
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

ARE TIME-SERIES FOUNDATION MODELS DEPLOYMENT-READY? A SYSTEMATIC STUDY OF ADVERSARIAL ROBUSTNESS ACROSS DOMAINS

Anonymous authors

Paper under double-blind review

ABSTRACT

Time-Series Foundation Models (TSFMs) are rapidly transitioning from research prototypes to core components of critical decision-making systems, driven by their impressive zero-shot forecasting capabilities. However, as their deployment surges, a critical blind spot remains: their fragility under adversarial attacks. This lack of scrutiny poses severe risks, particularly as TSFMs enter high-stakes environments vulnerable to manipulation. We present a systematic, diagnostic study arguing that for TSFMs, robustness is not merely a secondary metric but a prerequisite for trustworthy deployment comparable to accuracy. Our evaluation framework, explicitly tailored to the unique constraints of time series, incorporates normalized, sparsity-aware perturbation budgets and unified scale-invariant metrics across white-box and black-box settings. Across six representative TSFMs, we demonstrate that current architectures are alarmingly brittle: even small perturbations can reliably steer forecasts toward specific failure modes, such as trend flips and malicious drifts. We uncover TSFM-specific vulnerability patterns, including horizon-proximal brittleness, increased susceptibility with longer context windows, and weak cross-model transfer that points to model-specific failure modes rather than generic distortions. Finally, we show that simple adversarial fine-tuning offers a cost-effective path to substantial robustness gains, even with out-of-domain data. This work bridges the gap between TSFM capabilities and safety constraints, offering essential guidance for hardening the next generation of forecasting systems.¹

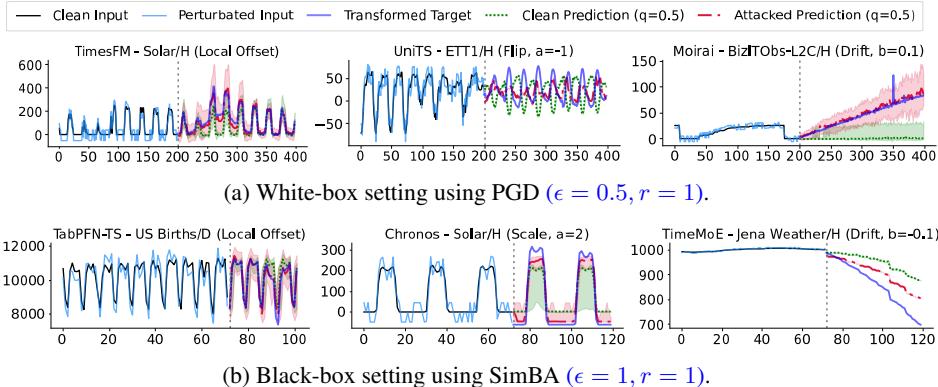
1 INTRODUCTION

Time-series forecasting serves as the backbone of critical decision-making in finance, energy, transportation, and healthcare (Tang et al., 2022; Mystakidis et al., 2024; Profillidis & Botzoris, 2018; Morid et al., 2023). Driven by the success of foundation models in vision (Kirillov et al., 2023; Brooks et al., 2024; Rombach et al., 2022) and language (Dubey et al., 2024; Liu et al., 2024a; Brown et al., 2020), a new generation of Time-Series Foundation Models (TSFMs) (Liang et al., 2024) has emerged. Pretrained on massive cross-domain datasets, these models enable zero-shot forecasting in dynamic, data-scarce environments where traditional supervised models often struggle. However, as TSFMs transition from research prototypes to deployment in high-stakes systems, a fundamental question remains unanswered: *Are these models robust to adversarial manipulation?*

This question is urgent. Unlike images or text, time-series data lacks human-perceptible semantic structure, making subtle manipulations difficult to detect yet capable of triggering cascading failures, from automated trading losses to grid instability. While adversarial robustness is well-documented in vision (Szegedy et al., 2013; Goodfellow et al., 2014; Heinrich et al., 2020; Costa et al., 2024; Madry et al., 2017; Chen et al., 2017; Guo et al., 2019; Moosavi-Dezfooli et al., 2016) and language (Shayegani et al., 2023; He & Vechev, 2023; Dong et al., 2021; Wang et al., 2021a;b; Koulakos et al., 2024), the security landscape for TSFMs remains dangerously underexplored. Although recent studies have probed Large Language Model (LLM)-based forecasters (Liu et al., 2025; Liu & Jiang, 2025), native non-LLM TSFMs rely on fundamentally different architectural inductive biases. It is therefore unclear whether they inherit the vulnerabilities of their LLM counterparts or exhibit distinct

¹The code is available at https://anonymous.4open.science/r/Attack_TSFMs-9622/

054
055
056
057
058
059



060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107
108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161
162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269
270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323
324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377
378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431
432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485
486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
589
590
591
592
593
594
595
596
597
598
599
599
600
601
602
603
604
605
606
607
608
609
609
610
611
612
613
614
615
616
617
618
619
619
620
621
622
623
624
625
626
627
628
629
629
630
631
632
633
634
635
636
637
638
639
639
640
641
642
643
644
645
646
647
648
649
649
650
651
652
653
654
655
656
657
658
659
659
660
661
662
663
664
665
666
667
668
669
669
670
671
672
673
674
675
676
677
678
679
679
680
681
682
683
684
685
686
687
688
689
689
690
691
692
693
694
695
696
697
698
699
699
700
701
702
703
704
705
706
707
708
709
709
710
711
712
713
714
715
716
717
718
719
719
720
721
722
723
724
725
726
727
728
729
729
730
731
732
733
734
735
736
737
738
739
739
740
741
742
743
744
745
746
747
748
749
749
750
751
752
753
754
755
756
757
758
759
759
760
761
762
763
764
765
766
767
768
769
769
770
771
772
773
774
775
776
777
778
779
779
780
781
782
783
784
785
786
787
788
789
789
790
791
792
793
794
795
796
797
798
799
799
800
801
802
803
804
805
806
807
808
809
809
810
811
812
813
814
815
816
817
818
819
819
820
821
822
823
824
825
826
827
828
829
829
830
831
832
833
834
835
836
837
838
839
839
840
841
842
843
844
845
846
847
848
849
849
850
851
852
853
854
855
856
857
858
859
859
860
861
862
863
864
865
866
867
868
869
869
870
871
872
873
874
875
876
877
878
879
879
880
881
882
883
884
885
886
887
888
889
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
909
910
911
912
913
914
915
916
917
918
919
919
920
921
922
923
924
925
926
927
928
929
929
930
931
932
933
934
935
936
937
938
939
939
940
941
942
943
944
945
946
947
948
949
949
950
951
952
953
954
955
956
957
958
959
959
960
961
962
963
964
965
966
967
968
969
969
970
971
972
973
974
975
976
977
978
979
979
980
981
982
983
984
985
986
987
988
989
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1019
1020
1021
1022
1023
1024
1025
1026
1027
1028
1029
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079
1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1129
1130
1131
1132
1133
1134
1135
1136
1137
1138
1139
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1179
1180
1181
1182
1183
1184
1185
1186
1187
1188
1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1239
1240
1241
1242
1243
1244
1245
1246
1247
1248
1249
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1288
1289
1290
1291
1292
1293
1294
1295
1296
1297
1298
1299
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349
1349
1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1399
1400
1401
1402
1403
1404
1405
1406
1407
1408
1409
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1449
1450
1451
1452
1453
1454
1455
1456
1457
1458
1459
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1509
1510
1511
1512
1513
1514
1515
1516
1517
1518
1519
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1559
1560
1561
1562
1563
1564
1565
1566
1567
1568
1569
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619
1619
1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1669
1670
1671
1672
1673
1674
1675
1676
1677
1678
1679
1679
1680
1681
1682
1683
1684
1685
1686
1687
1688
1688
1689
1690
1691
1692
1693
1694
1695
1696
1697
1698
1699
1699
1700
1701
1702
1703
1704
1705
1706
1707
1708
1709
1709
1710
1711
1712
1713
1714
1715
1716
1717
1718
1719
1719
1720
1721
1722
1723
1724
1725
1726
1727
1728
1729
1729
1730
1731
1732
1733
1734
1735
1736
1737
1738
1739
1739
1740
1741
1742
1743
1744
1745
1746
1747
1748
1749
1749
1750
1751
1752
1753
1754
1755
1756
1757
1758
1759
1759
1760
1761
1762
1763
1764
1765
1766
1767
1768
1769
1769
1770
1771
1772
1773
1774
1775
1776
1777
1778
1779
1779
1780
1781
1782
1783
1784
1785
1786
1787
1788
1788
1789
1790
1791
1792
1793
1794
1795
1796
1797
1798
1799
1799
1800
1801
1802
1803
1804
1805
1806
1807
1808
1809
1809
1810
1811
1812
1813
1814
1815
1816
1817
1818
1819
1819
1820
1821
1822
1823
1824
1825
1826
1827
1828
1829
1829
1830
1831
1832
1833
1834
1835
1836
1837
1838
1839
1839
1840
1841
1842
1843
1844
1845
1846
1847
1848
1849
1849
1850
1851
1852
1853
1854
1855
1856
1857
1858
1859
1859
1860
1861
1862
1863
1864
1865
1866
1867
1868
1869
1869
1870
1871
1872
1873
1874
1875
1876
1877
1878
1879
1879
1880
1881
1882
1883
1884
1885
1886
1887
1888
1888
1889
1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1919
1920
1921
1922
1

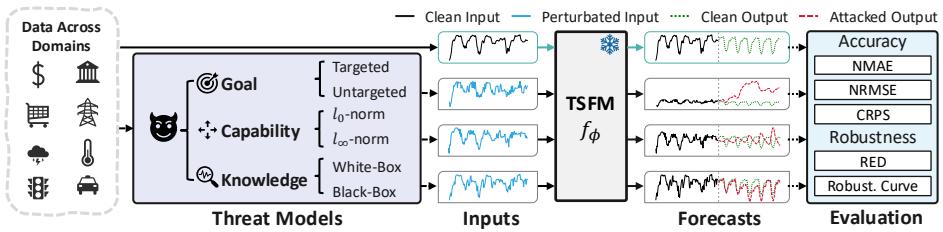


Figure 2: **Overview of the adversarial evaluation protocol for time-series foundation models.** We evaluate TSFMs across diverse domains under a unified adversarial framework. Adversarial perturbations are applied to clean inputs, which are then passed through the TSFM to produce perturbed forecasts. We assess the impact of these attacks using both accuracy and robustness metrics.

capability. However, this pursuit of universality and accuracy has often come at the expense of robustness (Ilyas et al., 2019; Su et al., 2018). As TSFMs move toward real-world deployment, their susceptibility to adversarial perturbations becomes a central reliability concern.

Adversarial Robustness in Deep Neural Networks. It is well established that deep neural networks are highly vulnerable to imperceptible input perturbations that can lead to significant prediction errors (Szegedy et al., 2013; Goodfellow et al., 2014). This discovery sparked a wave of research on robustness evaluation, resulting in the development of standardized benchmarking frameworks and attack methods in computer vision (Carlini et al., 2019; Liu et al., 2022; Gao et al., 2022; Dong et al., 2020; Croce et al., 2021). With the rapid advancement and widespread adoption of large language models and vision-language foundation models, adversarial robustness in these systems has also attracted growing attention (Shayegani et al., 2023; He & Vechev, 2023; Perez et al., 2022; Zhao et al., 2023; Schlarbmann & Hein, 2023).

In contrast, adversarial robustness in time series models remains underexplored. Prior work has largely focused on classification tasks (Siddiqui et al., 2020; Rathore et al., 2020; Karim et al., 2020; Fawaz et al., 2019; Ding et al., 2023), or on constructing adversarial examples for specific forecasting architectures (Dang-Nhu et al., 2020; Yoon et al., 2022; Liu et al., 2023). While these studies demonstrate that time series models are indeed susceptible to adversarial perturbations, they primarily address small-scale models and narrow domain settings. [Recent studies have begun examining robustness in LLM-based forecasting systems \(Liu et al., 2025; Liu & Jiang, 2025\).](#) However, since these works focus on LLM-based pipelines that are distinct from time-series-grounded TSFMs, existing robustness work on LLM-based models does not directly apply to time-series-oriented designs. The robustness of large-scale, pretrained time-series-grounded TSFMs has yet to be systematically investigated, and their behavior under adversarial conditions remains unknown.

3 ADVERSARIAL EVALUATION FRAMEWORK AND DEFENSE METHODS

Figure 2 outlines our evaluation protocol, which comprises threat specification (Section 3.2), perturbation construction (Section 3.3), and robustness metrics (Section 3.4). We further investigate readily deployable defenses in Section 3.5.

3.1 PRELIMINARIES

Time-Series Forecasting. We consider a univariate time series $\mathbf{x}_{1:T} = \{x_\tau\}_{\tau=1}^T$, where each observation $x_\tau \in \mathbb{R}$ corresponds to the value at time step τ . A forecasting model f_ϕ with parameters ϕ maps an input sequence of length L to a prediction over the future T steps $f_\phi : \mathbf{x}_{t-L:t} \mapsto \hat{\mathbf{x}}_{t+1:t+T}$, where $\hat{\mathbf{x}}_{t+1:t+T}$ is the predicted future trajectory. The model is typically trained by minimizing the expected forecasting loss: $\min_\phi \mathbb{E}_{\mathbf{x} \sim \mathcal{P}(\mathcal{D}), t \sim \mathcal{P}(\mathcal{T})} [\mathcal{L}(f_\phi(\mathbf{x}_{t-L:t}), \mathbf{x}_{t+1:t+T})]$, where $\mathcal{P}(\mathcal{D})$ is the data distribution, $\mathcal{P}(\mathcal{T})$ is the sampling distribution over timestamps, and \mathcal{L} is the loss function. TSFMs are typically pretrained on large-scale, multi-domain datasets, and their parameters ϕ remain frozen during downstream deployment.

162 Table 1: Parameter settings for different target transformations used in targeted adversarial attacks.
 163 Each transformation modifies the forecast in a specific pattern by configuring the scaling factor a and
 164 time-dependent bias $c(\tau)$. Here, $b \in \mathbb{R}$ controls the drift strength, $\delta_\tau \in \mathbb{R}$ specifies localized shifts,
 165 and $\mathcal{I} \subseteq \{1, \dots, T\}$ denotes the perturbed forecast steps. See Figure 3 for transformation examples.

Transformation	Parameters	Description
Scaling	$a > 0, c(\tau) = 0$	Uniformly scales the forecast
Flipping	$a < 0, c(\tau) = 0$	Reflects the sequence
Drifting	$a = 1, c(\tau) = b \cdot \tau$	Adds global linear drift
Local Offsetting	$a = 1, c(\tau) = \delta_\tau$ if $\tau \in \mathcal{I}$	Perturbs selected steps only

172
 173 **Threat Model.** An *adversarial example* is generated by adding a small perturbation $\delta \in \mathbb{R}^L$ to the
 174 input, producing $\mathbf{x}^{\text{adv}} = \mathbf{x} + \delta$, such that the model’s output deviates significantly from that on the
 175 clean input \mathbf{x} . The *threat model* defines the adversary’s assumptions along three dimensions: *goal*,
 176 *capability*, and *knowledge* (Carlini et al., 2019). The goal specifies the intended effect of the attack:
 177 either *untargeted*, aiming to degrade performance without a specific outcome, or *targeted*, steering
 178 predictions toward a chosen trajectory. The capability constrains the allowable perturbation, typically
 179 bounded by an ℓ_p -norm constraint $\|\delta\|_p \leq \epsilon$, where ϵ is the perturbation budget and $p \in \{0, 2, \infty\}$
 180 defines the geometry. The knowledge describes the adversary’s access to the model: in a *white-box*
 181 setting, the attacker has full access to architecture and parameters, while in a *black-box* setting, access
 182 is restricted to input-output queries, such as through an API.

183 3.2 THREAT MODEL SPECIFICATION FOR TSFMs

184 **Objective.** Given an input sequence $\mathbf{x}_{t-L:t} \in \mathbb{R}^L$, a pre-trained forecasting model f_ϕ , and a
 185 reference sequence $\mathbf{y} \in \mathbb{R}^T$ (which may represent the ground-truth, clean prediction, or an attacker-
 186 defined target), the goal is to find a perturbation $\delta \in \mathcal{S} \subseteq \mathbb{R}^L$ such that the model’s output on the
 187 perturbed input significantly deviates from—or closely matches—the reference. Specifically, we
 188 define the general attack objective as:

$$189 \delta^* = \arg \max_{\delta \in \mathcal{S}} [\sigma \cdot \mathcal{L}(f_\phi(\mathbf{x}_{t-L:t} + \delta), \mathbf{y})], \quad (1)$$

190 where $\mathcal{L}(\cdot, \cdot)$ is a forecasting loss function (e.g., MSE, MAE), and $\sigma \in \{+1, -1\}$ indicates the attack
 191 direction: $+1$ for *untargeted attacks* (maximizing prediction error with respect to the clean output),
 192 and -1 for *targeted attacks* (minimizing error toward a predefined target \mathbf{y}). The perturbation set
 193 $\mathcal{S} \subseteq \mathbb{R}^L$ specifies the allowable perturbations. We denote the overall attack objective as:

$$194 g_\phi(\delta) := \sigma \cdot \mathcal{L}(f_\phi(\mathbf{x}_{t-L:t} + \delta), \mathbf{y}), \quad (2)$$

195 which unifies both attack types under a single formulation. Due to the unavailability of ground-truth
 196 future values at inference time, we treat the model’s clean prediction as the attack target \mathbf{y} .

197 **Building Targets for Targeted Attacks.** To evaluate the performance of TSFMs under targeted
 198 attacks, we first construct appropriate target trajectories. In practice, attackers often seek to introduce
 199 subtle but systematic deviations—such as periodic shifts or gradual drifts—that are difficult to detect
 200 yet can accumulate significant downstream effects. To support controlled experimentation, the extent
 201 of deviation from the clean forecast should be adjustable, enabling us to examine how susceptible the
 202 model is to both mild and aggressive manipulations.

203 To this end, we define a family of transformation functions $\mathcal{M}(\cdot)$ that generate adversarial targets by
 204 applying structured modifications to the clean forecast. Given a clean prediction $\hat{\mathbf{x}} = \{\hat{x}_\tau\}_{\tau=1}^T$, the
 205 transformed target sequence $\mathbf{y} = \{y_\tau\}_{\tau=1}^T$ is computed as:

$$206 y_\tau = \mathcal{M}(\hat{x}_\tau; a, c) = a \cdot \hat{x}_\tau + c(\tau), \quad (3)$$

207 where $a \in \mathbb{R}$ controls the amplitude (scaling), and $c(\tau)$ is a time-dependent bias function. By
 208 tuning a and the shape of $c(\tau)$, we instantiate various adversarial patterns with adjustable distortion
 209 levels. Table 1 summarizes the transformation types considered in our evaluation, and Figure 1 and 3
 210 illustrates visual examples of the resulting targets.

216 **Perturbation Budget.** The perturbation budget directly reflects the strength of the attack. Larger
 217 perturbations tend to cause greater deviations in model outputs, but excessive distortion may lead
 218 to unrealistic inputs that compromise both the fairness of robustness evaluation and the plausibility
 219 of real-world scenarios. For time-series data, two factors are particularly important: the number of
 220 perturbed time steps, and the magnitude of each perturbation. As a result, a single ℓ_p -norm constraint
 221 is insufficient and finer-grained control is required. Motivated by this, we impose a *hybrid norm
 222 constraint* that jointly bounds perturbation sparsity and amplitude:

$$\mathcal{S} = \{\boldsymbol{\delta} \in \mathbb{R}^L : \|\boldsymbol{\delta}\|_0 \leq rL, \|\boldsymbol{\delta}\|_\infty \leq \epsilon\}, \quad (4)$$

223 where $r \in (0, 1]$ denotes the *perturbation ratio* (the fraction of *time point* modified), and $\epsilon > 0$ is
 224 the *per-element perturbation bound (the maximum change per time point)*. Based on our empirical
 225 observation that time steps closer to the forecast horizon are more vulnerable (see Section 4.2),
 226 we default to perturbing the last rL time steps when $r < 1$, unless stated otherwise. To ensure
 227 comparability across datasets with different scales, we use a variance-normalized perturbation budget.
 228 Throughout the paper, the ϵ values we report are scale-free coefficients, and the actual per-step bound
 229 applied is $\epsilon^* = \epsilon \cdot \text{var}(\mathbf{x})$, where $\text{var}(\mathbf{x})$ denotes the variance of the input sequence.
 230

232 **3.3 ADVERSARIAL PERTURBATION OPTIMIZATION**

234 We construct adversarial perturbations under different access assumptions. The *white-box* setting
 235 assumes full gradient access and serves as a worst-case probe. The *black-box* setting restricts the
 236 adversary to input-output queries without knowledge of parameters, gradients, or training data, which
 237 more closely reflects practical deployment scenarios.

239 **White-Box Setting.** In the white-box setting, the attacker has full access to the model architecture
 240 and parameters ϕ . We adopt *Projected Gradient Descent (PGD)* (Madry et al., 2017), a widely used
 241 and reliable attack method. PGD iteratively updates the perturbation as

$$\boldsymbol{\delta}^{k+1} = \Pi_{\mathcal{S}} (\boldsymbol{\delta}^k + \alpha \cdot \text{sgn}(\nabla_{\boldsymbol{\delta}} g_{\phi}(\boldsymbol{\delta}^k))), \quad (5)$$

244 where α is the step size, $\Pi_{\mathcal{S}}$ is projection onto the feasible set \mathcal{S} , and k is the iteration index. We also
 245 report results of the *Fast Gradient Sign Method (FGSM)* (Goodfellow et al., 2015) in Appendix E.3.

246 **Black-Box Setting.** In the black-box setting, the attacker must estimate effective perturbations
 247 using only model queries. We implement two representative methods: *Zero-Order Optimization
 248 (ZOO)* (Chen et al., 2017) and the *Simple Black-box Attack (SimBA)* (Guo et al., 2019). *ZOO*
 249 approximates gradients via finite differences. For the i -th component,
 250

$$\nabla_i g_{\phi}(\boldsymbol{\delta}) \approx \frac{g_{\phi}(\boldsymbol{\delta} + \mu \mathbf{u}_i) - g_{\phi}(\boldsymbol{\delta})}{2\mu}, \quad (6)$$

253 where \mathbf{u}_i is the i -th basis vector and $\mu > 0$ is a small constant. We further adopt a *ZOO-Adam* variant
 254 that applies the Adam optimizer to the estimated gradients for improved stability and convergence.
 255

256 *SimBA* performs query-efficient random search over an orthogonal basis. At each iteration, a direction
 257 $\mathbf{q} \in Q$ is sampled without replacement, and the perturbation is updated if it improves the attack
 258 objective. To better match the structure of time-series data, we explore three basis designs: Cartesian
 259 (point-wise), DCT (low-frequency), and Wavelet (time-frequency). These yield perturbations with
 260 distinct temporal properties. We provide full definitions and details in Appendix B.1.

261 **3.4 EVALUATION METRICS AND PROTOCOLS**

263 **Forecasting Accuracy.** We measure accuracy by comparing model predictions with ground truth
 264 before and after perturbation. We adopt three widely used *scale-invariant* metrics: *Normalized Mean
 265 Absolute Error (NMAE)*, *Normalized Root Mean Squared Error (NRMSE)*, and *Continuous Ranked
 266 Probability Score (CRPS)*. Formal definitions are provided in Appendix B.2.

268 **Adversarial Robustness.** Robustness is assessed by quantifying the change in forecasting perfor-
 269 mance under adversarial perturbations. This evaluation faces *three* challenges: (i) Ground truth is
 unavailable during attack construction, so we use the model’s clean prediction as a surrogate target,

which introduces bias. (ii) Targeted and untargeted attacks have opposite objectives, necessitating a unified measure. (iii) time-series datasets can have very different scales, so robustness metrics must be insensitive to global rescaling to support fair cross-dataset comparison. To address these challenges, we propose the *Relative Error Deviation* ($RED_{\mathcal{E}}$), which is a scale-invariant measure that captures the relative change in error in a direction-consistent manner. Let $\mathcal{E}(\cdot, \cdot)$ be a forecasting error metric (e.g., NMAE), and let $\hat{\mathbf{x}}^{\text{clean}}$, $\hat{\mathbf{x}}^{\text{adv}}$, and \mathbf{y} denote the clean prediction, adversarial prediction, and reference sequence, respectively. We define

$$RED_{\mathcal{E}} = \frac{\mathcal{E}_{\text{attack}}}{\mathcal{E}^{\text{clean}} + \varepsilon}, \quad \mathcal{E}_{\text{attack}} = \begin{cases} \mathcal{E}^{\text{adv}} - \mathcal{E}^{\text{clean}}, & \text{untargeted attack,} \\ \mathcal{E}^{\text{clean}} - \mathcal{E}^{\text{adv}}, & \text{targeted attack,} \end{cases} \quad (7)$$

where $\mathcal{E}^{\text{clean}} = \mathcal{E}(\hat{\mathbf{x}}^{\text{clean}}, \mathbf{y})$, $\mathcal{E}^{\text{adv}} = \mathcal{E}(\hat{\mathbf{x}}^{\text{adv}}, \mathbf{y})$, and $\varepsilon > 0$ is a small constant. For untargeted attacks, it quantifies how strongly the forecast is *pushed away* from the clean prediction. For targeted attacks, it instead captures how closely the adversarial forecast *converges toward the attacker-specified target*, which can be particularly dangerous for downstream decision-making. Since $RED_{\mathcal{E}}$ can overstate attack impact when clean error is low, we complement it with *robustness curves* plotting absolute error against varying perturbation budgets. See details in Algorithm 1.

3.5 DEFENSE METHODS

As an initial step toward improving robustness, we explore two complementary defense strategies.

Inference-Time Smoothing. We employ a simple defense that suppresses high-frequency adversarial noise at test time using a moving-average filter. It operates directly on the input window without modifying f_{ϕ} , requires no retraining, and introduces only a single hyperparameter (the kernel size). Given an input window $\mathbf{x}_{t-L:t}$ and a kernel size $W \in \mathbb{N}$, the smoothed series is defined as $\tilde{x}_{t-i} = \frac{1}{W_i} \sum_{m=0}^{W_i-1} x_{t-i-m}$, where $W_i = \min\{W, i+1\}$ ensures properly handles boundary cases.

Adversarial Training (AT). To enhance robustness more fundamentally, we fine-tune TSFMs with adversarial training in either latent space or input space. For latent adversarial training (LAT) (Casper et al., 2024), let $f_{\phi} = f_{\phi_2} \circ f_{\phi_1}$ denote the forecaster, where f_{ϕ_1} is a feature extractor and f_{ϕ_2} maps latents to outputs $\hat{\mathbf{y}}$. LAT introduces perturbations δ^h in the latent representation and minimizes the worst-case forecasting loss under a bounded latent budget:

$$\min_{\phi} \mathbb{E}_{\mathbf{x} \sim \mathcal{P}(\mathcal{D}), t \sim \mathcal{P}(\mathcal{T})} \left[\max_{\|\delta^h\|_p \leq \varepsilon} \sigma \cdot \mathcal{L}(f_{\phi_2}(f_{\phi_1}(\mathbf{x}_{t-L:t}) + \delta^h), \mathbf{y}) \right]. \quad (8)$$

In input-space adversarial training (IAT) (Madry et al., 2017), perturbations are instead applied directly to the input window. Given an input perturbation budget $\|\delta^x\|_p \leq \varepsilon$, IAT optimizes

$$\min_{\phi} \mathbb{E}_{(\mathbf{x}, t)} \left[\max_{\|\delta^x\|_p \leq \varepsilon} \mathcal{L}(f_{\phi}(\mathbf{x}_{t-L:t} + \delta^x), \mathbf{y}) \right], \quad (9)$$

where δ^x is generated by projected gradient ascent and model parameters are updated on the resulting adversarial examples. Compared with LAT, IAT does not require access to intermediate representations but operates in the raw input space. Details for all defenses are provided in Appendix C.

4 RESULTS AND ANALYSES

In Section 4.1, we present overall robustness and attack results. Section 4.2 examines adversarial transferability and factors shaping attack impact. We further study robustness under different perturbation budgets and model sizes in Appendices E.7 and E.9. Section 4.3 evaluates two practical defenses for TSFMs, with additional analysis in Appendix E.11. Additional experimental settings and extended results are provided in Appendices D and E.

Datasets. We evaluate model robustness on eight datasets from the GIFT-Eval benchmark (Aksu et al., 2024), spanning diverse domains and sampling frequencies. Unless otherwise specified, all experiments are conducted in the short-term forecasting setting. Results under medium- and long-term prediction horizons are provided in Appendix E.10 for completeness. For short-term forecasting, we use a fixed input context length of 128 across all datasets. Additional dataset details, including domain characteristics and prediction lengths, are summarized in Table 6.

324 Table 2: **Untargeted attacks against TSFMs.** For each model, RED_{NMAE} is computed for every
 325 dataset and for all 4×4 budget combinations ($\epsilon \in \{0.25, 0.5, 0.75, 1.0\}$, $r \in \{0.25, 0.5, 0.75, 1.0\}$),
 326 then averaged over budgets and datasets. **Red** highlights the model with the largest average RED_{NMAE}
 327 (most impacted). We provide detailed robustness curves across different perturbation levels in
 328 Appendix E.7. Clean forecasting performance is reported in Table 7.

Dataset	PGD				SimBA					
	TimesFM	TimeMoE	UniTS	Moirai	TimesFM	TimeMoE	UniTS	Moirai	Chronos	TabPFN-TS
Loop Seattle	27.45	0.25	0.34	1.61	0.96	0.39	0.01	0.44	0.15	0.84
BizITObs-L2C	14.59	0.22	0.43	0.35	1.47	0.47	0.13	0.39	0.20	0.52
Electricity	27.25	0.19	0.18	0.31	1.45	0.37	0.00	0.06	0.05	0.53
ETT1	32.45	0.20	0.58	1.63	1.66	0.80	0.06	0.63	0.50	1.36
Hier. Sales	45.28	0.08	1.46	1.16	3.99	0.71	0.23	0.40	0.58	2.17
Jena Weather	38.32	0.04	0.40	0.64	2.19	0.41	0.04	0.13	0.19	1.25
Solar	48.79	0.65	0.34	1.05	3.03	1.43	0.06	0.72	0.63	1.64
US Births	30.28	0.81	0.06	0.59	3.16	1.60	-0.01	0.39	1.11	2.50

339
 340 **Time-series Foundation Models.** We select six representative models for evaluation, including
 341 TimesFM (200M) (Das et al., 2024), TimeMoE (base) (Shi et al., 2025), UniTS (x128) (Gao et al.,
 342 2024), Moirai (base) (Woo et al., 2024), Chronos (small) (Ansari et al., 2024), and TabPFN-TS (Hoo
 343 et al., 2025)². These models differ in architecture, decoding strategy, prediction head, and training
 344 paradigms. This diversity allows us to investigate how different design choices impact adversarial
 345 robustness. A detailed comparison of the models is provided in Appendix A.
 346

347 **Evaluation Setup.** We adopt a deployment-matched setting: *zero-shot, frozen-checkpoint* inference.
 348 We report NMAE and RED_{NMAE} as primary metrics. For black-box setting, we use SimBA (DCT
 349 basis) and ZOO (two-point finite differences) with step size $\alpha = 0.05$. For white-box, i.e. worst-case
 350 probe, we use PGD with the same (ϵ, r) budgets and $\alpha = 0.05$ for 300 iterations. All experiments
 351 are run on a single NVIDIA Tesla V100 GPU with CUDA 12.1. Metric definitions are provided in
 352 Appendix B.2, and defense implementation details in Appendix D.2.
 353

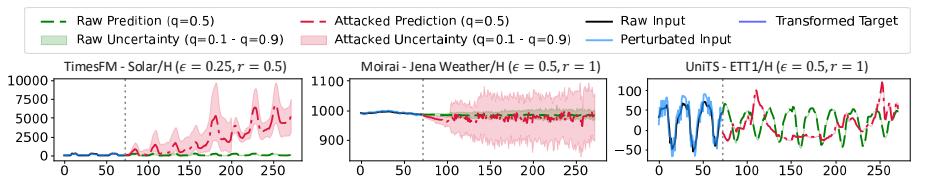
354 4.1 ADVERSARIAL ROBUSTNESS OF TSFMs

355 **Subtle perturbations can cause severe degradation in forecast accuracy.** Our results show that
 356 most TSFMs are highly susceptible to adversarial attacks, with varying degrees of vulnerability
 357 across models. As shown in Table 2, TimesFM and TabPFN-TS exhibit particularly high sensitivity.
 358 Surprisingly, PGD attacks on TimesFM result in forecast errors up to 50 times higher than clean
 359 performance. For TabPFN-TS, the backbone was not originally trained for time series forecasting,
 360 potentially leading to poor generalization under perturbed conditions. Other models also exhibit
 361 significant degradation, highlighting adversarial vulnerability as a common concern in current TSFMs.
 362

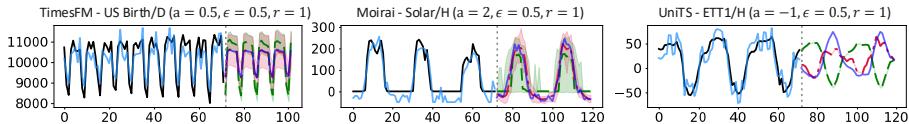
363 **Targeted behaviors can be induced even under small perturbation budgets.** As illustrated
 364 in Figure 1 and 3, targeted attacks can successfully manipulate TSFM outputs to match specific
 365 trajectories, even under small perturbation budgets. Interestingly, we find that attacks targeting the
 366 overall shape or trend of the forecast (e.g., scaling or shifting) are consistently more effective than
 367 those modifying only a local segment (e.g., local offset), as indicated by the higher RED scores in
 368 Tables 12 and 13. This suggests that TSFMs may lack strong global consistency constraints, making
 369 them easier to guide toward holistic patterns. In contrast, localized perturbations are often less
 370 effective, likely due to the model’s reliance on contextual smoothing and local temporal dependencies.
 371 These internal dynamics make it difficult to isolate and alter a specific region without disrupting the
 372 broader sequence coherence. A robust model should resist both types of manipulations, particularly
 373 when perturbations are minimal, by preserving the structure of the predicted sequence.
 374

375 **Disentangling Genuine Robustness from Gradient Obfuscation.** Among undefended models,
 376 TimeMoE and UniTS initially appear resilient to PGD attacks. For TimeMoE, our diagnostics
 377 suggest this resilience is illusory. While the MoE gating mechanism may disrupt gradient flow,
 378

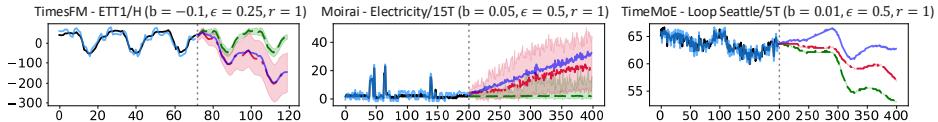
²Unless otherwise specified, we use the model size indicated in parentheses.



378
379
380
381
382
383
384 (a) Untargeted attack: perturbations are crafted to maximize the deviation from the clean prediction.



385
386
387
388
389 (b) Targeted attacks (Scaling): forecasts are pushed toward scaled or flipped trajectories.



390
391
392
393
394 (c) Targeted attacks (Drifting): perturbations induce gradual shifts in forecast trends.

395
396
397 Figure 3: **Visualization of untargeted and targeted adversarial attacks on TSFMs.** The q
398 indicates prediction quantile (e.g., $q = 0.5$ for median, $q = 0.1/0.9$ for uncertainty bands). The
399 parameter a controls the scaling of the target trajectory (with default $a = 1$), and b controls the
400 additive drift or offset (with default $b = 0$). Detailed RED_{NMAE} scores are provided in Appendix E.8.

401
402 Table 3: **Robustness comparison between TSFMs and supervised models.** We report
403 RED_{NMAE}(\downarrow) under PGD untargeted attacks ($\epsilon = 0.5, r = 0.5$). More details see Appendix E.12.

404 405 Dataset	406 TSFMs			407 Supervised		
	408 TimesFM	409 Moirai	410 UniTS	411 GRU	412 TCN	413 Informer
414 ETTh1	2.1038	0.6814	0.0346	0.1456	0.0510	0.1302
415 ETTh2	3.3649	0.5909	0.0587	0.1203	0.0043	0.0344
416 ETTm1	6.5620	1.0180	0.1208	0.1087	0.0522	0.2252
417 ETTm2	5.2638	1.0133	0.0798	0.1060	0.0023	0.1376
418 Exchange	4.2828	0.5000	0.0271	0.0537	0.0072	2.0443
419 Weather	5.2788	0.4640	0.1660	0.0422	0.0050	0.3578
420 Electricity	2.1000	0.6019	0.4733	0.0011	0.2314	0.0212

421 high vulnerability to one-step attacks (Appendix E.3) and black-box queries indicates that this is a
422 case of *gradient obfuscation* rather than true robustness (Athalye et al., 2018). Conversely, UniTS
423 demonstrates robustness across both white-box and black-box settings. We hypothesize this stems
424 from its multi-task pretraining, which is known to enhance stability against distribution shifts and
425 noise (Mao et al., 2020), though confirming this causal link requires further ablation. Overall,
426 these case studies highlight that standard PGD evaluation can be misleading; architectural choices
427 (like gating) and training strategies (like multi-tasking) significantly modulate adversarial behavior,
428 necessitating rigorous diagnostic checks.

429
430 **Supervised models exhibit superior robustness compared to zero-shot TSFMs.** As detailed in
431 Table 3, supervised models consistently outperform zero-shot TSFMs under identical perturbation
432 budgets. This performance gap underscores a robustness–generalization trade-off: while TSFMs
433 achieve universality through large-scale pretraining, they sacrifice the adversarial resilience inherent
434 in models optimized for specific data distributions. Notably, the Transformer-based Informer is sig-
435 nificantly more brittle than simpler architectures such as GRU and TCN. This aligns with established
436 theoretical findings (Goodfellow et al., 2014; Ilyas et al., 2019) suggesting that high-dimensional,
437 highly linearized models are inherently more susceptible to adversarial perturbations.

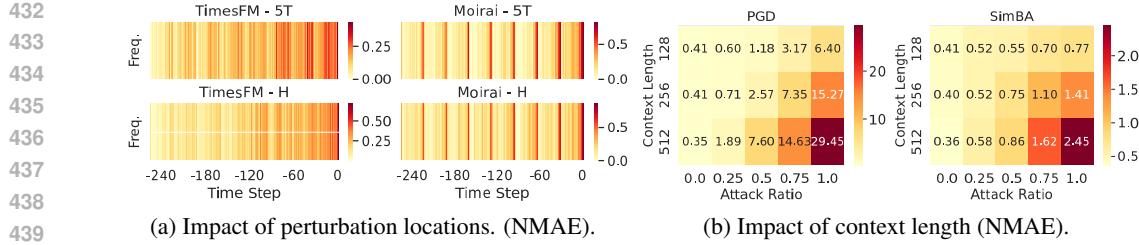


Figure 4: **Effects of perturbation location and context length on adversarial robustness.** (a) Darker colors indicate higher frequencies at which a time point is identified as one of the most vulnerable. We compute the gradient magnitude wrt. the attack objective and select the top-25 positions as the most sensitive points. (b) NMAE under varying context lengths and attack ratios with PGD and SimBA attacks ($\epsilon = 0.5$). Higher values indicate greater performance degradation.

4.2 FURTHER ANALYSES

Are perturbed series still the “same” series? Time series are highly structure-sensitive (trend/seasonality), raising the question of whether adversarially perturbed inputs remain semantically consistent with the originals. We apply STL decomposition (Cleveland et al., 1990) to clean and perturbed inputs (PGD on TimesFM) and compute Pearson correlations between the corresponding trend, seasonal, and residual components. As shown in Table 8, these components remain highly correlated (typically > 0.9), indicating that global temporal structure is largely preserved. Nevertheless, such small, structured deviations are sufficient to induce substantial forecast degradation. This highlights a core insight of our work: TSFMs can fail even when perturbations preserve high-level structure, making detection difficult in the absence of semantic context.

Failures are model-specific, with limited cross-model transfer. Adversarial inputs crafted on one forecaster transfer poorly to others—even under untargeted objectives. From Table 11 we observe that PGD perturbations generated on TimesFM cause substantially smaller errors on Moirai and ARIMA than on the source model, indicating that the attack exploits model-specific inductive biases rather than generic distortions of the time series itself. However, limited transferability does not imply safety: query-based black-box attacks remain effective without source-model gradients, and architectural homogeneity can further increase transfer rates (Hwang et al., 2024).

Points near the forecast boundary are most vulnerable. We analyze input sensitivity by computing gradient magnitudes with respect to the attack objective and identifying the top-k most vulnerable input positions (Figure 4a). A clear pattern emerges: points closer to the forecast horizon consistently exhibit higher vulnerability. Additionally, vulnerability appears model-specific. For instance, Moirai shows consistent sensitivity at specific time positions across datasets, potentially due to its patch-based input configuration. These results suggest that defenses emphasizing boundary segments (e.g., recency-aware filtering or local regularization) may yield favorable robustness–utility trade-offs.

Longer contexts enhance clean accuracy but amplify attack effects. Table 4b shows a trade-off: longer input contexts boost clean accuracy but also enlarge the attack surface. Under PGD with $r = 0.5$, extending the context from 128 to 512 increases forecasting error by over 7x. Holding r constant increases the absolute number of perturbed positions (rL), expanding the feasible set for the adversary; longer contexts also propagate perturbations over richer temporal dependencies. This is especially concerning for models like Moirai, which depend on long contexts, highlighting the need to balance accuracy and adversarial robustness.

4.3 EFFECTIVENESS OF DEFENSE STRATEGY

Adversarial fine-tuning yields substantial worst-case robustness, even with out-of-domain data. As detailed in Table 4, adversarial fine-tuning serves as a highly effective defense against strong white-box attacks. In-domain adversarial tuning (I-LAT) is particularly potent, reducing worst-case NMAE by ~ 4 – 10 × compared to vanilla models. Crucially, this robustness is highly transferable.

486
487 Table 4: **Defense results on TimesFM (NMAE \downarrow).** *Clean*: natural error (no attack). *no def.*: vanilla
488 model. ($K=3/5$): inference-time moving-average smoothing with kernel size K . *I-LAT*: latent
489 adversarial training fine-tuned on the same dataset training split. *C-LAT*: cross-domain LAT. *C-IAT*:
490 **cross-domain input-space adversarial training**. We use KDD Cup 2018 (Godahewa et al., 2021) for
491 **cross-domain training**. See Appendix C for full results and more details.

Dataset	Clean	PGD						SimBA					
		no def.	(K=3)	(K=5)	I-LAT	C-LAT	C-IAT	no def.	(K=3)	(K=5)	I-LAT	C-LAT	C-IAT
Loop Seattle	0.113	1.213	0.416	0.399	0.132	0.154	0.170	0.167	0.154	0.121	0.109	0.128	0.141
BizITObs-L2C	2.904	19.947	14.325	8.331	4.397	5.085	4.092	6.495	3.853	3.897	3.773	3.860	3.281
Electricity	0.333	4.055	2.227	1.698	0.533	0.512	0.566	0.500	0.420	0.457	0.465	0.429	0.466
ETT1	0.246	2.368	1.364	1.011	0.502	0.530	0.619	0.478	0.407	0.438	0.415	0.450	0.504
Hier. Sales	0.927	20.871	6.290	8.492	3.489	3.532	4.043	1.817	2.795	3.288	2.371	2.641	2.820
Solar	0.569	15.033	6.002	4.177	1.360	1.543	1.606	1.480	1.593	1.222	1.188	1.356	1.188
US Birth	0.033	0.237	0.205	0.301	0.120	0.132	0.110	0.072	0.105	0.111	0.097	0.113	0.090

500
501 Cross-domain variants (C-LAT), trained on completely unrelated datasets, retain 80–95% While input-
502 space adversarial training (IAT) follows similar trends, it is generally less stable than LAT. These
503 findings highlight adversarial fine-tuning, particularly LAT, as a practical and low-cost approach for
504 strengthening TSFMs in real deployments.

505
506 **Black-box robustness remains elusive.** Unlike white-box scenarios, defending against query-based
507 SimBA attacks proves significantly more challenging. Improvements from adversarial tuning are
508 marginal and occasionally negative; for instance, LAT and IAT exacerbate vulnerability on datasets
509 like Hierarchical Sales. This suggests a misalignment between the gradient-based optimization
510 used in defenses and the query-based geometry of black-box attacks. Furthermore, inference-time
511 smoothing is unreliable: while it mitigates PGD noise, it frequently degrades black-box robustness
512 by indiscriminately suppressing high-frequency components that are critical for accurate forecasting.

513
514 **The trade-off between robustness and clean accuracy is dataset-dependent.** As shown in
515 Table 14, the impact of adversarial fine-tuning is non-uniform. On noisy datasets (e.g., Loop Seattle,
516 BizITObs-L2C), adversarial perturbations appear to act as a regularizer, preserving or even improving
517 clean performance. Conversely, on highly seasonal or low-variance datasets (e.g., Electricity, ETT1),
518 both LAT and IAT compromise precision, introducing noticeable clean-error increases. Inference-
519 time smoothing is similarly inconsistent: while occasionally beneficial, it more commonly degrades
520 clean accuracy (Table 15) by filtering out legitimate high-frequency signal components.

5 DISCUSSION

521 This work establishes a rigorous, time-series-grounded framework for diagnosing adversarial risks in
522 Time-Series Foundation Models (TSFMs). By focusing on native, non-LLM architectures, we fill a
523 critical gap left by recent studies on LLM-based forecasters. Our analysis reveals that current TSFMs
524 are alarmingly brittle: small, well-crafted perturbations can reliably steer forecasts toward malicious
525 outcomes. Crucially, we uncover failure modes unique to this domain, such as horizon-proximal
526 brittleness and a "context paradox". However, our findings also offer a promising path forward: we
527 demonstrate that latent adversarial fine-tuning yields robust defenses that are highly transferable,
528 remaining effective even when trained on out-of-domain data. This suggests that scalable, generalized
529 safety measures are achievable for zero-shot deployment.

530
531 **Limitations and Future Directions.** We prioritized widely used, deployment-feasible perturba-
532 tions; future work should expand this scope to adaptive and universal strategies to fully map the threat
533 landscape. Similarly, our defense analysis focused on lightweight methods, leaving resource-intensive
534 techniques like adversarial pretraining as a direction to clarify robustness limits. Finally, the distinct
535 vulnerability patterns we uncovered warrant deeper mechanistic analysis to isolate how architectural
536 components, such as patching schemes, drive these failures.

540 **ETHICS STATEMENT**
541

542 This work studies the adversarial robustness of time-series foundation models, and our experiments
543 are conducted exclusively on publicly available benchmark datasets, without involving human subjects
544 or private data. While our goal is to uncover and understand TSFM vulnerabilities, the techniques
545 developed in this study could be misused. We therefore emphasize the importance of responsible use
546 and advocate for parallel research into effective defense strategies.

547

548 **REPRODUCIBILITY STATEMENT**
549

550 We take reproducibility seriously and provide all necessary resources to replicate our results. Our
551 experiments are implemented in PyTorch, and we release the complete codebase, including attack-
552 /defense implementations, evaluation protocols at https://anonymous.4open.science/r/Attack_TSFMs-9622/. Detailed descriptions of datasets, model configurations, and hyperpa-
553 rameter choices are included in the main text and Appendix D.

554

555 **REFERENCES**
556

557 Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and
558 Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation. *arXiv*
559 preprint arXiv:2410.10393, 2024.

560 Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
561 Oleksandr Shehur, Syama Sundar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor, et al.
562 Chronos: Learning the language of time series. *arXiv preprint arXiv:2403.07815*, 2024.

563 Anish Athalye, Nicholas Carlini, and David Wagner. Obfuscated gradients give a false sense of
564 security: Circumventing defenses to adversarial examples. In *International conference on machine*
565 *learning*, pp. 274–283. PMLR, 2018.

566 Tim Brooks, Bill Peebles, Connor Holmes, Will DePue, Yufei Guo, Li Jing, David Schnurr, Joe
567 Taylor, Troy Luhman, Eric Luhman, Clarence Ng, Ricky Wang, and Aditya Ramesh. Video
568 generation models as world simulators. 2024. URL <https://openai.com/research/video-generation-models-as-world-simulators>.

569 Tom Brown, Benjamin Mann, Nick Ryder, Melanie Subbiah, Jared D Kaplan, Prafulla Dhariwal,
570 Arvind Neelakantan, Pranav Shyam, Girish Sastry, Amanda Askell, et al. Language models are
571 few-shot learners. In *NeurIPS*, pp. 1877–1901, 2020.

572 Defu Cao, Furong Jia, Sercan O Arik, Tomas Pfister, Yixiang Zheng, Wen Ye, and Yan Liu. Tempo:
573 Prompt-based generative pre-trained transformer for time series forecasting. In *CILR*, 2024a.

574 Defu Cao, Wen Ye, Yizhou Zhang, and Yan Liu. Timedit: General-purpose diffusion transformers for
575 time series foundation model. *arXiv preprint arXiv:2409.02322*, 2024b.

576 Nicholas Carlini, Anish Athalye, Nicolas Papernot, Wieland Brendel, Jonas Rauber, Dimitris Tsipras,
577 Ian Goodfellow, Aleksander Madry, and Alexey Kurakin. On evaluating adversarial robustness.
578 *arXiv preprint arXiv:1902.06705*, 2019.

579 Stephen Casper, Lennart Schulze, Oam Patel, and Dylan Hadfield-Menell. Defending against
580 unforeseen failure modes with latent adversarial training. *arXiv preprint arXiv:2403.05030*, 2024.

581 Pin-Yu Chen, Huan Zhang, Yash Sharma, Jinfeng Yi, and Cho-Jui Hsieh. Zoo: Zeroth order
582 optimization based black-box attacks to deep neural networks without training substitute models.
583 In *Proceedings of the 10th ACM workshop on artificial intelligence and security*, pp. 15–26, 2017.

584 Robert B Cleveland, William S Cleveland, Jean E McRae, Irma Terpenning, et al. Stl: A seasonal-
585 trend decomposition. *J. off. Stat.*, 6(1):3–73, 1990.

586 Joana C Costa, Tiago Roxo, Hugo Proen  a, and Pedro Ricardo Morais Inacio. How deep learning
587 sees the world: A survey on adversarial attacks & defenses. *IEEE Access*, 12:61113–61136, 2024.

594 Francesco Croce, Maksym Andriushchenko, Vikash Sehwag, Edoardo Debenedetti, Nicolas Flam-
595 marion, Mung Chiang, Prateek Mittal, and Matthias Hein. Robustbench: a standardized adversarial
596 robustness benchmark. In *NeurIPS*, 2021.

597

598 Raphaël Dang-Nhu, Gagandeep Singh, Pavol Bielik, and Martin Vechev. Adversarial attacks on
599 probabilistic autoregressive forecasting models. In *ICML*, pp. 2356–2365, 2020.

600 Luke Nicholas Darlow, Qiwen Deng, Ahmed Hassan, Martin Asenov, Rajkarn Singh, Artjom Joosen,
601 Adam Barker, and Amos Storkey. DAM: Towards a foundation model for forecasting. In *ICLR*,
602 2024.

603

604 Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
605 time-series forecasting. In *ICML*, 2024.

606

607 Daizong Ding, Mi Zhang, Fuli Feng, Yuanmin Huang, Erling Jiang, and Min Yang. Black-box
608 adversarial attack on time series classification. In *AAAI*, volume 37, pp. 7358–7368, 2023.

609

610 Xinshuai Dong, Anh Tuan Luu, Min Lin, Shucheng Yan, and Hanwang Zhang. How should pre-
611 trained language models be fine-tuned towards adversarial robustness? In *NeurIPS*, pp. 4356–4369,
612 2021.

613

614 Yinpeng Dong, Qi-An Fu, Xiao Yang, Tianyu Pang, Hang Su, Zihao Xiao, and Jun Zhu. Benchmark-
615 ing adversarial robustness on image classification. In *CVPR*, pp. 321–331, 2020.

616

617 Abhimanyu Dubey, Abhinav Jauhri, Abhinav Pandey, Abhishek Kadian, Ahmad Al-Dahle, Aiesha
618 Letman, Akhil Mathur, Alan Schelten, Amy Yang, Angela Fan, et al. The llama 3 herd of models.
619 *arXiv preprint arXiv:2407.21783*, 2024.

620

621 Vijay Ekambararam, Arindam Jati, Nam H Nguyen, Pankaj Dayama, Chandra Reddy, Wesley M
622 Gifford, and Jayant Kalagnanam. Tiny time mixers (ttms): Fast pre-trained models for enhanced
623 zero/few-shot forecasting of multivariate time series. *arXiv preprint arXiv:2401.03955*, 2024.

624

625 Hassan Ismail Fawaz, Germain Forestier, Jonathan Weber, Lhassane Idoumghar, and Pierre-Alain
626 Muller. Adversarial attacks on deep neural networks for time series classification. In *IJCNN*, pp.
627 1–8, 2019.

628

629 Ruize Gao, Jiongxiao Wang, Kaiwen Zhou, Feng Liu, Binghui Xie, Gang Niu, Bo Han, and James
630 Cheng. Fast and reliable evaluation of adversarial robustness with minimum-margin attack. In
631 *ICML*, pp. 7144–7163. PMLR, 2022.

632

633 Shanghua Gao, Teddy Koker, Owen Queen, Thomas Hartvigsen, Theodoros Tsiligkaridis, and
634 Marinka Zitnik. UniTS: Building a unified time series model. *arXiv preprint arXiv:2403.00131*,
635 2024.

636

637 Azul Garza, Cristian Challu, and Max Mergenthaler-Canseco. Timegpt-1. *arXiv preprint
638 arXiv:2310.03589*, 2023.

639

640 Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I Webb, Rob J Hyndman, and Pablo Montero-
641 Manso. Monash time series forecasting archive. In *NeurIPS*, 2021.

642

643 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
644 examples. *arXiv preprint arXiv:1412.6572*, 2014.

645

646 Ian J Goodfellow, Jonathon Shlens, and Christian Szegedy. Explaining and harnessing adversarial
647 examples. In *ICLR*, 2015.

648

649 Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
650 MOMENT: A family of open time-series foundation models. In *ICML*, 2024.

651

652 Chuan Guo, Jacob Gardner, Yurong You, Andrew Gordon Wilson, and Kilian Weinberger. Simple
653 black-box adversarial attacks. In *ICML*, pp. 2484–2493, 2019.

654

655 Jingxuan He and Martin Vechev. Large language models for code: Security hardening and adversarial
656 testing. In *SIGSAC*, pp. 1865–1879, 2023.

648 Kai Heinrich, Johannes Graf, Ji Chen, Jakob Laurisch, and Patrick Zschech. Fool me once, shame on
649 you, fool me twice, shame on me: a taxonomy of attack and de-fense patterns for ai security. In
650 *ECIS*, 2020.

651

652 Shi Bin Hoo, Samuel Müller, David Salinas, and Frank Hutter. The tabular foundation model tabpfn
653 outperforms specialized time series forecasting models based on simple features. *arXiv preprint*
654 *arXiv:2501.02945*, 2025.

655

656 Jaehui Hwang, Dongyo Han, Byeongho Heo, Song Park, Sanghyuk Chun, and Jong-Seok Lee.
657 Similarity of neural architectures using adversarial attack transferability. In *ECCV*, pp. 106–126,
658 2024.

659

660 Andrew Ilyas, Shibani Santurkar, Dimitris Tsipras, Logan Engstrom, Brandon Tran, and Aleksander
661 Madry. Adversarial examples are not bugs, they are features. In *NeurIPS*, 2019.

662

663 Fazle Karim, Somshubra Majumdar, and Houshang Darabi. Adversarial attacks on time series. *IEEE*
664 *transactions on pattern analysis and machine intelligence*, 43(10):3309–3320, 2020.

665

666 Taesung Kim, Jinhee Kim, Yunwon Tae, Cheonbok Park, Jang-Ho Choi, and Jaegul Choo. Reversible
667 Instance Normalization for Accurate Time-Series Forecasting against Distribution Shift. In *ICLR*,
668 2022.

669

670 Alexander Kirillov, Eric Mintun, Nikhila Ravi, Hanzi Mao, Chloe Rolland, Laura Gustafson, Tete
671 Xiao, Spencer Whitehead, Alexander C Berg, Wan-Yen Lo, et al. Segment anything. In *ICCV*, pp.
672 4015–4026, 2023.

673

674 Alexandros Koulakos, Maria Lymperaiou, Giorgos Filandrianos, and Giorgos Stamou. Enhanc-
675 ing adversarial robustness in natural language inference using explanations. *arXiv preprint*
676 *arXiv:2409.07423*, 2024.

677

678 Yuxuan Liang, Haomin Wen, Yuqi Nie, Yushan Jiang, Ming Jin, Dongjin Song, Shirui Pan, and
679 Qingsong Wen. Foundation models for time series analysis: A tutorial and survey. In *Proceedings*
680 *of the 30th ACM SIGKDD conference on knowledge discovery and data mining*, pp. 6555–6565,
681 2024.

682

683 Aixin Liu, Bei Feng, Bing Xue, Bingxuan Wang, Bochao Wu, Chengda Lu, Chenggang Zhao,
684 Chengqi Deng, Chenyu Zhang, Chong Ruan, et al. Deepseek-v3 technical report. *arXiv preprint*
685 *arXiv:2412.19437*, 2024a.

686

687 Fuqiang Liu and Sicong Jiang. Temporally sparse attack for fooling large language models in time
688 series forecasting. In *ICML Workshop on Building Trust in Language Models and Applications*,
689 2025.

690

691 Fuqiang Liu, Sicong Jiang, Luis Miranda-Moreno, Seongjin Choi, and Lijun Sun. Adversarial
692 vulnerabilities in large language models for time series forecasting. In *AISTATS*, 2025.

693

694 Linbo Liu, Youngsuk Park, Trong Nghia Hoang, Hilaf Hasson, and Jun Huan. Robust multivariate
695 time-series forecasting: Adversarial attacks and defense mechanisms. In *ICLR*, 2023.

696

697 Ye Liu, Yaya Cheng, Lianli Gao, Xianglong Liu, Qilong Zhang, and Jingkuan Song. Practical
698 evaluation of adversarial robustness via adaptive auto attack. In *CVPR*, pp. 15105–15114, 2022.

699

700 Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
701 Timer: Transformers for time series analysis at scale. In *ICML*, 2024b.

702

703 Aleksander Madry, Aleksandar Makelov, Ludwig Schmidt, Dimitris Tsipras, and Adrian Vladu.
704 Towards deep learning models resistant to adversarial attacks. In *ICLR*, 2017.

705

706 Chengzhi Mao, Amogh Gupta, Vikram Nitin, Baishakhi Ray, Shuran Song, Junfeng Yang, and Carl
707 Vondrick. Multitask learning strengthens adversarial robustness. In *ECCV*, pp. 158–174, 2020.

708

709 James E Matheson and Robert L Winkler. Scoring Rules for Continuous Probability Distributions.
710 *Management Science*, 22(10):1087–1096, 1976.

702 Seyed-Mohsen Moosavi-Dezfooli, Alhussein Fawzi, and Pascal Frossard. Deepfool: a simple and
703 accurate method to fool deep neural networks. In *CVPR*, pp. 2574–2582, 2016.
704

705 Mohammad Amin Morid, Olivia R Liu Sheng, and Joseph Dunbar. Time series prediction using deep
706 learning methods in healthcare. *ACM Transactions on Management Information Systems*, 14(1):
707 1–29, 2023.

708 Aristeidis Mystakidis, Paraskevas Koukaras, Nikolaos Tsaklidis, Dimosthenis Ioannidis, and Christos
709 Tjortjis. Energy forecasting: a comprehensive review of techniques and technologies. *Energies*, 17
710 (7):1662, 2024.

711 Ethan Perez, Saffron Huang, Francis Song, Trevor Cai, Roman Ring, John Aslanides, Amelia Glaese,
712 Nat McAleese, and Geoffrey Irving. Red teaming language models with language models. *arXiv*
713 preprint *arXiv:2202.03286*, 2022.

714 Harshvardhan Prabhakar Kamarthi and B Aditya Prakash. Large pre-trained time series models for
715 cross-domain time series analysis tasks. In *NeurIPS*, pp. 56190–56214, 2024.

716 Vassilios A Profillidis and George N Botzoris. *Modeling of transport demand: Analyzing, calculating,
717 and forecasting transport demand*. Elsevier, 2018.

718 Kashif Rasul, Arjun Ashok, Andrew Robert Williams, Hena Ghonia, Rishika Bhagwatkar, Arian
719 Khorasani, Mohammad Javad Darvishi Bayazi, George Adamopoulos, Roland Riachi, Nadhir
720 Hassen, et al. Lag-Llama: Towards foundation models for probabilistic time series forecasting.
721 *arXiv preprint arXiv:2310.08278*, 2023.

722 Pradeep Rathore, Arghya Basak, Sri Harsha Nistala, and Venkataramana Runkana. Untargeted,
723 targeted and universal adversarial attacks and defenses on time series. In *IJCNN*, pp. 1–8, 2020.

724 Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
725 resolution image synthesis with latent diffusion models. In *CVPR*, pp. 10684–10695, 2022.

726 Christian Schlarbmann and Matthias Hein. On the adversarial robustness of multi-modal foundation
727 models. In *ICCV*, pp. 3677–3685, 2023.

728 Erfan Shayegani, Md Abdullah Al Mamun, Yu Fu, Pedram Zaree, Yue Dong, and Nael Abu-Ghazaleh.
729 Survey of vulnerabilities in large language models revealed by adversarial attacks. *arXiv preprint
730 arXiv:2310.10844*, 2023.

731 Xiaoming Shi, Shiyu Wang, Yuqi Nie, Dianqi Li, Zhou Ye, Qingsong Wen, and Ming Jin. Time-moe:
732 Billion-scale time series foundation models with mixture of experts. In *ICLR*, 2025.

733 Shoaib Ahmed Siddiqui, Andreas Dengel, and Sheraz Ahmed. Benchmarking adversarial attacks and
734 defenses for time-series data. In *International Conference on Neural Information Processing*, pp.
735 544–554. Springer, 2020.

736 Dong Su, Huan Zhang, Hongge Chen, Jinfeng Yi, Pin-Yu Chen, and Yupeng Gao. Is robustness the
737 cost of accuracy?—a comprehensive study on the robustness of 18 deep image classification models.
738 In *ECCV*, pp. 631–648, 2018.

739 Christian Szegedy, Wojciech Zaremba, Ilya Sutskever, Joan Bruna, Dumitru Erhan, Ian Goodfellow,
740 and Rob Fergus. Intriguing properties of neural networks. In *ICLR*, 2013.

741 Yajiao Tang, Zhenyu Song, Yulin Zhu, Huaiyu Yuan, Maozhang Hou, Junkai Ji, Cheng Tang,
742 and Jianqiang Li. A survey on machine learning models for financial time series forecasting.
743 *Neurocomputing*, 512:363–380, 2022.

744 Boxin Wang, Shuohang Wang, Yu Cheng, Zhe Gan, Ruoxi Jia, Bo Li, and Jingjing Liu. Infobert:
745 Improving robustness of language models from an information theoretic perspective. In *ICLR*,
746 2021a.

747 Xuezhi Wang, Haohan Wang, and Difyi Yang. Measure and improve robustness in nlp models: A
748 survey. *arXiv preprint arXiv:2112.08313*, 2021b.

756 Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
757 Unified training of universal time series forecasting transformers. In *ICML*, 2024.
758

759 Chin-Chia Michael Yeh, Xin Dai, Huiyuan Chen, Yan Zheng, Yujie Fan, Audrey Der, Vivian Lai,
760 Zhongfang Zhuang, Junpeng Wang, Liang Wang, et al. Toward a foundation model for time series
761 data. In *CIKM*, pp. 4400–4404, 2023.

762 TaeHo Yoon, Youngsuk Park, Ernest K Ryu, and Yuyang Wang. Robust probabilistic time series
763 forecasting. In *AISTATS*, pp. 1336–1358, 2022.

764 Hsiang-Fu Yu, Nikhil Rao, and Inderjit S Dhillon. Temporal regularized matrix factorization for
765 high-dimensional time series prediction. In *NeurIPS*, 2016.

766 Haoran Zhang, Yong Liu, Yunzhong Qiu, Haixuan Liu, Zhongyi Pei, Jianmin Wang, and Mingsheng
767 Long. Timesbert: A bert-style foundation model for time series understanding. *arXiv preprint*
768 *arXiv:2502.21245*, 2025.

769

770 Yunqing Zhao, Tianyu Pang, Chao Du, Xiao Yang, Chongxuan Li, Ngai-Man Man Cheung, and Min
771 Lin. On evaluating adversarial robustness of large vision-language models. In *NeurIPS*, volume 36,
772 pp. 54111–54138, 2023.

773

774

775

776

777

778

779

780

781

782

783

784

785

786

787

788

789

790

791

792

793

794

795

796

797

798

799

800

801

802

803

804

805

806

807

808

809

810 USE OF LARGE LANGUAGE MODELS 811

812 We used large language models (LLMs) as assistive tools in two ways: (i) for improving the clarity
813 and conciseness of manuscript writing, and (ii) for generating portions of experimental analysis code.
814

815 A DETAILS OF TIME SERIES FOUNDATION MODELS 816

818 Table 5: Comparison of time-series foundation models used in this study.
819

	TimesFM	TimeMoE	UniTS	Moirai	Chronos	TabPFN
Backbone	Dec-only	Dec-only	Enc-only	Enc-only	Enc-Dec	Enc-only
Decoding	AR	AR	NAR	NAR	AR	NAR
Pos. Emb.	Absolute PE	RoPE	Learnable PE	RoPE	Rel. PE	Calendar
Pred. Head	Point	Point	Point	Dist.	Dist.	Dist.
Loss	MSE	Huber+Aux	MSE	Likelihood	Cross-entropy	Cross-entropy
Patchify	✓	✗	✓	✓	✗	✗
Standardization	ReVIN	ReVIN	ReVIN	ReVIN	Mean scaling	Z-score
Grad-based Att.	✓	✓	✓	✓	✗	✗
Pretrained Model	200M 500M	50M 200M	x32 x128	small (13.8M) base (91.4M) large (311M)	tiny (8M) mini (20M) small (46M) base (200M) large (710M)	11M

834 **Backbone and Decoding Strategy.** TimesFM (Das et al., 2024), Chronos (Ansari et al., 2024)
835 and TimeMoE (Shi et al., 2025) adopt decoder-only Transformer architectures with autoregressive
836 (AR) decoding, closely following the design of large language models. UniTS (Gao et al., 2024),
837 TabPFN-TS (Hoo et al., 2025) and Moirai (Woo et al., 2024) use encoder-only backbones with
838 non-autoregressive (NAR) decoding, enabling parallel prediction across time steps.
839

840 **Prediction Head and Loss.** TimesFM, TimeMoE, and UniTS perform point forecasting optimized
841 with MSE or Huber losses. In contrast, Moirai, Chronos, and TabPFN-TS adopt distributional
842 forecasting heads trained with likelihood-based or cross-entropy losses.
843

844 **Input Patchification and Normalization.** Most encoder-based models adopt input patchification
845 to improve modeling efficiency, except Chronos and TabPFN. For standardization, all models except
846 Chronos and TabPFN use ReVIN (Kim et al., 2022), a reversible instance normalization technique
847 tailored for time series. Chronos applies mean scaling, while TabPFN uses z-score normalization.
848

849 **Gradient-based Attack Compatibility.** Not all models are compatible with gradient-based white-
850 box attacks. TimesFM, TimeMoE, UniTS, and Moirai produce continuous outputs, allowing direct
851 optimization through gradient-based methods such as PGD. In contrast, Chronos and TabPFN-TS
852 discretize both inputs and outputs by treating time points as tokens and generating categorical distri-
853 butions over predefined bins. This discretization renders standard gradient-based attacks impractical.
854

855 B DETAILS OF EVALUATION PROTOCOLS 856

857 Algorithm 1 summarizes our evaluation procedure, where the attacker perturbs the input sequence
858 $\mathbf{x}_{t-L:t}$ within a constrained budget to either increase forecast error (untargeted) or drive the output
859 toward a predefined target trajectory (targeted).
860

861 B.1 ATTACKING STRATEGIES

862 **Fast Gradient Sign Method (FGSM)** FGSM (Goodfellow et al., 2015) is a single-step white-box
863 attack that perturbs the input once in the direction of the gradient of the loss with respect to the input.
864

Algorithm 1 TSFM Adversarial Robustness Evaluation

Require: Pre-trained model f_ϕ , input $\mathbf{x}_{t-L:t}$, budget (r, ϵ) , attack type $\sigma \in \{+1, -1\}$, transform params $(a, c(\cdot))$

1: $\hat{\mathbf{x}}^{\text{clean}} \leftarrow f_\phi(\mathbf{x}_{t-L:t})$ ▷ Sec. 3.1

2: **if** $\sigma = +1$ **then** ▷ untargeted

3: $\mathbf{y} \leftarrow \hat{\mathbf{x}}^{\text{clean}}$

4: **else** ▷ targeted

5: $\mathbf{y} \leftarrow \mathcal{M}(\hat{\mathbf{x}}^{\text{clean}}; a, c)$ ▷ Eq. equation 3

6: **end if**

7: $\mathcal{S} \leftarrow \{\boldsymbol{\delta} : \|\boldsymbol{\delta}\|_0 \leq rL, \|\boldsymbol{\delta}\|_\infty \leq \epsilon\}$ ▷ Eq. equation 4

8: $\boldsymbol{\delta}^* \leftarrow \text{ATTACK}(f_\phi, \mathbf{x}_{t-L:t}, \mathbf{y}, \mathcal{S}, \sigma)$ ▷ Sec. 3.3

9: $\hat{\mathbf{x}}^{\text{adv}} \leftarrow f_\phi(\mathbf{x}_{t-L:t} + \boldsymbol{\delta}^*)$

10: $\text{RED}_\mathcal{E} \leftarrow \text{COMPUTERED}(\hat{\mathbf{x}}^{\text{clean}}, \hat{\mathbf{x}}^{\text{adv}}, \mathbf{y})$ ▷ Eq. equation 7

11: **return** $\hat{\mathbf{x}}^{\text{adv}}$, $\text{RED}_\mathcal{E}$

The update rule is given by:

$$\mathbf{x}^{\text{adv}} = \mathbf{x} + \epsilon \cdot \text{sign}(\nabla_{\mathbf{x}} \mathcal{L}(f_{\phi}(\mathbf{x}), y)), \quad (10)$$

where \mathcal{L} is the loss function, f_ϕ is the model, and ϵ is the perturbation budget controlling the maximum allowed perturbation.

Projected Gradient Descent (PGD) PGD (Madry et al., 2017) is a white-box attack that iteratively perturbs the input in the direction of the gradient of the loss with respect to the input. At each step, the perturbation is projected back onto the feasible ℓ_p -norm ball to ensure it stays within the allowed budget. The update rule is given by:

$$\mathbf{x}^{k+1} = \Pi_{\mathcal{B}_p(\mathbf{x}, \epsilon)} \left(\mathbf{x}^k + \alpha \cdot \text{sign} \left(\nabla_{\mathbf{x}} \mathcal{L}(f_{\phi}(\mathbf{x}^k), y) \right) \right), \quad (11)$$

where Π denotes the projection operator, \mathcal{L} is the loss function, f_ϕ is the model, ϵ is the perturbation budget, and α is the step size.

Zeroth Order Optimization (ZOO) ZOO (Chen et al., 2017) is a black-box attack that approximates the gradient using only function evaluations, without requiring access to the model’s internals. The directional derivative is estimated using finite differences:

$$\frac{\partial \mathcal{L}}{\partial x_i} \approx \frac{\mathcal{L}(\mathbf{x} + h\mathbf{e}_i) - \mathcal{L}(\mathbf{x} - h\mathbf{e}_i)}{2h}, \quad (12)$$

where h is a small constant, and \mathbf{e}_i is the standard basis vector in the i -th direction. The estimated gradients are then used to perform gradient-based optimization in the black-box setting.

Simple Black-box Attack (SimBA). SimBA (Guo et al., 2019) is a decision-based black-box attack that perturbs the input along randomly selected directions from an orthonormal basis. At each iteration, a candidate direction $q \in Q$ and step size $\alpha > 0$ are selected based on attack objective q_θ :

$$\delta^{k+1} = \begin{cases} \delta^k + \alpha \mathbf{q}, & \text{if } g_\phi(\delta^k + \alpha \mathbf{q}) > g_\phi(\delta^k), \\ \delta^k - \alpha \mathbf{q}, & \text{if } g_\phi(\delta^k - \alpha \mathbf{q}) > g_\phi(\delta^k), \\ \delta^k, & \text{otherwise.} \end{cases} \quad (13)$$

To ensure efficiency, SimBA samples directions without replacement and guarantees a bounded ℓ_2 -norm of the perturbation: $\|\delta\|_2 = \sqrt{T}\alpha$ after T updates. Its only hyperparameters are the set of orthonormal vectors Q and the step size ϵ .

1. **Cartesian Basis (Point-wise):** The *standard basis* $Q_{ID} = \{\mathbf{e}_1, \dots, \mathbf{e}_L\}$ consists of unit vectors, where each $\mathbf{e}_i \in \mathbb{R}^L$ has a 1 at the i -th position and zeros elsewhere. This basis corresponds to perturbing individual time points independently. Each attack iteration modifies a single, randomly selected time step by increasing or decreasing its value.

918 2. Discrete Cosine Transform (DCT) Basis: The *DCT basis* Q_{DCT} is an orthonormal set of vectors that
 919 transform a time-domain signal $x \in \mathbb{R}^L$ into a sequence of frequency coefficients. To encourage
 920 smooth and perceptually coherent perturbations, we restrict the perturbation to lie within a low-
 921 frequency subspace. Specifically, we retain only a fraction $r \in (0, 1]$ of the lowest-frequency
 922 components from Q_{DCT} .

923 3. Wavelet Basis: The *wavelet basis* Q_{WAV} is derived from a discrete wavelet transform (DWT),
 924 such as the Haar family. This basis provides a time-frequency decomposition, where each vector
 925 captures information localized in both time and scale (resolution). Perturbations in this basis can
 926 target specific trends or local details. For control over the granularity of perturbation, we optionally
 927 restrict Q_{WAV} to low-frequency (approximation) coefficients at a specified decomposition level ℓ .

928 **B.2 METRICS FOR ACCURACY EVALUATION**

929 **The Normalized Mean Absolute Error (NMAE)** The NMAE (Yu et al., 2016) is a normalized
 930 version of the MAE, which is dimensionless and facilitates the comparability of the error magnitude
 931 across different datasets or scales. The mathematical representation of NMAE is given by:

$$934 \text{NMAE} = \frac{\sum_{t=1}^T |x_t - \hat{x}_t|}{\sum_{t=1}^T |x_t|}. \quad (14)$$

935 **Normalized Root Mean Squared Error (NRMSE)** The NRMSE is a normalized version of the
 936 Root Mean Squared Error (RMSE), which quantifies the average squared magnitude of the error
 937 between forecasts and observations, normalized by the expectation of the observed values. It can be
 938 formally written as:

$$939 \text{NRMSE} = \frac{\sqrt{\frac{1}{T} \sum_{t=1}^T (x_t - \hat{x}_t)^2}}{\frac{1}{T} \sum_{t=1}^T |x_t|}. \quad (15)$$

940 **Continuous Ranked Probability Score (CRPS)** The CRPS (Matheson & Winkler, 1976) quantifies
 941 the agreement between a cumulative distribution function (CDF) F and an observation x , represented
 942 as:

$$943 \text{CRPS} = \int_{\mathbb{R}} (F(z) - \mathbb{I}\{x \leq z\})^2 dz, \quad (16)$$

944 where $\mathbb{I}\{x \leq z\}$ denotes the indicator function, equating to one if $x \leq z$ and zero otherwise.

945 Being a proper scoring function, CRPS reaches its minimum when the predictive distribution F
 946 coincides with the data distribution. When using the empirical CDF of F , denoted as $\hat{F}(z) =$
 947 $\frac{1}{n} \sum_{i=1}^n \mathbb{I}\{X_i \leq z\}$, where n represents the number of samples $X_i \sim F$, CRPS can be precisely
 948 calculated from the simulated samples of the conditional distribution $p_{\theta}(x_t | \mathbf{h}_t)$. In our practice, 100
 949 samples are employed to estimate the empirical CDF.

950 **C DETAILS OF DEFENSE METHODS**

951 **C.1 INFERENCE-TIME SMOOTHING**

952 Inference-Time Smoothing is a purely test-time defense that attenuates high-frequency by applying
 953 a simple temporal filter to the input window. It does not modify f_{ϕ} , requires no retraining, and
 954 introduces no variants beyond a single filter with one hyperparameter. Given an input window
 955 $\mathbf{x}_{t-L:t} = (x_{t-L+1}, \dots, x_t)$ and a window size $W \in \mathbb{N}$, we define the smoothed window

$$956 \tilde{x}_{t-i} = \frac{1}{W_i} \sum_{m=0}^{W_i-1} x_{t-i-m}, \quad i = 0, \dots, L-1, \quad (17)$$

957 where $W_i = \min\{W, i+1\}$ ensures causality and handles left-boundary samples (i.e., partial
 958 averages when fewer than W past values are available). The smoothed forecast is obtained by a single
 959 forward pass:

$$960 \tilde{\mathbf{x}}_{t+1:t+T} = f_{\phi}(\tilde{\mathbf{x}}_{t-L:t}). \quad (18)$$

961 This operation is a causal low-pass filter that suppresses small, rapid oscillations typical of adversarial
 962 noise while preserving local trend/seasonality.

To better address unforeseen failure modes, we also explore fine-tune the TSFMs using the Latent Adversarial Training (LAT). Unlike standard adversarial training that perturbs inputs, LAT applies perturbations in the model’s latent space (Casper et al., 2024). Specifically, let the forecaster decompose as $f_\phi = f_{\phi_2} \circ f_{\phi_1}$ with latent $\mathbf{h} = f_{\phi_1}(\mathbf{x}_{t-L:t})$ and prediction $\hat{\mathbf{y}} = f_{\phi_2}(\mathbf{h})$. Given a loss \mathcal{L} and an ℓ_p -budget $\|\delta^h\|_p \leq \varepsilon$, LAT trains the model to minimize the worst-case forecasting loss under bounded *latent* perturbations:

$$\min_{\phi} \mathbb{E}_{(\mathbf{x}, t)} \left[\max_{\|\delta^h\|_p \leq \varepsilon} \mathcal{L}(f_{\phi_2}(\mathbf{h} + \delta^h), \mathbf{y}) \right]. \quad (19)$$

In practice, we solve the inner maximization by projected gradient *ascent* on δ^h and the outer minimization by gradient *descent* on ϕ (Alg. 2). To avoid drifting into irrelevant activation ranges, the perturbed activations are clipped to the batchwise range of the unperturbed latent. The formulation also accommodates targeted or untargeted objectives via a direction parameter $\sigma \in \{+1, -1\}$ in the inner loss.

Algorithm 2 Latent Adversarial Training (LAT) for Forecasting

Require: Univariate series $x_{1:T}$; window length L , horizon T . Model parameter $\phi = (\phi_1, \phi_1)$, feature extractor f_{ϕ_1} , latent-to-output mapping f_{ϕ_2} ; loss \mathcal{L} ; attack direction $\sigma \in \{+1, -1\}$; budget (r, ε) ; inner steps T_δ ; inner/outer rates (η_δ, η_ϕ) .

```

1: for each minibatch  $\mathcal{B} = \{(\mathbf{x}_{t-L:t}, \mathbf{y})\}$  do
2:   Compute the latent representation:  $\mathbf{h} \leftarrow f_{\phi_1}(\mathbf{x}_{t-L:t})$ 
3:   Initialize  $\delta^h \sim \mathcal{N}(0, I)$ ;  $\delta^h \leftarrow \text{Proj}_{\mathcal{S}_h}(\delta^h)$ 
4:   for  $\tau = 1, \dots, T_\delta$  do ▷ inner ascent
5:      $\hat{\mathbf{y}}^{\text{adv}} \leftarrow f_{\phi_2}(\mathbf{h} + \delta^h)$ 
6:     Compute the adversarial objective:  $\mathcal{L}_{\text{adv}} \leftarrow \frac{1}{|\mathcal{B}|} \sum \sigma \cdot \mathcal{L}(\hat{\mathbf{y}}^{\text{adv}}, \mathbf{y})$ 
7:     Update the perturbation via gradient ascent:  $\delta^h \leftarrow \delta^h + \eta_\delta \nabla_{\delta^h} \mathcal{L}_{\text{adv}}$ 
8:      $\delta^h \leftarrow \text{Proj}_{\mathcal{S}_h}(\delta^h)$ 
9:      $\mathbf{h} + \delta^h \leftarrow \text{clip}(\mathbf{h} + \delta^h, \min(\mathbf{h}), \max(\mathbf{h}))$ 
10:    end for
11:     $\hat{\mathbf{y}}^{\text{adv}} \leftarrow f_{\phi_2}(\mathbf{h} + \delta^h)$ 
12:    Loss with adversarial perturbation:  $\mathcal{L}_{\text{total}} \leftarrow \frac{1}{|\mathcal{B}|} \sum \mathcal{L}(\hat{\mathbf{y}}^{\text{adv}}, \mathbf{y})$ 
13:     $\phi \leftarrow \phi - \eta_\phi \nabla_\phi \mathcal{L}_{\text{total}}$  ▷ outer descent
14:  end for

```

C.3 INPUT-SPACE ADVERSARIAL TRAINING

In addition to smoothing and latent-space adversarial training, we also consider a conventional input-space adversarial training (IAT) baseline. IAT follows the classic formulation of adversarial training (Madry et al., 2017), where the model is optimized to minimize the forecasting loss under worst-case perturbations applied directly to the input window $\mathbf{x}_{t-L:t}$.

Given a perturbation budget $\|\delta^x\|_p \leq \varepsilon$ and a loss \mathcal{L} , IAT solves the min–max problem

$$\min_{\phi} \mathbb{E}_{(\mathbf{x}, t)} \left[\max_{\|\boldsymbol{\delta}^x\|_p \leq \varepsilon} \mathcal{L}(f_{\phi}(\mathbf{x}_{t-L:t} + \boldsymbol{\delta}^x), \mathbf{y}) \right]. \quad (20)$$

We use projected gradient ascent to generate input perturbations and gradient descent to update model parameters. At each iteration, the adversarial example is formed as $\mathbf{x}^{\text{adv}} = \mathbf{x} + \boldsymbol{\delta}^x$, and parameter updates follow:

$$\phi \leftarrow \phi - \eta_\phi \nabla_\phi \mathcal{L}(f_\phi(\mathbf{x}^{\text{adv}}), \mathbf{y}). \quad (21)$$

In our experiments, we use the same learning schedules and fine-tuning settings as in LAT to ensure a fair comparison.

1026 **D ADDITIONAL DETAILS OF EXPERIMENT SETTING**
1027

1028 **D.1 DATASET DETAILS**
1029

1030 We adopt benchmark datasets from the GIFT-Eval benchmark (Aksu et al., 2024), which includes
1031 a diverse set of real-world time-series datasets covering multiple domains, sampling granularities,
1032 and forecasting settings. For this study, we select a subset of these datasets to ensure broad domain
1033 coverage. A complete summary of the dataset characteristics, including domain, number of target
1034 variables, number of series, sampling frequency, input windows, and prediction lengths, is provided
1035 in Table 6.

1036 **Table 6: Summary of datasets used in our experiments.** Datasets such as Solar, Electricity, and
1037 ETT support short-, medium-, and long-term forecasting settings, while others like US Births and
1038 Hierarchical Sales are limited to short-term prediction scenarios.
1039

Dataset	Domain	#Target Var	# Series	Frequency	# Windows	Pred Len
Solar	Energy	1	137	10T H	20/11/8 29/2/2	48/480/720
Electricity	Energy	1	370	15T H	20/20/20 20/8/5	48/480/720
ETT1	Energy	7	1	15T H	20/15/10 20/4/3	48/480/720
Loop Seattle	Transport	1	323	5T H	20/20/15 19/2/2	48/480/720
BizTObs - L2C	Web/CloudOps	7	1	5T H	20/7/5 6/1/1	48/480/720
Jena Weather	Nature	21	1	10T H	20/11/8 19/2/2	48/480/720
US Births	Healthcare	1	1	D/W/M	20/14/2	30/8/12
Hierarchical Sales	Sales	1	118	D/W	7/4	30/8

1058 **D.2 IMPLEMENTATION DETAILS OF DEFENSE**
1059

1060 For inference-time smoothing, we apply a moving-average filter with kernel sizes $K \in \{3, 5, 7\}$.
1061 This is a pre-processing step applied at inference, requires no retraining, and introduces only a single
1062 hyperparameter (K). For latent adversarial training, we fine-tune the model for 5 epochs using Adam
1063 with a learning rate of 1×10^{-4} . The latent perturbation budget is set to $\epsilon = 0.5$ with ℓ_∞ constraints,
1064 and adversarial perturbations are optimized for 5 inner steps per batch. Fine-tuning is performed on
1065 the training split of each dataset unless otherwise noted (cross-domain experiments use KDD Cup
1066 2018). We fine-tune with batch size 64.
1067

1068 **E ADDITIONAL EXPERIMENTAL RESULTS**
1069

1070 **E.1 PERFORMANCE COMPARISON OF TSFMs**
1071

1072 In Table 7, we present the forecasting performance of six TSFMs on unperturbed inputs across
1073 eight datasets. Among all models, TimesFM consistently achieves strong zero-shot forecasting
1074 performance across diverse domains, followed closely by Moirai. This highlights the benefit of
1075 large-scale pretraining and architectural generality. However, our robustness evaluation reveals
1076 that stronger predictive accuracy does not necessarily imply higher adversarial resilience. In fact,
1077 these high-performing models often exhibit greater vulnerability to adversarial perturbations. This
1078 observation underscores a critical challenge: how to effectively balance predictive accuracy and
1079 robustness in the design of TSFMs. Addressing this trade-off remains an open and urgent research
direction.

1080 Table 7: **Raw forecasting performance of TSFMs across multiple datasets.** All results are
1081 reported under the short-term setting with context length 128. We evaluate each model using three
1082 metrics: NMAE, NRMSE, and CRPS. The best result for each metric is **bolded**, and the second best
1083 is underlined.

Dataset	Chronos			Moai			TabPFN-TS			TimeMoE			TimesFM			UniTS		
	NMAE	NRMSE	CRPS	NMAE	NRMSE	CRPS	NMAE	NRMSE	CRPS	NMAE	NRMSE	CRPS	NMAE	NRMSE	CRPS	NMAE	NRMSE	CRPS
Loop Seattle	0.08	0.10	0.13	0.07	0.07	0.10	0.10	0.10	0.13	0.06	0.08	0.11	0.07	0.08	0.11	0.07	0.08	0.12
BizITObs-L2C	1.16	1.42	1.86	1.19	<u>1.19</u>	1.54	1.43	1.43	1.77	1.22	1.46	1.99	0.91	1.00	1.55	1.04	1.29	1.80
Electricity	0.28	0.33	0.45	0.27	0.27	0.38	0.34	0.34	0.45	0.28	0.34	0.45	0.27	0.32	0.45	0.28	0.34	0.46
ETT1	0.23	0.27	0.52	0.27	0.27	0.48	0.33	0.33	0.56	0.22	0.27	0.50	0.23	0.27	0.52	0.20	0.25	0.46
Hierarchical Sales	0.75	0.89	1.66	1.29	1.29	1.89	1.44	1.44	2.13	0.87	1.00	1.78	0.80	0.95	1.79	0.83	0.98	1.80
Jena Weather	0.05	0.06	<u>0.22</u>	0.21	0.21	0.34	0.08	0.08	0.26	0.06	0.07	0.28	<u>0.05</u>	<u>0.06</u>	0.23	0.05	0.06	0.21
Solar	0.50	0.59	0.96	<u>0.41</u>	<u>0.41</u>	0.71	0.92	0.92	1.19	0.41	0.52	0.97	0.36	0.40	0.76	0.42	0.49	0.87
US Births	0.03	0.03	0.04	0.03	0.03	0.04	0.10	0.10	0.12	0.04	0.05	0.06	0.02	0.03	0.04	<u>0.02</u>	<u>0.03</u>	<u>0.04</u>

1090 Table 8: **Structural similarity between clean and adversarial inputs.** Attacks use $\epsilon = 0.25, r = 0.5$.
1091 We report Pearson correlations of seasonal, trend, and residual components after STL decomposition,
1092 along with NMAE on clean vs. attacked series. High correlations (> 0.9 in most cases) indicate that
1093 global structure is preserved.

Dataset	Season Corr.	Trend Corr.	Resi. Corr.	NMAE (Raw / Attacked)
US Birth/D	0.9727	0.9686	0.9856	0.0345 / 0.1226
Loop Seattle/H	0.9786	0.9424	0.9195	0.0732 / 0.1407
Electricity/H	0.9131	0.8938	0.8968	0.2703 / 0.6824
ETT1/H	0.9503	0.9659	0.9007	0.0604 / 0.2908

1102 E.2 STRUCTURAL CONSISTENCY UNDER ADVERSARIAL PERTURBATIONS

1104 **Adversarial perturbations preserve structure yet degrade forecasts.** Table 8 quantifies the effect
1105 of adversarial perturbations on temporal structure. Across datasets, the seasonal, trend, and residual
1106 components of clean and attacked inputs remain highly correlated, typically above 0.9. This indicates
1107 that adversarial perturbations do not fundamentally distort the global signal structure, which would
1108 make them difficult to detect with simple statistical checks. Overall, these results highlight a critical
1109 challenge: TSFMs can fail catastrophically under perturbations that preserve high-level structure,
1110 making adversarial inputs both effective and stealthy.

1111 E.3 SINGLE-STEP ATTACK: FGSM RESULTS

1113 To further examine whether the apparent robustness of sparse MoE-style architectures arises from
1114 gradient obfuscation (Athalye et al., 2018), we evaluate the single-step FGSM. Table 9 reports
1115 RED_{NMAE} under an untargeted FGSM with $\epsilon = 0.5$ and $r = 0.5$.

1116 On average across six datasets, TimeMoE does not consistently maintain robustness: it achieves the
1117 lowest error on only 2/6 datasets (BiziTObs-L2C and Hier. Sales), while TimesFM is strongest on 4/6
1118 (Loop Seattle, Electricity, ETT1, US Births). These single-step results contrast with the PGD-based
1119 trend in the main text and align with the gradient-obfuscation interpretation: when gradients are
1120 partially disrupted by MoE gating, multi-step methods like PGD can be deceptively weaker, while
1121 single-step (and black-box) attacks reveal more severe vulnerabilities.

1123 E.4 ADDITIONAL METRICS FOR EVALUATION

1125 As a supplement to Table 2, we report the RED_{CRPS} scores under untargeted attacks in Table 10.
1126 CRPS is a widely used metric for evaluating the quality of probabilistic forecasts. We observe that the
1127 robustness rankings across models based on CRPS are largely consistent with those based on NMAE.

1129 E.5 EFFECTIVENESS OF ATTACK STRATEGIES

1131 **All TSFMs are vulnerable to adversarial perturbations, with varying degrees of susceptibility.**
1132 Figure 5a compares the effectiveness of different attack strategies across various TSFMs under a
1133 fixed perturbation budget (untargeted attacks, $\epsilon = 0.5, r = 1$). Among the attack methods, PGD
consistently achieves the strongest performance, followed by SimBA and then ZOO. For SimBA

1134 Table 9: **Adversarial vulnerability under a single-step FGSM attack.** We report $\text{RED}_{\text{NMAE}} (\downarrow)$ for
 1135 untargeted FGSM with $\epsilon = 0.5$ and $r = 0.5$. Lower values indicate stronger robustness.
 1136

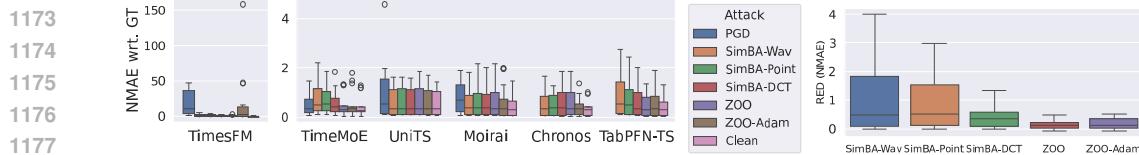
1137	Dataset	TimesFM	Moirai	TimeMoE
1138	Loop Seattle	0.001770	0.186896	0.094545
1139	BizITObs-L2C	0.055058	0.044279	0.016831
1140	Electricity	-0.013217	0.012086	0.087647
1141	ETT1	0.098068	0.319565	0.107615
1142	Hier. Sales	0.153016	0.776197	0.049535
1143	US Births	0.030395	0.077895	0.212389

1144 Table 10: **Untargeted attacks against TSFMs.** We report the RED_{CRPS} averaged across attack
 1145 budgets ($\epsilon \in \{0.25, 0.5, 0.75, 1\}$, $r \in \{0.25, 0.5, 0.75, 1\}$) and datasets. **Red** is used to denote the
 1146 model most impacted by the attack.
 1147

1149	Dataset	PGD				SimBA (Wavelet)					
		TimesFM	TimeMoE	UniTS	Moirai	TimesFM	TimeMoE	UniTS	Moirai	Chronos	TabPFN-TS
1151	Loop Seattle	27.35	0.25	0.34	1.74	0.93	0.39	0.01	0.41	0.13	0.82
1152	BizITObs-L2C	15.39	0.22	0.43	0.41	1.65	0.47	0.13	0.35	0.15	0.53
1153	Electricity	27.45	0.19	0.18	0.35	1.42	0.37	0.00	0.05	0.03	0.48
1154	ETT1	32.80	0.20	0.58	1.69	1.68	0.80	0.06	0.59	0.54	1.37
1155	Hierarchical Sales	44.72	0.08	1.46	1.04	3.87	0.71	0.23	0.35	0.51	2.09
1156	Jena Weather	37.87	0.04	0.40	0.63	2.12	0.41	0.04	0.10	0.24	1.11
1157	Solar	48.11	0.65	0.34	1.09	3.03	1.43	0.06	0.78	0.59	1.47
1158	US Births	30.59	0.81	0.06	0.70	3.35	1.60	-0.01	0.41	1.06	2.47

1159 variants, the choice of perturbation basis significantly impacts effectiveness: wavelet-based directions
 1160 perform best, followed by point-wise and DCT bases. These results highlight both the vulnerability of
 1161 current TSFMs and the importance of attack design choices, including basis structure and optimization
 1162 method, in determining attack success.

1163 **Gradient-based attacks are strong, but not always sufficient.** PGD generally outperforms
 1164 black-box methods, while SimBA is moderately effective and ZOO is weakest (Appendix E.5).
 1165 However, their effectiveness is not universal. Models like Chronos and TabPFN-TS apply input
 1166 discretization, limiting gradient accessibility, while TimeMoE’s gating mechanism in its mixture-
 1167 of-experts architecture may disrupt gradient flow, weakening the impact of gradient-based attacks.
 1168 In addition, the choice of perturbation basis influences attack strength. Figure 5b shows that the
 1169 wavelet-based perturbations outperform DCT and point-wise strategies. These results highlight the
 1170 need to align attack strategies with model architecture and data properties.
 1171



1172 (a) Attack performance across TSFMs. TimesFM is shown separately due to its large performance variance under PGD.
 1173 (b) Comparison of black-box attacks.
 1174

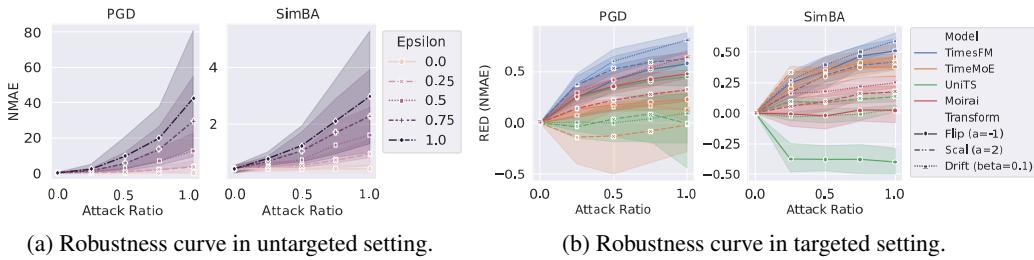
1180 Figure 5: **Effectiveness of untargeted adversarial attacks across different strategies.** We evaluate
 1181 PGD, SimBA (with wavelet, point, and DCT bases), and ZOO (with standard and Adam optimizers)
 1182 under a fixed budget of $\epsilon = 0.5$, $r = 1$. Results are averaged over all datasets.
 1183

1184 E.6 CROSS-MODEL TRANSFERABILITY OF ADVERSARIAL EXAMPLES

1185 The results in Table 11 show that adversarial perturbations crafted on TimesFM transfer very poorly
 1186 to other forecasters, highlighting that adversarial vulnerabilities are highly model-specific rather than
 1187

1188 Table 11: **Cross-model transferability of PGD adversarial examples.** Adversarial inputs are
 1189 generated on TimesFM and evaluated on other models. We report NMAE for clean and perturbed
 1190 inputs, and RED_{NMAE} (\downarrow); lower values indicate weaker transferability.
 1191

Dataset	TimesFM			→ Moirai			→ ARIMA		
	Clean	Perturb	RED	Clean	Perturb	RED	Clean	Perturb	RED
Loop Seattle	0.073	0.310	3.236	0.095	0.110	0.154	0.095	0.098	0.039
BizTObS-L2C	1.015	9.401	6.564	1.591	1.779	0.118	1.402	1.360	-0.030
Electricity	0.328	5.707	16.373	0.410	0.459	0.121	0.337	0.341	0.011
ETT1	0.270	4.044	13.961	0.284	0.403	0.419	0.446	0.455	0.021
Hier. Sales	0.912	2.568	1.816	1.577	2.420	0.535	1.521	1.594	0.048
US Births	0.034	0.123	2.558	0.051	0.059	0.154	0.103	0.104	0.005



1200
 1201 Figure 6: **Impact of perturbation budgets.** (a) For untargeted attacks, we report NMAE across
 1202 varying attack budgets (i.e., r and ϵ). (b) For targeted attacks, we use RED_{NMAE} to measure alignment
 1203 between the perturbed prediction and the target, where higher values indicate more successful attacks.
 1204

1205 generic input distortions. RED_{NMAE} values drop sharply when PGD examples from TimesFM are
 1206 evaluated on Moirai and ARIMA. This indicates that adversarial perturbations exploit model-specific
 1207 vulnerabilities tied to architectural and training biases. Adversarial examples do not generalize across
 1208 models, which may limit the threat of universal adversarial attacks but also suggests that robustness
 1209 must be evaluated individually for each architecture.

1210 E.7 MODEL ROBUSTNESS UNDER VARYING PERTURBATION BUDGETS

1211 **Adversarial impact increases with attack budget, while targeted attacks exhibit saturation.** As
 1212 shown in Figure 6, increasing the perturbation budget (ϵ or attack ratio r) leads to stronger degradation
 1213 under untargeted and closer to targets in targeted settings. For untargeted attacks, especially under
 1214 white-box conditions, high budgets result in substantial performance drops. For targeted attacks,
 1215 however, we observe saturation: once the perturbation budget surpasses a certain threshold, further
 1216 increases do not improve alignment with the target and may even reduce it due to oversteering.

1217 **Model robustness is highly dataset-dependent.** Figure 7 presents robustness curves for each
 1218 dataset under SimBA attacks, where we vary the perturbation budget ϵ and fix the attack ratio $r = 1$.
 1219 For example, Moirai remains stable on US Births but degrades significantly on BizTObS-L2C, while
 1220 TimesFM exhibits sharp performance drops across most datasets, indicating high vulnerability. In
 1221 contrast, models like UniTS and Chronos show relatively moderate and consistent degradation. These
 1222 results highlight the challenge of building TSFMs that are both accurate and robust across diverse
 1223 real-world scenarios. Achieving such consistency remains a key open problem for safe and reliable
 1224 deployment.

1225 E.8 FULL RESULTS OF TARGETED ATTACKS

1226 **Global-targeted attacks (e.g., scaling or shifting the full forecast) are generally more effective
 1227 than local-targeted attacks (e.g., modifying a subsegment).** Table 12 and Table 13 report
 1228 RED_{NMAE} scores under targeted attacks. This suggests that TSFMs often lack strong global
 1229 constraints, making them susceptible to trajectory-wide manipulations. In contrast, localized targets

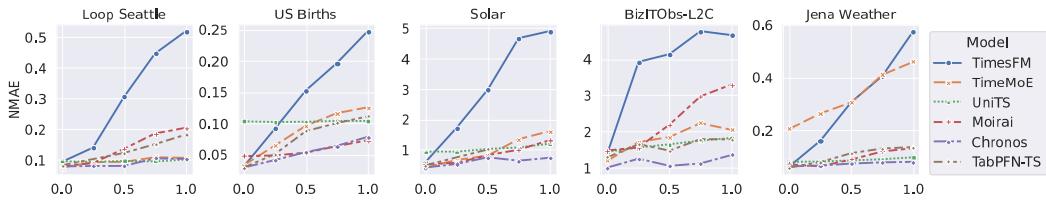


Figure 7: **Model robustness under SimBA attack across datasets.** We report the degradation in NMAE as the perturbation bound ϵ increases, with attack ratio $r = 1$.

are harder to exploit, likely due to inductive biases that enforce smoothness and temporal consistency—making it difficult to alter specific time steps without disrupting the overall sequence.

Table 12: **Targeted attacks (scaling and drifting).** We report the averaged RED_{NMAE} across different attack budgets ($\epsilon \in \{0.25, 0.5, 0.75, 1\}$, $r \in \{0.25, 0.5, 0.75, 1\}$). **Red** denote the perturbed forecasts move closer to the target. **Green** denote predictions deviate further from the target.

Model	PGD					SimBA				
	$a = -1.0$	$a = 0.5$	$a = 2$	$\beta = 0.05$	$\beta = 0.1$	$a = -1.0$	$a = 0.5$	$a = 2$	$\beta = 0.05$	$\beta = 0.1$
TimesFM	0.578	0.697	0.618	0.775	0.796	0.418	0.607	0.510	0.634	0.590
TimeMoE	0.225	-0.131	-0.021	0.145	0.124	0.416	0.599	0.379	0.538	0.460
UniTS	0.447	-0.757	-0.007	-0.172	0.091	0.137	-0.397	-0.398	-0.100	0.035
Moirai	0.475	0.595	0.323	0.604	0.637	0.178	0.159	0.021	0.294	0.251
Chronos	-	-	-	-	-	0.055	-0.138	-0.157	0.023	0.059
TabPFN-TS	-	-	-	-	-	0.365	0.688	0.476	0.484	0.486

Table 13: **Targeted attacks (local offset).** We report the Average RED_{NMAE} across different attack budgets ($\epsilon \in \{0.25, 0.5, 0.75, 1\}$, $r \in \{0.25, 0.5, 0.75, 1\}$). We denote the perturbed region in the prediction horizon as $\langle \tau_{\text{start}}, \tau_{\text{end}} \rangle$, where $\tau \in [0, 1]$ is a normalized index ($\tau = 0$ corresponds to the first time step, and $\tau = 1$ to the last). **Red** highlights denote successful attacks where the perturbed forecasts move closer to the target. **Green** denote predictions deviate further from the target.

Model	PGD				SimBA			
	$\langle 0.75, 1 \rangle$	$\langle 0, 0.25 \rangle$	$\langle 0.5, 1 \rangle$	$\langle 0, 0.5 \rangle$	$\langle 0.75, 1 \rangle$	$\langle 0, 0.25 \rangle$	$\langle 0.5, 1 \rangle$	$\langle 0, 0.5 \rangle$
TimesFM	0.294	0.265	0.465	0.433	-0.100	-0.099	0.193	0.194
TimeMoE	-3.755	-3.847	-1.537	-1.699	-0.899	-0.942	-0.193	-0.041
UniTS	-6.162	-5.984	-2.610	-2.511	-5.066	-4.611	-2.260	-2.044
Moirai	0.013	0.052	0.117	0.186	-0.364	-0.321	-0.252	-0.163
Chronos	-	-	-	-	-0.611	-0.648	-0.492	-0.403
TabPFN-TS	-	-	-	-	-1.068	-1.062	-0.152	-0.352

E.9 MODEL PERFORMANCE UNDER DIFFERENT MODEL SIZE

Larger models tend to be more vulnerable to gradient-based attacks. As shown in Table 8, we observe a clear trend: models with larger parameter counts are generally more susceptible to gradient-based attacks. This may be due to the expanded capacity increasing the number of exploitable directions in the input space. An exception is TimesFM, where the 200M variant is more vulnerable than the 500M version. On the other hand, under black-box attacks (Appendix Table 8), model size does not show a consistent effect on robustness. These findings suggest that while scaling up model size can improve forecasting performance, it may also amplify vulnerability.

E.10 ROBUSTNESS UNDER DIFFERENT PREDICTION HORIZONS

Figure 9 compares the robustness scores (RED_{NMAE}) of four TSFMs under PGD attacks across different prediction horizons. We observe that, in most cases, short-term forecasting is more susceptible to

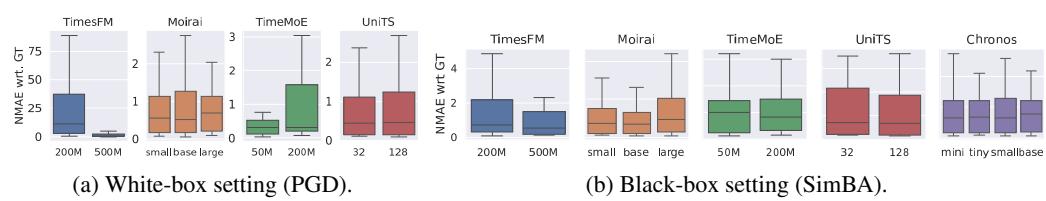


Figure 8: **Impact of model size on robustness under different attack strategies.** We evaluate TSFMs of varying scales under PGD and SimBA attacks, with fixed budget $\epsilon = 0.5$, $r = 1$.

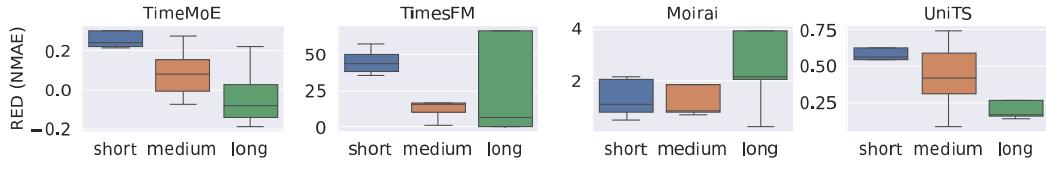


Figure 9: **Robustness under different prediction horizons.** RED_{NMAE} of four TSFMs under PGD attacks with $\epsilon = 0.5$ and attack ratio $r = 1$. For short-term forecasting, the context length is set to 128; for medium- and long-term settings, it is 256.

adversarial perturbations. One possible explanation is that long-term forecasts are inherently less accurate, leading to lower baseline performance and therefore smaller relative error degradation.

E.11 FULL RESULTS OF DEFENSE STRATEGY

Table 14: **Defense results on TimesFM (NMAE \downarrow) of adversarial training.** *Clean*: natural error (no attack). *no def.*: vanilla model. *C-LAT*: cross-domain latent adversarial training. *C-IAT*: cross-domain input-space adversarial training. Both of them were fine-tuned on a KDD Cup 2018 dataset ($\epsilon = 0.5$, $r = 1$).

Dataset	Clean			PGD			SimBA		
	no def.	LAT	IAT	no def.	LAT	IAT	no def.	LAT	IAT
Loop Seattle	0.113	0.099	0.105	1.213	0.154	0.170	0.167	0.128	0.141
BizITObs-L2C	2.904	2.385	2.238	19.950	5.085	4.092	6.495	3.860	3.281
Electricity	0.333	0.340	0.356	4.055	0.512	0.566	0.500	0.429	0.466
ETT1	0.246	0.348	0.348	2.368	0.530	0.619	0.478	0.450	0.504
Hier. Sales	0.927	1.266	1.360	20.871	3.532	4.043	1.817	2.641	2.820
Solar	0.569	1.166	0.701	15.033	1.543	1.606	1.480	1.356	1.188
US Births	0.033	0.087	0.061	0.237	0.132	0.110	0.072	0.113	0.090

Adversarial training provides the strongest robustness improvements. Table 14 indicates that across nearly all datasets and under PGD, adversarial training substantially outperforms smoothing-based defenses. Both LAT and IAT significantly reduce worst-case errors, though LAT remains the stronger method overall. This demonstrates that adversarial fine-tuning, whether applied in latent or input space, can meaningfully mitigate gradient-based attacks. Importantly, adversarial training generally preserves clean accuracy, with LAT offering slightly smaller clean-error increases than IAT.

Smoothing offers lightweight but unstable protection. Inference-time smoothing continues to produce only modest and inconsistent improvements, as shown in Table 15. While it can reduce PGD errors (e.g., Electricity: $4.055 \rightarrow 1.654$ at $K = 7$), its protection is consistently weaker than both LAT and IAT. Additionally, smoothing often harms clean accuracy, especially on low-noise, highly structured datasets (e.g., Solar: $0.569 \rightarrow 0.925$ at $K = 7$), reinforcing its unfavorable robustness–utility trade-off.

Dataset-specific trade-offs remain challenging. Defense behavior varies considerably across datasets. In certain domains, adversarial training may even degrade robustness: **on Hier. Sales**

1350 Table 15: **Defense results on TimesFM (NMAE \downarrow) of input smoothing.** *Clean*: natural error (no
 1351 attack). *no def.*: vanilla model. ($K=3/5/7$): inference-time moving-average smoothing with kernel
 1352 size K .

Dataset	Clean				PGD				SimBA			
	no def.	(K=3)	(K=5)	(K=7)	no def.	(K=3)	(K=5)	(K=7)	no def.	(K=3)	(K=5)	(K=7)
Loop Seattle	0.113	0.106	0.108	0.112	1.213	0.416	0.399	0.308	0.167	0.154	0.121	0.121
BizITObs-L2C	2.904	2.822	2.887	2.959	19.947	14.325	8.331	9.149	6.495	3.853	3.967	3.076
Electricity	0.333	0.333	0.346	0.345	4.055	2.227	1.698	1.654	0.500	0.420	0.457	0.462
ETT1	0.246	0.267	0.311	0.352	2.368	1.364	1.011	0.903	0.478	0.407	0.438	0.416
Hier. Sale	0.927	1.199	1.228	1.686	20.871	6.290	8.492	4.683	1.817	2.795	3.288	1.377
Solar	0.569	0.650	0.795	0.925	15.033	6.002	4.177	3.299	1.480	1.593	1.222	1.171
US Birth	0.033	0.083	0.104	0.100	0.237	0.205	0.301	0.358	0.072	0.105	0.111	0.117

1361
 1362 under SimBA, IAT increases error from $1.817 \rightarrow 2.820$, and LAT from $1.817 \rightarrow 2.641$. Similarly,
 1363 smoothing amplifies errors in several cases. These failures suggest that misalignment between the
 1364 defense objective and dataset/attack structure can cause regressions, and that no single defense
 1365 universally dominates across time-series regimes.

1367 E.12 COMPARISON TO TRADITIONAL FORECASTING MODELS

1369 Table 16: Clean forecasting performance (NMAE \downarrow) of TSFMs and supervised baselines on long-
 1370 term datasets (ETT, Weather, context and prediction length 96) and short-term datasets (Exchange,
 1371 Electricity, context and prediction length 24). . Supervised models are trained on each dataset.

Dataset	TSFMs			Supervised		
	TimesFM	Moirai	UniTS	GRU	TCN	Informer
ETTh1	0.3313	0.3425	0.4080	0.3874	0.4749	0.4985
ETTh2	0.1954	0.2019	0.1975	0.2036	0.2107	0.2441
ETTm1	0.3281	0.5163	0.4419	0.3496	0.3815	0.3572
ETTm2	0.1596	0.1655	0.1729	0.1668	0.1727	0.2391
Weather	0.0789	0.3670	0.0994	0.7746	0.2182	0.5139
Exchange	0.0244	0.0252	0.0295	0.0295	0.0416	0.0902
Electricity	0.3445	0.3582	0.3638	0.8305	0.1275	0.7845

1383 **Model configurations.** For Informer, we use a standard encoder-decoder setup with model di-
 1384 mension 512 and 8 attention heads. The network has 2 encoder layers and 1 decoder layers, fixed
 1385 embeddings, and dropout 0.1. The GRU forecaster is a simple multi-step model with hidden size
 1386 64, two recurrent layers, and dropout 0.1. It takes the same context windows as input and outputs
 1387 quantile forecasts for the prediction horizon. The TCN forecaster is a temporal convolutional network
 1388 with three convolutional blocks, kernel size 3, and dropout 0.2. As with GRU, it operates on the same
 1389 context windows and produces quantile forecasts over the horizon.

1390 **Analysis.** The clean results show that TSFMs already provide strong zero shot performance on
 1391 most datasets and often outperform simple supervised models trained from scratch. The ordering
 1392 under clean performance does not match the ordering under adversarial robustness. Models that
 1393 perform best in terms of NMAE are not necessarily the most robust when subjected to PGD attacks.
 1394 This supports our main observation that clean accuracy and adversarial robustness are only weakly
 1395 aligned for both TSFMs and conventional models, and that robustness must be evaluated explicitly
 1396 with a dedicated threat model rather than inferred from clean metrics alone.

1397
 1398
 1399
 1400
 1401
 1402
 1403