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ABSTRACT

Multimodal emotion recognition (MER) aims to infer human affect from verbal,
vocal, and visual signals, a core challenge in representation learning for human–AI
interaction. State-of-the-art approaches, including standard Transformers and
graph-based models, often collapse modalities into uniform structures, ignoring
modality-specific temporal dynamics and asymmetric dependencies. We propose
a novel context-aware heterogeneous graph-driven representation learning that ex-
plicitly encodes both structural and semantic heterogeneity. Each modality is first
contextualized with dedicated Transformer encoders, enriching unimodal features
before graph construction. We then introduce a relation-aware graph transformer
that performs type-conditioned message passing, enabling specialized transforma-
tions across sequential, cross-modal, and speaker-conditioned edges. The topol-
ogy is adapted to the target regime: in multi-party dialogue (IEMOCAP, MELD),
we distinguish within-speaker and cross-speaker temporal flows, while in single-
speaker videos (CMU-MOSEI), we extend k-step temporal links to capture offset
dynamics. In both settings, co-temporal edges synchronize audio, visual, and tex-
tual cues. Experiments demonstrate consistent gains over prior state-of-the-art,
showing that structural and semantic heterogeneity are indispensable for robust
multimodal representation learning. Our results establish that explicitly modeling
interaction structure, rather than relying on generic sequence attention, is crit-
ical for advancing multimodal learning. To support reproducibility and further
research, we will release our source code.

1 INTRODUCTION

Emotion is inherently multimodal and is conveyed simultaneously through spoken language, vocal
prosody, body pose, and facial expression. Systems that aspire to respond empathetically, such as
social robots, conversational agents, or digital mental health tools, must therefore ground their de-
cisions in multimodal representations. The key challenge is how to fuse signals that are temporally
asynchronous, semantically asymmetric, and structurally heterogeneous. Early pipelines adopted
early fusion by concatenating modality-specific features or encoding them with a shared backbone
to jointly learn embeddings. However, they often entangle heterogeneous data and blur modality-
specific dynamics Tzirakis et al. (2017). In contrast, late-fusion trains modality-specific classifiers,
for example, fastText for text, 1D CNNs for audio, 2D CNNs for vision, and merges their logits
with a meta-learner, preserving autonomy but discarding fine-grained interactions Dixit & Satapa-
thy (2024). To bridge this gap, intermediate architectures are introduced with richer but still shallow
couplings. The compact bilinear pooling captures multiplicative correlations between video and au-
dio embeddings with reduced memory cost Nguyen et al. (2018), while hierarchical kernels combine
EEG and peripheral physiology at multiple spatial scales Zhang et al. (2021). However, CNN-based
models remain limited in modeling long-range dependencies and asynchronous emotion cues.

Transformers have effectively become the default backbone for multimodal fusion. Cross-modal
attention aligns speech and vision streams to predict arousal valence Huang et al. (2020), while stan-
dard encoders such as RoBERTa, Wav2Vec, and FAb-Net combined with multimodal transformers
achieve state-of-the-art (SotA) across benchmarks Siriwardhana et al. (2020). Extensions that in-
clude a learnable waveform Dutta & Ganapathy (2022), adaptive attention between the BERT and
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Figure 1: Left (IEMOCAP/MELD): dialogue topology with per-utterance tri-modal nodes—visual v, audio
a, text t—coupled vertically (cross-modal) and linked temporally within each modality (orange/blue/green).
Speaker links connect same-speaker turns (pink) and cross-speaker turns (cyan). Right (CMU-MOSEI):
single-speaker sequence with the same k-step intra-modal temporal edges and per-step cross-modal coupling
(here k=2), but no speaker links.

CNN branches Makhmudov et al. (2024), and cross-attention guided by static facial cues Zhang et al.
(2022) further demonstrate the versatility of attention-based fusion. However, vanilla transformers
attend indiscriminately, often merging misaligned signals and overlooking structured dependencies.

Graph neural networks (GNNs) offer a principled alternative by explicitly encoding interactions:
observations as nodes, and temporal adjacency, speaker turns, or semantic alignment as edges.
Homogeneous GNNs such as DialogueGCN Ghosal et al. (2019), GraphMFT Li et al. (2023b),
MMGCN Hu et al. (2021b), GraphCFC Li et al. (2023a), and DEDNet Wang et al. (2024) outper-
form transformer-based fusion in conversational MER. However, these models route all messages
through a single weight matrix, ignoring relation semantics and modality identity. Recent heteroge-
neous graph methods alleviate this bottleneck. For example, HMG-Emo personalizes affect recog-
nition by weaving user and image nodes Bhattacharyya et al. (2024), while MMPGCN Meng et al.
(2024) and HHGN Peng et al. (2025) add speaker-aware or hierarchical relations. Similarly, ES-
IHGNN integrates event–state interactions for richer conversational cues Zha et al. (2024). Other
approaches extend heterogeneity to physiological signals Jia et al. (2021); Wang et al. (2025); Liu
et al. (2024). Despite progress, these models are often tailored for sequence-level tasks, handle
temporal and cross-modal links in isolation, or propagate messages with uniform attention weights.

Motivation and contribution: This landscape reveals a clear gap; existing fusion methods fail to
jointly capture structural heterogeneity (temporal vs. cross-modal vs. speaker) and semantic het-
erogeneity (relation type, modality identity) within a unified representation framework. Addressing
this gap is essential for advancing multimodal representation learning for downstream tasks.

In this work, we present a context-aware heterogeneous graph framework for multimodal emotion
recognition that unifies structural and semantic heterogeneity within a single representation learning
paradigm. Our key contributions are: (1) Fine-grained heterogeneous graph construction: We rep-
resent each utterance as a graph whose edges are typed by relation, sequential speaker-aware links,
k-step temporal offsets, and co-temporal cross-modal alignments. This enables explicit modeling
of temporal, cross-modal, and speaker-conditioned dynamics. (2) Coupling modality-specific en-
coders with relation-aware message passing: Dedicated transformer encoders to enrich unimodal
signals before graph construction. A relation-aware graph transformer then performs edge-type-
conditioned message passing, learning specialized transformations for each interaction type, rather
than applying uniform aggregation. (3) Unified design across regimes: We adapt graph topology to
both multi-party dialogue (IEMOCAP, MELD) and single-speaker video (CMU-MOSEI), showing
that the same framework generalizes across distinct multimodal settings. (4) SotA performance with
structural interpretability: Experiments with widely used MER benchmarks demonstrate consistent
and significant improvements over previous methods. Beyond accuracy gains, our framework high-
lights the importance of explicitly modeling relation types, providing interpretable insights into how
emotions emerge from multimodal interactions.
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2 RELATED WORK

Transformers and Cross-Modal Attention: Transformer architectures dominate multimodal fu-
sion by offering token-level alignment and long-range dependencies. HyFusER Yi et al. (2025)
applies bidirectional attention between the KoELECTRA text and the HuBERT speech. It signif-
icantly improves Korean emotion recognition while limiting itself to two modalities and requiring
an ensemble prediction. TACFN Liu et al. (2025) prunes redundant tokens with self-attention and
merges streams through adaptive blocks, reducing parameters by 30% in RAVDESS, leaving speaker
dynamics unmodeled. A Capsule-Graph-Transformer combines ViT faces, CapsNet text, and GCN
audio into hierarchical networks Filali et al. (2025), but rigid modality-specific branches restrict
flexibility. More recent work, such as TDTN-HLFR, disentangles modality-common vs. modality-
specific cues and reconstructs missing streams with SimSiam-based twins, but its dual-stage training
raises complexity Li et al. (2025). Despite these advances, vanilla self-attention attends indiscrimi-
nately and often combines temporally misaligned cues, motivating structure-aware alternatives.

Homogeneous Graph Neural Networks: Graph neural networks (GNNs) introduce relational
reasoning, but most rely on homogeneous topologies. MMGCN builds fixed modality-wise graphs,
capturing global context at the expense of redundant edges Hu et al. (2021b). MM-DFN employs
dynamic modality gating Hu et al. (2022a), and DGSNet uses dual graphs to separate private from
shared cues Tang et al. (2023), but both still aggregate messages without edge semantics. DEDNet
highlights salient nodes through dual-level attention Wang et al. (2024), but its uniform edges pre-
vent fine-grained modeling. Transformer-driven MultiEMO Shi & Huang (2023) and contrastive
UniMSE Hu et al. (2022b) bypass explicit graphs for speed, sacrificing interpretability. These
approaches highlight the promise of relational learning but fail to capture modality- and relation-
specific interactions.

Heterogeneous Graph Neural Networks: Heterogeneous GNNs explicitly distinguish node and
edge types, allowing richer modeling. GraphCFC adds directed cross-modal edges, but struggles to
scale beyond three modalities Li et al. (2023a). HMG-Emo links users and images for the social me-
dia affect Bhattacharyya et al. (2024), but conversational turn-taking remains ignored. MMPGCN
introduces homogeneity-aware edge weighting, improving IEMOCAP/MELD accuracies while un-
derfitting complex semantics Sun et al. (2020). ESIHGNN enriches graphs with emotional state
nodes and COMET-based knowledge Zha et al. (2024), though pre-processing increases overhead.
HHGN separates the directed context graph from the undirected cross-modal graphs Peng et al.
(2025), achieving SotA accuracy in IEMOCAP, but doubling memory use and omitting the hierar-
chy of emotion classes. GraphSmile integrates sentiment dynamics for robustness against abrupt
changes Li et al. (2024b). Extensions to physiological signals HetEmotionNet Jia et al. (2021),
DHGRNN Wang et al. (2025), and VBH-GNN Liu et al. (2024) demonstrate the value of hetero-
geneity, although generalization to conversational MER remains limited. Despite clear gains, current
heterogeneous GNNs typically treat temporal and cross-modal links in isolation or apply uniform
attention, leaving structural–semantic heterogeneity underexploited.

Robustness and Cognitive Augmentation: Beyond architectural fusion, recent efforts focus on
robustness under missing modalities and cognitively inspired augmentation. Distillation-based ap-
proaches such as Decoupled Multimodal Distilling (DMD) separate homogeneous and heteroge-
neous spaces with dual-graph distillation, improving the alignment of CMU-MOSEI but requiring
four auxiliary losses Li et al. (2023c). RMER-DT imputes missing modalities with conditional dif-
fusion, excelling under 50% dropout, yet increasing inference latency Zhu et al. (2025). Contrastive
frameworks such as UniMSE enforce modality invariance with supervised contrastive loss Hu et al.
(2022b). However, a heavy data augmentation is required. These methods strengthen generaliza-
tion, but largely sidestep explicit relational modeling. In addition to robustness, cognitively in-
spired methods incorporate external memory or episodic reasoning. COGMEN uses memory to
track speaker states, improving contextual coherence but scaling poorly with dialogue length Joshi
et al. (2022), while CFN-ESA fuses episodic and semantic attention for hierarchical cues, but lacks
explicit graph reasoning for fine-grained interactions Li et al. (2024a). Together, these directions
highlight the usefulness of auxiliary mechanisms but reveal a common limitation: they improve
resilience or context modeling while sidestepping explicit relational reasoning across modalities.

3 PROPOSED METHOD
Problem Formulation: We formulate multimodal emotion recognition as a structured prediction
problem over dialogues. Given a dialogue D = {u1, . . . , u|D|} with |D| utterances, each utterance
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Figure 2: Overview. visual (v), acoustic (a), and textual (t) features are first extracted by modality-specific
encoders. The T embeddings are then treated as nodes of a heterogeneous graph whose typed edges capture
(i) speaker aware or k-step temporal links inside each modality and (ii) alignment links across modalities. A
stack of heterogeneous graph layers refines these node states. After the final layer, the three modalities are
concatenated and fed to a classifier that outputs the discrete emotion label Y . Bottom row (one graph layer).
(a) Example neighbourhood of a visual node showing the three edge types. (b) Relation-specific attention
generates per-edge messages. (c) Messages are aggregated across heads and relations. (d) The aggregated
message is added to the node’s residual and normalised, yielding (e) the contextualised representation passed
to the next layer.

ut is observed in three modalities: text (t), audio (a), and vision (v). For each modality m ∈
{t, a, v}, we pre-extract a feature matrix fm ∈ R|D|×dm , where dm is the input feature dimension
for modality m. Speaker identity (when available) is also provided for each utterance, enabling
us to capture multi-speaker conversational dynamics. We learn a predictor fθ

(
f t, fa, f v

)
= y ∈

Y, where Y is the set of emotion categories. Unlike conventional fusion strategies, our approach
explores heterogeneous, relation-aware graph representations to explicitly encode temporal, cross-
modal, and speaker-specific interactions before classification.

Dialogue–Level Heterogeneous Graph: We represent each dialogue as a heterogeneous graph
G = (V, E), where every utterance corresponds to one node per modality, and each node is assigned
a type τ(v)∈{t, a, v}. This construction explicitly couples multimodal signals at the utterance level
with typed relations that capture speaker dynamics, temporal flow, and cross-modal synchrony.

Speaker-aware temporal edges. For multi-speaker dialogues, we create directed edges between ut-
terances conditioned on speaker identity: (i) past same edges connect utterances of the same speaker
(e.g., uA

1 → uA
3 , where both utterances are spoken by speaker A), modeling inter-speaker consis-

tency; (ii) past other edges connect utterances across speakers (e.g., uA
2 → uB

4 ), capturing cross-
speaker influence and conversational turn-taking. This allows the graph to represent the dialogue
structure beyond the raw sequence order.

Sliding temporal edges. For monologue-style dialogues, where speaker turns are absent, we in-
stead connect utterances within a bounded temporal horizon. With step size k; each utterance ut

is connected to ut+1, . . . , ut+k and their reverse for bidirectional, producing an efficient temporal
receptive field that preserves local context without quadratic scaling in sequence length.
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Cross-modal edges. Across all dialogue types, we add bidirectional edges between nodes of different
modalities in aligned utterance indices (e.g., t ↔ a, a ↔ v, t ↔ v). These enforce synchronous
alignment across modalities, allowing the model to integrate complementary cues at the utterance
level.

In summary, our graph topology adapts to both dyadic conversations (via speaker-aware temporal
edges) and monologues (via sliding temporal edges), ensuring a unified framework that general-
izes across multi-party dialogue (e.g., IEMOCAP, MELD) and long-form monologue datasets (e.g.,
CMU-MOSEI).

Transformer Encoder: Before graph-level reasoning, we enrich each modality sequence with
a Transformer encoder to obtain contextualized unimodal utterance representations. For modality
m ∈ {t, a, v}, the utterance sequence [ fm

1 , . . . , fm
|D| ] is projected to a shared hidden dimension

dm, producing xt ∈ Rdm for each utterance index t. Each Transformer layer applies multi-head
self-attention. For head h, we compute: qh

t = W h
Qxt, kh

j = W h
Kxj , v h

j = W h
V xj , where

W h
Q, W

h
K , W h

V ∈ Rdq×dm , dq = dm/H and H is the number of heads. Attention scores and

weights are αh
t,j =

⟨qh
t ,k

h
j ⟩√

dq

and α̃h
t,j = softmaxj=1,...,|D|α

h
t,j , resulting in an aggregated context

zht =
∑|D|

j=1 α̃
h
t,jv

h
j . The multi-head output is concatenated and projected: zt = WO

∥∥H
h=1

zht .
A residual connection with layer normalization (LN) and a feedforward network (FFN) complete
the layer: yt = LN

(
xt + zt

)
and ht = LN

(
yt + FFN(yt)

)
. Stacking multiple layers produces

contextualized utterance embeddings ht, which serve as the initial node features for the heteroge-
neous graph. This ensures that intra-modal temporal context is captured before cross-modal and
cross-speaker reasoning.

Heterogeneous Graph Encoder: Our dialogue graph G = (V, E) is processed by a stack of hetero-
geneous graph layers. At layer ℓ, each node v is represented by h

(ℓ)
v ∈Rdh (output of Transformer

encoder). Its neighbourhood N (v) is defined by the edge construction (Fig. 1): for multi-speaker
dialogues, this includes past utterances from the same or different speakers; for monologues, sliding
temporal neighbors k; in all cases, N (v) also contains aligned cross-modal counterparts.

Relation-aware attention computation (Fig. 2b): For each neighbor u ∈ N (v), relation r =

(τ(u), τ(v)), and head h, we calculate relation-specific queries and keys: qh
v = Qh

τ(v)h
(ℓ)
v and

kh
u→v = Kh

rh
(ℓ)
u , with projection matrices conditioned either on node type τ(v) or relation type r

and Qh
τ(v), K

h
r ∈Rdq×dh (dq = dh/H). The attention weights are then αh

u→v = ⟨qh
v ,k

h
u→v⟩/

√
dq ,

α̃h
u→v = softmaxu∈N (v)α

h
u→v , and the weighted message from the neighbor u is mh

u→v =

α̃h
u→v V

h
rh

(ℓ)
u , with Vh

r ∈ Rdq×dh . Importantly, unlike homogeneous graph-attention (GAT) lay-
ers, our projection matrices are relation- or type-specific and shared between layers, allowing the
encoder to learn distinct transformations for temporal, cross-modal, and speaker-conditioned edges.

Relation-wise aggregation (Fig. 2c–e): Messages are first concatenated across H heads, then
mapped via a relation-specific (r) transform Wr. Summing over all relation types yields the up-
dated node embedding: h

(ℓ+1)
v = LN

(
h
(ℓ)
v + σ(

∑
r∈Rv

Wr

∥∥H
h=1

∑
u∈Nr(v)

mh
u→v)

)
, where σ is

RELU. Stacking L layers propagates information across temporal edges, speaker turns, and cross-
modal alignments.

Classifier: For each utterance, we concatenate the final embeddings across modalities: z =

[h
(L)
τ1 ; . . . ;h

(L)
τ|T | ] ∈ R|T |H . A shared two-layer MLP maps z to task-specific logits, with a dropout

layer preceding the final projection. Training minimizes cross-entropy loss, and inference applies
the SoftMax function over the logits. In the multitask setting, both prediction heads share the same
representation z.

4 EXPERIMENTAL RESULTS AND DISCUSSION

Datasets: We evaluate on three widely used multimodal emotion recognition benchmarks: IEMO-
CAP Busso et al. (2008), MELD Poria et al. (2018), and CMU-MOSEI Zadeh et al. (2018). To
ensure comparability with prior work, we adopt the official public splits released by MMGCN Hu
et al. (2021b) and CFN-ESA Li et al. (2024a) for fair comparison. IEMOCAP provides dyadic
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conversations with 5,810 training and 1,623 test utterances annotated with six emotions (happy, sad,
neutral, angry, excited, frustrated). MELD extends to multi-party conversations with 11,098 train-
ing and 2,610 test utterances across seven emotions (neutral, surprise, fear, sadness, joy, disgust,
anger). CMU-MOSEI contains long monologue-style videos with multimodal annotations for sen-
timent and emotion, offering a challenging large-scale benchmark. Utterances are represented by
modality-specific features. Text: RoBERTabase embeddings (1,024-dim) fine-tuned with COSMIC
Ghosal et al. (2020). Audio: openSMILE IS10 (1,582-dim) for IEMOCAP and log-Mel filterbanks
(300-dim) for MELD. Vision: DenseNet-121 FER+ activations (342-dim). For MOSEI, we use the
aligned multimodal features released by GraphSMILE Li et al. (2024b). We report weighted F1 and
accuracy as primary metrics, consistent with prior multimodal emotion recognition work Hu et al.
(2022a); Majumder et al. (2019); Ghosal et al. (2019); Wang et al. (2024); Li et al. (2024b).

Implementation Details: Our model stacks L=3 heterogeneous graph layers with H=4 heads.
The hidden sizes are 256 (IEMOCAP, MELD) and 640 (CMU-MOSEI), resulting in 14M, 15.1M,
and 48M parameters, respectively. Training is implemented in PyTorch 2.0.0 + PyG 2.6.1 on a single
NVIDIA A40 (48GB); peak memory usage remains under 0.8GB. Optimization uses AdamW with
cosine annealing and warm restarts. The initial learning rate is 1×10−5; batch size/epochs are
16/200 (IEMOCAP, MELD) and 16/50 (CMU-MOSEI).

4.1 COMPARISON WITH THE STATE-OF-THE-ART METHODS

Results on Emotion Recognition: We benchmark against strong transformer-style models
(UniMSE Hu et al. (2022b), Joyful Zheng et al. (2023), SACL-LSTMHu et al. (2023), M3NetChen
et al. (2023)), dialogue-specific systems (DialogueCRNHu et al. (2021a), MM-DFNHu et al.
(2022a), COGMENJoshi et al. (2022)), and recent graph-based methods (DER-GCNAi et al. (2024),
DCGCNYang et al. (2024), MMGCNHu et al. (2021b), CFN-ESALi et al. (2024a), GraphSmileLi
et al. (2024b)). The results are reported in Tables 1–3.

IEMOCAP: Our model achieves 73.26 / 73.25 (ACC / WF1), surpassing the strongest prior
heterogeneous-graph method (GraphSmile: 72.77 / 72.81) by +0.49 / +0.44. We also exceed the
best transformer baseline (Joyful: 71.03 WF1) by +2.22, establishing a new state-of-the-art (SotA).

MELD: We obtain 64.71 / 65.03, competitive but below GraphSmile (67.70 / 66.71). However, we
outperform the transformers (Joyful: 62.53 / 61.77; SACL-LSTM: 64.52 / 64.55) and dialogue-
specific models (MMGCN, MM-DFN) by sizeable margins (up to +6.72 WF1). This suggests that
our framework generalizes across modalities but remains challenged by multi-party complexity.

CMU-MOSEI: Our model delivers 46.96 / 44.33 WF1 (ACC / WF1), matching or exceeding SotA:
we obtain the best ACC among the listed methods (+0.14 over GraphSmile), with WF1 close to
theirs (–0.6). We also improve substantially over transformer baselines (M3Net: +3.29 / +3.21) and
over dialogue-specific systems such as MMGCN (+1.29 / +0.22) and MM-DFN (+1.67 / +1.35).

Across three benchmarks, our model achieves SotA or near-SotA performance, consistently outper-
forming transformer- and dialogue-specific baselines. The gains are most pronounced on IEMO-
CAP and MOSEI, demonstrating the effectiveness of explicitly modeling structural and semantic
heterogeneity. While GraphSmile excels on MELD by explicitly modeling emotion shifts (intra-
and inter-modal fusion), our method achieves stronger performance on IEMOCAP and MOSEI by
leveraging relation-aware message passing that generalizes across dialogue and monologue regimes.

Results on Sentiment Analysis: We benchmark against transformer-style (SACL-LSTM, M3Net),
dialogue-specific (DialogueCRN, MM-DFN), and graph-based (MMGCN, GraphSmile) systems on
IEMOCAP, MELD, and CMU-MOSEI (Table 4).

IEMOCAP: Our model achieves 85.15 / 85.38 (ACC / WF1), surpassing GraphSmile (84.97 / 85.09)
by +0.18 ACC / +0.29 WF1. We also outperform the best transformer (M3Net: +0.86 / +1.19) and
dialogue-specific systems such as DialogueCRN (83.43 / 83.52) and MMGCN (82.05 / 82.94).

MELD: We obtain 73.71 / 73.69, competitive with the strongest baseline DialogueCRN (74.18 /
73.96, –0.47 / –0.27). However, we exceeded all graph-based baselines (GraphSmile: +0.11 / +0.29;
MMGCN: +0.15 / +0.23) and transformers (M3Net: +0.68 / +0.37).

CMU-MOSEI: Our model delivers 66.84 / 65.92, setting a new best on both metrics. We slightly
outperform GraphSmile (66.83 / 65.69) and MMGCN (66.66 / 65.89), while achieving large gains
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Table 1: Main Results for the MERC Task on IEMOCAP Dataset

Method Happy Sad Neutral Angry Excited Frustrated ACC WF1

MetaDrop† – – – – – – 69.38 69.59
UniMSE† – – – – – – 70.56 70.66
COGMEN† 51.90 81.70 68.60 66.00 75.30 58.20 68.20 67.60
EmoLR† – – – – – – 68.53 68.12
Joyful† 60.94 84.42 68.24 69.95 73.54 67.55 70.55 71.03
DER-GCN† 58.80 79.80 61.50 72.10 73.30 67.80 69.70 69.40
DCGCN† – – – – – – – 68.31
DialogueCRN‡ 53.85 82.66 71.03 62.33 77.64 58.81 68.70 68.82
MMGCN‡ 47.10 81.91 66.44 63.51 76.17 59.06 67.10 66.81
MM-DFN‡ 43.36 83.23 70.03 70.19 73.11 64.01 69.44 68.83
SACL-LSTM‡ 51.30 82.25 71.39 67.78 75.26 66.94 70.55 70.60
M3Net‡ 60.93 78.84 70.14 68.06 77.11 67.42 70.92 71.07
CFN-ESA† 53.67 80.60 71.65 70.32 74.82 68.06 71.04 70.78
GraphSmile† 63.09 83.16 71.07 71.38 79.66 66.84 72.77 72.81

Ours 61.15 81.24 73.62 69.64 78.84 69.54 73.26 73.25

The marker † denotes results reported in the original publications, whereas ‡ denotes results obtained from our
replication experiments. Underlined values indicate the second-best and bold values indicate the best result.

Table 2: Main Results for the MERC Task on MELD

Method Neutral Surprise Fear Sadness Joy Disgust Anger ACC WF1

AGHMN‡ 76.40 49.70 11.50 27.00 52.40 14.00 39.40 63.50 58.10
Joyful† 76.80 51.91 – 41.78 56.89 – 50.71 62.53 61.77
HU-Dialogue† – – – – – – – 61.38 58.56
DialogueCRN‡ 76.15 56.72 18.67 38.29 63.21 27.69 50.67 62.38 63.32
MMGCN‡ 78.62 57.78 3.77 40.35 63.60 12.20 53.68 60.42 58.31
MM-DFN‡ 79.84 58.43 15.79 31.65 64.01 28.04 53.60 62.49 59.46
SACL-LSTM‡ 77.42 58.50 20.41 39.58 62.76 34.71 52.08 64.52 64.55
GraphSmile† 80.35 59.11 18.18 42.46 64.99 32.43 53.67 67.70 66.71

Ours 77.07 58.77 24.00 41.89 63.64 30.48 49.68 64.71 65.03

over transformer baselines (M3Net: +2.12 / +4.26; SACL-LSTM: +11.56 / +21.42) and dialogue-
specific models (DialogueCRN: +12.73 / +17.42; MM-DFN: +0.49 / +1.32).

Our heterogeneous graph-driven framework achieves new SotA results on IEMOCAP and MOSEI,
and remains competitive on MELD. It consistently improves over transformer- and dialogue-specific
baselines, while slightly surpassing recent graph-based methods in sentiment analysis.

4.2 ABLATION STUDY

Effect of Modalities: We conduct a full factorial modality ablation on IEMOCAP, MELD, and
CMU-MOSEI to quantify each modality’s contribution (Table 5). Across all benchmarks, tri-
modal fusion (V+A+T) consistently achieves the best performance for both emotion and sentiment,
confirming strong cross-modal complementarity. For example, on IEMOCAP we obtain 73.26
WF1 / 73.25 ACC (emotion) and 85.15 / 85.38 (sentiment); on MELD, 65.03 / 64.71 and 73.69 /
73.71, and on CMU-MOSEI, 44.33 / 46.96 and 66.84 / 65.82.

Among unimodal inputs, text dominates, especially for sentiment tasks, but incorporating prosody
and vision consistently improves performance. For example, on IEMOCAP sentiment, A+T im-
proves to 84.90 / 84.81, and adding vision reaches the trimodal optimum. The bimodal results
follow a stable ordering of A+T > V+T > V+A, emphasizing the complementary role of speech
cues. Interestingly, the magnitude of the fusion gains varies by dataset: largest on IEMOCAP
(dyadic, emotionally rich), moderate on MELD (multi-party, more overlapping speech), and small-
est on CMU-MOSEI(monologue-style, language-dominant). This indicates that while language is
the strongest standalone modality, audio and vision provide dataset-dependent but complementary
signals, and the hierarchy ordering trimodal > bimodal > unimodal holds robustly across bench-
marks.

Effect of Feature Dimensionality: We further study the impact of feature dimensionality on per-
formance across IEMOCAP, MELD, and CMU-MOSEI (Table 9 Appendix). Results show that
intermediate dimensions (256) consistently yield the best balance between expressiveness and gen-
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Table 3: Main Results for the MERC Task on CMU-MOSEI

Method HN N WN Neutral WP P HP ACC WF1

COGMEN† – – – – – – – 43.90 –
DialogueCRN‡ 0.00 4.29 7.98 25.09 51.80 3.22 0.00 37.88 26.55
MMGCN‡ 0.00 19.51 43.75 42.45 54.64 36.13 0.00 45.67 44.11
MM-DFN‡ 0.00 16.98 37.94 39.64 56.58 32.51 8.51 45.29 42.98
SACL-LSTM‡ 0.00 0.00 0.00 17.87 55.28 0.00 0.00 38.60 25.95
M3Net‡ 0.00 12.50 37.26 33.29 56.10 33.94 0.00 43.67 41.12
GraphSmile† 0.00 28.79 43.50 39.19 57.30 35.95 6.25 46.82 44.93

Ours 06.90 20.85 45.94 29.73 57.34 42.03 23.64 46.96 44.33

The marker † denotes results reported in the original publications, whereas ‡ denotes results obtained from our
replication experiments. The abbreviations “HN” and “WN” denote Highly Negative and Weakly Negative,
respectively, and other sentiment labels follow by analogy.

Table 4: Main Results for the MSAC Task on IEMOCAP, MELD, and CMU-MOSEI.

Method IEMOCAP MELD CMU-MOSEI

Negative Neutral Positive ACC WF1 Negative Neutral Positive ACC WF1 Negative Neutral Positive ACC WF1

DialogueCRN‡ 87.87 67.09 89.96 83.43 83.52 69.34 80.05 66.67 74.18 73.96 20.87 12.71 70.51 54.11 48.50
MMGCN‡ 87.07 68.17 88.31 82.75 82.94 69.36 79.03 66.60 73.56 73.46 58.10 38.62 78.47 66.66 65.89
MM-DFN‡ 89.08 71.92 87.85 84.60 84.69 70.83 77.89 66.05 73.30 73.27 53.67 36.11 78.67 66.35 64.62
SACL-LSTM‡ 88.52 72.95 89.85 84.85 85.05 69.16 79.08 66.67 73.56 73.44 10.59 0.00 71.73 55.28 44.50
M3Net‡ 87.52 68.35 91.93 84.29 84.19 69.44 78.46 67.12 73.33 73.32 53.08 25.92 77.64 64.72 61.66
GraphSmile† 88.28 72.89 89.93 84.97 85.09 70.08 79.15 64.84 73.60 73.40 56.14 39.80 78.18 66.83 65.69

Ours 88.69 73.99 89.32 85.15 85.38 79.10 67.77 69.25 73.71 73.69 53.31 40.87 78.74 66.84 65.92

eralization. With 256, our model achieves peak or near-peak performance: 73.26 WF1 / 73.25 ACC
(emotion), 85.15 / 85.38 (sentiment) on IEMOCAP, 65.03 / 64.71 and 73.69 / 73.71 on MELD, and
44.33 / 46.96 and 66.84 / 65.82 on CMU-MOSEI. Larger dimensions (512, 768) offer no further
gains and sometimes degrade performance (e.g., MELD emotion at 512, MOSEI emotion at 512 /
768), likely due to over-parameterization and limited training data. In contrast, smaller dimensions
(128) constrain the representation capacity and consistently underperform. An intermediate hidden
size provides the optimal trade-off, avoiding underfitting at low dimensions and overfitting at high
dimensions, thereby demonstrating the robustness of our framework across various datasets.

Effect of Graph Depth and Attention Heads: We study the impact of two key hyperparameters
in our heterogeneous graph encoder: the number of layers (L) and the number of attention heads
(H) (Table 10 Appendix).

Graph Depth: The shallow-to-moderate depth works best. IEMOCAP peaks at L=3 (73.26 WF1 /
73.25 ACC) for emotion, and 85.15 / 85.38 for sentiment, while MELD and MOSEI perform best
with L=2. Deeper stacks (L=4) consistently overfit and degrade performance, while very shallow
(L=1) models underfit.

Attention Head: (H=4) delivers the most reliable gains, recovering the best results across datasets.
Too few heads (H=1, 2) limit the ability to capture diverse cross-modal relations, whereas too many
(H=8, 16) introduce redundancy and reduce generalization. A moderate configuration (L ∈ {2, 3}
and H=4) is optimal, balancing representational capacity with robustness across benchmarks.

Table 5: Modality-level ablation for both Emotion (E) and Sentiment (S). Visual (V), Audio (A), and Text
(T) are three modalities. Tri-modal fusion consistently outperforms uni- or bi-modal setups.

IEMOCAP MELD CMU-MOSEI

V A T E S E S E S

ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1

✓ ✗ ✗ 34.38 31.87 60.01 58.81 19.11 18.69 41.26 41.29 22.67 23.18 42.63 42.56
✗ ✓ ✗ 54.59 52.18 59.64 58.95 34.90 35.19 48.54 46.56 42.34 42.12 60.76 60.59
✗ ✗ ✓ 64.38 63.57 80.59 80.96 63.33 63.87 72.38 72.39 41.56 41.61 60.08 59.93
✓ ✓ ✗ 57.54 56.73 70.73 71.55 62.64 64.11 73.49 73.43 28.57 28.39 47.95 47.90
✓ ✗ ✓ 64.26 63.61 80.71 80.94 62.49 63.93 73.45 73.40 44.67 44.68 65.95 65.91
✗ ✓ ✓ 67.52 67.74 80.03 80.92 62.80 64.23 73.10 73.09 43.43 43.68 65.45 65.67

✓ ✓ ✓ 73.26 73.25 85.15 85.38 64.71 65.03 73.71 73.69 46.96 44.33 66.84 65.92
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Impact of Temporal Topology: We evaluate our speaker-aware topology against standard k-step
temporal neighborhoods (Table 6). On IEMOCAP and MELD, which provide speaker annotations,
the speaker-aware design yields the best results (e.g., 73.26 ACC / 73.25 WF1 on IEMOCAP emo-
tion; and 85.15 / 85.38 for MELD sentiment), consistently outperforming all k-step settings. By
contrast, the k-step variant captures only temporal proximity and fails to model speaker-specific
dependencies, for example, IEMOCAP sentiment drops to 81.95 / 82.58 at k = 4, well below the
speaker-aware counterpart (85.15 / 85.38). For CMU-MOSEI, where speaker identity is unavailable,
we rely on k-step neighborhoods and find that a moderate setting (k = 4) achieves the best trade-off
(46.96 / 44.33 for emotion; 66.84 / 65.92 for sentiment). Smaller windows (k = 2) underutilize
context, while larger ones (K = 6) admit noisy dependencies and degrade accuracy. This suggests
speaker-aware topology is critical for modeling multi-party interactions, while in speaker-agnostic
settings, a carefully tuned temporal neighborhood provides a strong alternative.

Table 6: k-step ablation on IEMOCAP, MELD, and CMU-MOSEI. For each dataset, we report ACC (left) and
WF1 (right) for Emotion (E) and Sentiment (S).

Step IEMOCAP MELD CMU-MOSEI

Emotion Sentiment Emotion Sentiment Emotion Sentiment

ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1

k=2 69.01 69.03 80.71 81.62 63.68 63.88 71.03 71.00 45.89 45.55 66.28 65.12
k=4 69.44 69.59 81.95 82.58 63.60 63.87 71.03 71.00 46.96 44.33 66.84 65.92
k=6 69.75 69.95 81.89 82.54 63.56 63.85 70.84 70.83 46.14 44.18 65.89 65.30

Speaker-aware 73.26 73.25 85.15 85.38 64.71 65.03 73.71 73.69 – – – –

Impact of Unimodal Contextualization: We evaluate the contribution of the unimodal transformer
encoder (UniTrans), which contextualizes each modality independently before the heterogeneous
graph construction (Table 7). Adding UniTrans yields substantial gains across all datasets: 73.26 /
73.25 (emotion) and 85.15 / 85.38 (sentiment) on IEMOCAP, 65.03 / 64.71 and 73.69 / 73.71 on
MELD, and 44.33 / 46.96 and 66.84 / 65.92 on MOSEI. Removing UniTrans leads to marked degra-
dation, most dramatically on MOSEI sentiment (52.39 / 52.69 vs. 66.84 / 65.92 with UniTrans).
This suggests that contextualizing each modality with dedicated transformers is essential for captur-
ing intra-modal dependencies, producing stronger unimodal embeddings that substantially enhance
downstream cross-modal reasoning in the heterogeneous graph.

Table 7: Impact of a unimodal transformer (UniTrans) on Emotion (E) and Sentiment (S) across three datasets.

Config
IEMOCAP MELD CMU-MOSEI

Emotion Sentiment Emotion Sentiment Emotion Sentiment

ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1

w/ UniTrans 73.25 73.26 85.38 85.15 64.71 65.03 73.71 73.69 46.96 44.33 66.84 65.92
w/o UniTrans 68.70 68.56 83.12 83.53 61.95 63.16 71.76 71.95 33.63 30.55 52.39 52.69

5 CONCLUSION

We introduced a context-aware heterogeneous graph framework for multimodal emotion and sen-
timent analysis that learns relation-conditioned multimodal representations for emotion recogni-
tion. Unlike prior fusion models that combine modalities or rely on homogeneous message pass-
ing, our approach explicitly encodes structural heterogeneity (temporal, speaker-aware, and cross-
modal edges) and semantic heterogeneity (relation- and type-specific transformations). Coupled
with modality-specific Transformer encoders, this design enables fine-grained representation learn-
ing that generalizes across dyadic, multi-party, and monologue dialogue regimes. Experiments on
IEMOCAP, MELD, and CMU-MOSEI show that our model achieves state-of-the-art results on
IEMOCAP and MOSEI and remains competitive on MELD. It consistently outperforms recent
Transformer and dialogue-specific approaches and slightly surpasses current graph-based methods.
Ablations further confirm the value of heterogeneous relationship modeling, moderate hidden di-
mensionality, and balanced architectural depth.

Looking ahead, our findings suggest that explicitly modeling conversational structure and relational
diversity is key to robust multimodal representation learning. Future work will extend this frame-
work to richer multimodal streams (e.g., physiological or contextual signals), explore adaptive graph
construction for real-time deployment, and investigate transfer to broader affective computing tasks.
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APPENDIX

This appendix presents extended results, tables, and analyses supporting the main paper, including
experimental details, hyperparameter studies, and additional t-SNE visualizations. We also disclose
the use of LLMs as an assisting tool.

LLM USE

A large language model (LLM) was used solely as a support tool for minor copyediting (grammar,
spelling, phrasing) to improve readability. It was not involved in generating research ideas, designing
methods, running experiments, analyzing results, or substantive writing, and therefore should not be
considered a contributor or author. All scientific content was written by the authors, and any LLM-
suggested edits were incorporated only after human verification.

EMOTION-TO-SENTIMENT MAPPING.

We follow the existing methods such as GraphSmile Li et al. (2024b) and MMGCN Hu
et al. (2021b), Our experiments use three sentiment categories (Negative, Neutral, Positive)
obtained by merging dataset-specific emotion labels as summarized in Table 8: IEMOCAP
maps {Sad, Angry, Frustrated}→Negative, Neutral→Neutral, and {Happy, Excited}→Positive;
MELD uses its native Negative/Neutral/Positive; CMU-MOSEI maps {Highly Negative, Neg-
ative, Weakly Negative}→Negative, Neutral→Neutral, and {Weakly Positive, Positive, Highly
Positive}→Positive.

Table 8: Merging scheme of emotion labels into sentiment categories across datasets.

Sentiment IEMOCAP MELD CMU-MOSEI

Negative Sad, Angry, Frustrated Negative Highly Negative, Negative, Weakly Negative
Neutral Neutral Neutral Neutral
Positive Happy, Excited Positive Weakly Positive, Positive, Highly Positive

EFFECT OF FEATURE DIMENSIONALITY.

Table 9: Appendix: Impact of feature dimension on performance for both Emotion and Sentiment on three
datasets.

Dim.
IEMOCAP MELD CMU-MOSEI

Emotion Sentiment Emotion Sentiment Emotion Sentiment

ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1

128 67.09 67.63 82.37 82.92 62.64 64.02 72.75 72.77 42.44 42.29 57.86 60.15
256 73.26 73.25 85.15 85.38 64.71 65.03 73.71 73.69 43.65 43.04 64.60 65.38
512 70.91 71.02 83.48 83.89 62.14 63.67 72.60 72.74 39.96 39.68 60.56 62.37
640 72.15 72.21 83.18 83.68 62.07 63.71 73.10 73.16 46.96 44.33 66.84 65.82
768 71.60 71.56 84.72 85.13 63.10 64.16 72.91 72.89 41.34 41.77 63.14 63.94

EFFECT OF GRAPH DEPTH AND ATTENTION HEADS.

T-SNE VISUALIZATIONS ACROSS DATASETS

To qualitatively assess how the heterogeneous graph transformation (HGT) reshapes the representa-
tion space, we visualize raw, pre-HGT, and post-HGT embeddings with t-SNE for all datasets. For
each dataset we show fused embeddings (Fig. 3, 5, 7) and modality-specific embeddings for text,
audio, and visual (Fig. 4, 6, 8).

IEMOCAP. In the fused raw space (Fig. 3a), emotion categories overlap substantially, with weak
boundaries between classes such as happy and neutral. The pre-HGT projection (Fig. 3b) begins
to disentangle regions and tightens clusters for distinct classes (e.g., sad, angry). The post-HGT
embeddings (Fig. 3c) yield the clearest separation: clusters are compact with larger margins, in-
dicating improved intra-class compactness and inter-class separation. Modality-wise (Fig. 4), raw
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Table 10: Appendix Impact of #Layers and #Heads in our heterogeneous graph for both Emotion and Senti-
ment.

Config.
IEMOCAP MELD CMU-MOSEI

Emotion Sentiment Emotion Sentiment Emotion Sentiment

ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1 ACC WF1

L
ay

er
s L = 1 70.43 70.68 84.47 84.90 62.95 63.87 72.91 73.00 42.61 42.70 63.93 64.06

L = 2 71.72 71.75 84.84 85.13 65.03 64.71 73.69 73.71 46.96 44.33 65.82 66.84
L = 3 73.25 73.26 85.38 85.15 62.22 63.74 72.11 72.29 42.35 42.19 61.18 62.81
L = 4 68.70 69.13 82.19 82.80 62.60 64.17 72.91 73.00 42.32 41.68 58.29 59.73

H
ea

ds

H = 1 71.04 71.27 83.24 83.69 63.26 64.29 72.76 72.83 41.73 40.84 54.46 56.97
H = 2 71.29 71.56 85.40 85.70 62.10 63.59 72.26 72.37 40.17 40.79 61.47 62.98
H = 4 73.26 73.25 85.15 85.38 65.03 64.71 73.69 73.71 46.96 44.33 65.82 66.84
H = 8 70.12 70.29 82.44 83.00 62.79 64.31 73.06 72.94 43.11 43.08 62.69 64.16
H = 16 70.43 70.61 82.99 83.63 62.75 64.19 72.41 72.52 44.09 42.38 59.91 61.89

Figure 3: IEMOCAP fused embeddings with t-SNE: (a) Raw, (b) Pre-HGT, (c) Post-HGT.

audio and visual features are highly mixed, whereas text shows partial separability. Pre-HGT consis-
tently improves all three modalities, and post-HGT further sharpens boundaries—most prominently
for text—and also reduces confusion between hard pairs such as frustrated vs. neutral in audio.

CMU-MOSEI. The fused raw embeddings (Fig. 5a) are heavily entangled, especially for mid-
range sentiments (slightly positive/negative) that blur with neutral. Pre-HGT (Fig. 5b) tightens
structure for the extremes (very positive, very negative) but overlaps persist elsewhere. Post-HGT
(Fig. 5c) produces the most discriminative space: fine-grained distinctions between slightly positive,
positive, and very positive become visible and neutral occupies a more coherent region. In the
unimodal plots (Fig. 6), text emerges as the strongest signal after HGT with well-defined clusters;
audio benefits from HGT mainly at the extremes; visual improves but remains less separable than
text and audio. The fused post-HGT space clearly outperforms any single modality.

MELD. In the fused raw space (Fig. 7a), conversational noise leads to broad overlaps among
neutral, anger, and sadness. Pre-HGT (Fig. 7b) increases local coherence; joy and surprise begin
to separate while neutral remains diffuse. Post-HGT (Fig. 7c) yields the clearest structure with
dense clusters for anger, sadness, and joy, and a more stable region for neutral. At the modality
level (Fig. 8), text provides the most discriminative embeddings from raw to post-HGT. Audio starts
highly entangled, gains some structure pre-HGT, and shows clearer extreme-class regions post-HGT,
though fine-grained distinctions remain challenging. Visual follows a similar trend—improved or-
ganization post-HGT yet still noisier than text. Their complementary cues, however, are effectively
leveraged in the fused post-HGT space.

Across all datasets, the trajectory raw → pre-HGT → post-HGT consistently transforms overlap-
ping clouds into compact, well-separated clusters. Text is the most discriminative unimodal source,
while audio and visual are noisier yet complementary. The fused post-HGT embeddings achieve the
strongest separation, corroborating the quantitative gains by showing that HGT captures cross-modal
interactions to build richer and more class-discriminative representations.
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Figure 4: IEMOCAP modality-specific embeddings (text, audio, visual) across stages: raw, pre-HGT, and
post-HGT.

Figure 5: CMU-MOSEI fused embeddings with t-SNE: (a) Raw, (b) Pre-HGT, (c) Post-HGT.
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Figure 6: CMU-MOSEI modality-specific embeddings (text, audio, visual) across stages: raw, pre-HGT, and
post-HGT.

Figure 7: MELD fused embeddings with t-SNE: (a) Raw, (b) Pre-HGT, (c) Post-HGT.
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Figure 8: MELD modality-specific embeddings (text, audio, visual) across stages: raw, pre-HGT, and post-
HGT.
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