITOR, SLAG, 441

and off-the-shelf optimizers. We report results in 442

single-update (rtest = 1) and sequential-update 443

(rtest = 10) settings. See Supplement Fig. 5 for an 444

ablation across rtest. 445

Correcting beliefs vs. changing beliefs. Given 446

the results in Table 5, we find that correcting model 447

outputs is harder than simply changing them to a 448

plausible alternative. Update Success rises by a 449

full 2.96 (±0.48; p<1e−4) points for Main Inputs 450

and 2.58 (±0.81; p<1e−4) for Paraphrases, while 451

∆-Acc is virtually unchanged. This suggests that 452

that past work has overestimated the efficacy of 453

belief update methods for actually fixing models. 454

Henceforth we evaluate methods according to their 455
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Sequential-Update Setting Update Success Rate Retain Rate ∆-Acc

Dataset Method Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER
AdamW 92.81 (1.3) - - - 91.86 (1.4) 1.16 (0.6)
SLAG1 74.13 (1.8) - - - 39.86 (0.7) -27.13 (1.3)
SLAG10 91.27 (2.9) - - - 70.30 (5.8) -11.96 (4.5)

LeapOfThought
SGD 100 (0.0) - 61.34 (5.0) - 82.62 (0.8) -4.93 (1.0)
SLAG1 96.14 (2.3) - 49.27 (6.0) - 72.45 (0.9) -15.03 (1.0)
SLAG10 100 (0.0) - 50.46 (5.5) - 74.02 (1.1) -13.03 (1.3)

zsRE
SGD 82.71 (0.6) 90.81 (0.7) - - 40.49 (0.6) -2.38 (0.3)
SLAG1 0.10 (<0.1) 36.55 (1.4) - - 0.05 (<0.1) -20.98 (0.7)
SLAG10 87.57 (0.6) 92.20 (0.7) - - 47.19 (0.7) -1.74 (0.3)

Wikidata5m
SGD 56.82 (0.8) 54.49 (0.7) - 6.40 (0.4) 26.37 (0.6) -3.96 (0.4)
SLAG1 0 (0.0) 40.84 (0.9) - 0 (0.0) 0 (0.0) -10.05 (0.6)
SLAG10 58.27 (1.0) 65.51 (0.9) - 7.36 (0.5) 27.76 (0.7) -3.62 (0.4)

Table 6: Belief update results when a model is sequentially updated rtest=10 times. SLAGR uses rtrain=R. On
sequence prediction tasks in this setting, SLAG can outperform the off-the-shelf optimizers across metrics.

Metric Before Update After Update

Entailment Acc 58.30 (5.7) 75.50 (4.3)
Para. Cons (zsRE) 61.39 (1.3) 94.53 (0.6)
Para. Cons (Wiki) 24.69 (0.5) 84.56 (0.9)

Table 7: Entailment Acc and Paraphrase Consistency
rise greatly after model updates to incorrect points.

ability to update model beliefs to be true.456

Update method results (single update). Table 4457

shows the results in a single-update setting. First,458

we find that off-the-shelf optimizers are very effec-459

tive across the board. The baselines show Main460

Input Update Success Rates of 98%+ across tasks461

with competitive or even positive ∆-Acc scores.2462

When strongly tuned, these baselines outperform463

learned optimizers on most metrics here.464

However, SLAG surpasses the baselines in a few465

places. All Data Retain Rate on zsRE rises by466

5.77 points (±1.43; p<1e−4), and on Wikidata5m467

Paraphrase Update Success rises by 11.92 (±1.20;468

p<1e−4) and the Local Neutral Retain Rate by469

6.40 (±1.41; p<1e−4). SLAG also greatly im-470

proves over KE for sequence prediction tasks.471

Interestingly, we observe that belief updates472

greatly improve paraphrase consistency and entail-473

ment accuracy (SLAG results in Table 7). Updates474

improve Paraphrase consistency by 33.14±1.46 on475

zsRE and 59.87±1.09 on Wikidata5m, while En-476

tailment Acc rises by 17.20±7.10 points.477

Update method results (sequential updates).478

We give results for a sequential update setting479

(rtest=10) in Table 6. Immediately we see this480

2Positive ∆-Acc values are possibly due to distribution
shift in the test split. In FEVER, for instance, the train and
dev data are 73% True, while test data is 50% True. On the
dev split, AdamW achieves a negative ∆-Acc, -0.18 (±0.11).

is a much more difficult evaluation, as metrics 481

are generally much lower for each dataset. Next, 482

we observe that learned optimizers with SLAG10 483

(rtrain=10) now outperform baselines on sequence 484

prediction tasks. On zsRE, we improve Update 485

Success for Main Inputs by 4.86 (±0.83; p=1e−4) 486

and for Paraphrases by 1.39 (±0.93; p=.004), with 487

better ∆-Acc by 0.64 (±0.35; p=.0005). Im- 488

provements trend in the same direction for Wiki- 489

data5m and are all statistically significant except 490

for the gain in ∆-Acc. In comparison, using a 491

non-sequential (SLAG1) training objective leads to 492

drastic drops in performance. 493

Learned optimizers still struggle compared to 494

baselines on binary datasets, achieving high update 495

update success with much better ∆-Acc scores, 496

by 13.12 (±4.51; p=1e−4) on FEVER and 8.16 497

(±1.63; p=1e−4) on LeapOfThought. 498

6 Belief Graphs 499

We now construct belief graphs to better understand 500

the connections between model beliefs. We form a 501

graph from a set of datapoints by updating each pre- 502

diction and checking what other predictions change. 503

We represent each datapoint as its own node in a 504

belief graph. Whenever updating a datapoint u 505

changes the prediction for point v, we draw a di- 506

rected edge from u to v. Following Sec. 5.2, we 507

use off-the-shelf optimizers to change the model 508

output to the opposite of its original prediction for 509

every datapoint. The resulting graphs have up to 510

n2−n edges (no self edges). For FEVER we obtain 511

a graph of 10,444 nodes, and for LeapOfThought 512

we obtain a graph with 8642 nodes, which is dou- 513

ble the test set size because we include both Main 514
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Middle-earth is a real place.
[y: false]

Hot Right Now is mistakenly
attributed to DJ Fresh.

[y: false]

There are no musical or creative
works in existence that have
been created by Phillip Glass.

[y: false]

The Daily Show is incapable
of focusing on recent news

stories.
[y: false]

The Chrysler Building was
always the world's shortest

building.
[y: false]

Shane McMahon officially
retired on the first day of

2010.
[y: false]

Bessie Smith died on April
26, 1937.
[y: false]

Despicable Me 2 was written
by Cinco Paul.

[y: true]

Hot Right Now is from Nextlevelism.
[y: true]

Figure 2: A non-random subgraph of the belief graph for a model trained on FEVER. Directed edges from u to
v indicate that changing the model belief in u causes the belief in v to change. The ground-truth label is given in
brackets for each point, and node color shows the model’s accuracy before any updates (green=correct).

Inputs and Entailed Data as their own nodes.515

We visualize part of a belief graph in Fig. 2. This516

figure shows a non-random subgraph intended to517

give a representative view of the data (we give three518

random subgraphs in Supp. E). On inspection, we519

do not see any clear reasons for beliefs being con-520

nected or not connected. We come to same conclu-521

sion looking at other random subgraphs (see Supp.522

Figures 9, 10, 11). However, we do observe some523

aggregate trends. First, it appears that incorrect524

predictions are the most sensitive to model updates.525

On FEVER, incorrect beliefs change around 4% of526

the time when other beliefs are updated, while cor-527

rect beliefs change only 2.5% of the time. Second,528

we find that Local Neutral beliefs are much harder529

to avoid changing than simply random data. On530

Wikidata5m (Table 4), we observe that the Retain531

Rate on All Data is 61.51±1.33, while for Local532

Neutral data it is a full 15.66 points lower.533

We highlight a few summary statistics here from534

Table 8 for a broader view of the graphs. First,535

% Edgeless is the proportion of nodes which have536

no in or out edges. Since this is 0 for both datasets,537

every belief can be changed by editing the right538

belief. # In Edges is the number of in edges at the539

95th percentile, meaning 5% of beliefs have more in540

edges than this value, and the same holds of # Out541

Edges. These values grow to a rather large fraction542

of the overall datasets, suggesting that (1) some be-543

liefs are sensitive to changes in many other beliefs,544

and (2) some beliefs are influential to hundreds545

of other beliefs when changed. Lastly, % Update-546

Transitivity represents the answer to the question:547

if updating belief A changes belief B, and updating548

belief B changes belief C, what proportion of the549

time does updating A change C? For these datasets,550

a logically consistent model should display 100%551

Update-Transitivity (see Supp. D for a caveat on552

Dataset

Metric FEVER LeapOfThought

# Nodes 10,444 8,642
% Edgeless 0.0 0.0
# Edges Total 1.88m 9.71m
# In Edges (95th perc.) 1,088 5,347
# Out Edges (95th perc.) 390 3,087
% Update-Transitivity 66.64 24.38*

Table 8: Belief graph summary statistics. *We compute
Update-Transitivity for LeapOfThought with n = 4000
points due to computational cost.

this metric). We find that belief updates often yield 553

intransitive results for both datasets. 554

7 Conclusion and Limitations 555

We first discuss how to detect when LMs have be- 556

liefs about the world, and we propose to evalu- 557

ate learned optimizers for whether they can make 558

model beliefs more truthful. Then we show that 559

our SLAG objective greatly improves learned op- 560

timizer performance, outperforming off-the-shelf 561

optimizers when updating multiple model beliefs 562

in a row. Finally, we introduce belief graphs to 563

visualize connections between model beliefs. We 564

find that model beliefs are highly interconnected, 565

with some beliefs influencing hundreds of other 566

beliefs, and we identify trends in the dependencies. 567

We note a few limitations of our work: (1) neural 568

learned optimizers require large amounts of data 569

to successfully edit even a few model beliefs; (2) 570

our experiments are limited by available datasets, 571

and there is some noise in each dataset which we 572

catalogue in Supp. C; (3) we conduct experiments 573

with∼100M parameter models as in past work, but 574

it will be valuable for future work to scale to larger 575

models which may exhibit more coherent beliefs. 576
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8 Ethics Statement577

Belief update methods may be used to either cor-578

rect undesired beliefs or induce problematic beliefs579

in LMs, and it is not clear whether these capabil-580

ities could be separated. We propose to evaluate581

methods only on the basis of their ability to correct582

mistaken model beliefs, but the malicious use case583

remains. We are uncertain about how a bad belief584

would influence the general behavior of a model585

(e.g. answers to many questions), but it is possible586

that a belief update method could instill bad beliefs587

in a capable LM with far-reaching implications588

for model behavior. That said, we hope that these589

methods will instead be used to update undesirable590

moral, social, and factual beliefs in large LMs.591

References592

Emily M Bender, Timnit Gebru, Angelina McMillan-593
Major, and Shmargaret Shmitchell. 2021. On the594
dangers of stochastic parrots: Can language models595
be too big? In Proceedings of the 2021 ACM Confer-596
ence on Fairness, Accountability, and Transparency,597
pages 610–623.598

Damai Dai, Li Dong, Yaru Hao, Zhifang Sui, and Furu599
Wei. 2021. Knowledge neurons in pretrained trans-600
formers. arXiv preprint arXiv:2104.08696.601

Nicola De Cao, Wilker Aziz, and Ivan Titov. 2021.602
Editing factual knowledge in language models. In603
EMNLP, pages 6491–6506. Association for Compu-604
tational Linguistics.605

Daniel Dennett. 1995. Do animals have beliefs? Com-606
parative approaches to cognitive science, 111.607

Bhuwan Dhingra, Jeremy R Cole, Julian Martin608
Eisenschlos, Daniel Gillick, Jacob Eisenstein, and609
William W Cohen. 2021. Time-aware language610
models as temporal knowledge bases. arXiv611
preprint arXiv:2106.15110.612

Bradley Efron and Robert J Tibshirani. 1994. An Intro-613
duction to the Bootstrap. CRC press.614

Yanai Elazar, Nora Kassner, Shauli Ravfogel, Abhi-615
lasha Ravichander, Eduard Hovy, Hinrich Schütze,616
and Yoav Goldberg. 2021. Measuring and im-617
proving consistency in pretrained language models.618
Transactions of the Association for Computational619
Linguistics, 9:1012–1031.620

Samuel Gehman, Suchin Gururangan, Maarten Sap,621
Yejin Choi, and Noah A Smith. 2020. Realtoxici-622
typrompts: Evaluating neural toxic degeneration in623
language models. In Findings of EMNLP.624

Benjamin Heinzerling and Kentaro Inui. 2021. Lan-625
guage models as knowledge bases: On entity626

representations, storage capacity, and paraphrased 627
queries. In Proceedings of the 16th Conference of 628
the European Chapter of the Association for Com- 629
putational Linguistics: Main Volume, pages 1772– 630
1791, Online. Association for Computational Lin- 631
guistics. 632

John Hewitt and Percy Liang. 2019. Designing and 633
interpreting probes with control tasks. In EMNLP. 634

Zhengbao Jiang, Frank F Xu, Jun Araki, and Graham 635
Neubig. 2020. How can we know what language 636
models know? Transactions of the Association for 637
Computational Linguistics, 8:423–438. 638

Nora Kassner, Oyvind Tafjord, Hinrich Schütze, and 639
Peter Clark. 2021. Beliefbank: Adding memory to a 640
pre-trained language model for a systematic notion 641
of belief. arXiv preprint arXiv:2109.14723. 642

Angeliki Lazaridou, Adhiguna Kuncoro, Elena Gri- 643
bovskaya, Devang Agrawal, Adam Liska, Tayfun 644
Terzi, Mai Gimenez, Cyprien de Masson d’Autume, 645
Sebastian Ruder, Dani Yogatama, et al. 2021. Mind 646
the gap: Assessing temporal generalization in neural 647
language models. In NeurIPS. 648

Omer Levy, Minjoon Seo, Eunsol Choi, and Luke 649
Zettlemoyer. 2017. Zero-shot relation extraction via 650
reading comprehension. In Proceedings of the 21st 651
Conference on Computational Natural Language 652
Learning (CoNLL 2017), pages 333–342, Vancou- 653
ver, Canada. Association for Computational Linguis- 654
tics. 655

Stephanie Lin, Jacob Hilton, and Owain Evans. 2021. 656
Truthfulqa: Measuring how models mimic human 657
falsehoods. arXiv preprint arXiv:2109.07958. 658

Ilya Loshchilov and Frank Hutter. 2019. Decoupled 659
weight decay regularization. In ICLR. 660

Eric Mitchell, Charles Lin, Antoine Bosselut, Chelsea 661
Finn, and Christopher D Manning. 2021. Fast model 662
editing at scale. arXiv preprint arXiv:2110.11309. 663

Albert Newen and Tobias Starzak. 2020. How to as- 664
cribe beliefs to animals. Mind & Language. 665

Fabio Petroni, Aleksandra Piktus, Angela Fan, Patrick 666
Lewis, Majid Yazdani, Nicola De Cao, James 667
Thorne, Yacine Jernite, Vladimir Karpukhin, Jean 668
Maillard, Vassilis Plachouras, Tim Rocktäschel, and 669
Sebastian Riedel. 2021. KILT: a benchmark for 670
knowledge intensive language tasks. In Proceedings 671
of the 2021 Conference of the North American Chap- 672
ter of the Association for Computational Linguistics: 673
Human Language Technologies, pages 2523–2544, 674
Online. Association for Computational Linguistics. 675

Fabio Petroni, Tim Rocktäschel, Sebastian Riedel, 676
Patrick Lewis, Anton Bakhtin, Yuxiang Wu, and 677
Alexander Miller. 2019. Language models as knowl- 678
edge bases? In Proceedings of the 2019 Confer- 679
ence on Empirical Methods in Natural Language 680

9

https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://dl.acm.org/doi/10.1145/3442188.3445922
https://arxiv.org/pdf/2104.08696.pdf
https://arxiv.org/pdf/2104.08696.pdf
https://arxiv.org/pdf/2104.08696.pdf
https://aclanthology.org/2021.emnlp-main.522
https://dl.tufts.edu/concern/pdfs/rj430g708
https://arxiv.org/pdf/2106.15110.pdf
https://arxiv.org/pdf/2106.15110.pdf
https://arxiv.org/pdf/2106.15110.pdf
https://arxiv.org/pdf/2102.01017.pdf
https://arxiv.org/pdf/2102.01017.pdf
https://arxiv.org/pdf/2102.01017.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://arxiv.org/pdf/2009.11462.pdf
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://aclanthology.org/2021.eacl-main.153
https://arxiv.org/pdf/1909.03368.pdf
https://arxiv.org/pdf/1909.03368.pdf
https://arxiv.org/pdf/1909.03368.pdf
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2109.14723.pdf#page=10&zoom=100,401,869
https://arxiv.org/pdf/2102.01951.pdf
https://arxiv.org/pdf/2102.01951.pdf
https://arxiv.org/pdf/2102.01951.pdf
https://arxiv.org/pdf/2102.01951.pdf
https://arxiv.org/pdf/2102.01951.pdf
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://doi.org/10.18653/v1/K17-1034
https://arxiv.org/pdf/2109.07958.pdf
https://arxiv.org/pdf/2109.07958.pdf
https://arxiv.org/pdf/2109.07958.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://arxiv.org/pdf/1711.05101.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://arxiv.org/pdf/2110.11309.pdf
https://onlinelibrary.wiley.com/doi/full/10.1111/mila.12302
https://onlinelibrary.wiley.com/doi/full/10.1111/mila.12302
https://onlinelibrary.wiley.com/doi/full/10.1111/mila.12302
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/2021.naacl-main.200
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250
https://doi.org/10.18653/v1/D19-1250


Processing and the 9th International Joint Confer-681
ence on Natural Language Processing (EMNLP-682
IJCNLP), pages 2463–2473, Hong Kong, China. As-683
sociation for Computational Linguistics.684

Adam Roberts, Colin Raffel, and Noam Shazeer. 2020.685
How much knowledge can you pack into the param-686
eters of a language model? In Proceedings of the687
2020 Conference on Empirical Methods in Natural688
Language Processing (EMNLP), pages 5418–5426,689
Online. Association for Computational Linguistics.690

Anna Rogers, Olga Kovaleva, and Anna Rumshisky.691
2020. A primer in BERTology: What we know692
about how BERT works. Transactions of the Associ-693
ation for Computational Linguistics, 8:842–866.694

Anton Sinitsin, Vsevolod Plokhotnyuk, Dmitriy Pyrkin,695
Sergei Popov, and Artem Babenko. 2020. Editable696
neural networks. In ICLR.697

Alon Talmor, Oyvind Tafjord, Peter Clark, Yoav Gold-698
berg, and Jonathan Berant. 2020. Leap-of-thought:699
Teaching pre-trained models to systematically rea-700
son over implicit knowledge. In NeurIPS.701

James Thorne, Andreas Vlachos, Christos702
Christodoulopoulos, and Arpit Mittal. 2018.703
FEVER: a large-scale dataset for fact extraction704
and VERification. In Proceedings of the 2018705
Conference of the North American Chapter of706
the Association for Computational Linguistics:707
Human Language Technologies, Volume 1 (Long708
Papers), pages 809–819, New Orleans, Louisiana.709
Association for Computational Linguistics.710

Ruize Wang, Duyu Tang, Nan Duan, Zhongyu Wei,711
Xuanjing Huang, Guihong Cao, Daxin Jiang, Ming712
Zhou, et al. 2021a. K-adapter: Infusing knowledge713
into pre-trained models with adapters. In Findings714
of ACL.715

Xiaozhi Wang, Tianyu Gao, Zhaocheng Zhu, Zhengyan716
Zhang, Zhiyuan Liu, Juanzi Li, and Jian Tang.717
2021b. Kepler: A unified model for knowledge718
embedding and pre-trained language representation.719
Transactions of the Association for Computational720
Linguistics, 9:176–194.721

Peter West, Chandra Bhagavatula, Jack Hessel, Jena D722
Hwang, Liwei Jiang, Ronan Le Bras, Ximing723
Lu, Sean Welleck, and Yejin Choi. 2021. Sym-724
bolic knowledge distillation: from general language725
models to commonsense models. arXiv preprint726
arXiv:2110.07178.727

Chen Zhu, Ankit Singh Rawat, Manzil Zaheer, Sri-728
nadh Bhojanapalli, Daliang Li, Felix Yu, and Sanjiv729
Kumar. 2020. Modifying memories in transformer730
models. arXiv preprint arXiv:2012.00363.731

A Learned Optimizer Details 732

Architecture. KNOWLEDGEEDITOR is a learned 733

optimizer g : X × Y × Y ×Θ→ Θ that produces 734

new model weights by applying an adjusted gra- 735

dient step to a model. For reference, we give a 736

glossary of symbols used here in Table 9. For ad- 737

ditional details beyond what is presented here, we 738

refer readers to De Cao et al. (2021). 739

At a high level, gφ first encodes an input xi and 740

requested prediction change into a vector h, then 741

processes h into two low-rank matrices A and B 742

that are used to transform the model gradient on xi, 743

∇θL(xi, y
∗
i ). For Transformer models, the method 744

edits only attention and feed-forward weights, so 745

all model gradients match the shape of an associ- 746

ated weight matrix of shape d1 × d2. Formally, a 747

new model θ∗ is obtained using a learned optimizer 748

gφ as follows: 749

h = LSTM([x; ŷ; y∗]) 750

{u, v, γ, δ} = {MLPi(h)}4i=1 751

A = softmax(u)vT 752

B = softmax(γ)δT 753

η = σ(MLP(h)) 754

θ∗ = θ + η(A ◦ ∇θL(xi, y
∗
i ) +B) 755

where φ consists of all LSTM and MLP parameters. 756

Training Algorithm. The learned optimizer ob- 757

jective is optimized w.r.t. φ with AdamW through 758

a standard procedure of randomly sampling mini- 759

batches without replacement (Loshchilov and Hut- 760

ter, 2019). Within each batch, one datapoint is 761

randomly selected as the Main Input, and the re- 762

maining points are used as DR. To obtain update 763

labels {y∗i }ni=1, we always use the opposite class 764

in binary classification. For sequence-to-sequence 765

tasks, we use the correct label when ŷi is incorrect, 766

and when ŷi is correct, we randomly select another 767

label from the training data. This choice is in con- 768

trast to De Cao et al. (2021) and Mitchell et al. 769

(2021), who use samples from the model beam 770

search as update labels for all points. 771

B Additional Training Details 772

B.1 Compute Costs. 773

Learned optimizer memory. The hypernetwork 774

has 92m trainable parameters for RoBERTa-base 775

(which is 125m parameters), and 105m param- 776

eters for BART-base (which is 139m parame- 777

ters). To increase training efficiency, we limit 778
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Figure 3: The backpropagation graph for sequential model updates.

Symbol Glossary

fθ Language Model
gφ Learned optimizer
xi Main Input
ŷi LM output on xi
y∗i Desired output
∇θL(xi, y

∗
i ) Gradient of LM

Update(xi, ŷi, y
∗
i , θ) Update one LM belief

L(φ;xi, ŷi, y
∗
i , θ) Belief update objective for xi

LSequential(φ;D, θt) Sequential objective (SLAG)
K # gradient steps in Update(·)
r # beliefs updated in LSequential

Table 9: Symbol descriptions for the learned optimizer.

how far into the task model history we backprop-779

agate. As shown in Fig. 3, when backpropagat-780

ing through task model parameters θt = θt−1 +781

Update(xi, ŷi, y
∗
i , θt−1;φ), we continue backprop-782

agating through Update(xi, ŷi, y
∗
i , θt−1) but not783

θt−1, which is also dependent on φ. That is, we ap-784

ply a stop-gradient function to θt−1. This way, we785

compute the derivative∇φUpdate(xi, ŷi, y
∗
i , θt;φ).786

only once for each t, rather than recomputing these787

gradients for all subsequent time steps. These788

choices allow the memory use of our training algo-789

rithm to remain constant in r. We make the same790

choice for our K looped steps in a single applica-791

tion of the Update function, so the gradient for the792

update at step k depends only on gφ(xi, ŷi, y
∗
i , θ

(k))793

and not θ(k−1). See Fig. 4 for a graph of memory794

use depending on r and k.795

Experiment runtimes. We now give runtimes796

for experiments in the paper. Building the belief797

graphs takes 25 hours for FEVER (n = 10, 444)798

and 17.5 hours for LeapOfThought (n = 8642)799

on an NVIDIA RTX 2080 GPU. Computing sum-800

mary statistics for graphs takes 3 hours on FEVER801

and 3 hours for LeapOfThought for statistics be-802

sides Update-Transitivity. We compute Update-803

Transitivity for LeapOfThought with a subset of804

4000 points, which takes 45 hours. 805

All other experiments are run on a NVIDIA 806

V100 32GB GPU. Training the task models takes 807

7 minutes for LeapOfThought, 45 minutes for 808

FEVER, 4 hours for zsRE, and 10 hours for Wiki- 809

data5m. Training the learned optimizer with r = 1 810

takes 2.3 hours for LeapOfThought, 5 hours for 811

FEVER, 9.5 hours for zsRE, and 16 hours for 812

Wikidata5m. Training the learned optimizer with 813

r = 10 takes 53 minutes for LeapOfThought, 2.9 814

hours for FEVER, 7 hours for zsRE, and 12.5 hours 815

for Wikidata5m. Computing update statistics with 816

the off-the-shelf optimizers with r = 1 takes 4 min- 817

utes for LeapOfThought, 30 minutes for FEVER, 818

2.3 hours for zsRE, and 3.9 hours for Wikidata5m. 819

With r = 10, the baselines require 1 minute for 820

LeapOfThought, 15 minutes for FEVER, 54 min- 821

utes for zsRE, and 1.8 hours for Wikidata5m. Total 822

runtimes for each experiment should take into ac- 823

count multiple conditions and multiple seeds of 824

each model being run. 825

B.2 Hyperparameters and Objective Terms. 826

Training hyperparameters. We fit our RoBERTa- 827

base and BART-base task models to their respec- 828

tive datasets with the following hyperparameters: 829

We train for 10 epochs on the binary tasks, and 830

20 for the sequence-to-sequence tasks. When pre- 831

dicting with BART-base, we use a beam search 832

with width 5. In each case, we use AdamW from 833

torch.optim with a LR of 1e-5 and weight de- 834

cay of 1e-4. We select the best model according 835

to the best dev set accuracy, checkpointing after 836

each training epoch. The learned optimizers are 837

optimized with AdamW, using a learning rate of 838

3e-4 and weight decay of 0. We train the learned 839

optimizer for 5 epochs on each dataset except for 840

LeapOfThought, which we train for 10 epochs 841

given its smaller size. The learned optimizers are 842
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Dataset rtest K Objective

FEVER 1 5 Main
10 1 Main

LeapOfThought 1 5 Main
10 1 Main

zsRE 1 5 Main
10 5 Main

Wikidata5m 1 5 Main+Para
10 5 Main+Para

Table 10: Final hyperparameters and objective terms of
the learned optimizer for each task.

Relation % Test Data

Place of Birth 11.00
Award Received 11.00
Cause of Death 5.66
Place of Death 11.00
Place of Burial 8.33
Educated At 11.00
Child 11.00
Occupation 11.00
Spouse 11.00
Sibling 9.01

Table 11: Wikidata relations and their proportion of the
test data.

also selected based on dev set performance, with843

checkpointing after each training epoch. Their se-844

lection criterion is a raw average of Update Success845

Rate (averaged over each kind of data), Retain Rate846

(Local Neutral) and ∆-Acc, with terms dropped847

when they cannot be computed given the available848

data. Note that dev epochs with zsRE and Wiki-849

data5m are fairly slow, so in order to speed up our850

experiments we compute dev epochs with a subset851

of 4000 dev points.852

Learned optimizer. We give the final hyperparam-853

eter and objective terms used in each experiment in854

Table 10. Our objective ablation is given in 17, and855

we select the best performing condition for each856

dataset according to dev set performance, using the857

same selection criterion outlined previously. We858

keep all weight coefficients λi equal rather than859

tuning them. Main refers to the first term in Eq.860

1, plus the KL term with random data. We use861

Ktrain ≤ 5 for all experiments. For results across862

K values on zsRE, see Fig. 8.863

Baseline update method. We tune a baseline off-864

the-shelf optimizer separately for each dataset, us-865

ing rtest = 1. Our performance criterion is the866

same as with learned optimizers, a raw average of867

Update Success Rate (averaged over each kind of868

data), Retain Rate (Local Neutral) and ∆-Acc. The869

grid search is over the following parameters: The870

Dataset Optimizer LR Num. Steps

FEVER AdamW 1e-6 100
LeapOfThought SGD 1e-2 100
zsRE SGD 1e-1 10
Wikidata5m SGD 1e-1 10

Table 12: Final hyperparameters of the baseline update
method for each task.

off-the-shelf optimizers are from torch.optim 871

and include {AdamW, SGD, and RMSProp} with 872

default arguments (except for the learning rate). 873

We consider a number of maximum steps in {5, 874

10, 100}. The learning rates we consider depend 875

on the optimizer: {1e-4, 1e-5, 1e-6} for AdamW, 876

{1e-4, 1e-5, 1e-6} for RMSProp, and {1e-1, 1e-2, 877

1e-3} for SGD. The LR ranges were selected af- 878

ter some initial manual exploration of the space. 879

Our final hyperparameter values are shown in Ta- 880

ble 12 for each dataset. For comparison, De Cao 881

et al. (2021) use RMSProp with 100 update steps. 882

The LR for zsRE and Wikidata5m may seem quite 883

high, but this is the condition that actually does the 884

least damage to the model’s accuracy on other data, 885

∆-Acc. The baseline optimizes all of the train- 886

able parameters in the language model, unlike the 887

learned optimizer which optimizes only attention 888

and feedforward weights for purposes of parameter 889

efficiency. 890

B.3 Wikidata5m Additional Details. 891

We construct four paraphrases per Main Input by 892

selecting from a set of alternative phrasings for the 893

entity and relation in the Main Input. The syntax 894

for each paraphrase follows the same simple tem- 895

plate as the Main Input, in contrast to zsRE where 896

syntax differs between paraphrases. A couple de- 897

tails remain. Some relations are one-to-many, and 898

therefore we accumulate valid completing entities 899

from the data as possible answers; later we com- 900

pute accuracy as an exact match with any possible 901

answer. All 10 relations appear in each split of the 902

data. Only 33.80% and 37.18% of the entities in 903

the dev and test splits are seen in the training data, 904

though we do not find that models perform better 905

on entities seen in training. 906

B.4 LeapOfThought Additional Details 907

The LeapOfThought dataset consists of a fact and a 908

claim for each datapoint, where the truth of the fact 909

implies that the claim has label yi (True/False). All 910

of the facts in the data are true, while half of the 911

claims are true and half are false. When training 912

12
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Figure 4: Training memory usage in terms of K and r hyperparameters in our implementation, for a learned
optimizer trained for a BART-base model on zsRE, using a batch size of 16. For comparison, the orange dashed
line shows the memory use of training the BART-base model on zsRE, using the same batch size. Our use of the
stop-gradient function limits the growth of runtime and memory w.r.t. both K and r. By accumulating gradients
across points, memory w.r.t. r is kept constant. The same trick could be applied to the K looped gradient steps
inside the Update function, at the trade-off of backpropagating K times per point rather than one time.

Ours De Cao et al. (2021) Mitchell et al. (2021)

Update Success Rate (Main Input) Success rate Edit success
Update Success Rate (Paraphrase) Equivalence accuracy Edit success
Update Success Rate (Entailed Data) - -
Retain Rate (Local Neutral) - -
Retain Rate (All Data) Retain accuracy -
∆-Acc (All Data) Performance deterioration Drawdown

Table 13: A glossary of terms used in work on model update methods. Note metrics are not always calculated
in exactly the same way. For instance, Performance deterioration is a ratio in accuracies rather than difference in
accuracies, and edit success from Mitchell et al. (2021) combines two metrics in our case. The performance metric
in Zhu et al. (2020) is an average of Update Success Rate (Main Input) and ∆-Acc.

the learned optimizer, we treat the the facts as the913

Main Input when training the learned optimizer914

and claims as entailed data. When training the915

True/False classifier, we fit to the claims, for which916

test accuracy is 83.65 (± 1.05). This seems to917

generalize well to the facts, as test accuracy here is918

93.66 (±0.87), although as the low contrapositive919

accuracy suggests (Table 3), the model seems to be920

too prone to predicting true for this data.921

Since very few of the Main Inputs are predicted922

as false, we run into a small dilemma when fit-923

ting the learned optimizer with the use of the en-924

tailed data objective term. The entailment between925

fact and claim only holds when the fact is true, so926

we can only compute the objective when updat-927

ing a point from false to true. This ends up being928

less than 10% of the training data. We ultimately929

choose to oversample points that fit this descrip-930

tion during training of the learned optimizer, which931

allows the learned optimizer to fully fit to the en-932

tailed data. Also note that during learned optimizer933

training, we include Entailed Data from other data934

points besides the Main Input in the KL term in Eq.935

1, and we measure ∆-Acc using both Main Inputs936

and Entailed Data.937

C Dataset Sources and Noise 938

Here we give sources and licenses for each dataset, 939

and we document some shortcomings of each 940

dataset, with reference to examples in Table 15. 941

Dataset sources and licenses. FEVER and zsRE 942

are available through the KILT3 resource and are 943

available under the MIT license (Petroni et al., 944

2021). LeapOfThought data can be constructed 945

through their available code4 and is also available 946

under the MIT license. The source data for Wiki- 947

data5m data can be downloaded through the KE- 948

PLER5 code repository (Wang et al., 2021b) and 949

is available under the MIT license. Use of each 950

dataset is in accordance with their intended licensed 951

uses. The zsRE and Wikidata5m datasets do refer 952

to people by name as they reference public figures 953

on Wikipedia. All datasets are in English. 954

FEVER. Some claims are slightly vague or am- 955

biguous when taken on their own. For instance 956

“Doug Ducey was the CEO of Cold Stone Cream- 957

3https://github.com/
facebookresearch/KILT/?fbclid=
IwAR2WiFkl-7KLIQAoNI9bJgBVKWgsAQEDV342vV5_
PcsKA881vpuXaELKBz0

4https://github.com/alontalmor/
LeapOfThought

5https://github.com/THU-KEG/KEPLER
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Dataset Model Acc Paraphrase Cons ↑ Entailment Acc ↑ Contrapositive Acc ↑

FEVER RoBERTa-base 78.29 (0.86) - - -
LeapOfThought RoBERTa-base 93.66 (0.87) - 85.63 (1.08) 16.51 (2.71)
zsRE BART-base 21.01 (0.64) 69.50 (1.09) - -
Wikidata5m BART-base 10.21 (0.59) 25.84 (0.53) - -

Table 14: Model accuracy and belief metric results and for four datasets.

Dataset Data Type Input Label(s)

zsRE

Main Input What did Gifford Pinchot die of? {Leukemia}Paraphrase How did Gifford Pinchot die?

Main Input Player Ali Kanaan plays for what team? {Sporting Al Riyadi Beirut}Paraphrase What team is Ali Kanaan associated with?

Wikidata5m

Main Input Margarita Nolasco Armas has relation ‘place
of birth’ to {Orizaba, Veracruz; Orizaba;

etc.}Paraphrase SusunW/Margarita Nolasco Armas has rela-
tion ‘born at’ to

Local Neutral Margarita Nolasco Armas has relation ‘place
of death’ to

Mexico City; Ciudad de Mexico;
etc.

Main Input Mary Good has relation ‘award received’ to {Garvan-Olin Medal; Arkansas
Women’s Hall of Fame; etc.}Paraphrase Mary Lowe Good has relation ‘winner of’ to

Local Neutral Mary Good has relation ‘educated at’ to {The University of Arkansas; U
Arkansas; etc.}

FEVER Main Input Tardigrades are also known as space bears. True
Main Input The Lion belongs to the genus Vulpes. False

LeapOfThought

Main Input A viper is a vertebrate. True
Entailed Data A viper has a brain. True

Main Input A amaranth is a herb. True
Entailed Data A amaranth has a nose. False

Table 15: Example datapoint from each dataset, and auxiliary data that accompanies the Main Input.

ery and offered many opportunities to new hires”958

is rated True, though this will depend heavily on959

what one thinks “many opportunities” means. Sim-960

ilar whether or not “L.A. Guns is a tattoo shop”961

depends on which “L.A. Guns” one is referring to,962

the tattoo shop or metal band. Of course, this is a963

generic issue of language, and not unique to this964

dataset. Some inputs seem to be a matter of person965

opinion: “Los Angeles is known for its food” is966

rated False.967

LeapOfThought. Many examples use an “is a” re-968

lation, producing sentences like “A sunlight is a969

good health.” This could be more false than true,970

but it’s a fairly nonsensical statement to begin with.971

There are also other nonsensical or vague examples972

in the data: ”A friar is the opposite of mineral” is973

labeled False. “A detective desires equal opportu-974

nity.” is labeled True. It is not immediately clear975

what conditions would make these statements true976

or false.977

zsRE. Some questions invoke potentially one-to-978

many or temporally dependent relations, though979

there is only one ground-truth answer per ques-980

tion in this dataset. For instance, a paraphrase of 981

the question about Gifford Pinchot in Table 15 is: 982

”What disease did Gifford Pinchot have?” A per- 983

son might have had many diseases over their life 984

which could all be valid responses. The answer is 985

especially ambiguous for spatial relations, where a 986

valid answer might refer to a city, region, country, 987

province, or continent. 988

Wikidata. Aliases sometimes vary greatly even 989

as they refer to the same person, or they are sim- 990

ply noisy. For example, as shown in Table 15, 991

“SusunW” appears in an entity name, but this is 992

actually a username of someone who contributed 993

to the Wikipedia article for Margarita Nolasco Ar- 994

mas. Meanwhile, other aliases for J.R.R Tolkien 995

include “Tolkienian” and “Mabel Suffield,” his 996

mother. Rephrasings of relations might also create 997

confusing inputs, e.g. switching “child” with “has 998

kids,” “daughter”, or “son.” Similar to zsRE, some 999

relations are also one-to-many and temporally de- 1000

pendent (like occupation), though we hope that 1001

by using many valid answers we circumvent this 1002

issue to some extent when calculating prediction 1003
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correctness.1004

D Metric Computation and Bootstrap1005

Details1006

Metric computation. The only computationally1007

difficult metric to calculate is ∆-Acc, which re-1008

quires computing the updated language model’s1009

accuracy on other data after every single belief up-1010

date. We randomly sample other data after every1011

update for this purpose, using n = 30 points for1012

zsRE and Wikidata5m and n = 200 points for1013

FEVER and LeapOfThought. We ensure that all1014

evaluation data is used at some point during this1015

sampling by preferentially selecting data that has1016

been infrequently selected before. We note that1017

paraphrase consistency is easy to evaluate for a1018

small number of paraphrases per datapoint, as we1019

have for both zsRE and Wikidata5m. Additionally,1020

on LeapOfThought, we compute ∆-Acc using both1021

Main Inputs and Entailed Data.1022

Update-Transitivity caveat. The % Update-1023

Transitivity metric represents the answer to the1024

question: if updating belief A changes belief B,1025

and updating belief B changes belief C, what pro-1026

portion of the time does updating A change C?1027

We would treat this as a normative metric that we1028

hope to maximize, except we do not know in gen-1029

eral whether there is a confounding belief D that1030

determines the relationship between B and C. If1031

changing A also changed a confounding belief D,1032

then we might not be able to expect that C should1033

change too. That said, when we have no reason to1034

think there are such confounding beliefs, we would1035

expect a logically consistent model to display 100%1036

Update-Transitivity of their beliefs. In Fig. 2, for1037

instance, we see no reason to suspect there are con-1038

founding beliefs for the relationship between the1039

date Bessie Smith died and the writer of Despicable1040

Me 2, and therefore we would expect that updat-1041

ing the belief about what album Hot Right Now is1042

on would change the belief in Despicable Me 2’s1043

authorship (which it does).1044

Bootstrap computation. We account for sample1045

and seed variance by block bootstrap (Efron and1046

Tibshirani, 1994). When there is a single statistic1047

per data point, like Main Input Update Success, we1048

form a matrix of shape n× s for n data points and1049

s model seeds (where the seed was used for both1050

task model training and learned optimizer train-1051

ing). We then resample rows and columns of this1052

matrix 10,000 times, which was sufficient for con-1053

Update Success Rate ∆-Acc

Desired Label Main Input Paraphrases All Data

Beam Label 91.19 (0.5) 92.07 (0.8) -0.39 (0.1)
Hard Label 94.46 (0.7) 94.45 (0.7) -0.24 (0.1)

Table 16: Update metrics by optimizer training labels.

vergence. When we perform hypothesis tests for 1054

the difference in statistics between conditions, we 1055

pair the data points by using the same rows of this 1056

matrix at each step of the bootstrap (i.e. we conduct 1057

paired tests). For metrics involving multiple data 1058

points per Main Input, like paraphrases or other 1059

random data, we make a simplifying assumption 1060

where we do not resample the multiple data points 1061

but just compute the average metric for those data 1062

points and treat that as the ground-truth statistics 1063

for the Main Input. We explored using a full 3- 1064

dimensional bootstrap, where we resample among 1065

these extra datapoints by constructing a matrix of 1066

shape n × s × n, but it was quite slow and gave 1067

similar results to the block bootstrap. 1068

E Additional Results 1069

Ablation across num. sequential steps. Fig. 1070

5 shows the results for an ablation across rtest 1071

using two kinds of learned optimizers: SLAG1, 1072

where rtrain = 1, and a SLAG condition where 1073

rtrain = rtest. It is critical to the success of learned 1074

optimizers to train them to update points sequen- 1075

tially when this is a desired application. Further, 1076

sequential updating with sequence prediction tasks 1077

is the only setting where we see learned optimizers 1078

outperform baselines across all relevant metrics. 1079

Choosing training labels for learned optimizers. 1080

In early experiments, we found that it is beneficial 1081

to use all data points (including correctly predicted 1082

points) as Main Inputs during training, rather than 1083

restricting training to only incorrectly predicted 1084

points. We still focus on correcting wrong outputs 1085

at test time. But so we must select what label to 1086

use during optimizer training. To get a Hard Label, 1087

we use the correct label for incorrectly predicted 1088

points, and for correctly predicted points, we sim- 1089

ply draw a label randomly from the labels in the 1090

training data. The alternative Beam Label condi- 1091

tion uses a sample from the model’s beam search 1092

for a data point, as done in past work (De Cao 1093

et al., 2021; Mitchell et al., 2021). We show up- 1094

date metrics for zsRE split by the desired label in 1095

Table 16. If one’s goal is to fix wrong model out- 1096
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Figure 5: Ablation across values of r for training and testing. On zsRE, our method outperforms the baseline when
rtest = 10, and the gap is likely to increase as rtest rises further. When using a non-sequential objective from past
work, performance declines drastically as rtest rises.

Objective Term Ablation Update Success Rate Retain Predictions ∆ Acc

Dataset Objective Main Input Paraphrases Entailed Data Local Neutral All Data All Data

FEVER Main 100 (0.0) - - - 98.27 (0.1) -0.15 (0.1)
(no KL) 100 (0.0) - - - 40.42 (0.6) -27.19 (1.2)

LeapOfThought Main 100 (0.0) - 76.43 (5.3) - 96.84 (0.3) -1.22 (0.8)
+Ent 100 (0.0) - 71.87 (5.3) - 96.52 (0.3) -0.40 (0.8)

zsRE Main 94.46 (0.4) 94.44 (0.7) - - 81.96 (0.4) -0.24 (0.1)
+Para 93.75 (0.4) 94.41 (0.7) - - 75.24 (0.5) -0.42 (0.2)

Wikidata5m

Main 88.67 (0.7) 64.12 (0.7) - 49.78 (1.0) 71.04 (0.5) -1.54 (0.3)
+Para 87.46 (0.7) 81.06 (0.7) - 47.15 (1.0) 63.02 (0.6) -1.55 (0.3)
+LN 87.73 (0.7) 59.75 (0.7) - 60.49 (1.0) 72.69 (0.6) -1.57 (0.3)
+Para+LN 87.02 (0.7) 81.18 (0.7) - 56.86 (1.0) 68.42 (0.6) -1.65 (0.3)

Table 17: Belief update results by the objective terms used for the learned optimizer. We do not bold any numbers
based on statistical significance. For tuning purposes we select whichever condition achieves the higher selection
criterion without testing for statistical significance.

puts, then it is much better to use either the correct1097

label or a random label as the desired model out-1098

put during training rather than a sample from the1099

model’s beam search. Update success improves by1100

3.27 (±0.65; p<1e−4) points for the Main Input1101

and 2.38 (±1.05; p<1e−4) for Paraphrases, while1102

∆-Acc rises by 0.15 (±0.18; p=.09).1103

Which beliefs are hard to update? We hypothe-1104

size that beliefs will be easier to update when they1105

are more belief-like to begin with. We principally1106

measure this via the correlation between update suc-1107

cess rate and a belief’s consistency on paraphrases1108

before the update, for our learned optimizer in a1109

single-update setting (r = 1). Surprisingly, we ob-1110

serve no relationship between update success and1111

the belief consistency. The correlation between1112

consistency and update success is near 0 for both1113

zsRE (ρ = −.027) and Wikidata5m (ρ = .013);1114

see Fig. 6 for a plot of the relationship. So it ap-1115

pears that the learned optimizer can update model1116

beliefs independently of how belief-like they are to 1117

begin with. We would also be interested in consid- 1118

ering consistency under entailment, but the update 1119

success rate on LeapOfThought is already 100%, 1120

so there is no variance to explain. 1121

Learning curve. In Fig. 7 we show the learning 1122

curve of a learned optimizer trained with SLAG 1123

on zsRE. The Main Input Update Success Rate 1124

steadily rises as a function of the training set size.‘ 1125

Ablation by objective term. We give objective 1126

ablation results in Table 17. Surprisingly, we do 1127

not always see that the objective terms help for the 1128

data they are intended to help with. First, we ob- 1129

tain mixed results for the paraphrase objective. On 1130

zsRE, the objective term seems to hinder perfor- 1131

mance, with update success dropping on Main In- 1132

puts by 0.71 (±0.60; p=.021) and ∆-Acc dropping 1133

by 0.18 (±0.19; p=.069), while the paraphrase Up- 1134

date Success Rate itself is unaffected. With Wiki- 1135

data5m, however, the paraphrase term improves 1136
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Figure 6: Beliefs are neither easier nor harder to update
depending on their consistency beforehand.
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Figure 7: Main Input Update Success Rate across train-
ing set sizes, using SLAG on zsRE.

paraphrase update success by a large margin of1137

16.94 (±1.03; p<1e−4) points. Adding the Local1138

Neutral (LN) term with the paraphrase term greatly1139

improves the LN Retain Rate for Wikidata5m, by1140

9.71 points (±1.44; p<1e−4), though both of these1141

terms come at a cost to Main Input Update Success,1142

similar to zsRE. Lastly, we do not find that the en-1143

tailment objective improves Entailed Data Update1144

Success; in fact, this metric falls by 4.56 (±7.22;1145

p=.213) points with the objective.1146

Ablation by num. update steps. Fig. 8 shows the1147

results of an ablation across values of K using a1148

learned optimizer trained using SLAG with r = 11149

on zsRE. Main Input Update Success rises by over1150

three points by increasing Ktest from 1 to at least1151

5. Using a value of Ktrain that matches Ktest gives1152

a further increase of about 0.5 points.1153

0.90

0.92

0.94

0.96

1 2 4 6 8 10
K test

U
pd

at
e 

S
uc

ce
ss

 R
at

e

Training Obj. (K train)

1
Matches Test

Ablation by K

Figure 8: Ablation across values of K for training and
testing, using SLAG on zsRE. It is useful to train the
optimizer using the value of K it will use at test time.
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Figure 9: A random subgraph of the belief graph for
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Figure 10: A random subgraph of the belief graph for
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Figure 11: A random subgraph of the belief graph for
FEVER. Note all nodes actually are connected to at
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