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Abstract

Audio-Visual Question Answering (AVQA) is a complex multi-modal reasoning
task, demanding intelligent systems to accurately respond to natural language
queries based on audio-video input pairs. Nevertheless, prevalent AVQA ap-
proaches are prone to overlearning dataset biases, resulting in poor robustness. Fur-
thermore, current datasets may not provide a precise diagnostic for these methods.
To tackle these challenges, firstly, we propose a novel dataset, MUSIC-AVQA-R,
crafted in two steps: rephrasing questions within the test split of a public dataset
(MUSIC-AVQA) and subsequently introducing distribution shifts to split questions.
The former leads to a large, diverse test space, while the latter results in a compre-
hensive robustness evaluation on rare, frequent, and overall questions. Secondly,
we propose a robust architecture that utilizes a multifaceted cycle collaborative
debiasing strategy to overcome bias learning. Experimental results show that this
architecture achieves state-of-the-art performance on MUSIC-AVQA-R, notably
obtaining a significant improvement of 9.32%. Extensive ablation experiments are
conducted on the two datasets mentioned to analyze the component effectiveness
within the debiasing strategy. Additionally, we highlight the limited robustness
of existing multi-modal QA methods through the evaluation on our dataset. We
also conduct experiments combining various baselines with our proposed strategy
on two datasets to verify its plug-and-play capability. Our dataset and code are
available at https://github.com/reml-group/MUSIC-AVQA-R.

1 Introduction

Humans possess the extraordinary capacity to seamlessly integrate auditory and visual cues, effec-
tively establishing a cohesive relationship between visual and auditory stimuli [1]. Audio-Visual
Question Answering (AVQA) [2–5, 3] seeks to enable intelligent systems to acquire this capability
and produce answers based on provided natural language questions. It requires the system to learn
high-order interaction representations of the concepts encompassed with audio, video, and language
modalities. As is known to us [6–8], the high-level reasoning ability of the system mainly relies on
large-scale data that does not contain harmful biases or statistical regularities.

Nevertheless, completely avoiding the negative bias in datasets seems challenging. Previous studies
[9–12] in visual and extractive QA have investigated the bias from the perspective of changing answer
distributions and human-in-the-loop adversarial attacks. Drawing inspiration from these works,
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Figure 1: The question in current AVQA datasets is generated by a limited set of predefined templates,
which may not be in line with the real-world scenario. Our findings indicate that existing methods
[5, 1] such as STG [4] are not robust, which may be attributed to excessive bias learning, such as
memorizing statistical regularities between critical question words and answers.

several open questions are proposed for the AVQA task, concerning model evaluations and model
designs.

Question 1: have existing datasets comprehensively measured model robustness? The questions
in the current AVQA dataset [13, 5, 14, 3] are generated by a limited set of predefined templates,
such as the 33 templates in the MUSIC-AVQA dataset [4]. Fig. 1 shows the samples in the training
and test split, which are produced using a predefined template. The observed difference mainly stems
from a single word, leading to a limited vocabulary size of only 93 words. This has the potential to
deviate from real-world scenarios. Moreover, current datasets cannot reflect the performance on rare
or less common samples, which is an important indicator for evaluating model robustness [15, 16].

Question 2: have existing methods overcome the data bias? We found that existing methods
[5, 1, 17, 18] such as STG [4] are brittle for the question with rare answers. This may be attributed
to memorizing the statistical regularity between critical question words and answers, such as the
connection between “Is”, “Playing”, and “Yes”. Specifically, the experimental result [4] shows that
STG achieves an accuracy of 54.09% on the test split of MUSIC-AVQA only given questions.

In this paper, we present the development of a novel dataset called MUSIC-AVQA-R, which aims
to address the first question precisely. The dataset complements MUSIC-AVQA [4] and provides
a more refined diagnostic for current AVQA methods. To preserve the inherent bias, we maintain
the original training and validation splits of the MUSIC-AVQA dataset. In contrast, we employ a
human-machine collaboration mechanism to rephrase the question in the test split. This ensures
diverse and natural question forms while remarkably expanding the number of questions from 9,129
to 211,572. We introduce a distribution shift based on answer distributions of specific question types.
This allows us to measure performance on both frequent (in-distribution) and rare (out-of-distribution)
data simultaneously.

To tackle the second question, we propose a robust framework that applies a Multifaceted Cycle
Collaborative Debiasing (MCCD) strategy. Specifically, the strategy introduces a novel optimization
objective, which enlarges the distribution difference between uni-modal (question, audio, and video)
and multi-modal logit. By doing so, our model becomes less prone to learning biases from individual
modalities. Intuitively, we cannot choose the correct answer based on only one modality. Hence,
MCCD employs cycle guidance to constrain the logit distribution of each modality, thereby promoting
the similarity of uni-modal logit distribution. The experimental results demonstrate that our framework
yields significant improvements on both datasets, with a particularly notable enhancement of 9.32%
observed on the MUSIC-AVQA-R dataset.
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In summary, our contributions are fourfold: (1) We propose a novel dataset MUSIC-AVQA-R and a
set of respective evaluation metrics. This enables us to thoroughly evaluate the reasoning behavior
of AVQA models and characterize their generalization capabilities in in- and out-of-distribution
scenarios. (2) We present an AVQA architecture that incorporates the MCCD strategy to overcome
training biases. To the best of our knowledge, this is the first work to systematically explore biases
in the AVQA task from model evaluations as well as model designs. (3) We conduct extensive
experiments on MUSIC-AVQA and MUSIC-AVQA-R to verify the effectiveness and superiority of
our proposed architecture and debiasing strategy. (4) We evaluate 13 recent multimodal QA methods
on the proposed dataset and show their limited ability to generalize not only in-distribution scenarios
but also in out-of-distribution situations.

2 Related Work

2.1 Model Robustness Evaluation

Despite the notable achievements of QA datasets [19–23, 3], they suffer from biases, resulting in
incomplete evaluations. In recent years, numerous studies have tackled this issue from various
perspectives [24–27].

One avenue of research [12, 28, 29] reorganizes existing datasets, thereby making the distribution
between training and testing splits significantly different or even reversed. The reorganized datasets
reflect the performance in the out-of-distribution situation but lack measurement in the in-distribution
scenario. To this end, GQA-OOD [30] introduces the distribution shift in both the validation and
test splits to assess visual QA models in both scenarios simultaneously. Nevertheless, the number
of questions in the GQA-OOD test split is only 2,796, which may not reflect the real generalization
ability of visual QA models due to the presence of a limited number of testing samples [31]. Inspired
by the adversarial attack, another line of works [32, 33] regard the dataset construction as a game
played by two parties: a human annotator and a well-trained model. Only samples generated by
humans that successfully attack the model are incorporated into the dataset. In addition, there exists
another line of work [14] that complements videos and questions to obtain balanced training data.

Different from the mentioned works, our dataset, MUSIC-AVQA-R, not only prioritizes question
diversity but also considers the volume of test samples. This enhances the precision and comprehen-
siveness of robustness evaluation. Moreover, we recognize the formidable challenge of obtaining
completely pure training data. As such, we opt to retain the inherent bias present in both the training
and validation splits. Our primary objective is to inspire the community to enhance model robustness
through the implementation of debiasing strategies, rather than striving for balanced training data.
Remarkably, to the best of our knowledge, our dataset is the first AVQA dataset explicitly designed
for robustness evaluation.

2.2 Bias Dependency Elimination

A variety of debiasing QA methods [34–37] have been proposed to overcome bias memorization.
These methods can be divided into four classes [24]: ensemble learning, data augmentation, con-
trastive learning, and answer re-ranking.

Ensemble learning methods [38, 28, 39, 6, 40, 41] typically leverage a combination of a bias learner
and a vanilla QA model to comprehensively predict answers. Data augmentation methods [42–45]
generate additional question-answer pairs to balance the data distribution. Based on the positive and
negative sample generation, contrastive learning-based methods [46–48] strive to learn an embedding
space where similar sample pairs are closely clustered while disparate ones are distinctly separated.
Consequently, the vanilla QA method is optimized jointly through contrastive and QA losses. Answer
re-ranking methods [34, 49–52] primarily focus on reordering the answers predicted by the vanilla
QA model to enhance context comprehension, such as vision grounding.

To the best of our knowledge, COCA [53] is the only work to mitigate the bias learning in the
AVQA task, which first employs causal regularization to intervene bias-irrelevant causal effects and
then introspects predictions. Unlike the mentioned works, which only consider language biases,
our method considers audio, vision, language biases, and their collaboration. The proposed MCCD
strategy features plug-and-play capability, enhancing the debiasing potential of baseline methods.
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3 Dataset Creation and Analysis

We introduce the first dataset, MUSIC-AVQA-R, to evaluate the robustness of AVQA models. The
construction of this dataset involves two key processes: rephrasing and splitting. The former involves
the rephrasing of questions in the test split of MUSIC-AVQA, and the latter is dedicated to the
categorization of questions into frequent (head) and rare (tail) subsets.

3.1 Rephrasing

The questions within the existing dataset [5, 4] are formulated using a restricted collection of pre-
defined templates. To augment diversity and reality, we employ a rephrasing tool1 to rephrase each
question 25 times. To ensure the rephrasing quality, three annotators participate in a verification
process where their consensus through voting is required. They are all senior students in the field
of information science, with one specializing in computer science and the other two in automation.
Their extensive professional background equips them with the ability to assess whether the above
rephrasing fulfills the requirement. Rephrasings are incorporated into the dataset only when two
or more individuals validate the quality of the modifications. According to the statistics, 92.4% of
rephrasings pass this validation, and the Fleiss Kappa value used to measure vote consistency is
0.839. Please see details in Table 4 of Appendix B. These results strongly suggest an exceptionally
high quality of the rephrasing efforts. Fig. 2 illustrates the distribution of rephrased questions based
on their initial three words. We see that our rephrasing questions have various formats, and the
comparison between the two datasets is shown in Fig. 6 of Appendix B. The vocabulary size of
our dataset is 465, which is 5x larger than MUSIC-AVQA. These results indicate that our dataset is
more in line with the real-world scenario. Furthermore, an expansion of the question count within
the test split has been implemented, escalating from 9,129 to 211,572 questions. This substantial
increase in the volume of test samples enhances the precision of evaluations for AVQA methods.

Figure 2: Distribution of rephrasing
questions based on the first three words.

3.2 Splitting

To provide a precise diagnostic for AVQA models, we
introduce a distribution shift based on answer distributions
of specific question types, following [30]. Guided by this
distribution, we categorize rephrased questions into head
and tail, enabling the assessment of in-distribution and out-
of-distribution performance, respectively. We also utilize
the overall performance to assess the model effectiveness
on the entire test split.

Specifically, to characterize the distribution shift, we first
utilize the annotation for question types, including “Ex-
istential”, “Location”, “Counting”, “Comparative”, and
“Temporal”, to group questions. Fig. 3(a) illustrates the
answer distribution of the “Temporal” questions within the
AVQA task. We see that the answer presents a long-tailed
distribution. The distribution of other types is given in
Appendix B. It is essential to note that MUSIC-AVQA en-
compasses three tasks: audio QA, visual QA, and AVQA.

Next, we characterize the answer balance using Shannon
entropy, expressed as H(A) = −

∑N
i=1 p(ai) log p(ai), where H(A) is the entropy of an answer

set A for a certain question type, N is the number of answer classes, and p(ai) represents the
probability of answer class i. It is important to note that the entropy depends on the number of
answer classes, which exhibits significant variability across different question groups. To facilitate
meaningful comparisons, we normalize H(A) of each group by log(N): H̄(A) = H(A)

log(N) , with
log(N) representing the entropy of a uniform distribution of size N . Refer to Appendix C for detailed
proof. Thus, the normalized entropy H̄(A) indicates the proximity of the distribution H(A) to a

1https://quillbot.com/paraphrasing-tool

4

https://quillbot.com/paraphrasing-tool


(a) Answer distributions of “Temporal” questions in the AVQA task.

Audio Visual
Multi-modal Scene

Audio-Visual

(b) Statistics of head and tail samples.

Figure 3: Statistics visualization for MUSIC-AVQA-R. µ(a) is the average number of answers in a
group. The dark color on the right denotes the number of head samples, while the light-colored area
denotes that of tail samples.

uniform distribution. We preserve the group with a normalized entropy below a threshold of 0.9,
which aims at selecting imbalanced groups.

Finally, we categorize the samples into head and tail classes. We define the tail class as class i with
|ai| ≤ 1.2µ(a) following [30], where |ai| represents the number of samples belonging to answer
class i, and µ(a) denotes the average sample count for a group. Consequently, the tail samples are
rare, while the head samples are more prevalent within a group. Fig. 3(b) illustrates the statistics of
head and tail samples across various groups within each task.

4 Method

To mitigate bias learning, we propose a robust AVQA architecture that integrates a multifaceted cycle
collaborative debiasing strategy. Fig. 4 illustrates an overview of our proposed architecture. It first
learns the uni-modal and multimodal representations using a pre-trained model. Then, the architecture
utilizes distinct bias learners to capture uni-modal biases. Finally, a collaborative debiasing strategy
is leveraged to magnify the disparity between fusion logit and bias logit, obtained based on multi-
modality and uni-modality representations, respectively. Meanwhile, a cycle guidance mechanism is
employed to maintain the similarity between bias logit. The aforementioned procedure is only carried
out in the test split of MUSIC-AVQA. Consequently, our proposed dataset, MUSIC-AVQA-R, allows
for a more precise and comprehensive evaluation of models handling data biases.

Uni-modal Embedding. Given an AVQA sample comprising a video sequence and a corresponding
question, we initially partition the sequence, consisting of visual and audio tracks, into T non-
overlapping pairs of visual and audio segments, denoted as {Vt, At}Tt=1, where each segment spans
one second. Subsequently, a distinct embedding layer is employed to acquire uni-modal embeddings.
Specifically, we employ a pre-trained VGGish model [54] with fixed parameters, which is a VGG-like
audio processing network, to obtain an audio embedding vector. For video embedding vectors,
we employ a pre-trained ResNet-18 with fixed parameters on the frames. The VisualBert model
[55] is applied to obtain a word-level question embedding vector. To ensure dimension matching,
distinct linear layers are applied to the aforementioned vectors, resulting in uni-modal embeddings
Ae

i ,V
e
i ∈ RT×768 and Qe

i ∈ Rl×768, where l is the question length.

Uni- and Multi-modal Representation. We leverage VisualBert to obtain both uni-modal and multi-
modal representations, represented as Ac

i ,V
c
i ,Q

c
i ,M

c
i ∈ R768. In the case of uni-modal learning, we

exclusively input the aforementioned uni-modal embeddings to VisualBert. For multi-modal learning,
we treat question embeddings as queries, concatenate video and audio embeddings as context, and
leverage VisualBert to perform multi-modal interaction. Then, we apply a linear projection on the
representation to obtain the multi-modality logit ŷm

i ∈ R42, where 42 denotes the number of possible
answers.

Uni-modal Bias Learning. AVQA may involve various harmful uni-modal biases, encompassing
biases associated with audio, video, and language, respectively. To capture these uni-modal biases,
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Figure 4: Robust AVQA architecture to overcome bias learning. Our MCCD strategy is plug-and-play,
allowing seamless integration with other AVQA methods.

we utilize a bias learner that takes only one of the three modalities as input. Specifically, distinct
non-linear multi-layer perceptron layers serve as the learners, producing the corresponding logit
ŷa
i , ŷ

v
i , ŷ

q
i ∈ R42 on the answer space. It should be noted that these bias learners are removed during

the testing stage.

Collaborative Debiasing. To eliminate bias learning, we propose a multifaceted cycle collaborative
debiasing (MCCD) strategy. It first reduces the bias impact from multiple views by enlarging
the dissimilarity between uni-modal and multi-modal logit. This discrepancy enlargement Ld is
implemented by the joint inverse distance:

Ld =
α

3K

K∑
i=1

(
1

dai
+

1

dvi
+

1

dqi

)
, (1)

where K is the batch size, α is used to balance optimization, dai denotes the Euclidean distance
between audio logit and multi-modality logit, dvi represents the distance between video logit and
multi-modality logit, dqi is the distance between question logit and multi-modality logit, and ϵ = 1e−5
is added to the denominator to avoid division by zero.

Intuitively, relying solely on one modality for answer prediction may result in similar logit distribu-
tions. Therefore, MCCD employs cycle guidance to constrain the distribution of uni-modal logit.
This guidance Lc is implemented by the Kullback–Leibler divergence:

Lc =
β

3
(Lqa + Lav + Lvq) , (2)

where β is the factor to control weight, Lqa = 1
K

∑K
i=1 ŷ

q
i (log ŷ

q
i − log ŷa

i ) denotes the relative
entropy between the question ŷq

i and audio logit ŷa
i , Lav = 1

K

∑K
i=1 ŷ

a
i (log ŷ

a
i − log ŷv

i ) is the
relative entropy between the audio ŷa

i and video logit ŷv
i , and Lvq = 1

K

∑K
i=1 ŷ

v
i (log ŷ

v
i − log ŷq

i )
represents the relative entropy between the video ŷv

i and question logit ŷq
i .

Finally, we utilize the summation of Ld, Lc and La to optimize the parameters of our method.
La = − 1

K

∑K
i=1 y

f
i log ŷ

f
i is the loss of answer prediction that is regarded as a multi-classification

problem, where yf
i , ŷ

f
i denote the one-hot answer label and logit of multi-modality fusion, respectively.

The training details are shown in Appendix A.

5 Experiments

5.1 Dataset and Evaluation

MUSIC-AVQA [4], which contains training, validation, and testing splits with 31,927, 4,568, and
9,129 QA pairs, is developed by gathering questions for 9,288 musical performances. The questions
are produced by a limited set of pre-defined templates. The videos, sourced from YouTube, include
solo performances, ensembles of the same instruments, and ensembles of different instruments. This
dataset consists of three tasks: audio QA, visual QA, and AVQA. The standard accuracy is used to
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evaluate model performance on the mentioned tasks. To comprehensively assess model robustness,
we conduct rephrasing and splitting on the test split, expanding the question count from 9,129 to
211,572. Owing to the introduction of distribution shift, our proposed dataset provides three metrics:
head accuracy, tail accuracy, and overall accuracy, to evaluate models precisely. The test split
comparison between MUSIC-AVQA and MUSIC-AVQA-R is shown in Appendix D.1. We can see
that the latter exhibits a larger test sample space.

Table 1: Experimental results (%) on the MUSIC-AVQA test split. EXIST, LOC, CNT, COMP, and
TEMP, which are question types, denote “Existential”, “Location”, “Counting”, “Comparative”, and
“Temporal”, respectively. Avg. denotes the average accuracy.

Method MCCD Audio QA Visual QA AVQA All
CNT COMP Avg. CNT LOC Avg. EXIST LOC CNT COMP TEMP Avg. Avg.

FCNLSTM × 70.45 66.22 68.88 63.89 46.74 55.21 82.01 46.28 59.34 62.15 47.33 60.06 60.34
✓ 70.99 66.50 69.34 66.08 59.02 62.51 83.50 57.17 60.47 61.58 57.54 64.11 64.61

CONVLSTM × 74.07 68.89 72.15 67.47 54.56 60.94 82.91 50.81 63.03 60.27 51.58 62.24 63.65
✓ 72.76 69.53 71.57 69.59 58.12 63.79 82.69 56.09 62.13 62.03 55.11 63.87 65.21

BiLSTM Attn × 70.35 47.92 62.05 64.64 64.33 64.48 78.39 45.85 56.91 53.09 49.76 57.10 59.92
✓ 68.24 54.88 63.31 61.65 55.92 58.75 79.15 41.96 55.02 49.41 49.15 55.18 57.56

HCAttn × 70.25 54.91 64.57 64.05 66.37 65.22 79.10 49.51 59.97 55.25 56.43 60.19 62.30
✓ 69.52 53.37 63.56 63.99 65.47 64.74 78.64 47.28 61.11 55.86 55.72 60.03 61.90

MCAN × 77.50 55.24 69.25 71.56 70.93 71.24 80.40 54.48 64.91 57.22 47.57 61.58 65.49
✓ 78.27 56.57 70.27 71.93 71.18 71.55 81.48 54.24 65.77 55.86 46.84 61.54 65.74

GRU × 72.21 66.89 70.24 67.72 70.11 68.93 81.71 59.44 62.64 61.88 60.07 65.18 67.07
✓ 73.35 66.16 70.70 67.25 71.43 69.36 81.98 60.11 63.08 62.76 61.19 65.84 67.63

HCRN × 68.59 50.92 62.05 64.39 61.81 63.08 54.47 41.53 53.38 52.11 47.69 50.26 55.73
✓ 72.17 64.65 69.40 67.42 60.82 64.08 79.66 48.70 65.14 61.22 55.72 60.40 64.20

HME × 74.76 63.56 70.61 67.97 69.46 68.76 80.30 53.18 63.19 62.69 59.83 64.05 66.45
✓ 72.96 62.29 69.03 68.76 69.31 69.03 80.77 52.61 62.92 63.03 60.71 64.19 66.33

PSAC × 75.64 66.06 72.09 68.64 69.79 69.22 77.59 55.02 63.42 61.17 59.47 63.52 66.54
✓ 75.02 65.66 71.57 69.09 69.88 69.49 79.35 53.04 61.98 61.13 57.66 62.85 66.15

AVSD × 72.41 61.90 68.52 67.39 74.19 70.83 81.61 58.79 63.89 61.52 61.41 65.49 67.44
✓ 72.07 63.97 69.09 67.42 74.53 71.02 81.17 59.13 63.08 62.49 63.50 65.82 67.77

LAViT × 74.36 64.56 70.73 69.39 75.65 72.56 81.21 59.33 64.91 64.22 63.23 66.64 68.93
✓ 75.12 65.49 71.57 70.43 76.73 73.62 81.38 60.33 65.30 62.49 62.29 66.42 69.24

STG × 78.18 67.05 74.06 71.56 76.38 74.00 81.81 64.51 70.80 66.01 63.23 69.54 71.52
COCA × 79.35 66.50 74.61 72.35 76.08 74.24 83.50 64.02 70.99 63.40 64.48 69.47 71.64
Ours ✓ 83.87 71.04 79.14 79.78 76.73 78.24 80.87 51.63 71.46 64.67 64.60 67.13 72.20

LAVisH × 81.32 63.30 74.67 79.20 80.57 79.89 83.40 65.22 72.96 64.03 66.18 70.57 73.76
✓ 80.33 63.80 74.24 78.86 81.31 80.10 73.91 65.22 73.91 64.31 66.55 70.80 73.87

5.2 Implementation Details

During the data pre-processing stage, audio and video are sampled at rates of 16 kHz and 1 fps,
respectively. In the uni-modal embedding module, we employ ResNet-18 and VGGish to obtain
512-dimensional and 128-dimensional embeddings of the visual and audio segments, respectively.
In the uni-modal bias learning module, the hidden layer size of the bias learner is set to 768. In
the collaborative debiasing module, we set the factors α and β to 1e-2 and 3e-1 for optimization
equilibrium, respectively. During the training stage, the initial learning rate is set to 3e-5, decaying by
0.5 every 20 epochs. The maximum epoch and batch size are set to 150 and 64, respectively. We use
the Adam optimizer to train our architecture and save the model that achieves the best performance
on the validation split. The experiments for all methods, except LAVisH, are conducted using a single
NVIDIA Tesla V100 GPU. The experiment for LAVisH is run on two NVIDIA Tesla A100 GPUs.
The other details are shown in Appendix D.2.

5.3 Baselines

We select 14 previous state-of-the-art multi-modal QA methods as baselines to verify the effectiveness
of the proposed architecture and investigate the robustness of these methods. Audio QA methods:
FCNLSTM [56], and CONVLSTM [56]. Visual QA methods: GRU [57], BiLSTM Attn [58], HCAttn
[59], and MCAN [60]. Video QA methods: HME [61], PSAC [62], and HCRN [63]. AVQA methods:
AVSD [13], LAViT [5], STG [4], COCA [53] and LAVisH [1]. We abstain from reassessing COCA
on the MUSIC-AVQA-R dataset due to its lack of publicly available code. The baseline introductions
are shown in Appendix D.3. Due to the particularly slow computation speed of STG, we do not
conduct experiments with STG+MCCD. Due to computing power limitations, we reevaluate LAVisH
with a batch size of 2.
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Table 2: Experimental results (%) on the MUSIC-AVQA-R test split. The question types, such as
CNT and COMP, are introduced in Table 1. H and T denote the head and tail accuracy. There is no
publicly available code for COCA.

Method MCCD
Audio QA Visual QA AVQA All

CNT COMP CNT LOC EXIST LOC CNT COMP TEMP Avg.
H T H T H T H T H T H T H T H T H T

FCNLSTM × 66.23 36.48 64.78 51.14 61.75 5.31 54.86 51.06 64.76 78.52 46.66 57.30 62.69 7.23 43.13 71.67 37.02 30.78 54.12
✓ 62.51 34.44 61.19 51.26 61.11 5.66 57.73 50.36 62.48 82.40 45.49 60.09 62.07 7.16 44.55 69.46 36.55 30.74 54.55

CONVLSTM × 70.22 41.14 67.50 52.93 62.11 9.17 53.44 49.88 60.08 84.82 46.46 59.90 56.52 8.18 43.29 72.52 41.54 45.12 55.20
✓ 68.38 41.58 68.39 52.10 61.46 9.56 54.17 50.33 59.61 83.11 55.29 56.52 59.13 7.82 45.31 72.70 41.26 45.40 55.74

BiLSTM Attn × 73.68 46.32 21.51 77.58 64.30 0.00 53.92 42.01 87.51 21.14 35.16 43.75 62.85 2.18 27.61 74.38 17.58 31.32 48.84
✓ 73.30 45.16 20.71 77.48 64.41 0.00 56.08 42.54 87.47 21.04 34.47 43.51 63.33 2.18 26.01 75.48 17.92 32.67 49.55

HCAttn × 61.67 41.63 59.09 47.14 56.52 9.20 67.01 53.16 66.57 61.13 37.05 42.48 59.53 12.48 48.81 60.12 33.82 39.26 51.90
✓ 62.50 41.43 58.89 47.42 56.65 8.85 67.31 52.92 66.82 59.87 38.25 42.53 59.38 12.42 57.39 52.01 32.84 39.55 52.29

GRU × 66.92 48.63 58.29 59.61 64.37 11.79 57.68 57.66 76.30 64.76 41.05 45.61 60.71 18.68 57.19 57.38 31.02 40.67 55.21
✓ 69.94 48.09 56.31 63.77 66.24 13.36 63.55 57.59 83.04 54.16 43.36 43.36 57.89 18.36 53.93 59.65 30.82 38.23 55.70

MCAN × 75.02 60.16 58.89 50.09 64.58 26.69 66.48 62.25 51.29 67.29 46.11 61.61 64.76 25.28 50.57 52.40 34.64 58.05 57.27
✓ 73.53 56.14 68.31 39.44 65.51 29.40 68.41 60.09 58.80 61.90 46.75 60.61 60.54 31.89 69.09 44.94 32.44 57.78 58.22

HCRN × 55.53 53.31 47.17 32.44 41.87 23.55 39.40 51.27 41.81 65.45 36.62 42.72 54.58 19.57 33.33 36.87 40.47 44.13 43.92
✓ 51.96 49.21 43.42 36.78 41.13 20.71 37.79 50.99 44.38 58.40 35.05 46.33 54.39 20.90 34.50 33.14 40.13 44.00 42.87

HME × 62.60 53.95 54.97 58.29 50.95 16.46 73.25 58.60 65.74 66.49 33.79 46.03 63.18 17.18 53.20 60.57 33.95 41.57 53.66
✓ 60.62 53.85 62.22 53.01 52.90 14.96 72.56 58.56 55.47 69.21 32.27 42.97 69.90 12.36 43.51 72.51 36.65 32.61 53.34

PSAC × 53.01 56.68 57.41 48.12 49.55 26.43 72.96 60.69 50.56 55.54 41.98 52.30 56.70 19.58 38.13 58.92 26.68 46.24 50.45
✓ 55.14 52.26 64.70 44.45 52.34 22.15 72.06 60.70 58.97 52.35 41.18 49.78 53.28 18.85 42.60 64.53 25.81 45.68 51.31

AVSD × 54.00 47.84 60.61 47.79 60.34 10.07 74.78 61.43 66.28 61.98 33.00 40.35 46.21 8.06 51.98 66.00 40.14 41.52 52.33
✓ 55.87 40.18 65.41 48.05 63.32 7.41 73.78 58.20 74.74 70.80 37.85 34.55 35.53 6.11 49.96 67.88 44.03 43.89 53.09

LAViT × 50.57 43.45 50.78 44.93 47.28 15.50 67.19 65.51 52.37 22.04 44.35 61.69 52.21 21.52 45.61 40.49 35.00 49.33 47.40
✓ 45.05 45.09 57.33 41.26 48.62 17.00 69.91 65.90 60.61 29.57 43.17 57.57 53.92 22.09 54.46 35.35 33.99 49.40 48.91

STG × 56.40 41.48 62.28 57.59 59.86 12.94 64.31 54.00 73.35 77.26 35.35 40.49 48.31 8.41 53.30 62.44 40.25 38.15 52.80

LAVisH × 61.73 43.99 65.06 60.38 65.53 11.13 70.21 64.73 77.83 79.46 41.76 41.20 49.88 14.87 59.26 65.10 41.84 46.26 57.63
✓ 74.02 65.17 64.73 53.15 71.96 40.56 68.49 66.00 63.17 66.68 30.11 43.80 63.77 26.51 56.31 63.46 50.79 42.85 59.25

Ours ✓ 84.32 67.23 64.68 62.18 75.09 48.42 80.47 66.38 77.22 67.58 55.15 82.23 70.12 39.83 61.26 58.17 43.67 58.33 66.95

5.4 Comparison on MUSIC-AVQA

We conduct experiments on the MUSIC-AVQA test split to validate the effectiveness of the proposed
architecture. The results are presented in Table 1. All methods, except LAVisH, utilize ResNet-18
to encode visual features, whereas LAVisH employs stronger models such as ViT [64] or Swin [65]
to acquire visual representations. We first analyze the comparison under the same visual encoding
conditions. Notably, compared with COCA, our architecture obtains significant improvements of
4.53% and 4% in the audio and visual QA tasks, respectively. It also achieves the best performance in
the AVQA task. Furthermore, our architecture obtains a new state-of-the-art result of 72.20% on the
whole question. It is worth mentioning that visual QA methods, like GRU, and video QA methods,
such as HME, also exhibit competitive results in the AVQA task, despite lacking one modality as input.
We also observe that LAVisH, proposed based on STG, introduces trainable parameters into robust
visual encoders, thereby achieving superior results compared to methods employing weaker visual
encoders. The results on this dataset can demonstrate the efficacy of these methods to some extent.
However, MUSIC-AVQA lacks refined and precise evaluations due to its inherent shortcomings that
are introduced in Section 1. Consequently, it is insufficient to evaluate these methods only on this
dataset.

5.5 Robustness Evaluation

We conduct experiments on the MUSIC-AVQA-R test split to explore the robustness of the afore-
mentioned methods. Their released codes are employed to conduct this experiment. The results
are presented in Table 2. Several crucial insights arise when combining the results from this table
with those from Table 1. Firstly, audio QA methods, such as CONVLSTM, showcase competi-
tive robustness and even achieve the highest tail accuracy on EXIST questions within the AVQA
task. Secondly, the visual QA method MCAN demonstrates noteworthy robustness by obtaining the
second-best performance on the test split. Thirdly, the video QA baseline experiences a relatively
significant performance degradation, with PSAC, for instance, declining by 16.45%. Notably, HCRN
exhibits the lowest performance on both datasets, indicating its poor robustness. Furthermore, the
results of AVQA baselines lag behind other types of QA methods like HME, suggesting that their
strong performance on the MUSIC-AVQA dataset may rely on memorizing statistical regularities
between input modalities and answers. Ultimately, our architecture outperforms others on the test
split. Benefiting from the MCCD strategy, it attains the highest head (in-distribution setting) and tail
(out-of-distribution setting) results across various question types, providing further evidence of its
superior robustness. We also show the overall accuracy of these methods on each type of question.
Please see the details in Appendix D.4. It can be seen that our architecture achieves the best overall
accuracy on each type of question.
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To validate the plug-and-play capability of MCCD, we conduct extensive experiments using the
baselines+MCCD on the aforementioned datasets. The results are presented in Tables 1 and 2. We
observe that MCCD consistently improves performance across most methods on MUSIC-AVQA (9
out of 13) and MUSIC-AVQA-R (11 out of 13), respectively. This underscores the robust debiasing
capability of MCCD in a plug-and-play manner.

5.6 Ablation Study

Table 3: Ablation results (%) on the test split of MUSIC-
AVQA and our dataset. AQA and VQA denote audio QA,
and visual QA, respectively. d

(#)
i is the distance between

the (#) logit and the multi-modality logit. MD: multifaceted
debiasing. CG: cycle guidance.

Method MUSIC-AVQA MUSIC-AVQA-R
AQA VQA AVQA All AQA VQA AVQA H T All

Ours 79.14 78.24 67.13 72.20 74.76 72.76 61.34 72.24 59.39 66.95
w/o dqi 79.64 77.62 67.52 72.34 74.89 72.26 59.53 71.72 57.47 65.86
w/o dvi 79.27 78.61 67.23 72.37 71.29 70.18 58.08 68.34 57.43 63.85
w/o dai 77.22 77.50 67.31 71.76 70.92 67.82 55.57 66.05 55.61 61.75

w/o MD 78.46 77.54 66.39 71.48 73.97 70.41 58.87 70.09 57.25 64.80
w/o CG 78.77 78.65 67.50 72.45 75.42 71.72 59.68 71.40 57.98 65.87

To verify the debiasing effectiveness
of MCCD, we conduct extensive ex-
periments on both the test split of
MUSIC-AVQA and MUSIC-AVQA-
R. The results are shown in Table
3. Firstly, we validate the contribu-
tion of the component within multi-
faceted debiasing. It can be seen that
removing the component will lead to
an overall performance improvement
in some aspects of MUSIC-AVQA
while resulting in a significant de-
crease in our dataset. This observa-
tion strongly supports the debiasing efficacy of these components. Secondly, we verify the overall
contribution of the multifaceted debiasing. It can be seen that the performance decrease of 0.72% and
2.15% occurs in both datasets, respectively. Finally, we validate the contribution of cycle guidance.
We see that this model variant obtains the best performance on the MUSIC-AVQA dataset. However,
there was a noticeable performance degradation in our proposed dataset. In summary, each component
plays a distinctive role in the debiasing process, which is further demonstrated by the performance
degradation on the head and tail samples.

5.7 Sensitivity and Qualitative Analysis

We employ the control variable method to perform a sensitivity analysis on the weight-controlling
factors of the MCCD strategy. The results are presented in the left part of Fig. 5. Our findings
indicate stable optimization across various settings, except for the case with α = 0.008 and β = 0.3.
Upon conducting further experimental analysis, we identify the issue as originating from the model’s
failure to converge. Moreover, we visualize the attention weight on the uniformly sampled audio
and video frames to qualitatively analyze the debiasing capability of our method. The visualization,
displayed in the right part of Fig. 5, reveals that crucial audio and video frames for QA consistently
receive significant attention, both in in- and out-of-distribution settings. This further demonstrates
that our method predicts answers through the grounding capabilities of audio and vision rather than
relying on bias learning. More cases are shown in Appendix D.5.

6 Conclusion and Limitation

We are the first to investigate bias learning in the AVQA task from model evaluation and design
aspects. On the one hand, we construct a new dataset, MUSIC-AVQA-R, which evaluates the
performance on the head, tail, and overall samples, providing a precise measure of model robustness.
On the other hand, we introduce a robust architecture employing the MCCD strategy to mitigate bias
learning. Extensive experiments demonstrate the effectiveness of our architecture and the plug-and-
play debiasing capability of MCCD. Furthermore, we reevaluate previous multi-modal QA methods
on our proposed dataset, revealing their poor robustness.

Due to constraints imposed by MUSIC-AVQA, the answer space of our dataset is limited, comprising
only 42 classes, and answer lengths are typically confined to a single word. This deviation from
real-world scenarios is noteworthy. Concerning model designs, for a fair comparison with baselines,
we do not select large generative models to be backbones. However, compared with the answer
classification, it may be more useful to generate answers for the AVQA task.

9



Figure 5: Sensitivity and qualitative analysis. α and β are the weight-controlling factors in the MCCD
strategy. We visualize attention weights on the uniformly sampled audio and video frames.
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A Model Training and Testing

The details of model training are shown in Algorithm 1, where L denotes the number of training
samples, and nb is the batch size. In the test stage, the bias learner is removed.

Algorithm 1: Model Training

Input: D = {(Ai, Vi, Qi, yi)}Li=1.
Output: Robust AVQA model.

1 Initialize model parameters θ;
2 Initialize Adam optimizer;
3 Set learning rate η;
4 Set the number of training epochs M ;
5 for epoch← 1 to M do
6 for each batch in D do
7 Learn uni-modal and multi-modal representations: Ae ← VGGish(A),

Ve ← ResNet18(V ), Ac ← VisualBert(Ae), Vc ← VisualBert(Ve),
Qc ← VisualBert(Q), Mc ← VisualBert([Ac|Vc],Qc);

8 Capture uni-modal biases: ŷa ← BiasLearnera(A
c), ŷv ← BiasLearnerv(V

c),
ŷq ← BiasLearnerq(Q

c);
9 Obtain answer predictions: ŷm ← Classifier(Mc);

10 Compute the QA loss: La ← − 1
nb

∑
y log ŷm;

11 Mitigate biases by MCCD: Ld,Lc ← MCCD(ŷa, ŷv, ŷq, ŷm);
12 Compute the joint loss: L ← La + Ld + Lc;
13 Backward pass: ∇θ ← ∇ŷa,ŷv,ŷq,ŷmL;
14 Update model parameters: θ ← Optimize(θ,∇θ, η);

15 return AVQA model.

B Dataset Analysis

We make statistics on the rephrasings, as depicted in Table 4. Any rephrasing that garners fewer than
one vote will be disregarded. It is evident that the overwhelming majority of the rephrased questions
received three favorable votes. Fig. 6 shows the distribution of questions in MUSIC-AVQA and

Table 4: Statistics of rephrasing consistency. Positive and Negative denote whether the annotator
agrees with the rephrasing or not.

Positive Negative Total
3 0 164, 219
2 1 47,353
1 2 7,481
0 3 9,172

MUSIC-AVQA-R based on the first three words. It is evident that there are notably more entries
within each circle in the left figure compared to the right figure. This suggests that the diversity of
our dataset is higher than MUSIC-AVA.

We visualize the answer distribution of specific types of questions. Fig. 7, 8, and 9 show the
visualization of the AVQA, audio QA and visual QA tasks, respectively. We can see that all of the
answer distributions are long-tail. This further demonstrates the necessity of head and tail sample
splitting. Specifically, for the “Location” type in the AVQA task, we can see that the number of
“congas” is far less than that of “yes”. It is noteworthy that, for question types featuring only two
possible answers, we classify questions with lower frequencies as tail samples and those with higher
frequencies as head samples. For instance, for the “Existential” questions in the AVQA task, we
consider the questions with the answer “no” as tail samples.

15



(a) MUSIC-AVQA-R. (b) MUSIC-AVQA.

Figure 6: Distribution visualization of questions based on the first three words.

(a) Existential (b) Counting (c) Comparative

(d) Location

Figure 7: Answer distributions of specific types of questions in the AVQA task. µ(a) is the average
number of answers in a group.
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(a) Comparative (b) Counting

Figure 8: Answer distributions of specific types of questions in the audio QA task. µ(a) is the average
number of answers in a group.

(a) Counting (b) Location

Figure 9: Answer distributions of specific types of questions in the visual QA task. µ(a) is the
average number of answers in a group.

B.1 Ethics Statement

MUSIC-AVQA [4] has undergone meticulous pre-processing tailored for academic research purposes.
We ensure the absence of any information that discloses the names or uniquely identifies individuals,
as well as avoiding any offensive content. We only perform rephrasing and splitting for the questions
within the dataset to develop MUSIC-AVQA-R, which preserves its inherent characteristics.

B.2 Question Comparison

We select questions from both the head and tail splits to demonstrate the diversity of our dataset,
as illustrated in Figures 10 and 11. Due to the use of pre-defined templates, the questions in the
train and test splits of MUSIC-AVQA differ by only a single word. In contrast, the questions in
our dataset exhibit a variety of formats, which better reflect real-world scenarios. Additionally, our
dataset encompasses a larger test space compared to MUSIC-AVQA.
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Figure 10: Question Comparison between MUSIC-AVQA and MUSIC-AVQA-R. The rephrased
question comes from the head split of our dataset. The questions in our dataset feature diverse formats,
which more accurately reflect real-world scenarios.

C Proof

Given a probability density function f(x) that conforms to a uniform distribution with size N , its
entropy H(X) can be calculated as follows:

H(X) = −
N∑
i=1

p(xi) · log2 p(xi), (3)

p(xi) = f(xi), (4)
where p(xi) is the probability of X = xi.

In a uniform distribution, each probability p(xi) is the same, i.e., p(xi) = f(xi) =
1
N , so

H(X) = −
N∑
i=1

1

N
· log2

(
1

N

)
, (5)

Then, bring the 1
N term outside the summation:

H(X) = − 1

N

N∑
i=1

log2

(
1

N

)
, (6)

Thirdly, move the negative sign inside the logarithm:

H(X) =
1

N

N∑
i=1

log2(N), (7)

Finally, combine 1
N with the summation:

H(X) = log2(N). (8)
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Figure 11: Question Comparison between MUSIC-AVQA and MUSIC-AVQA-R. The rephrased
question comes from the tail split of our dataset. The questions in our dataset feature diverse formats,
which more accurately reflect real-world scenarios.

D Experiments

D.1 Dataset Comparison

The test split comparison between MUSIC-AVQA and MUSIC-AVQA-R is shown in Table 5. We
can see that our proposed dataset exhibits a larger test sample space. This can provide a more precise
evaluation for the model robustness.

Table 5: Test split comparison between MUSIC-AVQA and MUSIC-AVQA-R. EXIST, LOC, CNT,
COMP, and TEMP, which are question types, denote “Existential”, “Location”, “Counting”, “Com-
parative”, and “Temporal”, respectively.

Dataset Audio QA Visual QA AVQA
CNT COMP CNT LOC EXIST LOC CNT COMP TEMP

MUSIC-AVQA 1,017 594 1,197 1,225 988 920 1,265 1,101 822
MUSIC-AVQA-R 23,107 13,506 27,867 3,3049 25,049 21,546 26,565 23,121 17,762

D.2 Implementation Details

The number of trainable parameters of our model is 117M. In the default settings, our model training
takes about 20 hours. We initialize the seed for both Numpy and Torch to 42. The other details can
be found in our uploaded code.

D.3 Baselines

The audio QA baselines are as follows.
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• FCNLSTM2 employs a fully convolutional network and LSTM to initially learn the rep-
resentations of audio and questions separately. Subsequently, it projects the concatenated
features of both into the answer space.

• CONVLSTM is a variant of FCNLSTM, incorporating five convolutional blocks identical
to VGGNet for acquiring a variable-sized representation of audio.

The visual QA baselines are as follows.

• GRU (dubbed “deeper LSTM + Norm I” in the published paper) is a simple baseline
that first uses VGGNet and LSTM to encode the images and questions and then maps the
concatenated features of them into the answer space.

• BiLSTM Attn is an attention-based bi-directional LSTM network, which was often used in
previous relation classification.

• HCAttn3 is a hierarchical co-attention method that employs question- and image-guided
attention to reason on images and questions, respectively.

• MCAN4 is a deep modular co-attention network comprised of cascaded modular co-attention
layers, where attention is implemented through multi-head attention in Transformers.

The video QA baselines are as follows.

• HME5 is a heterogeneous memory-enhanced multimodal attention model that can effectively
learn global context information from appearance and motion features.

• PSAC6 employs positional self-attention block to model the dependency between question
words and video frames, respectively. It utilizes a co-attention mechanism to perform
multi-modal interaction.

• HCRN7 is a hierarchical conditional relation network that embeds video input at various
granularities, encompassing frames, short clips, and entire video levels.

The AVQA baselines are as follows.

• AVSD8 is a simple but effective audio-visual dialog method. It initially encodes the input
modalities separately and subsequently feeds their fused features into a LSTM to generate
answers.

• LAViT9 is a spatial AVQA framework that utilizes three distinct Transformer blocks to
perform interaction between input modalities.

• STG10 associates particular visual locations with audio to conduct spatial grounding. Based
on this, audio and visual features of key timestamps are further emphasized through question
queries for temporal grounding.

• LAVisH11, based on STG, incorporates trainable parameters into powerful visual encoders
such as ViT and Swin.

D.4 Reevaluation on MUSIC-AVQA-R

Table 6 illustrates the overall accuracy for specific types of questions. Notably, our architecture
surpasses all baselines across every question type. Importantly, our architecture achieves the highest
performance in all three tasks, underscoring the idea that the additional modality serves as a valuable
complement. For instance, the audio modality may enhance AVQA models in the video QA task.

2https://github.com/facebookresearch/daqa
3https://github.com/jiasenlu/HieCoAttenVQA
4https://github.com/MILVLG/mcan-vqa
5https://github.com/fanchenyou/HME-VideoQA
6https://github.com/lixiangpengcs/PSAC
7https://github.com/thaolmk54/hcrn-videoqa
8https://github.com/idansc/simple-avsd
9https://github.com/hs-yn/PanoAVQA

10https://github.com/GeWu-Lab/MUSIC-AVQA
11https://github.com/GenjiB/LAVISH
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Table 6: Experimental results on the MUSIC-AVQA-R test split. The numerical values represent
the overall accuracy for specific types of questions. EXIST, LOC, CNT, COMP, and TEMP are
question types, representing “Existential”, “Location”, “Counting”, “Comparative”, and “Temporal”,
respectively.

Type Method Audio QA Visual QA AVQA All
CNT COMP Avg. CNT LOC Avg. EXIST LOC CNT COMP TEMP Avg. Avg.

Audio QA FCNLSTM 60.98 58.74 60.15 55.41 52.93 54.07 71.21 48.67 44.76 57.21 34.34 52.21 54.12
CONVLSTM 65.09 61.04 63.60 56.17 51.63 53.71 71.48 48.36 43.18 57.71 43.08 53.31 55.20

Visual QA

BiLSTM Attn 68.85 46.36 60.56 57.08 47.87 52.08 56.41 36.79 43.23 50.68 23.49 43.34 48.84
HCAttn 58.13 53.79 56.53 51.21 59.98 55.97 64.02 38.08 44.32 54.38 36.16 48.24 51.90

GRU 63.69 58.88 61.92 58.46 57.67 58.03 70.89 41.91 47.12 57.29 35.16 51.56 55.21
MCAN 72.40 54.99 65.98 60.33 64.33 62.50 58.78 49.04 51.99 51.47 44.71 51.69 57.27

Video QA
HCRN 55.38 41.28 50.18 39.89 45.33 42.84 53.07 38.00 42.80 35.03 42.32 37.94 43.92
PSAC 53.66 53.29 53.52 46.95 66.73 57.68 52.89 43.94 44.70 48.38 35.09 45.61 50.45
HME 61.07 56.44 59.36 47.08 65.81 57.24 66.09 36.11 48.31 56.84 37.23 49.91 53.66

AVQA

LAViT 49.07 48.19 48.74 43.71 66.33 55.98 38.16 47.63 42.29 43.09 41.16 42.38 47.40
AVSD 52.91 54.92 53.66 54.70 68.01 61.92 64.26 34.39 33.88 58.89 40.37 46.79 52.33
STG 53.77 60.20 56.14 54.59 59.07 57.02 75.18 36.33 35.41 57.81 39.35 49.47 52.80
Ours 81.30 63.57 74.76 72.09 73.32 72.76 75.36 57.37 60.32 59.74 49.97 61.34 66.95

D.5 Case Study

8.56 8.58 3.37 5.39 2.29 16.38 1.51 10.34 0.72 7.98

4.50 2.43 1.71 2.23 3.90 4.98 4.00 2.86 4.17 6.84

5.53 4.23 1.99 0.00 8.15 12.98 9.89 10.23 8.98 12.20

How many kinds of musical instruments are heard in the video? Two.

1.45 5.95 8.49 5.07 2.65 1.63 2.77 2.10 4.69 3.31

What is the number of instruments the musicians used in the video? Three.

(Head)

(Tail)

3.58 3.41 5.70 2.41 4.70 7.01 11.75 14.79 11.75 5.02

10.701 10.51 10.30 2.27 1.18 1.25 1.26 1.10 1.11 1.06

1.36 23.46 15.40 12.69 22.14 0.72 7.50 2.86 8.43 6.23

What is the guzheng that gives off the first sound? Simultaneously.

2.00 3.33 3.51 6.86 1.99 0.80 0.34 0.73 0.92 2.46

In the video, how many bagpipe can be heard playing? Four. (Tail)

(Head)

Figure 12: Attention weight visualization on the uniformly sampled audio and video frames.
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We visualize attention weight on extra uniformly sampled audio and video frames to qualitatively
analyze the debiasing capability. In Fig. 12, the visualization is presented for a more extensive range
of head and tail samples. We can see that our method can focus on the key audio and video frames for
QA simultaneously in both in- and out-of-distribution settings. For instance, in the upper head and tail
case, our method demonstrates high attention to various instruments, leading to accurate answers for
“counting” questions. This serves as additional evidence supporting the debiasing effectiveness of our
proposed MCCD strategy, highlighting its substantial contribution to improving model robustness.
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NeurIPS Paper Checklist

1. Claims
Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: We have made clear claims about our contribution and scope in Section
Abstract and 1.

2. Limitations
Question: Does the paper discuss the limitations of the work performed by the authors?

Answer: [Yes]

Justification: We have discussed the limitations of our work not only from the model design
but also from the model evaluation in Section 6.

3. Theory Assumptions and Proofs
Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?

Answer: [Yes]

Justification: In Section 3.2, we claim that logN is the entropy of a uniform distribution.
We have provided a detailed proof in Appendix C.

4. Experimental Result Reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]

Justification: We have provided the implementation and training details in Section 5.1, 5.2,
Appendix A, B, and D.

5. Open access to data and code
Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We have uploaded our code and dataset in the supplemental material. The
detailed "readme" file is also uploaded.

6. Experimental Setting/Details
Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]

Justification: We have described the training and test details in Section 5.1, 5.2, Appendix
A, B, and D.2.

7. Experiment Statistical Significance
Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [No]

Justification: We re-evaluate 13 multi-modal QA methods, conducting the statistical signifi-
cance experiment may be computationally and timely expensive. For example, running
one epoch for STG takes almost 12 hours, and the maximum number of epochs is set
to 80. To the best of our knowledge, all methods adopt seed fixing, which undoubtedly
enhances the reproducibility of the experiments and the credibility of the results.
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8. Experiments Compute Resources
Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?
Answer: [Yes]
Justification: We have provided the detailed description in Section 5.2, Appendix D.2, and
D.3.

9. Code Of Ethics
Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?
Answer: [Yes]
Justification: Our work conforms to the NeurIPS Code of Ethics. We have provided the
reason in Appendix B.1.

10. Broader Impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: We have provided analyses in Appendix B.1.

11. Safeguards
Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?
Answer: [NA]
Justification: Our model is not generative.

12. Licenses for existing assets
Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?
Answer: [Yes]
Justification: We have adhered to the mentioned licenses and terms of use for all the
assets used in the paper, and the original creators or owners have been properly credited or
mentioned in Section 5.3, and Appendix D.3.

13. New Assets
Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?
Answer: [Yes]
Justification: We have uploaded a detailed "readme" file in the supplementary material.

14. Crowdsourcing and Research with Human Subjects
Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?
Answer: [Yes]
Justification: We have provided crowdsourcing descriptions in Section 3.1 and Appendix B.

15. Institutional Review Board (IRB) Approvals or Equivalent for Research with Human
Subjects
Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?
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Answer: [NA]
Justification: Our paper does not contain such risks.
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