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Abstract
Multimodal information extraction on social media is a series of
fundamental tasks to construct the multimodal knowledge graph.
The tasks aim to extract the structural information in free texts
with the incorporate images, including: multimodal named entity
typing and multimodal relation extraction. However, the growing
number of multimodal data implies a growing category set and the
newly emerged entity types or relations should be recognized with-
out additional training. To address the aforementioned challenges,
we focus on the zero-shot multimodal information extraction task
which requires to utilize textual and visual modalities for identify-
ing previously unseen categories in a zero-shot manner. Compared
with the text-based zero-shot information extraction models, the
existing multimodal ones make the textual and visual modalities
aligned directly and exploit various fusion strategies to improve
their generalization ability. But the existing methods only align
the global representations of multimodal data and ignore the fine-
grained semantic correlation of the text-image pairs and samples.
Therefore, we propose the multimodal graph-based variational mix-
ture of experts network (MG-VMoE) which takes the MoE network
as the backbone and exploits the sparse expert weights for aligning
the multimodal representations in a fine-grained way. Considering
to learn the informative and aligned representations of multimodal
data, we design each expert network as a variational information
bottleneck to process the two modalities in a uni-backbone. More-
over, we do not only model the correlation of the text-image pair
inner a sample, but also propose the multimodal graph-based virtual
adversarial training to learn the semantic correlation between the
samples. The experimental results on the two benchmark datasets
demonstrate the superiority of MG-VMoE over the baselines.

CCS Concepts
• Information systems → Multimedia and multimodal re-
trieval; • Computing methodologies→ Information extrac-
tion.

Keywords
multimodal information extraction, zero-shot learning, multimodal
representation learning
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1 Introduction
Extracting structural information from free text in conjunction with
images, in order to construct a multimodal knowledge graph [26,
31], constitutes a series of fundamental tasks known as multimodal
information extraction (MIE). The MIE tasks are associated with
the entity information to complete the specific tasks including: mul-
timodal named entity typing (MET) [24] and multimodal relation
extraction (MRE) [27]. Compared with the text-based IE models,
the multimodal-based ones are proposed to capture the correlations
of textual and visual contents with various fusion strategies for
effective entity and relation classification [29].

In practical situations, however, the number of intricate entity
types and relations is continually expanding, necessitating addi-
tional human input for annotating every novel category that arises.
To address the above issue, the introduction of zero-shot learning
into text-based information extraction (ZS-IE) models facilitated the
identification of novel categories of entity types or relations without
requiring additional training. The existing ZS-IE approaches pri-
marily concentrate on the textual modality, leveraging pre-trained
language models such as BERT to extract entity features for con-
structing representations of type or relation prototypes. Ma et al.
[11] and Chen and Li [2] respectively considered the names of types
and relations as the prototypical knowledge for recognizing the
novel categories. Moreover, the attention mechanism is applied on
the ZS-IE models to extract the fine-grained context representa-
tions implied in the external descriptions [16, 25]. Despite of the
descriptions of categories, the multi-source knowledge of them
were exploited to enhance the ZS-IE models in the fusion [3] or
augmentation [7] way. With the development of social media, the
growing number of multimodal data implies expanding category
set of types and relations. And the above methods are focused on
the textual modality while ignoring the visual modality.

The vital challenge to exploit multimodal data is to bridge the
semantic gap between the twomodalities. The previous MIE models
proposed the different fusion strategies or alignment modules to
extract the useful multimodal representations. Zheng et al. [27] de-
signed the dual graph-based multimdoal alignment and fusion mod-
ules to improve the MRE performance. Zhang et al. [24] exploited
the cross-modal transformer to obtain the multimodal representa-
tions for modeling the MET task. However, the current MIE models
lack efficiency in recognizing newly emerged entity types or rela-
tionships on social media without additional training. This is due to
the challenge posed by the diversity of textual and visual contents,
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Figure 1: The multimodal representation space comparison
between the traditional MIEmodel and theMG-VMoEmodel.

which span a wide range of entities and for which current models
are unable to effectively bridge the semantic gap between the two
modalities. As illustrated in Figure 1, traditional MIE models rely
on coarse-grained multimodal representation learning to align the
global features of text-image pairs within samples. Since samples
within the same category can exhibit significant semantic variation
in their texts and images, this approach is insufficient for captur-
ing fine-grained semantic correlations between the two modalities
at the token level and for clustering multimodal samples of the
same category which constraints its ability to establish connections
between multimodal samples and prototypical categories.

To address the above mentioned limitations, we propose the
multimodal graph-based variationalmixture of experts (MG-VMoE)
network to tackle the zero-shot MIE (ZS-MIE) task. The MG-VMoE
network is based on the fine-grained multimodal representation
learning which consists of the architectures and the specific train-
ing method. For capturing semantic correlations between the two
modalities at the token level, we utilize the mixture of experts
(MoE) network as the backbone which exploits the sparse expert
weights to align the textual and visual token representations in a
fine-grained way. With the purpose to model the informative and
aligned representations of multimodal data, we design each expert
network as a variational information bottleneck (VIB) to handle the
two modalities in a uni-backbone. For clustering samples belonging
to the same category, we propose a multimodal graph-based virtual
adversarial training method to capture the semantic correlations
between multimodal samples. Ultimately, we fuse textual entity
representations with multimodal ones through an attention layer
and measure the semantic similarity between the fusion features
and prototypical ones of different categories for recognition. The
contributions of this manuscript can be summarized as follows:

• We present the zero-shot multimodal information extrac-
tion (ZS-MIE) task which leverages the text and image pairs
to extract the novel knowledge such as: entity types or re-
lations on social media without additional training.

• We propose a multimodal graph-based variational mixture
of experts (MG-VMoE) network based on the fine-grained
multimodal representation learning. Not only does the net-
work utilize the VMoE architecture to model the aligned

multimodal representations within individual samples, but
it also leverages multimodal graph-based virtual adversar-
ial training to capture the semantic correlations existing
between different samples.

• We conduct the extensive experiments on the two bench-
mark MIE datasets and the experimental results demon-
strate the superiority of the proposed model over baselines.

2 Related Work
2.1 Zero-shot Information Extraction
Information extraction (IE) encompasses a range of tasks, notably
named entity typing and relation extraction, aimed at distilling
structural information from unstructured texts for the purpose of
constructing comprehensive knowledge graphs [28]. Considering
to recognize the unseen categories like: entity types or relations
without additional training, the zero-shot learning was introduced
into traditional information extraction (ZS-IE) tasks. The vital chal-
lenge for ZS-IE is to learn generalizable representations of entities
and prototypical knowledge of categories.

For zero-shot named entity typing (ZS-ET), Ma et al. [11] firstly
proposed a label embedding method to encode the prototypical
knowledge of types with textual embeddings, and bridge the se-
mantic correlation between entity mentions and types. Ren et al.
[17] employed the attentionmechanism to extract local features that
are relevant to the types, with a focus on the nuanced semantic rep-
resentations of both mentions and their contexts. Zhang et al. [23]
devised the ZS-ET model, augmented with memory capabilities, to
retain observed types as memory elements and facilitate knowledge
transfer from known to unknown types, thereby explicitly captur-
ing the semantic relationship between them. Furthermore, auxiliary
data including descriptions sourced from websites was integrated
into the ZS-ET model to augment the representation of mentions
and types [3, 16]. For zero-shot relation extraction (ZS-RE), Chen
and Li [2] initially leveraged BERT to acquire two functions, which
project entities and relation descriptions into an embedding space
by concurrently minimizing the distances between them and sub-
sequently categorizing their corresponding relations. Zhao et al.
[25] introduced a fine-grained semantic matching method, which
dissects the overall sentence-level similarity score into distinct com-
ponents for entity and context matching. Gong and Eldardiry [7]
presented a prompt-driven model that augments semantic knowl-
edge by creating instances featuring unseen relations from existing
instances with known relations.

In essence, the current ZS-IE approaches solely concentrate on
textual modality, neglecting the potential semantic enrichment
from visual content that could strengthen entity representations.
In contrast to these endeavors, our focus lies in the ZS-MIE task,
aimed at extracting innovative structural knowledge embedded
within multimodal data sourced from social media platforms.

2.2 Mulitmodal Information Extraction
As the volume of multimodal data continues to expand, researchers
have recognized the need to capture the intricate semantic infor-
mation within these data. Consequently, they have extended the
traditional IE tasks to encompass multimodal IE, resulting in im-
proved outcomes. Moon et al. [14] initially broadened the scope of
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traditional text-based named entity recognition to encompass mul-
timodal named entity recognition (MER), subsequently introducing
the modality attention module concept as a means to integrate
textual information with image data, thereby enhancing the accu-
racy of sequence label predictions. Zhang et al. [24] proposed to
incorporate visual objects and exploit the cross-modal transformer
to obtain multimodal representations for tackling the multimodal
named entity typing (MET) task firstly. Zheng et al. [27] introduced
the multimodal relation extraction (MRE) task, leveraging visual
modality to bolster the semantic representations of textual modality.
Cui et al. [4] exploited the variational information bottleneck to
extract effective multimodal representations for the MIE tasks.

In summary, the aforementioned multimodal information ex-
traction tasks operate within a supervised framework, aiming to
establish a mapping from multimodal data to predefined labels.
However, our focus lies in zero-shot multimodal information ex-
traction (ZS-MIE), which endeavors to recognize unseen categories
without requiring additional training. In contrast to supervised
learning that relies on abundant labeled data, zero-shot learning
prioritizes the development of generalizable representations for
both samples and semantic labels, enabling the inference of sam-
ples belonging to unobserved categories.

3 Preliminary
Before introducing the details of the proposed model, we formalize
the problem of zero-shot multimodal information extraction (ZS-
MIE). We obtain the training dataset D𝑡𝑟𝑎𝑖𝑛 with the seen category
set Y𝑠 and the test dataset D𝑡𝑒𝑠𝑡 with the unseen category set
Y𝑢 . The seen category set is defined as Y𝑠 = {𝑦𝑠1, 𝑦

𝑠
2, . . . , 𝑦

𝑠
|Y𝑠 | }

and the unseen one is denoted as Y𝑢 = {𝑦𝑢1 , 𝑦
𝑢
2 , . . . , 𝑦

𝑢
|Y𝑢 | }. And

the two aforementioned category sets are mutually disjoint. Each
sample of the datasets is denoted as a tuple 𝑆 = (𝑇,𝑉 , 𝐸,𝑌 ) where
𝑇 denotes a natural language sentence, 𝑉 is the image coupled
with the sentence, 𝐸 represents the entity information such as: the
location in the sentence, and 𝑌 is the label for specific tasks.

According to zero-shot learning, we need to train a ZS-MIE
model M, i.e., M(𝑆) → 𝑌 ∈ Y𝑠 based on the training set D𝑡𝑟𝑎𝑖𝑛 .
The ZS-MIE model can be defined asM : F × G where learnable
functions F and G project the multimodal data and category se-
mantic information into the shared embedding space respectively.
During the training procedure, we optimizeM by minimizing the
distance between the multimodal representation F (𝑇,𝑉 , 𝐸) and the
category semantic representation G(𝑌 ). To recognize the unseen
categories, we employ the acquired functions F and G to encode
the multimodal representation of a sample from D𝑡𝑒𝑠𝑡 as well as
the semantic representations of the unseen categories within Y𝑢 ,
and then pinpoint the nearest unseen category as the prediction.

4 Methodology
In this section, we introduce the multimodal graph-based varia-
tional mixture of experts (MG-VMoE) network for zero-shot mul-
timodal information extraction as shown in Figure 2. The overall
framework is based on the fine-grained multimodal representation
learning which consists of the architectures and the specific train-
ing method. In order to build up the model, the details of our model
can be summarized as the following parts: (1) Firstly, we extract

the multimodal input representations of the samples with the pre-
trained language and vision models. (2) Secondly, to capture the
fine-grained semantic correlation between the text and image token
representations, we propose the VMoE network which models the
informative and aligned representations of multimodal data in a
uniform backbone. (3) Thirdly, we propose the multimodal-graph
based virtual adversarial training to model the semantic correla-
tion between multimdoal samples and keep samples belonging to
the same category more clustered. (4) Eventually, to identify un-
seen categories of samples, we calculate the distances between the
multimodal features of samples and the label semantic ones.

4.1 Multimodal Input Representation
Given the multimodal samples which consists of texts and images,
we need to map them into the dense representations for deep neural
networks. For the images, we make use of ViT [6] to extract the
visual representations of images. In contrast to pre-trained models
grounded in convolutional neural networks, such as ResNet, ViT
divides the image into patches and employs transformer modules
to preserve local visual information within its high-level repre-
sentation framework. We input the image 𝑉 of the sample into
ViT and obtain the visual representations which are denoted as
V = {v1, v2, . . . , v |𝑉 | } where v𝑖 ∈ R𝑑 and |𝑉 | is the number of
feature vectors output from ViT.

As for the texts, we denote the original sentence with |𝑆 | words
as 𝑆 = {𝑤1,𝑤2, . . . ,𝑤 |𝑆 | }. To take advantage of pre-trained lan-
guage models, we utilize BERT [5] as the text encoder to map
discrete words into the dense representations. Before feeding the
sentence into BERT, we should pre-process it with special tokens.
Each sentence requires the insertion of the reserved tokens [CLS]
at the beginning and [SEP] at the end. Furthermore, the entity
information holds significant importance for ZS-MIE tasks, which
encompass MET and MRE. The reserved tokens [E1], [/E1] (and
[E2], [/E2]) are inserted into the sentence to mark the begin and
end of the entities from the entity set 𝐸 [29]. Formally, the ex-
tended sentence with the special tokens is denoted as . And the
calculation process of sentence representations can be simplified
as T = 𝐵𝐸𝑅𝑇 (𝑆) where T = {t[CLS], t1, . . . , t[SEP]} ∈ R𝑑×|𝑇 | and
|𝑇 | is the token number of the extended sentence. We extract the
entity representation according to the specific tasks.
Multimodal Named Entity Typing (MET). To keep the entity
and contextual information for MET task, we define the entity rep-
resentation as: E =

[
t[CLS] ⊕ t[E1]

]
∈ R2𝑑 where t[CLS] and t[E1]

represent the features of the tokens [CLS] and [E1] respectively,
and ⊕ is the vector concatenation operation.
Multimodal Relation Extraction (MRE). Analogous to the MET
task, we require extracting the entity representation by incorporat-
ing both the head and tail entities as:E =

[
t[CLS] ⊕ t[E1] ⊕ t[E2]

]
∈

R3𝑑 where t[E1] and t[E2] denote the beginning tokens [E1] and
[E2] of head and tail entities respectively.

Furthermore, we consider the semantic information of categories
such as: the names of labels as the prototypical knowledge. Given
the seen category set Y𝑠 = {𝑦𝑠1, 𝑦

𝑠
2, . . . , 𝑦

𝑠
|Y𝑠 | }, we consider each

category name as a sentence {𝑤1,𝑤2, . . . ,𝑤𝑙 } and feed it into BERT
to acquire the textual representations {r0, r1, . . . , r𝑙+1}. The seman-
tic representation of the category is calculated as R = 1

𝑙+2
∑𝑙+1
𝑖=0 r𝑖 .

3
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𝐸𝑀𝑅𝐸 = [[𝐶𝐿𝑆]| 𝐸1 |[𝐸2]]

MET: [CLS]…[E1]…[/E1]…[SEP]
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Figure 2: The overall framework of the multimodal graph-based variational mixture of experts (MG-VMoE) network for zero-
shot multimodal information extraction. The upper part is the samples of multimodal named entity typing and multimodal
relation extraction. The lower left is the multimodal backbone network based on VMoE and the lower right is the multimodal
graph-based vitrual adversarial training.

Therefore, the prototypical representations of the seen category set
is defined as C𝑠 = {R𝑠1,R

𝑠
2, . . . ,R

𝑠
|Y𝑠 | }.

4.2 Variational Mixture of Experts Network
The multimodal representations from the pre-trained language and
vision models exist in their respective modality spaces. To address
the semantic discrepancy between the two modalities, the existing
MIE models frequently resort to contrastive learning to harmonize
the multimodal representations emanating from pre-trained lan-
guage and vision models [22]. Nonetheless, the aforementioned
coarse-grained approach to multimodal representation learning
primarily emphasizes the holistic representations of multimodal
data, neglecting to model the local semantic relationships between
text and image token representations. Therefore, we propose the
variational mixture of experts (VMoE) network as the backbone
to make the multimodal data aligned uniformly. The traditional
MoE network consists of the router module and the expert mod-
ules [15]. Upon inputting a feature vector into the MoE network,
the router module initially determines which expert modules to
activate, guided by the input data’s characteristics. Subsequently,
each activated expert module processes the input data individually,
producing respective outputs. Ultimately, these outputs undergo a
weighted summation process, with weights assigned by the router
module, to yield the fused prediction result [1]. Compared with the
traditional MoE network, we formalize each expert module as the
variational information bottleneck (VIB) [4] which can keep the
multimodal representations from VMoE informative and aligned.

Given the textual representation T and the visual one V, we
combine them with the direct concatenation as M = [V;T] ∈
R𝑑×( |𝑉 |+|𝑇 | ) . The expert module, for multimodal representation
M, is structured as VIB that learns a latent representation Z while
preserving sufficient information from M crucial for prediction.
The information bottleneck (IB) [18] is formalized as follows:

L𝐼𝐵 = 𝛽 · 𝐼 (M,Z) − 𝐼 (Z, 𝑌 ) (1)

where 𝐼 (·) is the mutual information (MI) between two variables.
To reduce irrelevant information, we minimize the mutual infor-
mation 𝐼 (M,Z) between the input representation M and the latent
representation Z generated by the expert module. Additionally,
to ensure sufficient information for prediction, we maximize the
mutual information 𝐼 (Z, 𝑌 ) between the latent representation Z
and the target label 𝑌 . Considering that the MI is computationally
intractable for deep neural networks [4], we utilize the variational
manner to encode the latent representation. Therefore, the latent
gaussian distributional variable Z is defined as follows:

Z ∼ N(𝝁,𝝈2), 𝝁 = 𝐹𝐹𝑁𝑁 (M;𝜃𝜇 ), 𝝈 = 𝐹𝐹𝑁𝑁 (M;𝜃𝜎 ) (2)

where 𝝁 and 𝝈 are the mean and standard deviation vectors, and
𝐹𝐹𝑁𝑁 (·;𝜃 ) is short for the feed-forward neural network with the
trainable parameter 𝜃 . We use the re-parameterization trick [9] to
perform the equivalent sampling to obtain the latent representation
Z as the following equation:

Z = 𝝁 + 𝝈 ⊙ 𝜖, 𝜖 ∼ N(0, I) (3)

where ⊙ is the element-wise production and Z ∈ R𝑑×( |𝑉 |+|𝑇 | ) is
the representation from each expert module. And for the 𝐾 expert
modules, the combination of their output latent representations
is denoted as: {Z𝑖 |Z𝑖 ∼ N(𝝁𝑖 ,𝝈2

𝑖
), 𝑖 = 1, 2, . . . , 𝐾}. To fuse the

representations from different expert modules, the router module
predicts the gating weights corresponding to the 𝐾 expert modules.
The router module is implemented with the dense connection layer,
and the gating weights are calculated as G = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 (W𝑇

𝑔M +
b𝑔) ∈ R𝐾×( |𝑉 |+|𝑇 | ) where W𝑔 ∈ R𝑑×𝐾 and b𝑔 ∈ R𝐾 are the
trainable parameters. The fusion multimodal representations are
calculated as: H =

∑𝐾
𝑖=1 Z𝑖 · G𝑖 and the fusion textual and visual

token features are Ṽ = {h𝑖 } |𝑉 |
𝑖=1 and T̃ = {h𝑖 } |𝑉 |+|𝑇 |

𝑖= |𝑉 |+1. Considering
to sparsely activate expert modules for each token representation,
we exploit the entropy auxiliary loss to optimize the router module
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as the following equation:

L𝑎𝑢𝑥 = − 1
|𝑉 | + |𝑇 |

|𝑉 |+|𝑇 |∑︁
𝑗=1

𝐾∑︁
𝑖=1

𝐺𝑖, 𝑗 log𝐺𝑖, 𝑗 (4)

where 𝐺𝑖, 𝑗 is the weight score of the 𝑖-th expert module to the 𝑗-th
token representation.

To optimize the model by the IB principle, we can estimate
𝐼 (M,Z) as follows:

𝐼 (M,Z) = 𝐾𝐿(𝑝 (Z|M) ∥ 𝑝 (Z)) ≤ 𝐾𝐿(𝑞(Z|M) ∥ 𝑝 (Z)) (5)

where the posterior distribution 𝑝 (Z|M) could be approximated by
the variational posterior distribution 𝑞(Z|M) and the prior distri-
bution 𝑝 (Z) is assumed as normal Gaussian distribution. Therefore,
the regularization loss of VIB for the latent representations from 𝐾

expert modules is defined as follows:

L𝑟𝑒𝑔 =
𝐾∑︁
𝑖=1

𝐾𝐿(𝑞(Z𝑖 |M) ∥ 𝑝 (Z𝑖 )) =
𝐾∑︁
𝑖=1

𝐾𝐿(N (𝝁𝑖 ,𝝈2
𝑖 ) ∥ N (0, I))

(6)
To keep the latent representations related to task labels, we maxi-
mize 𝐼 (Z, 𝑌 ) with the variational lower bound [4] of it as follows:

𝐼 (Z, 𝑌 ) = E𝑝 (Z |M) [log 𝑝 (𝑌 |M)] ≥ E𝑞 (Z |M) [log𝑝 (𝑌 |M)] . (7)

The above equation could be optimized by the task loss function
such as ranking loss function for ZS-MIE tasks.

4.3 Multimodal Graph-based Virtual
Adversarial Training

To bridge the semantic gap between the textual and visual modali-
ties, the multimodal methods [1, 22] always utilize the contrastive
learning to align the text and image representations of a sample.
Given a batch of 𝑁 samples {(𝑇𝑖 ,𝑉𝑖 )}𝑁𝑖=1, we feed them into the
multimodal representation encoder which includes the pre-trained
language and vision models stacked with VMoE network to obtain
the fusion multimodal representations as {H𝑖 |H𝑖 =

[
Ṽ𝑖 ; T̃𝑖

]
, 𝑖 =

1, 2, . . . , 𝑁 }. We average the fusion textual and visual token features
as the global representations {(T̄𝑖 , V̄𝑖 ) |T̄𝑖 = 1

|𝑇 |
∑ |𝑇 |
𝑗=1 t̃𝑖, 𝑗 , V̄𝑖 =

1
|𝑉 |

∑ |𝑉 |
𝑗=1 ṽ𝑖, 𝑗 , 𝑖 = 1, 2, . . . , 𝑁 }. The objective of multimodal con-

trastive learning is to discern matched pairs from among 𝑁 × 𝑁
potential image-text combinations, ensuring that representations
of paired inputs are positioned closer together in the representa-
tion space compared to those of unpaired inputs. Therefore, the
multimodal contrastive learning for one batch is defined as follows:

L𝑐𝑙 =
𝑁∑︁
𝑖=1

−1
2
(log

exp(T̄𝑇𝑖 V̄𝑖 )∑𝑁
𝑗=1 exp(T̄𝑇𝑖 V̄𝑗 )

+ log
exp(T̄𝑇𝑖 V̄𝑖 )∑𝑁
𝑗=1 exp(T̄𝑇𝑗 V̄𝑖 )

) (8)

However, the aforementioned coarse-grained contrastive learn-
ing approach solely emphasizes the semantic coherence between
text-image pairs within individual samples, falling short in clus-
tering samples of the same category while simultaneously dis-
cerning intricate semantic nuances within multimodal data. This
limitation ultimately restricts its capacity to forge fine-grained
correlation between multimodal samples and prototypical knowl-
edge. Therefore, we propose the multimodal-graph based virtual
adversarial training (MG-VAT) to model the semantic correlation

between samples. Given a batch of multimodal samples, we in-
tegrate the global textual and visual representations as a whole
P = {H̄𝑖 |H̄𝑖 =

[
V̄𝑖 ⊕ T̄𝑖

]
, 𝑖 = 1, 2, . . . , 𝑁 } ∈ R2𝑑×𝑁 . To measure

the semantic similarities of samples, we construct the multimodal
sample correlation graph A = {𝑎𝑖, 𝑗 |𝑖, 𝑗 ∈ {1, 2, . . . , 𝑁 }} ∈ R𝑁×𝑁 .
And the elements in the graph are calculated as follows:

𝑎𝑖, 𝑗 = 𝑎 𝑗,𝑖 = (1 +
H̄𝑇𝑖 H̄𝑗

∥H̄𝑖 ∥2∥H̄𝑖 ∥2
)/2. (9)

We utilize the graph information to aggregate the multimodal rep-
resentations of relevant samples as: P̂ = {Ĥ𝑖 }𝑁𝑖=1 = PA and the
irrelevant ones as: P̂′ = {Ĥ′

𝑖 }𝑁𝑖=1 = P(1 − A). For each sample,
we can measure its relative semantic correlation score with other
relevant and irrelevant samples in the batch as:

s𝑖 = 𝑠𝑜 𝑓 𝑡𝑚𝑎𝑥 ( [H̄𝑇𝑖 Ĥ𝑖 ; H̄
𝑇
𝑖 Ĥ

′
𝑖 ]) ∈ R2 (10)

and the score of the batch is denoted as S = {s𝑖 }𝑁𝑖=1 ∈ R2×𝑁 .
To enhance the robustness of multimodal representations of

samples, we employ VAT [8, 13] to minimize the KL divergence
between the relative semantic correlation scores of original samples
and those of adversarial samples based on the multimodal sample
correlation graph. We introduce the perturbation vector 𝝉 ∈ R2𝑑

to generate the multimodal representations of adversarial samples
as P̃ = {H̃𝑖 |H̃𝑖 = H̄𝑖 + 𝝉 , 𝑖 = 1, 2, . . . , 𝑁 }. Based on the given graph
A, we can also calculate the relative semantic correlation scores
of adversarial samples as S̃. In order to reduce the influence of
perturbation, the adversarial loss for VAT is defined as follows:

L𝑣𝑎𝑡 = 𝐾𝐿(𝑝 (S|P) ∥ 𝑝 (S̃|P̃)) . (11)

Moreover, to compute the worst perturbation which can signifi-
cantly improve multimodal representations, we can optimize the
perturbation 𝝉 by the following objective function:

arg max
𝝉

𝐾𝐿(𝑝 (S|P) ∥ 𝑝 (S̃|P̃)) − ∥𝝉 ∥2 . (12)

4.4 Training and Inference Procedure
Given the fusion multimodal representations H and the textual
entity representation E, we utilize the attention mechanism [30] to
extract the local features of the former which are related to the lat-
ter. The attention score is defined as 𝛼𝑖 =

exp(W𝑇
𝑎 [h𝑖⊕E]+b𝑎 )∑|𝑉 |+|𝑇 |

𝑗=1 exp(W𝑇
𝑎 [h𝑗⊕E]+b𝑎 )

where W𝑎 ∈ R𝑑+|E | and b𝑎 ∈ R are the trainable parameters
and |E| is the dimension number of textual entity representation.
Therefore, the entity-aware multimodal representation is calcu-
lated as U =

∑ |𝑉 |+|𝑇 |
𝑖=1 𝛼𝑖h𝑖 . For predicting the category, we con-

catenate the textual entity representation and entity-aware one as
Ũ = [U ⊕ E] and regard the the semantic representations C𝑠 =

{R𝑠1,R
𝑠
2, . . . ,R

𝑠
|Y𝑠 | } of the seen category set as the prototypical

knowledge. To assess the association between the sample and its
category, we employ the semantic similarity to determine the score
using the formula as 𝑜𝑖 = Û𝑇 R̂𝑖 where 𝑜𝑖 is the score between the
sample and the 𝑖-th category in C𝑠 . And the textual entity represen-
tation and entity-aware one are projected into the shared semantic
space as Û = 𝐹𝐹𝑁𝑁 (Ũ;𝜃𝑜1) ∈ Rℎ and R̂𝑖 = 𝐹𝐹𝑁𝑁 (R̃𝑖 ;𝜃𝑜2) ∈ Rℎ .
Based on the above score, we leverage the ranking loss to ensure
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that the score of the true label remains higher than those of the false
labels. The objective of max-margin ranking is defined as follows:

L𝑟𝑎𝑛𝑘 =

|𝑌𝑠 |∑︁
𝑖=1,𝑦𝑠

𝑖
≠𝑌

max(0, 1 − 𝑜+ + 𝑜𝑖 ) (13)

where 𝑜+ is the score of the true type 𝑦𝑠
𝑖
= 𝑌 . And the objective

function of Eqn. 7 can also be optimized by the task-relevant loss.
Given the batches of multimodal samples, we feed them into the

model and firstly update the perturbation vector by Eqn. 12. To
train the model with different objectives at once, we introduce the
hyper-parameter to sum the corresponding losses. The overall loss
is defined as follows:

L = L𝑟𝑎𝑛𝑘 + 𝛽 · (L𝑎𝑢𝑥 + L𝑟𝑒𝑔 + L𝑐𝑙 + L𝑣𝑎𝑡 ) (14)

where 𝛽 is the hyper-parameter to balance the different losses. Sub-
sequently, we employ stochastic gradient descent (SGD) techniques
to update model weights based on the loss calculated by Eqn. 14.
In the inference phase, we evaluate the scores between samples
in 𝐷𝑡𝑒𝑠𝑡 and unseen categories in 𝑌𝑢 , and designate the category
scoring the highest as the predicted outcome.

5 Experiments
5.1 Datasets and Experiment Settings
We delve into the realm of zero-shot multimodal information extrac-
tion, specifically focusing on two tasks: multimodal named entity
typing (MET) and multimodal relation extraction, both executed
within a zero-shot setting. For these tasks, we undertake experi-
ments utilizing the respective benchmark datasets. For MET task,
we utilize the WikiDiverse [21] as the benchmark dataset. Each
sample in the dataset consists of a text-image pair sourced from
Wikinews, with the entity mention in the sentence manually an-
notated into one of 13 fine-grained types. For the MRE task, we
utilize the benchmark dataset proposed by Zheng et al. [27], which
is based on Twitter posts. Annotators randomly selected samples
covering various topics. The MRE dataset contains samples catego-
rized into 23 relation types. Since the above two datasets include
meaningless categories such as "Other" or "None", we exclude them
and only consider categories with actual semantics.

To compare our model with the baselines under the zero-shot
setting, we mimic this scenario by randomly splitting original cate-
gory set into three parts. For the MET task, we allocate 4 categories
to each of the training, validation, and test sets individually. In the
case of the MRE task, we assign 8, 7, and 7 categories to the train-
ing, validation, and test sets respectively. Ultimately, we conduct
the experiments 3 times using different seeds and report the mean
and standard deviation of the performances. The hidden layers are
configured with a size of 768, while the hyper-parameter 𝛽 , expert
numbers 𝐾 , learning rate and batch size are set to 1.0, 8, 1e-5 and
16, respectively. For both tasks, we set the training epochs to 20.
All experiments are expedited using NVIDIA GTX A6000 devices.

5.2 Compared Methods
We compare MG-VMoE with both previous text-based ZS-IE mod-
els and multimodal models to demonstrate its effectiveness. For
ZS-IE, the label-embedding-based prototype (Proto) network [11]

Table 1: Performance comparison on the MET and MRE
datasets under the zero-shot settings. The bold numbers in-
dicate that the improvement of MG-VMoE over traditional
baselines is statistically significant with 𝑝 < 0.01 under t-test.

Multimodal Named Entity Typing
Model Precision Recall F1 Accuracy
Text
Proto 23.9 ± 5.9 24.6 ± 3.5 13.9 ± 5.7 29.3 ± 11.7
DBZFET 30.9 ± 4.9 29.5 ± 4.2 16.2 ± 1.3 23.6 ± 1.4
NZFET 26.3 ± 9.0 26.8 ± 4.8 13.3 ± 1.8 18.4 ± 2.6
MZET 29.9 ± 3.2 28.8 ± 5.6 11.4 ± 1.5 21.1 ± 6.5
Multimodal
MMProto 27.3 ± 3.8 27.2 ± 4.1 17.1 ± 9.2 24.4 ± 12.4
MOVCNet 28.6 ± 5.0 24.0 ± 3.3 13.9 ± 5.0 23.3 ± 10.8
LLaVA 40.9 ± 2.8 51.6 ± 6.4 39.5 ± 2.9 53.5 ± 9.7
Ours 37.1 ± 3.3 31.3 ± 4.9 23.7 ± 2.0 45.1 ± 2.0

Multimodal Relation Extraction
Model Precision Recall F1 Accuracy
Text
Proto 24.5 ± 12.5 27.2 ± 10.2 21.6 ± 9.6 38.0 ± 9.3
ZS-BERT 29.5 ± 4.8 29.3 ± 5.4 22.9 ± 4.1 37.2 ± 8.7
RE-Matching 28.0 ± 4.8 31.1 ± 7.1 22.7 ± 11.1 32.4 ± 17.4
ZS-SKA 29.9 ± 7.4 21.8 ± 6.0 16.6 ± 7.1 26.8 ± 11.3
Multimodal
MMProto 33.8 ± 3.9 29.8 ± 4.5 23.4 ± 4.8 35.6 ± 6.2
MOVCNet 27.6 ± 11.1 25.4 ± 7.4 19.8 ± 6.2 33.8 ± 10.5
LLaVA 25.1 ± 4.6 18.2 ± 2.0 13.6 ± 0.7 14.9 ± 3.1
Ours 34.5 ± 8.1 32.8 ± 5.1 27.3 ± 8.1 40.0 ± 5.6

is a classic and effective baseline to perform the tasks. Besides, we
select the description-based ZS-ET models including: DBZFET [16]
and NZFET [17] as baselines which exploited the attention mecha-
nisms to extract local features. And the memory augmented model
MZET [23] was introduced for transferring knowledge from ob-
served types to unobserved ones. For ZS-RE, Chen and Li [2] pro-
posed ZS-BERT to encode entity and context representations and
connect them with semantic representations of relations. Zhao et al.
[25] exploited the fine-grained matching mechanism to extract the
effective entity and context features. And Gong and Eldardiry [7]
made use of prompt learning to learn the representations of both
seen and unseen relations. For ZS-MIE, we extend Proto with the
pre-trained vision model as the multimodal prototype network
(MMProto) [20]. Zhang et al. [24] proposed the multimodal entity
typing method (MOVCNet) to capture the semantic correlation
between textual and visual representations. With the development
of multimodal large language models (MLLM), we also select 13B
version of LLaVA [10] as the baseline to perform the ZS-MIE tasks.

5.3 Experimental Results
We evaluated MG-VMoE alongside baseline models on the MET and
MRE benchmark datasets, and reported macro-averaged precision
(P), recall (R), F1 scores, and accuracy, considering the varying
sample sizes across different categories. The detailed experimental
results are shown in Table 1. Our model performed exceptionally
well in most metrics on the MET dataset, achieving F1 and accuracy
scores that exceeded the traditional baselines by 6.6% and 15.8%,
respectively. Among text-based methods, DBZFET consistently
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Figure 3: The performance comparison of MG-VMoE with
different expert module numbers.

outperformed the Proto model in terms of F1 score, emphasizing
the significance of the attention module in capturing local sentence
representations pertinent to entity types. We introduce the MG-
VMoE model for fusing multimodal data to recognize novel types,
consistently surpassing text-based models in performance, thereby
demonstrating the superiority of our proposed approach. But LLaVA
achieved better results than our model and we analyze that LLaVA is
based on LLaMA [19] which was pre-trained on the web contents of
Wikipedia. The MET dataset, sourced from the Wikinews website,
includes entities that are also documented on Wikipedia. Therefore,
the results of LLaVA are higher than those of the MG-VMoE model.

On the MRE dataset, our model surpassed all baseline models,
achieving an F1 score that was 3.9% higher and an accuracy score
that was 2.0% higher compared to the baselines. Furthermore, the
multimodal-basedMMProto exceeded text-basedmodels in F1 score,
highlighting the beneficial impact of visual information on ZS-
MIE tasks. And LLaVA fails to surpass the proposed model, as it
was not pre-trained on the Twitter content comprising the MET
dataset. In conclusion, our model outperforms both text-based and
multimodal-based baselines because of our novel fusion of text and
image information using the VMoE network, combined with the
creation of MG-VAT, which enhances multimodal representations
and ultimately benefits MG-VMoE.

5.4 Ablation Study
The results demonstrate the significant role each component plays
in determining the model’s overall performance. To fully assess the
effectiveness of the different modules introduced in MG-VMoE, an
ablation study was performed, and its results are displayed in Table
2. Significantly, the exclusion of the variational mixture of experts
(VMoE) caused a substantial decline in performance, underscoring
the importance of integrating aligned and informative multimodal
representations. This decline occurs because the low-level features
from both modalities possess complementary information, which
collectively enhances the comprehension of the input data. By uti-
lizing VMoE to fuse these features, the model is able to capture
fine-grained semantic correlations between the modalities, result-
ing in enhanced performance. Additionally, we assess the impact of
multimodal graph-based virtual adversarial training (MG-VAT) on
the ultimate outcomes. Our findings indicate that MG-VAT plays a
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Figure 4: The performance comparison of MG-VMoE with
different hyper-parameter 𝛽 values.

Table 2: The ablation study results of MG-VMoE on the MET
and MRE benchmark datasets.

Model MET MRE
F1 Accuracy F1 Accuracy

MG-VMoE 23.7 45.1 27.3 40.0
w/o VMoE 19.4 29.2 20.8 36.0
w/o MG-VAT 18.2 38.9 21.5 32.5

crucial role in boosting the model’s final performance. By adopting
an adversarial training strategy to refine multimodal representa-
tions at a fine-grained level, MG-VAT augments themodel’s capacity
to precisely capture semantic connections among multimodal sam-
ples, leveraging graph-based information. To summarize, the results
obtained confirm that employing the VMoE network architecture
alongside the MG-VAT strategy for modeling detailed multimodal
representations can improve model performance.

5.5 Influence of Experts Numbers
The VMoE network consists of expert modules, and their quantity
plays a crucial role in the network’s performance. To assess the
impact of the number of experts, we conducted experiments to
compare the performance of MG-VMoE with varying numbers of
expert modules, as illustrated in Figure 3. The varying number
of expert modules affects the MG-VMoE’s performance on the
two benchmark datasets, with optimal results achieved when the
model includes 8 experts. A significant drop in performance occurs
when reducing the number of experts in the model, as the experts
are individually trained to capture multimodal representations of
samples across various categories, and with fewer experts, effective
learning of these representations becomes impractical. Increasing
the number of experts in the model does not yield better results, as
redundant experts may lead to overfitting on the training samples.
Furthermore, the varying outcomes of MG-VMoE with different
numbers of experts demonstrate the VMoE network’s effectiveness.

5.6 Influence of Hyper-parameter 𝛽
During the training process, we uniformly train the model by sum-
ming the loss functions of VMoE and MG-VAT with the ranking
loss, weighted by a hyper-parameter. To assess the impact of the
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Figure 5: The performance comparison of each expertmodule
individually activated in MG-VMoE.

hyper-parameter 𝛽 , we perform parameter sensitive experiments
as shown in Figure 4. The MG-VMoE’s performance on the two
benchmark datasets is influenced by various 𝛽 values. As 𝛽 value
increases, the model focuses more on VMoE and MG-VAT losses,
resulting in a significant drop in F1 scores. This is because the
model fails to obtain a meaningful signal from the ranking loss and
is unable to learn generalized representations for diverse categories.
When 𝛽 value is reduced, the model struggles to obtain sufficient
signals from VMoE and MG-VAT losses, leading to a decline in both
F1 and accuracy scores. This is due to the model’s inability to effec-
tively leverage VMoE and MG-VAT, resulting in its failure to learn
aligned and informative multimodal representations for different
categories. Therefore, we achieve optimal results by balancing the
ranking loss with other losses, setting the value of 𝛽 to 1.0.

5.7 Experts Abilities Analysis
During our experiments, MG-VMoE comprises 8 expert modules
that are activated using sparse weights for forward propagation.
To evaluate the capabilities of various experts, we examine the
performance of each expert module independently activated within
MG-VMoE, as illustrated in Figure 5. While the experts exhibit
comparable overall performance, there are slight discrepancies in
their prediction outcomes, particularly in terms of precision, recall,
and F1 scores. Each expert acquires diverse multimodal represen-
tations for samples belonging to different categories. On the MET
dataset, Expert #7 outperforms other experts in terms of results
for the "Event" type, but falls behind Expert #8 for the "People"
type. Furthermore, the recall scores of experts on the MRE dataset
vary significantly. Considering the diverse capabilities of experts
demonstrated in Figure 5, as well as the inferior performance of
the model with fewer experts shown in Figure 3, having an optimal
number of experts is essential for accurately modeling multimodal
representations and enhancing the performance of MG-VMoE.

5.8 Visualization Analysis
In order to evaluate the effectiveness of multimodal representations
for ZS-MIE, we visualize the features learned from MG-VMoE and
baseline models in Figure 6. We choose samples from specific cate-
gories within the test sets and utilize both MG-VMoE and baseline
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Figure 6: Visualization of the t-SNE results exhibiting the
multimodal representations of samples with particular cat-
egories, which were extracted individually from MG-VMoE
and baseline models.

models to obtain their respective representations. Subsequently, we
employ t-SNE [12] to reduce the dimensionality of these output
representations to two dimensions. The results show that the rep-
resentations of MG-VMoE are more tightly grouped within each
category, suggesting that MG-VMoE is more adept at distinguish-
ing subtle variations among samples within the same category. For
instance, the representations generated byMG-VMoE are more clus-
tered compared to those produced by ZS-BERT on the MRE dataset.
Furthermore, on the MET dataset, the representations of various
categories from MG-VMoE exhibit a tighter grouping within each
category. This can be explained by the abundant semantic content
in multimodal data and the effectiveness of MG-VAT in capturing
semantic relationships between samples. By integrating multimodal
information using MG-VAT, the model acquires robust and transfer-
able features, leading to improved performance in ZS-MIE tasks.

6 Conclusion
This paper investigates zero-shot multimodal information extrac-
tion (ZS-MIE) tasks, and mainly aims to address the coarse-grained
multimodal representation learning limitation. To overcome this
limitation, we introduce the multimodal graph-based variational
mixture of experts (MG-VMoE) network tailored for ZS-MIE tasks.
The MG-VMoE network builds upon fine-grained multimodal rep-
resentation learning, incorporating both the variational mixture
of experts (VMoE) and multimodal graph-based virtual adversarial
training. Serving as the core, the VMoE network utilizes sparse
weights to activate expert modules, where each expert functions as
a variational information bottleneck (VIB) for extracting informa-
tive and aligned textual and visual representations. Meanwhile, the
multimodal graph-based virtual adversarial training is employed
to capture semantic correlations between multimodal samples and
enhance the clustering tightness of samples within the same cate-
gory. Experimental results demonstrate the generalization ability
of MG-VMoE compared to baseline methods on ZS-MIE tasks.
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