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ABSTRACT

Time-Series Foundation Models (TSFMs) are rapidly transitioning from research
prototypes to core components of critical decision-making systems, driven by their
impressive zero-shot forecasting capabilities. However, as their deployment surges,
a critical blind spot remains: their fragility under adversarial attacks. This lack of
scrutiny poses severe risks, particularly as TSFMs enter high-stakes environments
vulnerable to manipulation. We present a systematic, diagnostic study arguing
that for TSFMs, robustness is not merely a secondary metric but a prerequisite
for trustworthy deployment comparable to accuracy. Our evaluation framework,
explicitly tailored to the unique constraints of time series, incorporates normalized,
sparsity-aware perturbation budgets and unified scale-invariant metrics across white-
box and black-box settings. Across six representative TSFMs, we demonstrate that
current architectures are alarmingly brittle: even small perturbations can reliably
steer forecasts toward specific failure modes, such as trend flips and malicious drifts.
We uncover TSFM-specific vulnerability patterns, including horizon-proximal
brittleness, increased susceptibility with longer context windows, and weak cross-
model transfer that points to model-specific failure modes rather than generic
distortions. Finally, we show that simple adversarial fine-tuning offers a cost-
effective path to substantial robustness gains, even with out-of-domain data. This
work bridges the gap between TSFM capabilities and safety constraints, offering
essential guidance for hardening the next generation of forecasting systems.1

1 INTRODUCTION

Time-series forecasting serves as the backbone of critical decision-making in finance, energy, trans-
portation, and healthcare (Tang et al., 2022; Mystakidis et al., 2024; Profillidis & Botzoris, 2018;
Morid et al., 2023). Driven by the success of foundation models in vision (Kirillov et al., 2023;
Brooks et al., 2024; Rombach et al., 2022) and language (Dubey et al., 2024; Liu et al., 2024a; Brown
et al., 2020), a new generation of Time-Series Foundation Models (TSFMs) (Liang et al., 2024) has
emerged. Pretrained on massive cross-domain datasets, these models enable zero-shot forecasting in
dynamic, data-scarce environments where traditional supervised models often struggle. However,
as TSFMs transition from research prototypes to deployment in high-stakes systems, a fundamental
question remains unanswered: Are these models robust to adversarial manipulation?

This question is urgent. Unlike images or text, time-series data lacks human-perceptible semantic
structure, making subtle manipulations difficult to detect yet capable of triggering cascading failures,
from automated trading losses to grid instability. While adversarial robustness is well-documented
in vision (Szegedy et al., 2013; Goodfellow et al., 2014; Heinrich et al., 2020; Costa et al., 2024;
Madry et al., 2017; Chen et al., 2017; Guo et al., 2019; Moosavi-Dezfooli et al., 2016) and lan-
guage (Shayegani et al., 2023; He & Vechev, 2023; Dong et al., 2021; Wang et al., 2021a;b; Koulakos
et al., 2024), the security landscape for TSFMs remains dangerously underexplored. Although recent
studies have probed Large Language Model (LLM)–based forecasters (Liu et al., 2025; Liu & Jiang,
2025), native non-LLM TSFMs rely on fundamentally different architectural inductive biases. It is
therefore unclear whether they inherit the vulnerabilities of their LLM counterparts or exhibit distinct

1The code is available at https://anonymous.4open.science/r/Attack_TSFMs-9622/
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(a) White-box setting using PGD (ϵ = 0.5, r = 1).

(b) Black-box setting using SimBA (ϵ = 1, r = 1).

Figure 1: Visualization of targeted adversarial attacks on TSFMs across diverse domains. This
figure illustrates how adversarial perturbations guide model forecasts toward specific target behaviors
(i.e., transformed target). All perturbations use a variance-normalized budget, where ϵ is the per-step
bound after normalization and r is the fraction of perturbed time steps.The q indicates prediction
quantile (e.g., q = 0.5 for median, q = 0.1/0.9 for uncertainty bands).

failure modes. Given the rapid adoption of these models, a unified, time-series–grounded robustness
evaluation is a critical prerequisite for their safe deployment.

In this work, we adopt a diagnostic rather than purely algorithmic perspective to conduct a systematic
robustness study of widely used non-LLM TSFMs. We introduce an evaluation framework tailored
to the unique constraints of temporal data, utilizing variance-normalized perturbation budgets and
sparse constraints that reflect realistic threat models. To ensure fair comparison across heterogeneous
datasets, we propose a unified, scale-invariant metric that consistently evaluates both untargeted
(degradation) and targeted (goal-seeking) attacks. As illustrated in Figure 1, our diagnostics reveal that
even small, imperceptible perturbations can reliably steer TSFM forecasts toward attacker-specified
behaviors, such as inducing malicious drifts, trend reversals, or amplitude shifts. Our contributions
are summarized as follows:

• A time-series–grounded evaluation framework. We propose a comprehensive assessment proto-
col that systematically varies adversarial objectives, capabilities, and knowledge. By standardizing
metrics and constraints, we enable rigorous, fair comparisons across diverse TSFM architectures.

• Identification of unique vulnerability patterns. Across six representative TSFMs, we uncover
distinct failure modes not typically seen in other modalities. These include horizon-proximal
brittleness, context-length–induced vulnerability amplification, and weak cross-model transfer, etc.

• Scalable, transferable defenses. We demonstrate that lightweight adversarial fine-tuning signifi-
cantly improves worst-case robustness. Crucially, we find that these defenses are highly transferable:
cross-domain latent adversarial training recovers a large fraction of in-domain gains, offering a
practical pathway to secure TSFMs even when task-specific training data is unavailable.

Taken together, these findings provide a necessary reality check for the field, quantifying the risks
of current architectures while offering actionable guidance for building resilient, deployment-ready
forecasting systems.

2 RELATED WORK

Foundation Models for Time Series Forecasting. Inspired by the success of foundation models in
language (Brown et al., 2020), a growing number of time-series foundation models have emerged (Das
et al., 2024; Rasul et al., 2023; Ansari et al., 2024; Shi et al., 2025; Woo et al., 2024; Ekambaram
et al., 2024; Hoo et al., 2025; Goswami et al., 2024; Gao et al., 2024; Liu et al., 2024b; Darlow et al.,
2024; Yeh et al., 2023; Zhang et al., 2025; Cao et al., 2024b; Garza et al., 2023; Cao et al., 2024a;
Prabhakar Kamarthi & Prakash, 2024). Despite differences in backbone architecture, optimization
objectives, and data regimes, these TSFMs share a common objective: achieving universal forecasting
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Figure 2: Overview of the adversarial evaluation protocol for time-series foundation models.
We evaluate TSFMs across diverse domains under a unified adversarial framework. Adversarial
perturbations are applied to clean inputs, which are then passed through the TSFM to produce
perturbed forecasts. We assess the impact of these attacks using both accuracy and robustness metrics.

capability. However, this pursuit of universality and accuracy has often come at the expense of
robustness (Ilyas et al., 2019; Su et al., 2018). As TSFMs move toward real-world deployment, their
susceptibility to adversarial perturbations becomes a central reliability concern.

Adversarial Robustness in Deep Neural Networks. It is well established that deep neural networks
are highly vulnerable to imperceptible input perturbations that can lead to significant prediction
errors (Szegedy et al., 2013; Goodfellow et al., 2014). This discovery sparked a wave of research on
robustness evaluation, resulting in the development of standardized benchmarking frameworks and
attack methods in computer vision (Carlini et al., 2019; Liu et al., 2022; Gao et al., 2022; Dong et al.,
2020; Croce et al., 2021). With the rapid advancement and widespread adoption of large language
models and vision-language foundation models, adversarial robustness in these systems has also
attracted growing attention (Shayegani et al., 2023; He & Vechev, 2023; Perez et al., 2022; Zhao
et al., 2023; Schlarmann & Hein, 2023).

In contrast, adversarial robustness in time series models remains underexplored. Prior work has
largely focused on classification tasks (Siddiqui et al., 2020; Rathore et al., 2020; Karim et al.,
2020; Fawaz et al., 2019; Ding et al., 2023), or on constructing adversarial examples for specific
forecasting architectures (Dang-Nhu et al., 2020; Yoon et al., 2022; Liu et al., 2023). While these
studies demonstrate that time series models are indeed susceptible to adversarial perturbations,
they primarily address small-scale models and narrow domain settings. Recent studies have begun
examining robustness in LLM-based forecasting systems (Liu et al., 2025; Liu & Jiang, 2025).
However, since these works focus on LLM-based pipelines that are distinct from time-series-grounded
TSFMs, existing robustness work on LLM-based models does not directly apply to time-series-
oriented designs. The robustness of large-scale, pretrained time-series-grounded TSFMs has yet to be
systematically investigated, and their behavior under adversarial conditions remains unknown.

3 ADVERSARIAL EVALUATION FRAMEWORK AND DEFENSE METHODS

Figure 2 outlines our evaluation protocol, which comprises threat specification (Section 3.2), pertur-
bation construction (Section 3.3), and robustness metrics (Section 3.4). We further investigate readily
deployable defenses in Section 3.5.

3.1 PRELIMINARIES

Time-Series Forecasting. We consider a univariate time series x1:T = {xτ}Tτ=1, where each
observation xτ ∈ R corresponds to the value at time step τ . A forecasting model fϕ with parameters
ϕ maps an input sequence of length L to a prediction over the future T steps fϕ : xt−L:t 7→ x̂t+1:t+T ,
where x̂t+1:t+T is the predicted future trajectory. The model is typically trained by minimizing
the expected forecasting loss: minϕ Ex∼P(D), t∼P(T ) [L(fϕ(xt−L:t),xt+1:t+T )], where P(D) is
the data distribution, P(T ) is the sampling distribution over timestamps, and L is the loss function.
TSFMs are typically pretrained on large-scale, multi-domain datasets, and their parameters ϕ remain
frozen during downstream deployment.
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Table 1: Parameter settings for different target transformations used in targeted adversarial attacks.
Each transformation modifies the forecast in a specific pattern by configuring the scaling factor a and
time-dependent bias c(τ). Here, b ∈ R controls the drift strength, δτ ∈ R specifies localized shifts,
and I ⊆ {1, . . . , T} denotes the perturbed forecast steps. See Figure 3 for transformation examples.

Transformation Parameters Description

Scaling a > 0, c(τ) = 0 Uniformly scales the forecast
Flipping a < 0, c(τ) = 0 Reflects the sequence
Drifting a = 1, c(τ) = b · τ Adds global linear drift
Local Offsetting a = 1, c(τ) = δτ if τ ∈ I Perturbs selected steps only

Threat Model. An adversarial example is generated by adding a small perturbation δ ∈ RL to the
input, producing xadv = x+ δ, such that the model’s output deviates significantly from that on the
clean input x. The threat model defines the adversary’s assumptions along three dimensions: goal,
capability, and knowledge (Carlini et al., 2019). The goal specifies the intended effect of the attack:
either untargeted, aiming to degrade performance without a specific outcome, or targeted, steering
predictions toward a chosen trajectory. The capability constrains the allowable perturbation, typically
bounded by an ℓp-norm constraint ∥δ∥p ≤ ϵ, where ϵ is the perturbation budget and p ∈ {0, 2,∞}
defines the geometry. The knowledge describes the adversary’s access to the model: in a white-box
setting, the attacker has full access to architecture and parameters, while in a black-box setting, access
is restricted to input-output queries, such as through an API.

3.2 THREAT MODEL SPECIFICATION FOR TSFMS

Objective. Given an input sequence xt−L:t ∈ RL, a pre-trained forecasting model fϕ, and a
reference sequence y ∈ RT (which may represent the ground-truth, clean prediction, or an attacker-
defined target), the goal is to find a perturbation δ ∈ S ⊆ RL such that the model’s output on the
perturbed input significantly deviates from—or closely matches—the reference. Specifically, we
define the general attack objective as:

δ∗ = argmax
δ∈S

[σ · L(fϕ(xt−L:t + δ),y)] , (1)

where L(·, ·) is a forecasting loss function (e.g., MSE, MAE), and σ ∈ {+1,−1} indicates the attack
direction: +1 for untargeted attacks (maximizing prediction error with respect to the clean output),
and −1 for targeted attacks (minimizing error toward a predefined target y). The perturbation set
S ⊆ RL specifies the allowable perturbations. We denote the overall attack objective as:

gϕ(δ) := σ · L(fϕ(xt−L:t + δ),y), (2)

which unifies both attack types under a single formulation. Due to the unavailability of ground-truth
future values at inference time, we treat the model’s clean prediction as the attack target y.

Building Targets for Targeted Attacks. To evaluate the performance of TSFMs under targeted
attacks, we first construct appropriate target trajectories. In practice, attackers often seek to introduce
subtle but systematic deviations—such as periodic shifts or gradual drifts—that are difficult to detect
yet can accumulate significant downstream effects. To support controlled experimentation, the extent
of deviation from the clean forecast should be adjustable, enabling us to examine how susceptible the
model is to both mild and aggressive manipulations.

To this end, we define a family of transformation functionsM(·) that generate adversarial targets by
applying structured modifications to the clean forecast. Given a clean prediction x̂ = {x̂τ}Tτ=1, the
transformed target sequence y = {yτ}Tτ=1 is computed as:

yτ =M(x̂τ ; a, c) = a · x̂τ + c(τ), (3)

where a ∈ R controls the amplitude (scaling), and c(τ) is a time-dependent bias function. By
tuning a and the shape of c(τ), we instantiate various adversarial patterns with adjustable distortion
levels. Table 1 summarizes the transformation types considered in our evaluation, and Figure 1 and 3
illustrates visual examples of the resulting targets.
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Perturbation Budget. The perturbation budget directly reflects the strength of the attack. Larger
perturbations tend to cause greater deviations in model outputs, but excessive distortion may lead
to unrealistic inputs that compromise both the fairness of robustness evaluation and the plausibility
of real-world scenarios. For time-series data, two factors are particularly important: the number of
perturbed time steps, and the magnitude of each perturbation. As a result, a single ℓp-norm constraint
is insufficient and finer-grained control is required. Motivated by this, we impose a hybrid norm
constraint that jointly bounds perturbation sparsity and amplitude:

S =
{
δ ∈ RL : ∥δ∥0 ≤ rL, ∥δ∥∞ ≤ ϵ

}
, (4)

where r ∈ (0, 1] denotes the perturbation ratio (the fraction of time point modified), and ϵ > 0 is
the per-element perturbation bound (the maximum change per time point). Based on our empirical
observation that time steps closer to the forecast horizon are more vulnerable (see Section 4.2),
we default to perturbing the last rL time steps when r < 1, unless stated otherwise. To ensure
comparability across datasets with different scales, we use a variance-normalized perturbation budget.
Throughout the paper, the ϵ values we report are scale-free coefficients, and the actual per-step bound
applied is ϵ∗ = ϵ · var(x), where var(x) denotes the variance of the input sequence.

3.3 ADVERSARIAL PERTURBATION OPTIMIZATION

We construct adversarial perturbations under different access assumptions. The white-box setting
assumes full gradient access and serves as a worst-case probe. The black-box setting restricts the
adversary to input-output queries without knowledge of parameters, gradients, or training data, which
more closely reflects practical deployment scenarios.

White-Box Setting. In the white-box setting, the attacker has full access to the model architecture
and parameters ϕ. We adopt Projected Gradient Descent (PGD) (Madry et al., 2017), a widely used
and reliable attack method. PGD iteratively updates the perturbation as

δk+1 = ΠS
(
δk + α · sgn

(
∇δgϕ(δ

k)
))

, (5)

where α is the step size, ΠS is projection onto the feasible set S , and k is the iteration index. We also
report results of the Fast Gradient Sign Method (FGSM) (Goodfellow et al., 2015) in Appendix E.3.

Black-Box Setting. In the black-box setting, the attacker must estimate effective perturbations
using only model queries. We implement two representative methods: Zero-Order Optimization
(ZOO) (Chen et al., 2017) and the Simple Black-box Attack (SimBA) (Guo et al., 2019). ZOO
approximates gradients via finite differences. For the i-th component,

∇igϕ(δ) ≈
gϕ(δ + µui)− gϕ(δ)

2µ
, (6)

where ui is the i-th basis vector and µ > 0 is a small constant. We further adopt a ZOO-Adam variant
that applies the Adam optimizer to the estimated gradients for improved stability and convergence.

SimBA performs query-efficient random search over an orthogonal basis. At each iteration, a direction
q ∈ Q is sampled without replacement, and the perturbation is updated if it improves the attack
objective. To better match the structure of time-series data, we explore three basis designs: Cartesian
(point-wise), DCT (low-frequency), and Wavelet (time-frequency). These yield perturbations with
distinct temporal properties. We provide full definitions and details in Appendix B.1.

3.4 EVALUATION METRICS AND PROTOCOLS

Forecasting Accuracy. We measure accuracy by comparing model predictions with ground truth
before and after perturbation. We adopt three widely used scale-invariant metrics: Normalized Mean
Absolute Error (NMAE), Normalized Root Mean Squared Error (NRMSE), and Continuous Ranked
Probability Score (CRPS). Formal definitions are provided in Appendix B.2.

Adversarial Robustness. Robustness is assessed by quantifying the change in forecasting perfor-
mance under adversarial perturbations. This evaluation faces three challenges: (i) Ground truth is
unavailable during attack construction, so we use the model’s clean prediction as a surrogate target,

5
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which introduces bias. (ii) Targeted and untargeted attacks have opposite objectives, necessitating
a unified measure. (iii) time-series datasets can have very different scales, so robustness metrics
must be insensitive to global rescaling to support fair cross-dataset comparison. To address these
challenges, we propose the Relative Error Deviation (REDE ), which is a scale-invariant measure that
captures the relative change in error in a direction-consistent manner. Let E(·, ·) be a forecasting error
metric (e.g., NMAE), and let x̂clean, x̂adv, and y denote the clean prediction, adversarial prediction,
and reference sequence, respectively. We define

REDE =
Eattack

Eclean + ε
, Eattack =

{
Eadv − Eclean, untargeted attack,
Eclean − Eadv, targeted attack,

(7)

where Eclean = E(x̂clean,y), Eadv = E(x̂adv,y), and ε > 0 is a small constant. For untargeted attacks,
it quantifies how strongly the forecast is pushed away from the clean prediction. For targeted attacks,
it instead captures how closely the adversarial forecast converges toward the attacker-specified target,
which can be particularly dangerous for downstream decision-making. Since REDE can overstate
attack impact when clean error is low, we complement it with robustness curves plotting absolute
error against varying perturbation budgets. See details in Algorithm 1.

3.5 DEFENSE METHODS

As an initial step toward improving robustness, we explore two complementary defense strategies.

Inference-Time Smoothing. We employ a simple defense that suppresses high-frequency adversarial
noise at test time using a moving-average filter. It operates directly on the input window without
modifying fϕ, requires no retraining, and introduces only a single hyperparameter (the kernel
size). Given an input window xt−L:t and a kernel size W ∈ N, the smoothed series is defined as
x̃t−i =

1
Wi

∑Wi−1
m=0 xt−i−m, where Wi = min{W, i+ 1} ensures properly handles boundary cases.

Adversarial Training (AT). To enhance robustness more fundamentally, we fine-tune TSFMs with
adversarial training in either latent space or input space. For latent adversarial training (LAT) (Casper
et al., 2024), let fϕ = fϕ2

◦ fϕ1
denote the forecaster, where fϕ1

is a feature extractor and fϕ2
maps

latents to outputs ŷ. LAT introduces perturbations δh in the latent representation and minimizes the
worst-case forecasting loss under a bounded latent budget:

min
ϕ

Ex∼P(D), t∼P(T )

[
max

∥δh∥p≤ε
σ · L

(
fϕ2

(fϕ1
(xt−L:t) + δh), y

)]
. (8)

In input-space adversarial training (IAT) (Madry et al., 2017), perturbations are instead applied
directly to the input window. Given an input perturbation budget ∥δx∥p ≤ ε, IAT optimizes

min
ϕ

E(x,t)

[
max

∥δx∥p≤ε
L
(
fϕ(xt−L:t + δx), y

)]
, (9)

where δx is generated by projected gradient ascent and model parameters are updated on the resulting
adversarial examples. Compared with LAT, IAT does not require access to intermediate represen-
tations but operates in the raw input space. Details for all defenses are provided in Appendix C.

4 RESULTS AND ANALYSES

In Section 4.1, we present overall robustness and attack results. Section 4.2 examines adversarial
transferability and factors shaping attack impact. We further study robustness under different
perturbation budgets and model sizes in Appendices E.7 and E.9. Section 4.3 evaluates two practical
defenses for TSFMs, with additional analysis in Appendix E.11. Additional experimental settings
and extended results are provided in Appendices D and E.

Datasets. We evaluate model robustness on eight datasets from the GIFT-Eval benchmark (Aksu
et al., 2024), spanning diverse domains and sampling frequencies. Unless otherwise specified, all
experiments are conducted in the short-term forecasting setting. Results under medium- and long-term
prediction horizons are provided in Appendix E.10 for completeness. For short-term forecasting,
we use a fixed input context length of 128 across all datasets. Additional dataset details, including
domain characteristics and prediction lengths, are summarized in Table 6.
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Table 2: Untaregeted attacks against TSFMs. For each model, REDNMAE is computed for every
dataset and for all 4× 4 budget combinations (ϵ ∈ {0.25, 0.5, 0.75, 1.0}, r ∈ {0.25, 0.5, 0.75, 1.0}),
then averaged over budgets and datasets. Red highlights the model with the largest average REDNMAE
(most impacted). We provide detailed robustness curves across different perturbation levels in
Appendix E.7. Clean forecasting performance is reported in Table 7.

PGD SimBA
Dataset TimesFM TimeMoE UniTS Moirai TimesFM TimeMoE UniTS Moirai Chronos TabPFN-TS

Loop Seattle 27.45 0.25 0.34 1.61 0.96 0.39 0.01 0.44 0.15 0.84
BizITObs-L2C 14.59 0.22 0.43 0.35 1.47 0.47 0.13 0.39 0.20 0.52
Electricity 27.25 0.19 0.18 0.31 1.45 0.37 0.00 0.06 0.05 0.53
ETT1 32.45 0.20 0.58 1.63 1.66 0.80 0.06 0.63 0.50 1.36
Hier. Sales 45.28 0.08 1.46 1.16 3.99 0.71 0.23 0.40 0.58 2.17
Jena Weather 38.32 0.04 0.40 0.64 2.19 0.41 0.04 0.13 0.19 1.25
Solar 48.79 0.65 0.34 1.05 3.03 1.43 0.06 0.72 0.63 1.64
US Births 30.28 0.81 0.06 0.59 3.16 1.60 -0.01 0.39 1.11 2.50

Time-series Foundation Models. We select six representative models for evaluation, including
TimesFM (200M) (Das et al., 2024), TimeMoE (base) (Shi et al., 2025), UniTS (x128) (Gao et al.,
2024), Moirai (base) (Woo et al., 2024), Chronos (small) (Ansari et al., 2024), and TabPFN-TS (Hoo
et al., 2025) 2. These models differ in architecture, decoding strategy, prediction head, and training
paradigms. This diversity allows us to investigate how different design choices impact adversarial
robustness. A detailed comparison of the models is provided in Appendix A.

Evaluation Setup. We adopt a deployment-matched setting: zero-shot, frozen-checkpoint inference.
We report NMAE and REDNMAE as primary metrics. For black-box setting, we use SimBA (DCT
basis) and ZOO (two-point finite differences) with step size α = 0.05. For white-box, i.e. worst-case
probe, we use PGD with the same (ϵ, r) budgets and α = 0.05 for 300 iterations. All experiments
are run on a single NVIDIA Tesla V100 GPU with CUDA 12.1.Metric definitions are provided in
Appendix B.2, and defense implementation details in Appendix D.2.

4.1 ADVERSARIAL ROBUSTNESS OF TSFMS

Subtle perturbations can cause severe degradation in forecast accuracy. Our results show that
most TSFMs are highly susceptible to adversarial attacks, with varying degrees of vulnerability
across models. As shown in Table 2, TimesFM and TabPFN-TS exhibit particularly high sensitivity.
Surprisingly, PGD attacks on TimesFM result in forecast errors up to 50 times higher than clean
performance. For TabPFN-TS, the backbone was not originally trained for time series forecasting,
potentially leading to poor generalization under perturbed conditions. Other models also exhibit
significant degradation, highlighting adversarial vulnerability as a common concern in current TSFMs.

Targeted behaviors can be induced even under small perturbation budgets. As illustrated
in Figure 1 and 3, targeted attacks can successfully manipulate TSFM outputs to match specific
trajectories, even under small perturbation budgets. Interestingly, we find that attacks targeting the
overall shape or trend of the forecast (e.g., scaling or shifting) are consistently more effective than
those modifying only a local segment (e.g., local offset), as indicated by the higher RED scores in
Tables 12 and 13. This suggests that TSFMs may lack strong global consistency constraints, making
them easier to guide toward holistic patterns. In contrast, localized perturbations are often less
effective, likely due to the model’s reliance on contextual smoothing and local temporal dependencies.
These internal dynamics make it difficult to isolate and alter a specific region without disrupting the
broader sequence coherence. A robust model should resist both types of manipulations, particularly
when perturbations are minimal, by preserving the structure of the predicted sequence.

Disentangling Genuine Robustness from Gradient Obfuscation. Among undefended models,
TimeMoE and UniTS initially appear resilient to PGD attacks. For TimeMoE, our diagnostics
suggest this resilience is illusory. While the MoE gating mechanism may disrupt gradient flow,

2Unless otherwise specified, we use the model size indicated in parentheses.
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TimesFM - Solar/H (𝜖 = 0.25, 𝑟 = 0.5) Moirai - JenaWeather/H (𝜖 = 0.5, 𝑟 = 1) UniTS - ETT1/H (𝜖 = 0.5, 𝑟 = 1)

TimesFM - US Birth/D (a = 0.5, 𝜖 = 0.5, 𝑟 = 1) Moirai - Solar/H (a = 2, 𝜖 = 0.5, 𝑟 = 1) UniTS - ETT1/H (a = −1, 𝜖 = 0.5, 𝑟 = 1)

TimesFM - ETT1/H (b = −0.1, 𝜖 = 0.25, 𝑟 = 1) Moirai - Electricity/15T (b = 0.05, 𝜖 = 0.5, 𝑟 = 1) TimeMoE - Loop Seattle/5T (b = 0.01, 𝜖 = 0.5, 𝑟 = 1)

(a) Untargeted attack: perturbations are crafted to maximize the deviation from the clean prediction.

TimesFM - Solar/H (𝜖 = 0.25, 𝑟 = 0.5) Moirai - JenaWeather/H (𝜖 = 0.5, 𝑟 = 1) UniTS - ETT1/H (𝜖 = 0.5, 𝑟 = 1)

TimesFM - US Birth/D (a = 0.5, 𝜖 = 0.5, 𝑟 = 1) Moirai - Solar/H (a = 2, 𝜖 = 0.5, 𝑟 = 1) UniTS - ETT1/H (a = −1, 𝜖 = 0.5, 𝑟 = 1)

TimesFM - ETT1/H (b = −0.1, 𝜖 = 0.25, 𝑟 = 1) Moirai - Electricity/15T (b = 0.05, 𝜖 = 0.5, 𝑟 = 1) TimeMoE - Loop Seattle/5T (b = 0.01, 𝜖 = 0.5, 𝑟 = 1)(b) Targeted attacks (Scaling): forecasts are pushed toward scaled or flipped trajectories.

TimesFM - Solar/H (𝜖 = 0.25, 𝑟 = 0.5) Moirai - JenaWeather/H (𝜖 = 0.5, 𝑟 = 1) UniTS - ETT1/H (𝜖 = 0.5, 𝑟 = 1)

TimesFM - US Birth/D (a = 0.5, 𝜖 = 0.5, 𝑟 = 1) Moirai - Solar/H (a = 2, 𝜖 = 0.5, 𝑟 = 1) UniTS - ETT1/H (a = −1, 𝜖 = 0.5, 𝑟 = 1)

TimesFM - ETT1/H (b = −0.1, 𝜖 = 0.25, 𝑟 = 1) Moirai - Electricity/15T (b = 0.05, 𝜖 = 0.5, 𝑟 = 1) TimeMoE - Loop Seattle/5T (b = 0.01, 𝜖 = 0.5, 𝑟 = 1)

(c) Targeted attacks (Drifting): perturbations induce gradual shifts in forecast trends.

Figure 3: Visualization of untargeted and targeted adversarial attacks on TSFMs. The q
indicates prediction quantile (e.g., q = 0.5 for median, q = 0.1/0.9 for uncertainty bands). The
parameter a controls the scaling of the target trajectory (with default a = 1), and b controls the
additive drift or offset (with default b = 0). Detailed REDNMAE scores are provided in Appendix E.8.

Table 3: Robustness comparison between TSFMs and supervised models. We report
REDNMAE(↓) under PGD untargeted attacks (ϵ = 0.5, r = 0.5). More details see Appendix E.12.

TSFMs Supervised
Dataset TimesFM Moirai UniTS GRU TCN Informer

ETTh1 2.1038 0.6814 0.0346 0.1456 0.0510 0.1302
ETTh2 3.3649 0.5909 0.0587 0.1203 0.0043 0.0344
ETTm1 6.5620 1.0180 0.1208 0.1087 0.0522 0.2252
ETTm2 5.2638 1.0133 0.0798 0.1060 0.0023 0.1376
Exchange 4.2828 0.5000 0.0271 0.0537 0.0072 2.0443
Weather 5.2788 0.4640 0.1660 0.0422 0.0050 0.3578
Electricity 2.1000 0.6019 0.4733 0.0011 0.2314 0.0212

high vulnerability to one-step attacks (Appendix E.3) and black-box queries indicates that this is a
case of gradient obfuscation rather than true robustness (Athalye et al., 2018). Conversely, UniTS
demonstrates robustness across both white-box and black-box settings. We hypothesize this stems
from its multi-task pretraining, which is known to enhance stability against distribution shifts and
noise (Mao et al., 2020), though confirming this causal link requires further ablation. Overall,
these case studies highlight that standard PGD evaluation can be misleading; architectural choices
(like gating) and training strategies (like multi-tasking) significantly modulate adversarial behavior,
necessitating rigorous diagnostic checks.

Supervised models exhibit superior robustness compared to zero-shot TSFMs. As detailed in
Table 3, supervised models consistently outperform zero-shot TSFMs under identical perturbation
budgets. This performance gap underscores a robustness–generalization trade-off: while TSFMs
achieve universality through large-scale pretraining, they sacrifice the adversarial resilience inherent
in models optimized for specific data distributions. Notably, the Transformer-based Informer is sig-
nificantly more brittle than simpler architectures such as GRU and TCN. This aligns with established
theoretical findings (Goodfellow et al., 2014; Ilyas et al., 2019) suggesting that high-dimensional,
highly linearized models are inherently more susceptible to adversarial perturbations.
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(a) Impact of perturbation locations. (NMAE). (b) Impact of context length (NMAE).

Figure 4: Effects of perturbation location and context length on adversarial robustness. (a)
Darker colors indicate higher frequencies at which a time point is identified as one of the most
vulnerable. We compute the gradient magnitude wrt. the attack objective and select the top-25
positions as the most sensitive points. (b) NMAE under varying context lengths and attack ratios with
PGD and SimBA attacks (ϵ = 0.5). Higher values indicate greater performance degradation.

4.2 FURTHER ANALYSES

Are perturbed series still the “same” series? Time series are highly structure-sensitive (trend/sea-
sonality), raising the question of whether adversarially perturbed inputs remain semantically consistent
with the originals. We apply STL decomposition (Cleveland et al., 1990) to clean and perturbed inputs
(PGD on TimesFM) and compute Pearson correlations between the corresponding trend, seasonal,
and residual components. As shown in Table 8, these components remain highly correlated (typically
> 0.9), indicating that global temporal structure is largely preserved. Nevertheless, such small,
structured deviations are sufficient to induce substantial forecast degradation. This highlights a core
insight of our work: TSFMs can fail even when perturbations preserve high-level structure, making
detection difficult in the absence of semantic context.

Failures are model-specific, with limited cross-model transfer. Adversarial inputs crafted on one
forecaster transfer poorly to others—even under untargeted objectives. From Table 11 we observe
that PGD perturbations generated on TimesFM cause substantially smaller errors on Moirai and
ARIMA than on the source model, indicating that the attack exploits model-specific inductive biases
rather than generic distortions of the time series itself. However, limited transferability does not
imply safety: query-based black-box attacks remain effective without source-model gradients, and
architectural homogeneity can further increase transfer rates (Hwang et al., 2024).

Points near the forecast boundary are most vulnerable. We analyze input sensitivity by comput-
ing gradient magnitudes with respect to the attack objective and identifying the top-k most vulnerable
input positions (Figure 4a). A clear pattern emerges: points closer to the forecast horizon consistently
exhibit higher vulnerability. Additionally, vulnerability appears model-specific. For instance, Moirai
shows consistent sensitivity at specific time positions across datasets, potentially due to its patch-
based input configuration. These results suggest that defenses emphasizing boundary segments (e.g.,
recency-aware filtering or local regularization) may yield favorable robustness–utility trade-offs.

Longer contexts enhance clean accuracy but amplify attack effects. Table 4b shows a trade-off:
longer input contexts boost clean accuracy but also enlarge the attack surface. Under PGD with
r = 0.5, extending the context from 128 to 512 increases forecasting error by over 7×. Holding r
constant increases the absolute number of perturbed positions (rL), expanding the feasible set for the
adversary; longer contexts also propagate perturbations over richer temporal dependencies. This is
especially concerning for models like Moirai, which depend on long contexts, highlighting the need
to balance accuracy and adversarial robustness.

4.3 EFFECTIVENESS OF DEFENSE STRATEGY

Adversarial fine-tuning yields substantial worst-case robustness, even with out-of-domain data.
As detailed in Table 4, adversarial fine-tuning serves as a highly effective defense against strong
white-box attacks. In-domain adversarial tuning (I-LAT) is particularly potent, reducing worst-case
NMAE by ∼4–10× compared to vanilla models. Crucially, this robustness is highly transferable.
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Table 4: Defense results on TimesFM (NMAE↓). Clean: natural error (no attack). no def.: vanilla
model. (K=3/5): inference-time moving-average smoothing with kernel size K. I-LAT: latent
adversarial training fine-tuned on the same dataset training split. C-LAT: cross-domain LAT. C-IAT:
cross-domain input-space adversarial training. We use KDD Cup 2018 (Godahewa et al., 2021) for
cross-domain training. See Appendix C for full results and more details.

Dataset Clean PGD SimBA

no def. (K=3) (K=5) I-LAT C-LAT C-IAT no def. (K=3) (K=5) I-LAT C-LAT C-IAT

Loop Seattle 0.113 1.213 0.416 0.399 0.132 0.154 0.170 0.167 0.154 0.121 0.109 0.128 0.141
BizITObs-L2C 2.904 19.947 14.325 8.331 4.397 5.085 4.092 6.495 3.853 3.897 3.773 3.860 3.281
Electricity 0.333 4.055 2.227 1.698 0.533 0.512 0.566 0.500 0.420 0.457 0.465 0.429 0.466
ETT1 0.246 2.368 1.364 1.011 0.502 0.530 0.619 0.478 0.407 0.438 0.415 0.450 0.504
Hier. Sales 0.927 20.871 6.290 8.492 3.489 3.532 4.043 1.817 2.795 3.288 2.371 2.641 2.820
Solar 0.569 15.033 6.002 4.177 1.360 1.543 1.606 1.480 1.593 1.222 1.188 1.356 1.188
US Birth 0.033 0.237 0.205 0.301 0.120 0.132 0.110 0.072 0.105 0.111 0.097 0.113 0.090

Cross-domain variants (C-LAT), trained on completely unrelated datasets, retain 80–95While input-
space adversarial training (IAT) follows similar trends, it is generally less stable than LAT. These
findings highlight adversarial fine-tuning, particularly LAT, as a practical and low-cost approach for
strengthening TSFMs in real deployments.

Black-box robustness remains elusive. Unlike white-box scenarios, defending against query-based
SimBA attacks proves significantly more challenging. Improvements from adversarial tuning are
marginal and occasionally negative; for instance, LAT and IAT exacerbate vulnerability on datasets
like Hierarchical Sales. This suggests a misalignment between the gradient-based optimization
used in defenses and the query-based geometry of black-box attacks. Furthermore, inference-time
smoothing is unreliable: while it mitigates PGD noise, it frequently degrades black-box robustness
by indiscriminately suppressing high-frequency components that are critical for accurate forecasting.

The trade-off between robustness and clean accuracy is dataset-dependent. As shown in
Table 14, the impact of adversarial fine-tuning is non-uniform. On noisy datasets (e.g., Loop Seattle,
BizITObs-L2C), adversarial perturbations appear to act as a regularizer, preserving or even improving
clean performance. Conversely, on highly seasonal or low-variance datasets (e.g., Electricity, ETT1),
both LAT and IAT compromise precision, introducing noticeable clean-error increases. Inference-
time smoothing is similarly inconsistent: while occasionally beneficial, it more commonly degrades
clean accuracy (Table 15) by filtering out legitimate high-frequency signal components.

5 DISCUSSION

This work establishes a rigorous, time-series–grounded framework for diagnosing adversarial risks in
Time-Series Foundation Models (TSFMs). By focusing on native, non-LLM architectures, we fill a
critical gap left by recent studies on LLM-based forecasters. Our analysis reveals that current TSFMs
are alarmingly brittle: small, well-crafted perturbations can reliably steer forecasts toward malicious
outcomes. Crucially, we uncover failure modes unique to this domain, such as horizon-proximal
brittleness and a "context paradox". However, our findings also offer a promising path forward: we
demonstrate that latent adversarial fine-tuning yields robust defenses that are highly transferable,
remaining effective even when trained on out-of-domain data. This suggests that scalable, generalized
safety measures are achievable for zero-shot deployment.

Limitations and Future Directions. We prioritized widely used, deployment-feasible perturba-
tions; future work should expand this scope to adaptive and universal strategies to fully map the threat
landscape. Similarly, our defense analysis focused on lightweight methods, leaving resource-intensive
techniques like adversarial pretraining as a direction to clarify robustness limits. Finally, the distinct
vulnerability patterns we uncovered warrant deeper mechanistic analysis to isolate how architectural
components, such as patching schemes, drive these failures.
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ETHICS STATEMENT

This work studies the adversarial robustness of time-series foundation models, and our experiments
are conducted exclusively on publicly available benchmark datasets, without involving human subjects
or private data. While our goal is to uncover and understand TSFM vulnerabilities, the techniques
developed in this study could be misused. We therefore emphasize the importance of responsible use
and advocate for parallel research into effective defense strategies.

REPRODUCIBILITY STATEMENT

We take reproducibility seriously and provide all necessary resources to replicate our results. Our
experiments are implemented in PyTorch, and we release the complete codebase, including attack-
/defense implementations, evaluation protocols at https://anonymous.4open.science/
r/Attack_TSFMs-9622/. Detailed descriptions of datasets, model configurations, and hyperpa-
rameter choices are included in the main text and Appendix D.
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USE OF LARGE LANGUAGE MODELS

We used large language models (LLMs) as assistive tools in two ways: (i) for improving the clarity
and conciseness of manuscript writing, and (ii) for generating portions of experimental analysis code.

A DETAILS OF TIME SERIES FOUNDATION MODELS

Table 5: Comparison of time-series foundation models used in this study.

TimesFM TimeMoE UniTS Moirai Chronos TabPFN
Backbone Dec-only Dec-only Enc-only Enc-only Enc-Dec Enc-only
Decoding AR AR NAR NAR AR NAR
Pos. Emb. Absolute PE RoPE Learnable PE RoPE Rel. PE Calendar
Pred. Head Point Point Point Dist. Dist. Dist.
Loss MSE Huber+Aux MSE Likelihood Cross-entropy Cross-entropy
Patchify ✓ × ✓ ✓ × ×
Standardization ReVIN ReVIN ReVIN ReVIN Mean scaling Z-score
Grad-based Att. ✓ ✓ ✓ ✓ × ×
Pretrained Model 200M

500M
50M
200M

x32
x128

small (13.8M)
base (91.4M)
large (311M)

tiny (8M)
mini (20M)
small (46M)
base (200M)
large (710M)

11M

Backbone and Decoding Strategy. TimesFM (Das et al., 2024), Chronos (Ansari et al., 2024)
and TimeMoE (Shi et al., 2025) adopt decoder-only Transformer architectures with autoregressive
(AR) decoding, closely following the design of large language models. UniTS (Gao et al., 2024),
TabPFN-TS (Hoo et al., 2025) and Moirai (Woo et al., 2024) use encoder-only backbones with
non-autoregressive (NAR) decoding, enabling parallel prediction across time steps.

Prediction Head and Loss. TimesFM, TimeMoE, and UniTS perform point forecasting optimized
with MSE or Huber losses. In contrast, Moirai, Chronos, and TabPFN-TS adopt distributional
forecasting heads trained with likelihood-based or cross-entropy losses.

Input Patchification and Normalization. Most encoder-based models adopt input patchification
to improve modeling efficiency, except Chronos and TabPFN. For standardization, all models except
Chronos and TabPFN use ReVIN (Kim et al., 2022), a reversible instance normalization technique
tailored for time series. Chronos applies mean scaling, while TabPFN uses z-score normalization.

Gradient-based Attack Compatibility. Not all models are compatible with gradient-based white-
box attacks. TimesFM, TimeMoE, UniTS, and Moirai produce continuous outputs, allowing direct
optimization through gradient-based methods such as PGD. In contrast, Chronos and TabPFN-TS
discretize both inputs and outputs by treating time points as tokens and generating categorical distri-
butions over predefined bins. This discretization renders standard gradient-based attacks impractical.

B DETAILS OF EVALUATION PROTOCOLS

Algorithm 1 summarizes our evaluation procedure, where the attacker perturbs the input sequence
xt−L:t within a constrained budget to either increase forecast error (untargeted) or drive the output
toward a predefined target trajectory (targeted).

B.1 ATTACKING STRATEGIES

Fast Gradient Sign Method (FGSM) FGSM (Goodfellow et al., 2015) is a single-step white-box
attack that perturbs the input once in the direction of the gradient of the loss with respect to the input.
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Algorithm 1 TSFM Adversarial Robustness Evaluation

Require: Pre-trained model fϕ, input xt−L:t, budget (r, ϵ), attack type σ ∈ {+1,−1}, transform
params (a, c(·))

1: x̂clean ← fϕ(xt−L:t) ▷ Sec. 3.1
2: if σ = +1 then ▷ untargeted
3: y← x̂clean

4: else ▷ targeted
5: y←M(x̂clean; a, c) ▷ Eq. equation 3
6: end if
7: S ← {δ : ∥δ∥0 ≤ rL, ∥δ∥∞ ≤ ϵ} ▷ Eq. equation 4
8: δ∗ ← ATTACK(fϕ,xt−L:t,y,S, σ) ▷ Sec. 3.3
9: x̂adv ← fϕ(xt−L:t + δ∗)

10: REDE ← COMPUTERED(x̂clean, x̂adv, y) ▷ Eq. equation 7
11: return x̂adv, REDE

The update rule is given by:

xadv = x+ ϵ · sign (∇xL(fϕ(x), y)) , (10)

whereL is the loss function, fϕ is the model, and ϵ is the perturbation budget controlling the maximum
allowed perturbation.

Projected Gradient Descent (PGD) PGD (Madry et al., 2017) is a white-box attack that iteratively
perturbs the input in the direction of the gradient of the loss with respect to the input. At each step,
the perturbation is projected back onto the feasible ℓp-norm ball to ensure it stays within the allowed
budget. The update rule is given by:

xk+1 = ΠBp(x,ϵ)

(
xk + α · sign

(
∇xL(fϕ(xk), y)

))
, (11)

where Π denotes the projection operator, L is the loss function, fϕ is the model, ϵ is the perturbation
budget, and α is the step size.

Zeroth Order Optimization (ZOO) ZOO (Chen et al., 2017) is a black-box attack that approxi-
mates the gradient using only function evaluations, without requiring access to the model’s internals.
The directional derivative is estimated using finite differences:

∂L
∂xi
≈ L(x+ hei)− L(x− hei)

2h
, (12)

where h is a small constant, and ei is the standard basis vector in the i-th direction. The estimated
gradients are then used to perform gradient-based optimization in the black-box setting.

Simple Black-box Attack (SimBA). SimBA (Guo et al., 2019) is a decision-based black-box
attack that perturbs the input along randomly selected directions from an orthonormal basis. At each
iteration, a candidate direction q ∈ Q and step size α > 0 are selected based on attack objective gϕ:

δk+1 =


δk + αq, if gϕ(δk + αq) > gϕ(δ

k),

δk − αq, if gϕ(δk − αq) > gϕ(δ
k),

δk, otherwise.
(13)

To ensure efficiency, SimBA samples directions without replacement and guarantees a bounded
ℓ2-norm of the perturbation: ∥δ∥2 =

√
Tα after T updates. Its only hyperparameters are the set of

orthonormal vectors Q and the step size ϵ.

1. Cartesian Basis (Point-wise): The standard basis QID = {e1, . . . , eL} consists of unit vectors,
where each ei ∈ RL has a 1 at the i-th position and zeros elsewhere. This basis corresponds to
perturbing individual time points independently. Each attack iteration modifies a single, randomly
selected time step by increasing or decreasing its value.
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2. Discrete Cosine Transform (DCT) Basis: The DCT basis QDCT is an orthonormal set of vectors that
transform a time-domain signal x ∈ RL into a sequence of frequency coefficients. To encourage
smooth and perceptually coherent perturbations, we restrict the perturbation to lie within a low-
frequency subspace. Specifically, we retain only a fraction r ∈ (0, 1] of the lowest-frequency
components from QDCT.

3. Wavelet Basis: The wavelet basis QWAV is derived from a discrete wavelet transform (DWT),
such as the Haar family. This basis provides a time-frequency decomposition, where each vector
captures information localized in both time and scale (resolution). Perturbations in this basis can
target specific trends or local details. For control over the granularity of perturbation, we optionally
restrict QWAV to low-frequency (approximation) coefficients at a specified decomposition level ℓ.

B.2 METRICS FOR ACCURACY EVALUATION

The Normalized Mean Absolute Error (NMAE) The NMAE (Yu et al., 2016) is a normalized
version of the MAE, which is dimensionless and facilitates the comparability of the error magnitude
across different datasets or scales. The mathematical representation of NMAE is given by:

NMAE =

∑T
t=1 |xt − x̂t|∑T

t=1 |xt|
. (14)

Normalized Root Mean Squared Error (NRMSE) The NRMSE is a normalized version of the
Root Mean Squared Error (RMSE), which quantifies the average squared magnitude of the error
between forecasts and observations, normalized by the expectation of the observed values. It can be
formally written as:

NRMSE =

√
1
T

∑T
t=1(xt − x̂t)2

1
T

∑T
t=1 |xt|

. (15)

Continuous Ranked Probability Score (CRPS) The CRPS (Matheson & Winkler, 1976) quantifies
the agreement between a cumulative distribution function (CDF) F and an observation x, represented
as:

CRPS =

∫
R

(F (z)− I{x ≤ z})2dz, (16)

where I{x ≤ z} denotes the indicator function, equating to one if x ≤ z and zero otherwise.

Being a proper scoring function, CRPS reaches its minimum when the predictive distribution F

coincides with the data distribution. When using the empirical CDF of F , denoted as F̂ (z) =
1
n

∑n
i=1 I{Xi ≤ z}, where n represents the number of samples Xi ∼ F , CRPS can be precisely

calculated from the simulated samples of the conditional distribution pθ(xt|ht). In our practice, 100
samples are employed to estimate the empirical CDF.

C DETAILS OF DEFENSE METHODS

C.1 INFERENCE-TIME SMOOTHING

Inference-Time Smoothing is a purely test-time defense that attenuates high-frequency by applying
a simple temporal filter to the input window. It does not modify fϕ, requires no retraining, and
introduces no variants beyond a single filter with one hyperparameter. Given an input window
xt−L:t = (xt−L+1, . . . , xt) and a window size W ∈ N, we define the smoothed window

x̃t−i =
1

Wi

Wi−1∑
m=0

xt−i−m, i = 0, . . . , L− 1, (17)

where Wi = min{W, i + 1} ensures causality and handles left-boundary samples (i.e., partial
averages when fewer than W past values are available). The smoothed forecast is obtained by a single
forward pass:

x̂t+1:t+T = fϕ
(
x̃t−L:t

)
. (18)

This operation is a causal low-pass filter that suppresses small, rapid oscillations typical of adversarial
noise while preserving local trend/seasonality.
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C.2 LATENT ADVERSARIAL TRAINING

To better address unforeseen failure modes, we also explore fine-tune the TSFMs using the Latent
Adversarial Training (LAT). Unlike standard adversarial training that perturbs inputs, LAT applies
perturbations in the model’s latent space (Casper et al., 2024). Specifically, let the forecaster
decompose as fϕ = fϕ2 ◦ fϕ1 with latent h = fϕ1(xt−L:t) and prediction ŷ = fϕ2(h). Given a loss
L and an ℓp-budget ∥δh∥p ≤ ε, LAT trains the model to minimize the worst-case forecasting loss
under bounded latent perturbations:

min
ϕ

E(x,t)

[
max

∥δh∥p≤ε
L
(
fϕ2(h+ δh), y

)]
. (19)

In practice, we solve the inner maximization by projected gradient ascent on δh and the outer
minimization by gradient descent on ϕ (Alg. 2). To avoid drifting into irrelevant activation ranges, the
perturbed activations are clipped to the batchwise range of the unperturbed latent. The formulation
also accommodates targeted or untargeted objectives via a direction parameter σ∈{+1,−1} in the
inner loss.

Algorithm 2 Latent Adversarial Training (LAT) for Forecasting

Require: Univariate series x1:T ; window length L, horizon T . Model parameter ϕ = (ϕ1, ϕ1),
feature extractor fϕ1 , latent-to-output mapping fϕ2 ; loss L; attack direction σ ∈ {+1,−1};
budget (r, ε); inner steps Tδ; inner/outer rates (ηδ, ηϕ).

1: for each minibatch B = {(xt−L:t,y)} do
2: Compute the latent representation: h← fϕ1

(xt−L:t)
3: Initialize δh ∼ N (0, I); δh ← ProjSh

(δh)
4: for τ = 1, . . . , Tδ do ▷ inner ascent
5: ŷadv ← fϕ2

(
h+ δh

)
6: Compute the adversarial objective: Ladv ← 1

|B|
∑

σ · L
(
ŷadv,y

)
7: Update the perturbation via gradient ascent: δh ← δh + ηδ∇δhLadv

8: δh ← ProjSh

(
δh

)
9: h+ δh ← clip

(
h+ δh, min(h),max(h)

)
10: end for
11: ŷadv ← fϕ2

(
h+ δh

)
12: Loss with adversarial perturbation: Ltotal ← 1

|B|
∑
L
(
ŷadv,y

)
13: ϕ← ϕ− ηϕ∇ϕLtotal ▷ outer descent
14: end for

C.3 INPUT-SPACE ADVERSARIAL TRAINING

In addition to smoothing and latent-space adversarial training, we also consider a conventional
input-space adversarial training (IAT) baseline. IAT follows the classic formulation of adversarial
training (Madry et al., 2017), where the model is optimized to minimize the forecasting loss under
worst-case perturbations applied directly to the input window xt−L:t.

Given a perturbation budget ∥δx∥p ≤ ε and a loss L, IAT solves the min–max problem

min
ϕ

E(x,t)

[
max

∥δx∥p≤ε
L
(
fϕ(xt−L:t + δx), y

)]
. (20)

We use projected gradient ascent to generate input perturbations and gradient descent to update model
parameters. At each iteration, the adversarial example is formed as xadv = x+ δx, and parameter
updates follow:

ϕ ← ϕ− ηϕ∇ϕL
(
fϕ(x

adv), y
)
. (21)

In our experiments, we use the same learning schedules and fine-tuning settings as in LAT to ensure a
fair comparison.
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D ADDITIONAL DETAILS OF EXPERIMENT SETTING

D.1 DATASET DETAILS

We adopt benchmark datasets from the GIFT-Eval benchmark (Aksu et al., 2024), which includes
a diverse set of real-world time-series datasets covering multiple domains, sampling granularities,
and forecasting settings. For this study, we select a subset of these datasets to ensure broad domain
coverage. A complete summary of the dataset characteristics, including domain, number of target
variables, number of series, sampling frequency, input windows, and prediction lengths, is provided
in Table 6.

Table 6: Summary of datasets used in our experiments. Datasets such as Solar, Electricity, and
ETT support short-, medium-, and long-term forecasting settings, while others like US Births and
Hierarchical Sales are limited to short-term prediction scenarios.

Dataset Domain #Target Var # Series Frequency # Windows Pred Len

Solar Energy 1 137 10T 20/11/8 48/480/720
H 29/2/2 48/480/720

Electricity Energy 1 370 15T 20/20/20 48/480/720
H 20/8/5 48/480/720

ETT1 Energy 7 1 15T 20/15/10 48/480/720
H 20/4/3 48/480/720

Loop Seattle Transport 1 323 5T 20/20/15 48/480/720
H 19/2/2 48/480/720

BizTObs - L2C Web/CloudOps 7 1 5T 20/7/5 48/480/720
H 6/1/1 48/480/720

Jena Weather Nature 21 1 10T 20/11/8 48/480/720
H 19/2/2 48/480/720

US Births Healthcare 1 1 D/W/M 20/14/2 30/8/12

Hierarchical Sales Sales 1 118 D/W 7/4 30/8

D.2 IMPLEMENTATION DETAILS OF DEFENSE

For inference-time smoothing, we apply a moving-average filter with kernel sizes K ∈ {3, 5, 7}.
This is a pre-processing step applied at inference, requires no retraining, and introduces only a single
hyperparameter (K). For latent adversarial training, we fine-tune the model for 5 epochs using Adam
with a learning rate of 1× 10−4. The latent perturbation budget is set to ϵ = 0.5 with ℓ∞ constraints,
and adversarial perturbations are optimized for 5 inner steps per batch. Fine-tuning is performed on
the training split of each dataset unless otherwise noted (cross-domain experiments use KDD Cup
2018). We fine-tune with batch size 64.

E ADDITIONAL EXPERIMENTAL RESULTS

E.1 PERFORMANCE COMPARISON OF TSFMS

In Table 7, we present the forecasting performance of six TSFMs on unperturbed inputs across
eight datasets. Among all models, TimesFM consistently achieves strong zero-shot forecasting
performance across diverse domains, followed closely by Moirai. This highlights the benefit of
large-scale pretraining and architectural generality. However, our robustness evaluation reveals
that stronger predictive accuracy does not necessarily imply higher adversarial resilience. In fact,
these high-performing models often exhibit greater vulnerability to adversarial perturbations. This
observation underscores a critical challenge: how to effectively balance predictive accuracy and
robustness in the design of TSFMs. Addressing this trade-off remains an open and urgent research
direction.
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Table 7: Raw forecasting performance of TSFMs across multiple datasets. All results are
reported under the short-term setting with context length 128. We evaluate each model using three
metrics: NMAE, NRMSE, and CRPS. The best result for each metric is bolded, and the second best
is underlined.

Dataset Chronos Moirai TabPFN-TS TimeMoE TimesFM UniTS
NMAE NRMSE CRPS NMAE NRMSE CRPS NMAE NRMSE CRPS NMAE NRMSE CRPS NMAE NRMSE CRPS NMAE NRMSE CRPS

Loop Seattle 0.08 0.10 0.13 0.07 0.07 0.10 0.10 0.10 0.13 0.06 0.08 0.11 0.07 0.08 0.11 0.07 0.08 0.12
BizITObs-L2C 1.16 1.42 1.86 1.19 1.19 1.54 1.43 1.43 1.77 1.22 1.46 1.99 0.91 1.00 1.55 1.04 1.29 1.80
Electricity 0.28 0.33 0.45 0.27 0.27 0.38 0.34 0.34 0.45 0.28 0.34 0.45 0.27 0.32 0.45 0.28 0.34 0.46
ETT1 0.23 0.27 0.52 0.27 0.27 0.48 0.33 0.33 0.56 0.22 0.27 0.50 0.23 0.27 0.52 0.20 0.25 0.46
Hierarchical Sales 0.75 0.89 1.66 1.29 1.29 1.89 1.44 1.44 2.13 0.87 1.00 1.78 0.80 0.95 1.79 0.83 0.98 1.80
Jena Weather 0.05 0.06 0.22 0.21 0.21 0.34 0.08 0.08 0.26 0.06 0.07 0.28 0.05 0.06 0.23 0.05 0.06 0.21
Solar 0.50 0.59 0.96 0.41 0.41 0.71 0.92 0.92 1.19 0.41 0.52 0.97 0.36 0.40 0.76 0.42 0.49 0.87
US Births 0.03 0.03 0.04 0.03 0.03 0.04 0.10 0.10 0.12 0.04 0.05 0.06 0.02 0.03 0.04 0.02 0.03 0.04

Table 8: Structural similarity between clean and adversarial inputs. Attacks use ϵ = 0.25, r = 0.5.
We report Pearson correlations of seasonal, trend, and residual components after STL decomposition,
along with NMAE on clean vs. attacked series. High correlations (> 0.9 in most cases) indicate that
global structure is preserved.

Dataset Season Corr. Trend Corr. Resi. Corr. NMAE (Raw / Attacked)

US Birth/D 0.9727 0.9686 0.9856 0.0345 / 0.1226
Loop Seattle/H 0.9786 0.9424 0.9195 0.0732 / 0.1407
Electricity/H 0.9131 0.8938 0.8968 0.2703 / 0.6824
ETT1/H 0.9503 0.9659 0.9007 0.0604 / 0.2908

E.2 STRUCTURAL CONSISTENCY UNDER ADVERSARIAL PERTURBATIONS

Adversarial perturbations preserve structure yet degrade forecasts. Table 8 quantifies the effect
of adversarial perturbations on temporal structure. Across datasets, the seasonal, trend, and residual
components of clean and attacked inputs remain highly correlated, typically above 0.9. This indicates
that adversarial perturbations do not fundamentally distort the global signal structure, which would
make them difficult to detect with simple statistical checks. Overall, these results highlight a critical
challenge: TSFMs can fail catastrophically under perturbations that preserve high-level structure,
making adversarial inputs both effective and stealthy.

E.3 SINGLE-STEP ATTACK: FGSM RESULTS

To further examine whether the apparent robustness of sparse MoE-style architectures arises from
gradient obfuscation (Athalye et al., 2018), we evaluate the single-step FGSM. Table 9 reports
REDNMAE under an untargeted FGSM with ϵ = 0.5 and r = 0.5.

On average across six datasets, TimeMoE does not consistently maintain robustness: it achieves the
lowest error on only 2/6 datasets (BizITObs-L2C and Hier. Sales), while TimesFM is strongest on 4/6
(Loop Seattle, Electricity, ETT1, US Births). These single-step results contrast with the PGD-based
trend in the main text and align with the gradient-obfuscation interpretation: when gradients are
partially disrupted by MoE gating, multi-step methods like PGD can be deceptively weaker, while
single-step (and black-box) attacks reveal more severe vulnerabilities.

E.4 ADDITIONAL METRICS FOR EVALUATION

As a supplement to Table 2, we report the REDCRPS scores under untargeted attacks in Table 10.
CRPS is a widely used metric for evaluating the quality of probabilistic forecasts. We observe that the
robustness rankings across models based on CRPS are largely consistent with those based on NMAE.

E.5 EFFECTIVENESS OF ATTACK STRATEGIES

All TSFMs are vulnerable to adversarial perturbations, with varying degrees of susceptibility.
Figure 5a compares the effectiveness of different attack strategies across various TSFMs under a
fixed perturbation budget (untargeted attacks, ϵ = 0.5, r = 1). Among the attack methods, PGD
consistently achieves the strongest performance, followed by SimBA and then ZOO. For SimBA
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Table 9: Adversarial vulnerability under a single-step FGSM attack. We report REDNMAE (↓) for
untargeted FGSM with ϵ = 0.5 and r = 0.5. Lower values indicate stronger robustness.

Dataset TimesFM Moirai TimeMoE
Loop Seattle 0.001770 0.186896 0.094545
BizITObs-L2C 0.055058 0.044279 0.016831
Electricity -0.013217 0.012086 0.087647
ETT1 0.098068 0.319565 0.107615
Hier. Sales 0.153016 0.776197 0.049535
US Births 0.030395 0.077895 0.212389

Table 10: Untaregeted attacks against TSFMs. We report the REDCRPS averaged across attack
budgets (ϵ ∈ {0.25, 0.5, 0.75, 1}, r ∈ {0.25, 0.5, 0.75, 1}) and datasets. Red is used to denote the
model most impacted by the attack.

Dataset PGD SimBA (Wavelet)
TimesFM TimeMoE UniTS Moirai TimesFM TimeMoE UniTS Moirai Chronos TabPFN-TS

Loop Seattle 27.35 0.25 0.34 1.74 0.93 0.39 0.01 0.41 0.13 0.82
BizITObs-L2C 15.39 0.22 0.43 0.41 1.65 0.47 0.13 0.35 0.15 0.53
Electricity 27.45 0.19 0.18 0.35 1.42 0.37 0.00 0.05 0.03 0.48
ETT1 32.80 0.20 0.58 1.69 1.68 0.80 0.06 0.59 0.54 1.37
Hierarchical Sales 44.72 0.08 1.46 1.04 3.87 0.71 0.23 0.35 0.51 2.09
Jena Weather 37.87 0.04 0.40 0.63 2.12 0.41 0.04 0.10 0.24 1.11
Solar 48.11 0.65 0.34 1.09 3.03 1.43 0.06 0.78 0.59 1.47
US Births 30.59 0.81 0.06 0.70 3.35 1.60 -0.01 0.41 1.06 2.47

variants, the choice of perturbation basis significantly impacts effectiveness: wavelet-based directions
perform best, followed by point-wise and DCT bases. These results highlight both the vulnerability of
current TSFMs and the importance of attack design choices, including basis structure and optimization
method, in determining attack success.

Gradient-based attacks are strong, but not always sufficient. PGD generally outperforms
black-box methods, while SimBA is moderately effective and ZOO is weakest (Appendix E.5).
However, their effectiveness is not universal. Models like Chronos and TabPFN-TS apply input
discretization, limiting gradient accessibility, while TimeMoE’s gating mechanism in its mixture-
of-experts architecture may disrupt gradient flow, weakening the impact of gradient-based attacks.
In addition, the choice of perturbation basis influences attack strength. Figure 5b shows that the
wavelet-based perturbations outperform DCT and point-wise strategies. These results highlight the
need to align attack strategies with model architecture and data properties.

(a) Attack performance across TSFMs. TimesFM is shown separately due
to its large performance variance under PGD.

(b) Comparison of black-box attacks.

Figure 5: Effectiveness of untargeted adversarial attacks across different strategies. We evaluate
PGD, SimBA (with wavelet, point, and DCT bases), and ZOO (with standard and Adam optimizers)
under a fixed budget of ϵ = 0.5, r = 1. Results are averaged over all datasets.

E.6 CROSS-MODEL TRANSFERABILITY OF ADVERSARIAL EXAMPLES

The results in Table 11 show that adversarial perturbations crafted on TimesFM transfer very poorly
to other forecasters, highlighting that adversarial vulnerabilities are highly model-specific rather than
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Table 11: Cross-model transferability of PGD adversarial examples. Adversarial inputs are
generated on TimesFM and evaluated on other models. We report NMAE for clean and perturbed
inputs, and REDNMAE (↓); lower values indicate weaker transferability.

Dataset TimesFM → Moirai → ARIMA
Clean Perturb RED Clean Perturb RED Clean Perturb RED

Loop Seattle 0.073 0.310 3.236 0.095 0.110 0.154 0.095 0.098 0.039
BizITObs-L2C 1.015 9.401 6.564 1.591 1.779 0.118 1.402 1.360 -0.030
Electricity 0.328 5.707 16.373 0.410 0.459 0.121 0.337 0.341 0.011
ETT1 0.270 4.044 13.961 0.284 0.403 0.419 0.446 0.455 0.021
Hier. Sales 0.912 2.568 1.816 1.577 2.420 0.535 1.521 1.594 0.048
US Births 0.034 0.123 2.558 0.051 0.059 0.154 0.103 0.104 0.005

(a) Robustness curve in untargeted setting. (b) Robustness curve in targeted setting.

Figure 6: Impact of perturbation budgets. (a) For untargeted attacks, we report NMAE across
varying attack budgets (i.e., r and ϵ). (b) For targeted attacks, we use REDNMAE to measure alignment
between the perturbed prediction and the target, where higher values indicate more successful attacks.

generic input distortions. REDNMAE values drop sharply when PGD examples from TimesFM are
evaluated on Moirai and ARIMA. This indicates that adversarial perturbations exploit model-specific
vulnerabilities tied to architectural and training biases. Adversarial examples do not generalize across
models, which may limit the threat of universal adversarial attacks but also suggests that robustness
must be evaluated individually for each architecture.

E.7 MODEL ROBUSTNESS UNDER VARYING PERTURBATION BUDGETS

Adversarial impact increases with attack budget, while targeted attacks exhibit saturation. As
shown in Figure 6, increasing the perturbation budget (ϵ or attack ratio r) leads to stronger degradation
under untargeted and closer to targets in targeted settings. For untargeted attacks, especially under
white-box conditions, high budgets result in substantial performance drops. For targeted attacks,
however, we observe saturation: once the perturbation budget surpasses a certain threshold, further
increases do not improve alignment with the target and may even reduce it due to oversteering.

Model robustness is highly dataset-dependent. Figure 7 presents robustness curves for each
dataset under SimBA attacks, where we vary the perturbation budget ϵ and fix the attack ratio r = 1.
For example, Moirai remains stable on US Births but degrades significantly on BizTObs-L2C, while
TimesFM exhibits sharp performance drops across most datasets, indicating high vulnerability. In
contrast, models like UniTS and Chronos show relatively moderate and consistent degradation. These
results highlight the challenge of building TSFMs that are both accurate and robust across diverse
real-world scenarios. Achieving such consistency remains a key open problem for safe and reliable
deployment.

E.8 FULL RESULTS OF TARGETED ATTACKS

Global-targeted attacks (e.g., scaling or shifting the full forecast) are generally more effec-
tive than local-targeted attacks (e.g., modifying a subsegment). Table 12 and Table 13 report
REDNMAE scores under targeted attacks. This suggests that TSFMs often lack strong global con-
straints, making them susceptible to trajectory-wide manipulations. In contrast, localized targets
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Figure 7: Model robustness under SimBA attack across datasets. We report the degradation in
NMAE as the perturbation bound ϵ increases, with attack ratio r = 1.

are harder to exploit, likely due to inductive biases that enforce smoothness and temporal consis-
tency—making it difficult to alter specific time steps without disrupting the overall sequence.

Table 12: Targeted attacks (scaling and drifting). We report the averaged REDNMAE across
different attack budgets (ϵ ∈ {0.25, 0.5, 0.75, 1}, r ∈ {0.25, 0.5, 0.75, 1}). Red denote the perturbed
forecasts move closer to the target. Green denote predictions deviate further from the target.

PGD SimBA
Model a = −1.0 a = 0.5 a = 2 β = 0.05 β = 0.1 a = −1.0 a = 0.5 a = 2 β = 0.05 β = 0.1

TimesFM 0.578 0.697 0.618 0.775 0.796 0.418 0.607 0.510 0.634 0.590
TimeMoE 0.225 -0.131 -0.021 0.145 0.124 0.416 0.599 0.379 0.538 0.460
UniTS 0.447 -0.757 -0.007 -0.172 0.091 0.137 -0.397 -0.398 -0.100 0.035
Moirai 0.475 0.595 0.323 0.604 0.637 0.178 0.159 0.021 0.294 0.251
Chronos - - - - - 0.055 -0.138 -0.157 0.023 0.059
TabPFN-TS - - - - - 0.365 0.688 0.476 0.484 0.486

Table 13: Targeted attacks (local offset). We report the Average REDNMAE across different attack
budgets (ϵ ∈ {0.25, 0.5, 0.75, 1}, r ∈ {0.25, 0.5, 0.75, 1}). We denote the perturbed region in the
prediction horizon as ⟨τstart, τend⟩, where τ ∈ [0, 1] is a normalized index (τ = 0 corresponds to the
first time step, and τ = 1 to the last). Red highlights denote successful attacks where the perturbed
forecasts move closer to the target. Green denote predictions deviate further from the target.

PGD SimBA
Model ⟨0.75, 1⟩ ⟨0, 0.25⟩ ⟨0.5, 1⟩ ⟨0, 0.5⟩ ⟨0.75, 1⟩ ⟨0, 0.25⟩ ⟨0.5, 1⟩ ⟨0, 0.5⟩
TimesFM 0.294 0.265 0.465 0.433 -0.100 -0.099 0.193 0.194
TimeMoE -3.755 -3.847 -1.537 -1.699 -0.899 -0.942 -0.193 -0.041
UniTS -6.162 -5.984 -2.610 -2.511 -5.066 -4.611 -2.260 -2.044
Moirai 0.013 0.052 0.117 0.186 -0.364 -0.321 -0.252 -0.163
Chronos - - - - -0.611 -0.648 -0.492 -0.403
TabPFN-TS - - - - -1.068 -1.062 -0.152 -0.352

E.9 MODEL PERFORMANCE UNDER DIFFERENT MODEL SIZE

Larger models tend to be more vulnerable to gradient-based attacks. As shown in Table 8, we
observe a clear trend: models with larger parameter counts are generally more susceptible to gradient-
based attacks. This may be due to the expanded capacity increasing the number of exploitable
directions in the input space. An exception is TimesFM, where the 200M variant is more vulnerable
than the 500M version. On the other hand, under black-box attacks (Appendix Table 8), model size
does not show a consistent effect on robustness. These findings suggest that while scaling up model
size can improve forecasting performance, it may also amplify vulnerability.

E.10 ROBUSTNESS UNDER DIFFERENT PREDICTION HORIZONS

Figure 9 compares the robustness scores (REDNMAE) of four TSFMs under PGD attacks across differ-
ent prediction horizons. We observe that, in most cases, short-term forecasting is more susceptible to
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(a) White-box setting (PGD). (b) Black-box setting (SimBA).

Figure 8: Impact of model size on robustness under different attack strategies. We evaluate
TSFMs of varying scales under PGD and SimBA attacks, with fixed budget ϵ = 0.5, r = 1.

Figure 9: Robustness under different prediction horizons. REDNMAE of four TSFMs under PGD
attacks with ϵ = 0.5 and attack ratio r = 1. For short-term forecasting, the context length is set to
128; for medium- and long-term settings, it is 256.

adversarial perturbations. One possible explanation is that long-term forecasts are inherently less
accurate, leading to lower baseline performance and therefore smaller relative error degradation.

E.11 FULL RESULTS OF DEFENSE STRATEGY

Table 14: Defense results on TimesFM (NMAE↓) of adversarial training. Clean: natural error
(no attack). no def.: vanilla model. C-LAT: cross-domain latent adversarial training. C-IAT: cross-
domain input-space adversarial training. Both of them were fine-tuned on a KDD Cup 2018 dataset
(ϵ = 0.5, r = 1).

Dataset Clean PGD SimBA

no def. LAT IAT no def. LAT IAT no def. LAT IAT

Loop Seattle 0.113 0.099 0.105 1.213 0.154 0.170 0.167 0.128 0.141
BizITObs-L2C 2.904 2.385 2.238 19.950 5.085 4.092 6.495 3.860 3.281
Electricity 0.333 0.340 0.356 4.055 0.512 0.566 0.500 0.429 0.466
ETT1 0.246 0.348 0.348 2.368 0.530 0.619 0.478 0.450 0.504
Hier. Sales 0.927 1.266 1.360 20.871 3.532 4.043 1.817 2.641 2.820
Solar 0.569 1.166 0.701 15.033 1.543 1.606 1.480 1.356 1.188
US Births 0.033 0.087 0.061 0.237 0.132 0.110 0.072 0.113 0.090

Adversarial training provides the strongest robustness improvements. Table 14 indicates that
across nearly all datasets and under PGD, adversarial training substantially outperforms smoothing-
based defenses. Both LAT and IAT significantly reduce worst-case errors, though LAT remains the
stronger method overall. This demonstrates that adversarial fine-tuning, whether applied in latent
or input space, can meaningfully mitigate gradient-based attacks. Importantly, adversarial training
generally preserves clean accuracy, with LAT offering slightly smaller clean-error increases than IAT.

Smoothing offers lightweight but unstable protection. Inference-time smoothing continues to
produce only modest and inconsistent improvements, as shown in Table 15. While it can reduce
PGD errors (e.g., Electricity: 4.055 → 1.654 at K = 7), its protection is consistently weaker
than both LAT and IAT. Additionally, smoothing often harms clean accuracy, especially on low-
noise, highly structured datasets (e.g., Solar: 0.569 → 0.925 at K = 7), reinforcing its unfavorable
robustness–utility trade-off.

Dataset-specific trade-offs remain challenging. Defense behavior varies considerably across
datasets. In certain domains, adversarial training may even degrade robustness: on Hier. Sales
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Table 15: Defense results on TimesFM (NMAE↓) of input smoothing. Clean: natural error (no
attack). no def.: vanilla model. (K=3/5/7): inference-time moving-average smoothing with kernel
size K.

Dataset Clean PGD SimBA

no def. (K=3) (K=5) (K=7) no def. (K=3) (K=5) (K=7) no def. (K=3) (K=5) (K=7)

Loop Seattle 0.113 0.106 0.108 0.112 1.213 0.416 0.399 0.308 0.167 0.154 0.121 0.121
BizITObs-L2C 2.904 2.822 2.887 2.959 19.947 14.325 8.331 9.149 6.495 3.853 3.967 3.076
Electricity 0.333 0.333 0.346 0.345 4.055 2.227 1.698 1.654 0.500 0.420 0.457 0.462
ETT1 0.246 0.267 0.311 0.352 2.368 1.364 1.011 0.903 0.478 0.407 0.438 0.416
Hier. Sale 0.927 1.199 1.228 1.686 20.871 6.290 8.492 4.683 1.817 2.795 3.288 1.377
Solar 0.569 0.650 0.795 0.925 15.033 6.002 4.177 3.299 1.480 1.593 1.222 1.171
US Birth 0.033 0.083 0.104 0.100 0.237 0.205 0.301 0.358 0.072 0.105 0.111 0.117

under SimBA, IAT increases error from 1.817 → 2.820, and LAT from 1.817 → 2.641. Similarly,
smoothing amplifies errors in several cases. These failures suggest that misalignment between the
defense objective and dataset/attack structure can cause regressions, and that no single defense
universally dominates across time-series regimes.

E.12 COMPARISON TO TRADITIONAL FORECASTING MODELS

Table 16: Clean forecasting performance (NMAE↓) of TSFMs and supervised baselines on long-
term datasets (ETT, Weather, context and prediction length 96) and short-term datasets (Exchange,
Electricity, context and prediction length 24). . Supervised models are trained on each dataset.

TSFMs Supervised
Dataset TimesFM Moirai UniTS GRU TCN Informer

ETTh1 0.3313 0.3425 0.4080 0.3874 0.4749 0.4985
ETTh2 0.1954 0.2019 0.1975 0.2036 0.2107 0.2441
ETTm1 0.3281 0.5163 0.4419 0.3496 0.3815 0.3572
ETTm2 0.1596 0.1655 0.1729 0.1668 0.1727 0.2391
Weather 0.0789 0.3670 0.0994 0.7746 0.2182 0.5139
Exchange 0.0244 0.0252 0.0295 0.0295 0.0416 0.0902
Electricity 0.3445 0.3582 0.3638 0.8305 0.1275 0.7845

Model configurations. For Informer, we use a standard encoder–decoder setup with model di-
mension 512 and 8 attention heads. The network has 2 encoder layers and 1 decoder layers, fixed
embeddings, and dropout 0.1. The GRU forecaster is a simple multi-step model with hidden size
64, two recurrent layers, and dropout 0.1. It takes the same context windows as input and outputs
quantile forecasts for the prediction horizon. The TCN forecaster is a temporal convolutional network
with three convolutional blocks, kernel size 3, and dropout 0.2. As with GRU, it operates on the same
context windows and produces quantile forecasts over the horizon.

Analysis. The clean results show that TSFMs already provide strong zero shot performance on
most datasets and often outperform simple supervised models trained from scratch. The ordering
under clean performance does not match the ordering under adversarial robustness. Models that
perform best in terms of NMAE are not necessarily the most robust when subjected to PGD attacks.
This supports our main observation that clean accuracy and adversarial robustness are only weakly
aligned for both TSFMs and conventional models, and that robustness must be evaluated explicitly
with a dedicated threat model rather than inferred from clean metrics alone.

26


	Introduction
	Related Work
	Adversarial Evaluation Framework and Defense Methods
	Preliminaries
	Threat Model Specification for TSFMs
	Adversarial Perturbation Optimization
	Evaluation Metrics and Protocols
	Defense Methods

	Results and Analyses
	Adversarial Robustness of TSFMs
	Further Analyses
	Effectiveness of Defense Strategy

	Discussion
	Details of Time Series Foundation Models
	Details of Evaluation Protocols
	Attacking Strategies
	Metrics for Accuracy Evaluation

	Details of Defense Methods
	Inference-Time Smoothing
	Latent Adversarial Training
	Input-Space Adversarial Training

	Additional Details of Experiment Setting
	Dataset Details
	Implementation Details of Defense

	Additional Experimental Results
	Performance Comparison of TSFMs
	Structural Consistency Under Adversarial Perturbations
	Single-Step Attack: FGSM Results
	Additional Metrics for Evaluation
	Effectiveness of Attack Strategies
	Cross-Model Transferability of Adversarial Examples
	Model Robustness Under Varying Perturbation Budgets
	Full Results of Targeted Attacks
	Model performance under Different Model Size
	Robustness under Different Prediction Horizons
	Full Results of Defense Strategy
	Comparison to Traditional Forecasting Models


