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Abstract001

Aligning small language models with human002
preferences remains a challenging problem:003
weak policies often struggle to produce infor-004
mative on-policy samples and exhibit unsta-005
ble gradients when trained on off-policy sig-006
nals from stronger models or human annota-007
tors. In this work, we introduce ReAlign, a008
training framework that combines the stabil-009
ity of on-policy learning with the guidance010
of reviser-assisted supervision. In ReAlign,011
a lightweight external reviser is first trained012
to improve policy-generated responses using013
preference-based feedback, conditioned on014
both the prompt and the initial output. The pol-015
icy is then optimized using a hybrid approach016
that leverages standard on-policy preference017
pairs alongside reviser-enhanced pairs framed018
as a structured revision task. These enhanced019
pairs provide richer, more informative super-020
vision, and facilitate more effective optimiza-021
tion. Extensive experiments on AlpacaEval-2022
and Arena-Hard demonstrate that ReAlign con-023
sistently improves alignment performance for024
small language models and outperforms strong025
preference optimization baselines.026

1 Introduction027

Aligning small language models (SLMs) with hu-028

man preferences is challenging, especially when us-029

ing on-policy methods such as reinforcement learn-030

ing from human feedback (RLHF) (Ouyang et al.,031

2022). These methods rely on model-generated032

outputs; however, small models often produce uni-033

formly low-quality responses in the early training,034

resulting in weak and noisy supervision signals.035

Two broad strategies have been explored to036

address this problem. The first involves super-037

vised fine-tuning (SFT) on high-quality, human-038

annotated or model-generated data to bootstrap039

the model’s performance, followed by on-policy040

optimization (Ouyang et al., 2022). The second041

strategy collects high-quality preference data from042

stronger models and employs off-policy optimiza- 043

tion methods such as Direct Preference Optimiza- 044

tion (DPO) (Rafailov et al., 2024; Teknium, 2023; 045

Zhu et al., 2023). However, since these responses 046

are sampled independently of the weak model, they 047

often exhibit a distributional mismatch. To miti- 048

gate this, an intermediate SFT step is commonly 049

applied to reduce the gap and enhance the effective- 050

ness of subsequent off-policy learning (Xu et al., 051

2024; Tang et al., 2024). Figure 1a illustrates how 052

the two training routes interact with model scale. 053

For smaller models (e.g., 1B), off-policy training 054

accounts for the majority of performance gains, 055

while on-policy updates contribute only marginal 056

improvements. However, as model capacity in- 057

creases from 1B to 3B and then to 8B, the incre- 058

mental benefit of on-policy optimization becomes 059

more pronounced, with the largest gains ultimately 060

observed at 8B. In other words, off-policy data pro- 061

vide high-reward signals that weak models cannot 062

generate on their own, while on-policy optimiza- 063

tion grows increasingly effective and reinforces the 064

model’s existing strengths (Li and Khashabi, 2025). 065

These observations naturally raise the question: 066

Can we integrate the strengths of on-policy and off- 067

policy methods into a unified framework? Unfortu- 068

nately, directly combining on-policy and off-policy 069

supervision within a standard DPO objective can 070

lead to unstable optimization. As shown in Fig- 071

ure 1b, off-policy pairs often lie far outside the 072

policy’s current distribution and exhibit large neg- 073

ative log-probability margins and higher variance 074

than on-policy. The corresponding loss term there- 075

fore dominates the aggregate gradient, swamping 076

the on-policy signal and driving the model toward 077

regions it cannot reach (Zhou et al., 2024; Tajwar 078

et al., 2024). In contrast, on-policy training yields 079

small, positive margins that align more closely with 080

the model’s generation behavior (Yan et al., 2024). 081

To address this incompatibility, we introduce 082

a revision task into the policy training process. 083
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Figure 1: (a) Comparison of on-policy and off-policy DPO training. X-axis shows the average log-probability
of chosen responses; Y-axis shows their average reward. Bubble size and color indicate the LC win rate on
AlpacaEval-2. “On (W)” denotes on-policy optimization initialized with SFT using strong model chosen responses.
(b) Distribution of log-probability margins under different training setups. We compute the log-probability margin
using each method’s reference model. For ReAlign, x denotes the prompt with initial response (x = x+ y0). (c)
Impact of training solely on revision task preference data. Blue bars show the AlpacaEval-2 win rate ranked by
ArmoRM after DPO training using only the revision task preference data; grey bars denote the original win rate.

Rather than forcing the policy to imitate responses084

from strong models, which often lie outside the085

policy model’s distribution, we train the policy to086

revise its own responses toward improved alterna-087

tives. Specifically, the policy takes both a prompt088

and its self-generated response as input, and learns089

to prefer stronger candidates over weaker ones. By090

anchoring the learning signal to the model’s own091

outputs, the revision task ensures distributional con-092

sistency with on-policy data while enabling supervi-093

sion from higher-quality responses (see Figure 1b).094

This setup allows preference information to be in-095

tegrated more smoothly, even when the initial gen-096

erations are suboptimal. The revision task serves097

two key purposes. First, it enables context-aware098

preference learning by conditioning on the initial099

response. Second, it provides more informative100

supervision in early training, when the model’s out-101

puts are weak and standard on-policy learning lacks102

useful gradients. Our preliminary experiments (Fig-103

ure 1c) show that training solely on the revision task104

can yield substantial improvements, suggesting its105

potential as an effective alignment objective.106
Then the question becomes: How do we obtain107

the improved responses required for the revision108

task? A direct approach is to reuse high-quality109

answers from a strong model. However, these re-110

sponses are generated independently of the policy111

and often diverge in style and structure. When112

paired with self-generated outputs, they tend to pro-113

duce inconsistent log-probability margins, which114

destabilize training and reduce the effectiveness.115

To mitigate this, we introduce a lightweight Re-116

viser model that generates improved responses con-117

ditioned on the policy’s initial output. Compared118

to raw strong-model responses, these revisions are119

closer to the original generation while maintain- 120

ing high quality. Empirically, preference pairs 121

constructed from such revisions exhibit smaller 122

and more consistent log-probability margins (Fig- 123

ure 1b), and resemble the low-gap, high-quality 124

pairs studied by Wu et al. (2024). Building on 125

this design, we propose ReAlign, a unified train- 126

ing framework that combines on-policy learning 127

with reviser-guided off-policy supervision. Re- 128

Align trains the policy using both self-sampled 129

preference pairs and revision-task pairs generated 130

by the reviser, enabling more stable and effective 131

alignment, especially for small language models. 132

We evaluate ReAlign on the UltraFeedback 133

dataset (Cui et al., 2023) by fine-tuning several 134

small policy models using alignment methods 135

such as SFT, DPO, SimPO (Meng et al., 2024), 136

WPO (Zhou et al., 2024), and SIMPLEMIX (Li 137

and Khashabi, 2025). The aligned models are then 138

assessed on the AlpacaEval-2 (Dubois et al., 2024) 139

and Arena-Hard (Li et al., 2024a) benchmarks. Ex- 140

perimental results demonstrate that ReAlign effec- 141

tively enhances the ability of SLMs to generate 142

high-quality responses, making it a promising ap- 143

proach for aligning SLMs with human preferences. 144

2 Methodology 145

We begin by outlining the preliminaries of 146

preference-based alignment. As shown in Figure 2, 147

we then introduce ReAlign, a unified framework 148

that integrates on-policy and off-policy supervision 149

through a structured revision task. The core com- 150

ponents of ReAlign are described in the following 151

subsections: the reviser model and its training pro- 152

cedure (§ 2.2), and the integration of revision-based 153

supervision into policy optimization (§ 2.3). 154
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Figure 2: Overview of the proposed ReAlign. ReAlign consists of two stages: reviser training and policy optimiza-
tion. The reviser is first trained to refine low-quality responses into high-quality ones using paired responses. In the
second stage, the policy is optimized using both its own responses and the revised outputs from the reviser. This dual
approach enables continuous improvement of the policy from both self-generated and reviser-enhanced responses.

2.1 Preliminaries155

Preference-based alignment generally seeks a pol-156

icy πθ(y | x) that maximizes expected preference157

scores based on pairwise response comparisons.158

Formally, this objective can be expressed as:159

max
θ

E(x, yw, yl) ∼ D
[
s
(
x, yw, yl

)]
, (1)160

where (x, yw, yl) denotes a prompt and a161

preference-labeled response pair, and s is a scoring162

function that evaluates the alignment of the pol-163

icy with the preferences. Existing methods differ164

mainly in how the preference data D is constructed.165

On-policy methods generate response pairs from166

the current policy, ensuring distributional consis-167

tency but suffering from low sample quality in168

small models. In contrast, off-policy methods rely169

on responses from stronger sources, which offer170

clearer supervision but often exhibit significant dis-171

tributional mismatch with the target model. This172

trade-off motivates the need for a unified approach173

that can combine the stability of on-policy learning174

with the signal quality of off-policy supervision.175

2.2 Reviser Training176

To mitigate the distributional mismatch introduced177

by directly imitating stronger models, we introduce178

a lightweight external reviser model Rθ. The re-179

viser generates improved responses by refining the180

policy’s initial outputs, thereby providing reward- 181

enhancing yet distribution-consistent supervision. 182

Motivation Given a prompt x, let y0 ∼ πθ(· | 183

x) be the response from the policy πθ, and ŷ ∼ 184

πψ(· | x) be a response sampled from a strong 185

model πψ. Since the strong model response ŷ is 186

generated independently of y0, it often deviates 187

from the policy’s distribution, making direct off- 188

policy optimization unstable. 189

To alleviate this issue, the reviser Rθ is trained 190

to condition its generation on an initial response: 191

Rθ : (x, y
L) 7→ yH, r(x, yH) ≻ r(x, yL), (2) 192

where yL denotes a lower-quality response and yH 193

a higher-quality response, and r is a reward model. 194

Although the reviser’s output is not sampled from 195

the policy, its conditional nature ensures higher 196

overlap with the policy distribution than πs, provid- 197

ing a stronger yet learnable training signal. 198

Phase 1: Warm-up Training Reviser training 199

begins by supervised fine-tuning (SFT) to estab- 200

lish a basic revision capability. Specifically, for 201

each prompt x, we first collect M responses ŷ1:M 202

from strong models, ranked in descending order of 203

reward, with ŷ1 receiving the highest reward and 204

ŷM the lowest. The reviser model is then trained 205

to maximize the likelihood of mapping the lowest- 206

3



ranked response to the highest-ranked response:207

LSFT = −E(x,ŷ1,ŷM )

[
logPθ(ŷ1 | x, ŷM )

]
. (3)208

Phase 2: Preference-Consistent Optimization209

The reviser is further refined through a preference-210

consistent optimization approach. Responses col-211

lected from strong models are grouped into quan-212

tiles according to their reward scores. Let k > 1213

be the number of quantiles, and define the anchor214

indices A = { aj = ⌊jM/k⌋ | j = 1, . . . , k−1}.215

For each quantile-based anchor response {ŷa|a∈216

A}, the reviser learns to generate a slightly bet-217

ter response ŷa−1 rather than a worse one ŷa+1:218 (
x, ŷa

)
→ ŷ a−1 ≻

(
x, ŷa

)
→ ŷ a+1.219

The reviser training then employs a Direct220

Preference Optimization (DPO)-inspired objective221

adapted explicitly for incremental improvements:222

Lreviser(θ; θref) = −E
[
log σ

(
β log

Rθ(ŷa−1 | x, ŷa)
Rθref(ŷa−1 | x, ŷa)

− β log
Rθ(ŷa+1 | x, ŷa)
Rθref(ŷa+1 | x, ŷa)

)]
.

(4)223

This formulation aligns the reviser’s training224

objective with the intuitive goal of consistently225

improving responses rather than degrading them,226

thereby ensuring stable and incremental enhance-227

ments to the policy’s response generation capability.228

The training details are provided in Appendix B.229

2.3 Policy Optimization230

Having trained and fixed the parameters of the231

reviser R, we now optimize the policy πθ using232

two complementary types of preference supervi-233

sion: on-policy pairs sampled directly from the234

policy, and revision-based pairs constructed from235

the reviser. These two sources of training data236

are referred to as Self-Sampling Data and Reviser-237

Enhanced Data, respectively, as shown in Figure 2.238

Given a prompt x, the policy πθ first generated239

a set of responses {yPj }nj=1∼πθ(· | x). These re-240

sponses are ranked according to scores from an ex-241

ternal reward model r, and we select the responses242

with the highest and lowest scores, denoted as yPw243

and yPl , to construct the on-policy preference pair244

(yPw ≻ yPl | x). To obtain revision-based super-245

vision, each policy response yPj is revised by the246

trained reviser: yRj = R(x, yPj ). These revised247

outputs are similarly ranked, and we select the best248

and worst revised responses yRw , yRl . Together with249

the anchor yPw , we form a revision-task preference250

pair (yRw ≻ yRl | x, yPw ), which preserves the struc-251

ture and context of the policy’s original outputs.252

Reviser-Enhanced Policy Optimization To ef- 253

fectively utilize both types of training data, we for- 254

mulate a dual-objective optimization strategy. For 255

each prompt x, the model is trained on two types 256

of preference pairs: (1) an on-policy pair (yPw ≻ 257

yPl |x) sampled directly from the policy distribu- 258

tion, and (2) a revision task pair (yRw ≻ yRl |x, yPw ), 259

where the revised responses are both conditioned 260

on the policy responses. This setup reflects two 261

complementary learning signals: the first encour- 262

ages the policy to improve its own response ranking 263

based on internal variation, while the second pro- 264

vides additional supervision by leveraging the re- 265

viser’s structured improvements over a fixed policy 266

sample. Formally, each prompt contributes: 267

(x, yPw ≻ yPl )︸ ︷︷ ︸
Self-Sampling Data

and (x, yPw , y
R
w ≻ yRl )︸ ︷︷ ︸

Reviser-Enhanced Data

. 268

The final objective is the sum of both losses: 269

L(θ) = E(x,yPw ,y
P
l )

[
LO(θ;x, y

P
w , y

P
l )

]
+

E(x,yPw ,y
R
w ,y

R
l )

[
LO(θ;x, y

P
w , y

R
w , y

R
l )

]
,

(5) 270

where LO is a generic preference-based loss, which 271

can be instantiated by a specific preference opti- 272

mization algorithm (e.g., DPO or SimPO) 273

Rationale for the Revision Task Early on-policy 274

learning in SLMs yields limited progress: re- 275

sponses are often nearly indistinguishable, leading 276

to narrow preference margins and shallow updates 277

that offer weak learning signals. 278

To provide stronger supervision, higher-quality 279

responses are needed. While using outputs from a 280

strong model offers such quality, they often lie far 281

outside the weak model’s distribution, potentially 282

destabilizing training. In contrast, revision-task 283

pairs are conditioned on the policy’s own responses, 284

retaining margin scales similar to on-policy pairs 285

while offering clearly improved answers. 286

3 Experimental Setup 287

Training Datasets Following prior work (Meng 288

et al., 2024; Zhou et al., 2024), we conduct all 289

experiments based on the UltraFeedback dataset 290

(Cui et al., 2023), which contains 64K diverse in- 291

struction prompts covering a wide range of real- 292

world tasks. To reflect current model capabilities, 293

we augment the dataset by re-sampling responses 294

from four strong open-source models1. Each model 295

1Gemma-2-27B-It (Team et al., 2024), Mistral-Large-
Instruct-2407, Qwen-2.5-72B-Instruct (Yang et al., 2024), and
Llama-3.1-70B-Instruct (Dubey et al., 2024)
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generates five responses per prompt, the collected296

responses are then pooled and ranked using the297

ArmoRM-Llama3-8B-v0.1 reward model (Wang298

et al., 2024). We select the top- and bottom-299

ranked responses to construct high-quality prefer-300

ence pairs, which are used to train both the reviser301

and policy models following the procedure in § 2.2.302

Training Setup The reviser is initialized from303

LLaMA-3-8B-Instruct (Grattafiori et al., 2024)304

and trained on preference pairs constructed from305

re-ranked completions of strong models, as de-306

scribed in Section 2.2. For policy training, we307

consider three small policy backbones: Llama-3.2-308

3B-Instruct, Llama-3.2-1B-Instruct, and Qwen2.5-309

3B-Instruct (Yang et al., 2024). Policy training310

proceeds in two stages. We first apply supervised311

fine-tuning on 30% of the training prompts us-312

ing top-ranked responses or the revised responses313

from the reviser. The remaining 70% is used for314

preference optimization based on self-sampled and315

reviser-enhanced response pairs, as described in316

Section 2.3. A comprehensive description of the317

training procedure is available Appendix C.318

Baselines and Evaluation We compare ReAlign319

against several strong alignment baselines, includ-320

ing: (i) SFT, supervised fine-tuning using top-321

ranked responses from strong models; (ii) DPO-322

On / SimPO-On, on-policy preference optimiza-323

tion using self-sampled responses; (iii) DPO-Off /324

SimPO-Off / WPO-Off, off-policy optimization325

using strong-model responses after SFT warm-up;326

and (iv) SIMPLEMIX (Li and Khashabi, 2025),327

which randomly mixes on-policy and off-policy328

data after SFT warm-up. We evaluate all methods329

on two widely used instruction-following bench-330

marks: (i) AlpacaEval-2 (Dubois et al., 2024),331

which reports length-controlled (LC) and raw win332

rates (WR) against GPT-4-Preview-1106; and (ii)333

Arena-Hard (Li et al., 2024a), a curated set of334

challenging reasoning tasks from Chatbot Arena.335

GPT-4-Preview-1106 is used as the judge model,336

and we report win rate (WR) and style-controlled337

(SC) win rate against GPT-4-0314 as reference. Ad-338

ditional results on domain-specific tasks (e.g., QA,339

math, coding) are included in Appendix E.340

4 Main Results341

Table 1 presents the performance of our proposed342

ReAlign method compared with several baselines343

on AlpacaEval-2 and Arena-Hard.344

On-policy vs. Off-policy Optimization We first345

compare on-policy and off-policy optimization346

across all policy models. On AlpacaEval-2, off- 347

policy optimization consistently outperform on- 348

policy alternatives. For example, DPO-Off im- 349

proves the LC win rate from 33.23% to 45.67% on 350

Llama-3.2-3B-Instruct, supporting the hypothesis 351

that weak models struggle to generate high-quality 352

on-policy data early in training. In contrast, off- 353

policy data provides stronger guidance with high- 354

quality responses from stronger models. However, 355

on Arena-Hard, Qwen2.5-3B-Instruct achieves bet- 356

ter performance with on-policy DPO (38.2%) than 357

with off-policy DPO (35.3%). This suggests that 358

on-policy optimization becomes more effective 359

when the policy is sufficiently capable or better 360

aligned with the target distribution, possibly as a 361

result of pretraining differences. This observation 362

aligns with the findings of Song et al. (2024). 363

Limits of Off-policy Learning Off-policy op- 364

timization provides strong supervision but often 365

fails to align with a weak model’s learning capacity. 366

For instance, on Llama-3.2-3B-Instruct, DPO-Off 367

achieves 45.67% LC win rate, whereas ReAlign fur- 368

ther improves it to 50.17%. This gap indicates that 369

stronger responses alone are insufficient, and effec- 370

tive supervision must also align with the model’s 371

learning capacity. Methods like WPO and SIM- 372

PLEMIX aim to alleviate this by weighting or mix- 373

ing on-policy and off-policy data, and they do offer 374

improved stability over DPO-Off. However, be- 375

cause they treat the two sources independently, the 376

off-policy signals may still fall outside the model’s 377

reachable distribution and thus remain underuti- 378

lized. This limitation is especially pronounced for 379

smaller models. On Llama-3.2-1B-Instruct, DPO- 380

Off reaches only 7.5% LC win rate on Arena-Hard, 381

lower than even the SFT baseline (7.9%). These 382

results highlight the need for approaches like Re- 383

Align, which anchor high-quality supervision in 384

the model’s own outputs to improve learnability. 385

Advantages of ReAlign As shown in Table 1, 386

ReAlign outperforms all baselines in most set- 387

tings across different model types and preference 388

optimization methods. On AlpacaEval-2, it im- 389

proves the LC win rate from 20.36% (DPO-Off) 390

to 25.36% on Llama-3.2-1B-Instruct, and from 391

17.55% (SimPO-Off) to 25.53%. On Arena-Hard, 392

it raises the SC win rate from 7.5% (DPO-Off) 393

to 9.3%, with similar trends observed for 3B and 394

Qwen models. Its effectiveness stems from two 395

core design choices. First, the reviser produces 396

responses that are not only higher quality but also 397
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Method AlpacaEval-2 Arena-Hard

LC(%) WR(%) Avg. Len. SC(%) WR(%) Avg. Len.

Llama-3.2-3B-Instruct

SFT 27.59 27.09 1,965 20.40 21.10 2,826
WPO-Off 49.78 52.99 2,217 19.30 20.70 3,026
SIMPLEMIX 45.72 50.95 2,278 26.50 28.10 3,139
DPO/SimPO-On 33.23/31.00 32.86/32.16 1,967/2,025 22.90/20.20 23.70/21.40 2,732/2,652
DPO/SimPO-Off 45.67/43.88 47.09/30.38 2,120/1,423 23.10/16.10 23.30/16.80 2,871/2,326

ReAlign (DPO/SimPO) 50.17/47.50 51.26/49.26 2,073/2,100 28.50/26.30 29.20/26.60 2,933/2,955

Qwen2.5-3B-Instruct

SFT 20.89 18.45 1,874 22.80 23.00 2,933
WPO-Off 39.19 43.22 2,197 35.00 35.00 3,052
SIMPLEMIX 33.57 37.56 2,176 34.70 34.80 3,277
DPO/SimPO-On 24.81/28.26 34.10/31.27 2,468/2,138 38.20/36.50 38.40/36.60 3,441/3,347
DPO/SimPO-Off 37.72/37.81 39.92/27.99 2,144/1,552 35.30/30.60 35.70/30.90 3,167/2,310

ReAlign (DPO/SimPO) 44.04/45.30 44.95/43.40 2,086/1,999 35.50/36.60 35.20/37.00 2,866/3,160

Llama-3.2-1B-Instruct

SFT 12.28 11.62 1,841 7.90 8.10 2,890
WPO-Off 21.72 24.63 2,159 6.00 6.70 2,811
SIMPLEMIX 20.14 23.05 2,286 7.30 7.60 2,796
DPO/SimPO-On 15.95/18.61 19.06/15.04 2,191/1,696 7.00/7.20 7.70/8.80 3,125/2,129
DPO/SimPO-Off 20.36/17.55 22.06/12.84 2,076/1,567 7.50/7.40 7.70/7.50 2,822/2,618

ReAlign (DPO/SimPO) 25.36/25.53 29.06/27.35 2,185/2,066 9.30/8.90 9.70/9.40 2,949/2,804

Table 1: Performance comparison results of ReAlign with other baselines on AlpacaEval-2 and Arena-Hard.

structurally similar to policy outputs, resulting398

in preference pairs with moderate log-probability399

gaps that are easier to learn from. Second, ReAlign400

organizes these signals as a structured revision task,401

grounding supervision in the model’s own gener-402

ation process. Together, these features allow Re-403

Align to combine the strength of off-policy super-404

vision with the stability of on-policy optimization.405

5 Ablation Studies406

To analyze the contributions of different compo-407

nents in ReAlign, we conduct ablation experiments408

along two orthogonal axes: (i) Pair format: Stan-409

dard direct (D) format (yw ≻ yl | x) and revision-410

task anchored (A) format (yw ≻ yl | x, yP) where411

yP is the policy’s initial response. (ii) Response412

source: Specifies where the preferred and dispre-413

ferred responses (yw, yl) in each pair are sampled414

from, including (P) policy self-sampled responses,415

(R) reviser outputs, and (S) responses from the416

strong model. All experiments are using Llama-417

3.2-3B-Instruct. The results of ablation studies are418

presented in Table 2.419

Impact of the Revision Task We evaluate420

whether structuring supervision as a revision task421

improves learning. Comparing P-D + R-D and422

P-D + R-A, the latter achieves a higher LC win423

rate (50.17% vs. 47.67%) using the same reviser424

Training Data LC(%) WR(%)

Llama-3.2-3B-Instruct 20.00 23.28

Stepwise Ablation
P-D 33.23 32.86

+ S-D → (P-D + S-D) 44.65 50.74
+ S-D → (P-D + S-A) 45.53 46.45
+ S-A → (P-D + R-D) 47.67 48.08
+ R-D → (P-D + R-A) 50.17 51.26

Individual or Alternative Variants
S-D only 45.67 47.09
R-D only 48.00 47.82
R-A only 47.57 48.07
R-D + R-A 46.06 53.72

Table 2: Ablation results for ReAlign (DPO) on
AlpacaEval-2. P-D means on-policy preference pairs.
S-D and S-A use strong responses in direct and an-
chored formats, respectively. R-D and R-A use reviser
responses in direct and anchored formats. ‘+’ denotes
an additive combination of preference data types used
jointly in a single training epoch.

outputs. A similar gain is observed with strong- 425

model completions (P-D + S-A > P-D + S-D), con- 426

firming that conditioning on policy outputs yields 427

more learnable signals. Even without on-policy 428

data, revision-only training (R-A) performs com- 429

petitively, supporting our claim that grounding pref- 430

erence pairs in the model’s generation space im- 431

proves learnability, especially for weaker policies. 432
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Model Version SFT ReAlign (DPO)

WR (%) Avg. L WR (%) Avg. L

Llama-3B
Initial 50.0 2137 84.2 2073
Revised 81.2 2058 83.9 2130

Qwen-3B
Initial 48.8 1872 74.9 2086
Revised 66.2 1981 75.8 2228

Llama-1B
Initial 20.6 2043 59.1 2186
Revised 44.6 2130 56.0 2149

Table 3: Self-revision performance of ReAlign (DPO)
on AlpacaEval-2. Each policy generates an initial re-
sponse and then performs a single self-revision. WR
against GPT-4-0314 is evaluated by ArmoRM score.

433

Impact of the Reviser Reviser outputs yield434

better performance than strong-model responses.435

For instance, R-D outperforms S-D (48.00%436

vs. 45.67%), indicating that reviser-generated re-437

sponses are both higher quality and more learn-438

able for weak policies. Similarly, P-D + R-A sur-439

passes P-D + S-A (50.17% vs. 45.53%), showing440

that revision supervision is more effective when441

conditioned on the policy’s own outputs. This442

policy-awareness keeps the learning signal within443

the model’s reachable distribution.444

On-policy Learning with Revision Task Re-445

moving on-policy pairs and training only on446

revision-based data (R-D + R-A) leads to a no-447

ticeable drop in performance compared to P-D +448

R-A (46.06% vs. 50.17%), suggesting that decou-449

pling supervision from current policy impairs learn-450

ing. In P-D + R-A, revisions are grounded in pre-451

ferred policy responses, ensuring alignment with452

the model’s behavior. By contrast, R-D + R-A453

combines two sources detached from the policy454

inference, introducing conflicting signals. A sim-455

ilar mismatch occurs when adding direct reviser456

pairs to revision-only training (R-D + R-A vs. R-457

A), where performance slightly degrades due to458

incompatible optimization signals.459

6 Discussion and Analysis460

Diminishing Returns of Self-Revision Table 3461

shows that self-revision substantially improves SFT462

models. For example, Llama-3B improves from463

50.0% to 81.2% win rate, where the initial re-464

sponses contain many fixable flaws. In contrast, the465

same revision procedure yields little or no gain after466

ReAlign training (e.g., 84.2% to 83.9% for Llama-467

3B), suggesting that the initial outputs are already468

near the policy’s upper bound. Figure 3 confirms469

this interpretation. When responses from external470

models are grouped by quality, ReAlign policies471

deliver the largest reward gain ∆r on low-quality472
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0

5

10

15

20

25

30

M
ea

n 
Im

pr
ov

em
en

t (
, ±

 S
EM

)

Llama-1B ReAlign(DPO)
Llama-1B ReAlign(SimPO)
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Llama-3B ReAlign(SimPO)
Qwen-3B ReAlign(DPO)
Qwen-3B ReAlign(SimPO)

Figure 3: Reward improvement from self-revision
across initial response quality. We collect 8 external
models 2responses to AlpacaEval prompts and group
them into low/medium/high bins based on ArmoRM
scores. Each ReAlign policy performs one-step re-
vision per response. Bars show mean reward gain
∆r = rrevised − rinitial in each bin (± SEM).

inputs, and diminishing gains on medium and high- 473

quality ones. This indicates that the learned revi- 474

sion ability remains effective, but it naturally de- 475

clines as generation quality improves. 476

Training Behavior for ReAlign To investigate 477

learning behavior under different strategies, we an- 478

alyze training loss trajectories between ReAlign 479

and a hybrid baseline that combines on-policy su- 480

pervision with direct off-policy pairs from strong 481

models. Figure 4 shows that ReAlign achieves 482

faster loss reduction on on-policy data, especially 483

in early training, indicating that its preference sig- 484

nals are better aligned with the model’s distribution 485

and easier to optimize. By conditioning off-policy 486

supervision on policy outputs through a revision 487

task, ReAlign avoids the gradient inconsistency 488

that can arise when directly mixing distributions. 489

In contrast, the hybrid baseline quickly reduces 490

off-policy loss due to large reward gaps but yields 491

slower improvements on on-policy data. This mis- 492

match suggests that such external data may offer 493

overly incompatible signals for weak policies. 494

We find that ReAlign’s off-policy loss decreases 495

more gradually because revision-task pairs, condi- 496

tioned on policy outputs, maintain distributional 497

proximity and exhibit smaller margins, similar to 498

on-policy data. These samples remain effective but 499

lead to slower learning. Overall, the training dy- 500

namics support our hypothesis that revision tasks 501

2Qwen2.5-3B-Instruct, Llama-3.2-1B-Instruct, Llama-
3.2-3B-Instruct, Qwen2-72B-Instruct, Meta-Llama-3.1-405B-
Instruct-Turbo, Meta-Llama-3.1-70B-Instruct-Turbo, Meta-
Llama-3.1-8B-Instruct-Turbo, and GPT-4o-2024-05-13.
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Figure 4: Training loss under different strategies. We compare ReAlign and a hybrid baseline on three policy
models. ReAlign uses revision-task pairs (from the reviser) as off-policy data, while hybrid mixes on-policy data
with direct strong-model off-policy data. Loss is reported separately for on-policy (On) and off-policy (Off) data.
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Figure 5: Distribution of λ = σ(β(∆ref −∆π)) values on on-policy and off-policy data after training. We visualize
the λ distributions induced by the final policy models trained under different schemes on Llama-3.2-1B. For ReAlign
(a), we separately compute λ values for on-policy and revision-task off-policy data. For hybrid (b), we compute λ
over on-policy and strong model’s off-policy data. For standard DPO (c), we report λ values under models trained
only on on-policy or off-policy data, respectively. Higher λ indicates more confident preference alignment.

provide more compatible and effective guidance.502

By structuring off-policy data around the model’s503

generation space, ReAlign enables steady optimiza-504

tion without destabilizing gradients.505

Analyzing λ Distributions We analyze the λ dis-506

tributions (detailed in Appendix D) to understand507

how different training schemes modulate prefer-508

ence weighting. As shown in Figure 5, higher509

λ values indicate stronger policy–reference agree-510

ment and thus higher learning confidence. ReAlign511

exhibits sharply peaked λ values on on-policy data512

(mean = 0.76, median = 0.81), showing strong513

agreement with its own generation space. In con-514

trast, its off-policy revision pairs have lower mean515

λ (0.58), suggesting these are harder but still infor-516

mative examples. This reflects ReAlign’s ability to517

guide learning without departing from the model’s518

distribution. Hybrid, however, shows higher λ on519

off-policy than on-policy (0.77 vs. 0.70), indicat-520

ing that strong-model completions dominate learn-521

ing. While this may speed up optimization, it risks522

overwhelming the model with mismatched signals,523

especially for weaker policies. Overall, ReAlign524

adapts supervision strength to the model’s capacity,525

promoting improvement without forcing imitation.526

This selective weighting helps avoid overfitting and 527

supports more stable policy learning. 528

7 Conclusion 529

In this work, we presented ReAlign, a novel frame- 530

work for aligning small language models that com- 531

bines the stability of on-policy learning with the 532

guidance of reviser-assisted supervision. By intro- 533

ducing a revision task grounded in the model’s own 534

generations, ReAlign mitigates the distributional 535

mismatch issues commonly seen in off-policy pref- 536

erence optimization and provides richer, more sta- 537

ble learning signals during early training. The inte- 538

gration of a lightweight reviser enables the creation 539

of high-quality, preference-aligned revisions that 540

remain close to the policy’s distribution, allowing 541

small language models to benefit from stronger su- 542

pervision without destabilizing gradients. Our em- 543

pirical results on challenging benchmarks such as 544

AlpacaEval-2 and Arena-Hard demonstrate that Re- 545

Align consistently outperforms existing baselines 546

across various small model sizes. These results 547

highlight the importance of conditioning supervi- 548

sion on the model’s own behavior and suggest that 549

structured revision-based training offers a scalable 550

and effective strategy for preference alignment. 551
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Limitations552

In this paper, we propose ReAlign to address553

the challenge of small language model alignment.554

However, we do not explore the performance of Re-555

Align when combined with online RL algorithms556

such as PPO and REINFORCE. The reason lies557

in the fact that ReAlign learns to refine responses558

generated by the reviser, which are not sampled di-559

rectly from the policy itself. This setting introduces560

a certain inconsistency with online RL algorithms.561

Nevertheless, we believe that the potential of Re-562

Align can be further unlocked when integrated with563

online RL algorithms. To achieve this, it is neces-564

sary to first address this inconsistency and enable565

ReAlign to better align with online RL algorithms.566

This will be the focus of our future work.567
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A Related Work813

Traditional Methods of Alignment Aligning814

language models to human preferences often em-815

ploys techniques like RLHF (Ouyang et al., 2022),816

which incorporates human feedback into the train-817

ing process. It relies on complex reinforcement818

learning techniques such as Proximal Policy Op-819

timization (Schulman et al., 2017), making it not820

only difficult to implement but also unstable dur-821

ing training. To overcome these issues, numerous822

offline RLHF methods have emerged. Represen-823

tative works include DPO (Rafailov et al., 2024),824

which simplifies the alignment process by directly825

optimizing the model using a preference dataset826

without the need for an explicit reward model.827

Further research has sought to address poten-828

tial limitations of DPO. IPO (Azar et al., 2024)829

mitigates the risk of overfitting by optimizing a830

nonlinear preference function, thereby avoiding the831

conversion of pairwise preferences into pointwise832

rewards. KTO (Ethayarajh et al., 2024) introduced833

a new alignment objective called human-aware loss834

(HALO), which maximizes the utility of genera-835

tions from a binary signal instead of maximizing836

the likelihood of preferences. In SimPO (Meng837

et al., 2024), the reward component in DPO is modi-838

fied to utilize the average log probability of positive839

or negative responses from the policy model. De-840

spite these advances, off-policy methods still suffer841

from a distributional mismatch between training842

samples and the model, potentially leading to per-843

formance degradation.844

To resolve this issue, several on-policy pref-845

erence alignment methods have been proposed.846

For instance, Yuan et al. (2024) proposed a self-847

rewarding language model, where the model pro-848

vides rewards of its own responses via LLM-as-a-849

Judge prompting. Meanwhile, OAIF (Guo et al.,850

2024) samples two responses and employs an LLM851

annotator to label the positive and negative samples.852

RSO (Liu et al., 2023) uses rejection sampling to853

sample preference data from the optimal policy, en-854

abling a more accurate estimation of it. However,855

the quality of on-policy samples is constrained by856

the capability of the policy model, which in turn857

limits training effectiveness.858

The challenges mentioned above are particularly859

pronounced for small models, which face inher-860

ent limitations in parameter size and training data.861

Their reduced capacity to capture complex human-862

language patterns often results in weaker alignment863

performance compared to larger LLMs (Bai et al., 864

2022a). So in our work, we leverage responses 865

from strong models to enhance the upper limit of 866

the capabilities of weak models. 867

External Guidance for Alignment Considering 868

the high cost of manually collecting alignment data, 869

many current works use a different model to assist 870

in policy training. The most common approach is 871

distillation, which involves using a larger and more 872

powerful teacher model to provide feedback on 873

the preferences of responses. For instance, Zephyr 874

(Tunstall et al., 2023) employs GPT-4 to rank re- 875

sponses from multiple LLMs to obtain preference 876

data. In DPKD (Li et al., 2024b) and PLaD (Zhang 877

et al., 2024), the teacher’s outputs and the student’s 878

outputs are treated as preferred and dispreferred 879

responses seperately for preference learning. 880

Moreover, some recent works focus on incorpo- 881

rating refinement to the policy optimization stage. 882

For example, Constitutional AI (Bai et al., 2022b) 883

uses refinement data for reward models, while 884

SELF (Lu et al., 2023) enables the models to self- 885

evolve iteratively, equipping them with the ability 886

to self-refine during inference. Test-Time Prefer- 887

ence Optimization (TPO) (Li et al., 2025) translates 888

reward signals into textual critiques and utilizes 889

them as textual rewards to iteratively refine its re- 890

sponse. But these methods may bring interfering 891

factors since they directly use responses sampled 892

from the policy model. Regarding the introduction 893

of an external refiner, most previous works only uti- 894

lized it in the inference phase (Ji et al., 2024; Lou 895

et al., 2025). Recently, however, there have been 896

quite a few works that use it to assist in policy opti- 897

mization. Yoon et al. (2024) proposed Token-Level 898

Continuous Reward (TLCR), which uses GPT-4 899

as a reviser to refine responses then assign token- 900

wise preference labels for discriminator training. 901

SynPO (Dong et al., 2024) employs an iterative 902

mechanism wherein a self-prompt generator creates 903

diverse prompts, and a response improver refines 904

model responses progressively. SPAR (Cheng et al., 905

2024) introduces a refiner to judge the generated 906

responses to collect negative data then employs a 907

tree-search algorithm to refine them, which are then 908

used for model training. Apart from that, in Self- 909

Evolution Fine-Tuning (SEFT) (Chen et al., 2024), 910

the policy undergoes internal and external evolu- 911

tion by being fine-tuned with enhanced responses 912

generated by a trained adaptive reviser. Compared 913

to the methods mentioned above, our method incor- 914
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porates revisions from the reviser for policy opti-915

mization, enabling weak policies to learn from both916

their own responses and externally refined outputs.917

B Reviser Training918

The process of training the reviser is illustrated in919

Algorithm 1.

Algorithm 1 Reviser Training Pipeline

Require: initial reviser R, strong models M1 ∼
Mm, prompt dataset Dp = {xi}Ni=1 of size N ,
each strong model samples n responses per
prompt, number of quantiles k, and a reward
model r.

Ensure: Trained Reviser R′

1: Training Dataset Dr = ϕ
2: for x in Dp do
3: Initialize an empty list Responses
4: for i = 1 to m do
5: for j = 1 to n do
6: Sample a response r from model

Mi given prompt x
7: Append r to Responses
8: end for
9: end for

10: Score and rank the list Responses to get
ŷ1 ∼ ŷmn

11: Calculate the k-quantile of m ∗ n to select
positions a1 ∼ ak−1

12: for i = k − 1 downto 1 do
13: if i == k − 1 then
14: chosen = (x+ ŷak−1

, ŷak−2
)

15: rejected = (x+ ŷak−1
, ŷamn)

16: else if i > 1 then
17: chosen = (x+ ŷai , ŷai−1)
18: rejected = (x+ ŷai , ŷai+1)
19: else
20: chosen = (x+ ŷa1 , ŷa1)
21: rejected = (x+ ŷa1 , ŷa2)
22: end if
23: Append (chosen, rejected) to Dr

24: end for
25: end for
26: Optimize R with Dr according to Eq.(4) to

obtain the R′

27: return the trained reviser R′

920

C Implementation Details 921

All experiments are implemented using the TRL 922

library.3 We train both the reviser and policy mod- 923

els on the augmented UltraFeedback dataset from 924

Section 3, which is randomly split into 30% for 925

SFT and 70% for preference-based optimization. 926

Reviser Training The reviser is trained in two 927

stages In the SFT warm-up stage, it learns to re- 928

vise low-quality responses into higher-quality ones 929

using top-vs-bottom ranked responses from strong 930

models. In the second stage, we apply a preference- 931

consistent optimization strategy using quantile- 932

ranked response pairs (with k = 4 quantiles), as 933

detailed in Section 2.2. 934

Policy Training Policy optimization also follows 935

a two-stage procedure. First, SFT is performed 936

on 30% of prompts using either strong model re- 937

sponses or reviser outputs. The remaining 70% of 938

prompts are then used to construct two types of 939

preference pairs: (i) Self-sampling data, where 940

the policy samples 5 responses per prompt, and the 941

top vs. bottom-ranked responses (scored by the re- 942

ward model) form the on-policy pairs; (ii) Reviser- 943

enhanced data, where each policy response is re- 944

vised by the trained reviser, and the revisions are 945

ranked to form revision-based preference pairs. 946

Baselines We compare ReAlign against the fol- 947

lowing baselines: (i) SFT: Fully supervised tuning 948

using top-ranked strong model responses on all 949

prompts. (ii) DPO-On / SimPO-On: On-policy 950

preference optimization using responses sampled 951

from the current policy. (iii) DPO-Off / SimPO- 952

Off / WPO-Off: Off-policy preference optimiza- 953

tion using strong model responses. These methods 954

begin with 30% SFT warm-up and then train on 955

preference pairs from the remaining 70% prompts. 956

(iv) SIMPLEMIX: A hybrid approach that per- 957

forms 30% SFT warm-up, followed by preference 958

optimization on a random 50/50 mixture of on- 959

policy and off-policy pairs. On-policy samples are 960

drawn from the SFT model. 961

Hyperparameters Detailed hyperparameter set- 962

tings are provided in Table 4. We train all models 963

using a maximum sequence length of 2048 and 964

adopt the adam optimizer (adam_torch) with a co- 965

sine learning rate scheduler and a warm-up ratio 966

of 0.03. During the supervised fine-tuning (SFT) 967

3https://github.com/huggingface/trl
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Table 4: Hyperparameter configurations used for each
model and alignment method.

Method Batch Size Learning Rate β γ

Llama-3.2-3B-Instruct

SFT 128 5.0e-6 - -
DPO-On 128 5.0e-7 0.01 -
DPO-Off 64 5.0e-7 0.01 -
SimPO-On 128 1.0e-6 10 3
SimPO-Off 64 5.0e-7 10 3
WPO-Off 32 8.0e-7 0.03 -
SIMPLEMIX 64 5.0e-7 0.01 -
ReAlign (DPO) 128 5.0e-7 0.01 -
ReAlign (SimPO) 128 5.0e-7 10 3

Qwen2.5-3B-Instruct

SFT 128 5.0e-6 - -
DPO-On 128 5.0e-7 0.01 -
DPO-Off 128 5.0e-7 0.01 -
SimPO-On 128 1.0e-6 10 3
SimPO-Off 128 1.0e-6 10 3
WPO-Off 32 8.0e-7 0.03 -
SIMPLEMIX 128 5.0e-7 0.01 -
ReAlign (DPO) 64 1.0e-6 0.01 -
ReAlign (SimPO) 128 1.0e-6 10 3

Llama-3.2-1B-Instruct

SFT 128 5.0e-6 - -
DPO-On 32 5.0e-7 0.01 –
DPO-Off 128 5.0e-7 0.01 –
SimPO-On 32 5.0e-7 10 3
SimPO-Off 128 1.0e-6 10 3
WPO-Off 32 8.0e-7 0.03 -
SIMPLEMIX 128 5.0e-7 0.01 -
ReAlign (DPO) 32 1.0e-6 0.01 -
ReAlign (SimPO) 128 1.0e-6 10 3

stage, models are trained for 3 epochs. In con-968

trast, all preference optimization stages, including969

DPO, SimPO, WPO, SIMPLEMIX, and ReAlign,970

are trained for 1 epoch.971

D Derivation and Interpretation of the λ972

D.1 From the DPO Objective to973

Data-Dependent Weights974

Most preference–based alignment objectives can975

be written in the form976

L = E(x,yw,yl)∼D[
− log σ

(
β
[
log πθ(yw | x)− log πθ(yl | x)

]
− β

[
log πref(yw | x)− log πref(yl | x)

])]
,

(6)977

where πθ is the policy, πref the (frozen) refer-978

ence model, β > 0 controls the strength of the979

KL divergence term constrains the deviation of980

the policy πθ from the reference model. Let-981

ting ∆π := log πθ(yw | x) − log πθ(yl | x) and982

∆ref := log πref(yw | x) − log πref(yl | x), one ob- 983

tains the gradient. 984

∇θL = −β ED
[
σ
(
β(∆ref −∆π)

)︸ ︷︷ ︸
λ(x, yw, yl)

∇θ

(
∆π

)]
.

(7)

985

Hence every preference sample is re-weighted by 986

λ = σ
(
β(∆ref −∆π)

)
∈ (0, 1). 987

Intuitive meaning. 988

• If the reference already strongly prefers yw 989

over yl (∆ref ≫ ∆π), then λ → 1 and the 990

sample receives a large gradient step. 991

• If the policy is aligned with the reference 992

(∆ref ≈ ∆π), then λ ≈ 0.5, yielding a mod- 993

erate update. 994

• If the policy over-prefers yw relative to the ref- 995

erence (∆ref <∆π), λ becomes small, down- 996

weighting a potentially harmful sample. 997

Consequently, the distribution of λ after training re- 998

veals which subset of data the model finally learns 999

from the most. 1000

D.2 Practical Computation in Our 1001

Experiments 1002

For every final checkpoint we recompute λ on all 1003

training pairs with β=0.01: 1004

• ReAlign: πref equals the warm-up SFT 1005

model; we report λ separately for on-policy 1006

pairs (x, yPw , y
P
l ) and revision-task pairs 1007

(x, yPw , y
R
w , y

R
l ). 1008

• Hybrid: πref also equals the warm-up SFT 1009

model, but pairs are a direct mixture of on- 1010

policy and strong-model off-policy data. 1011

• DPO: two single-source baselines, trained on 1012

only on-policy or only off-policy data and 1013

evaluated on their respective training sets. 1014

D.3 Empirical λ Distributions 1015

Figure 5 and Figure 6 (Llama-3.2-3B-Instruct / 1016

Qwen2.5-3B-Instruct) plot the resulting λ distri- 1017

butions. Aggregate statistics for the 1B model are 1018

shown in Table 5. 1019
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Figure 6: Distribution of λ values on on-policy and off-policy data after training of Llama-3.2-3B-Instruct and
Qwen2.5-3B-Instruct.

Scheme Source Mean Median

ReAlign
On-policy 0.756 0.807

Revision-task 0.578 0.570

Hybrid
On-policy 0.704 0.743

Strong Off-policy 0.773 0.849

DPO
On-policy only 0.670 0.690
Off-policy only 0.626 0.597

Table 5: Mean and median λ on Llama-3.2-1B-Instruct.

ReAlign The on-policy density is sharply peaked1020

around µ = 0.756, median = 0.807, indicating1021

high reference–policy agreement. Revision-task1022

pairs are harder (µ=0.578) yet still centred well1023

above 0.5, showing that ReAlign retains informa-1024

tive off-policy signals without conflicting with its1025

own distribution.1026

Hybrid Hybrid assigns higher weight to strong-1027

model pairs (µ = 0.773) than to on-policy ones1028

(µ=0.704), confirming that the external comple-1029

tions dominate training. Coupled with the loss1030

curves in Section 6, this suggests a risk of distribu-1031

tional overstretch.1032

Standard DPO When trained solely on off-1033

policy data, the mean λ is µ = 0.626 (median1034

0.597), lower than the on-policy counterpart (µ=1035

0.670). This indicates that the weak policy does1036

obtain non-negligible gradients on external pairs, 1037

yet these signals remain less aligned than on-policy 1038

ones. Conversely, on-policy-only DPO maintains 1039

moderate weights (≈ 0.67), confirming better refer- 1040

ence–policy agreement within its own distribution. 1041

These findings substantiate our claim that 1042

revision-task off-policy supervision offers learn- 1043

able yet non-conflicting guidance, yielding stable 1044

improvement across model scales. 1045

E Results of Downstream Benchmarks 1046

To assess out work on downstream tasks, we con- 1047

ducted experiments across eight tasks spanning 1048

general knowledge, mathematics, and program- 1049

ming domains. The tasks are described as follows: 1050

MMLU (Hendrycks et al., 2021): A multiple- 1051

choice dataset to evaluate knowledge capability, 1052

which covers 57 tasks including elementary mathe- 1053

matics, US history, computer science, and more. 1054

HellaSwag (Zellers et al., 2019): A common- 1055

sense reasoning benchmark requiring models to 1056

choose the most plausible continuation. 1057

GSM8K (Cobbe et al., 2021): A dataset of 8.5K 1058

linguistically diverse grade-school math word prob- 1059

lems to evaluate mathematical reasoning capability. 1060

BBH (Suzgun et al., 2023): A subset of the BIG- 1061

Bench benchmark comprising 23 challenging tasks 1062
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Method
MMLU Hellaswag GSM8K BBH GPQA MuSR Winogrande TruthfulQA

Average5-shot 10-shot 8-shot, CoT 3-shot 0-shot 0-shot 5-shot 0-shot
Acc Acc Norm Acc Acc Norm Acc Norm Acc Norm Acc Acc

Llama-3.2-3B-Instruct

SFT 58.33 73.83 74.37 39.56 30.37 35.98 70.17 41.24 52.98
DPO-On 60.18 75.74 75.89 41.99 31.96 36.90 62.43 42.58 53.46
DPO-Off 58.94 75.73 74.22 42.04 29.70 39.29 67.72 36.24 52.99
SimPO-On 60.28 75.55 77.03 42.39 32.47 38.10 67.48 44.95 54.78
SimPO-Off 60.01 76.51 67.17 42.35 30.70 38.62 65.75 54.81 54.49
WPO-Off 59.18 76.01 74.37 42.74 30.54 35.05 67.09 42.58 53.45
SIMPLEMIX 59.64 75.49 73.39 41.12 31.63 35.32 67.72 44.04 53.54

ReAlign (DPO) 59.69 74.87 75.36 41.12 31.80 35.85 69.06 43.25 53.88
ReAlign (SimPO) 59.17 76.05 73.09 42.04 30.45 38.62 67.32 39.93 53.33

Qwen2.5-3B-Instruct

SFT 65.65 75.01 77.10 42.56 32.13 41.14 69.46 45.40 56.06
DPO-On 66.39 75.67 81.05 42.34 31.12 39.68 66.06 48.99 56.41
DPO-Off 65.68 76.40 79.38 43.69 31.80 41.53 67.64 44.92 56.38
SimPO-On 66.35 75.47 81.27 43.69 32.55 41.14 68.35 50.54 57.42
SimPO-Off 65.83 76.87 72.10 44.32 31.04 41.40 68.11 48.67 56.04
WPO-Off 65.67 76.69 79.83 42.84 31.29 40.48 65.27 42.03 55.51
SIMPLEMIX 66.39 75.64 81.35 44.56 30.45 39.02 62.27 45.54 55.65

ReAlign (DPO) 66.40 75.71 79.68 44.78 30.37 41.80 67.56 48.59 56.86
ReAlign (SimPO) 65.64 76.07 77.79 43.78 32.55 41.80 68.98 47.44 56.76

Llama-3.2-1B-Instruct

SFT 43.54 61.71 42.91 32.46 26.76 33.60 60.62 38.09 42.46
DPO-On 46.48 62.89 42.46 30.57 24.50 37.57 56.43 36.18 42.14
DPO-Off 45.28 62.75 42.76 32.96 25.92 32.01 60.46 31.96 41.76
SimPO-On 46.59 63.48 40.26 33.97 27.68 32.01 57.22 41.21 42.80
SimPO-Off 45.83 63.07 41.09 33.00 25.25 32.01 61.64 34.60 42.06
WPO-Off 45.03 64.57 39.12 31.56 25.50 33.20 60.46 32.44 41.49
SIMPLEMIX 45.81 63.64 44.35 32.77 26.51 30.29 59.04 37.99 42.55

ReAlign (DPO) 46.01 63.93 41.32 31.31 26.26 30.82 60.06 37.76 42.18
ReAlign (SimPO) 45.23 63.98 39.95 31.92 27.27 30.95 60.30 31.22 41.35

Table 6: Performance comparison results across multiple benchmarks.

where prior LLMs performed poorly. It tests emer-1063

gent abilities such as multistep reasoning, hierar-1064

chical planning, and nuanced understanding.1065

GPQA (Rein et al., 2023): A challenging knowl-1066

edge benchmark crafted by PhD-level domain ex-1067

perts in biology, physics, and chemistry.1068

MuSR (Sprague et al., 2024): A dataset compris-1069

ing algorithmically generated complex problems,1070

such as murder mysteries, object placement chal-1071

lenges, and team allocation optimizations.1072

Winogrande (Sakaguchi et al., 2021): A set of1073

adversarial and difficult Winograd benchmarks for1074

commonsense reasoning.1075

TruthfulQA (Lin et al., 2022): A benchmark1076

dataset for evaluating the truthfulness of LLMs and1077

their ability to avoid falsehoods.1078

The results summarized in Table 6 reveal several1079

trends regarding general task performance. Across1080

most benchmarks, on-policy methods such as DPO-1081

On and SimPO-On better preserve the model’s orig-1082

inal capabilities. This holds across model scales1083

and supports the intuition that on-policy optimiza- 1084

tion maintains the model’s native behavior by train- 1085

ing within its own generation distribution. 1086

While ReAlign does not always surpass the 1087

strongest on-policy baselines on every task, it con- 1088

sistently delivers competitive results across models 1089

and benchmarks. These outcomes suggest that the 1090

revision-task supervision introduced by ReAlign 1091

enables effective preference alignment without sub- 1092

stantially degrading performance on broader rea- 1093

soning and language tasks. 1094
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