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Abstract

Multimodal multi-label emotion recognition
(MMER) aims to identify the concurrent pres-
ence of multiple emotions in multimodal data.
Existing studies primarily focus on improv-
ing fusion strategies and modeling modality-
to-label dependencies. However, they often
overlook the impact of aleatoric uncertainty,
which is the inherent noise in the multimodal
data and hinders the effectiveness of modal-
ity fusion by introducing ambiguity into fea-
ture representations. To address this issue and
effectively model aleatoric uncertainty, this
paper proposes Latent emotional Distribution
Decomposition with Uncertainty perception
(LDDU) framework from a novel perspective
of latent emotional space probabilistic mod-
eling. Specifically, we introduce a contrastive
disentangled distribution mechanism within the
emotion space to model the multimodal data,
allowing for the extraction of semantic features
and uncertainty. Furthermore, we design an
uncertainty-aware fusion multimodal method
that accounts for the dispersed distribution of
uncertainty and integrates distribution informa-
tion. Experimental results show that LDDU
achieves state-of-the-art performance on the
CMU-MOSEI and M3ED datasets, highlight-
ing the importance of uncertainty modeling in
MMER. We will release the related code.

1 Introduction

Human interactions convey multiple emotions
through various channels: micro-expressions, vocal
intonations, and text. Multimodal multi-label emo-
tion recognition (MMER) seeks to identify multi-
ple emotions (e.g., happiness, sadness) from mul-
timodal data (e.g., audio, text, and video) (Zhang
et al., 2021). It could support many downstream
applications such as emotion analysis (Tsai et al.,
2019), human-computer interaction (Chauhan et al.,
2020), and dialogue systems (Ghosal et al., 2019).
The main topics of MMER lie in extracting
emotion-relevant features by effectively fusing mul-
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Figure 1: An illustration of aleatoric uncertainty in
MMER task. When adopting Gaussian distribution
modeling in latent emotion space, case two’s seman-
tic feature is more fuzzed with a larger variance due to
cold speaking style than case one. Meanwhile, case one
has stronger emotion intense located closer to the center
of global distribution.

timodal data and modeling modality-to-label de-
pendencies (Zhang et al., 2021; Hazarika et al.,
2020). To implement the fusion of multimodal
data, some work (Zhang et al., 2020; Wang et al.,
2024b) employed projection layers to mitigate the
modality gap (Radford et al., 2021), while other
methods (Zhang et al., 2021; Tsai et al., 2019) uti-
lized attention mechanisms. Additionally, several
studies (Hazarika et al., 2020; Zhang et al., 2022;
Geetal., 2023; Xu et al., 2024) decomposed modal-
ity features into common and private components.
Recently, CARET (Peng et al., 2024) introduced
emotion space modeling, where emotion-related
features were extracted prior to fusion, achieving
state-of-the-art performance. Regarding modality-
to-label dependencies, many approaches (Zhang
et al., 2021, 2022) leveraged Transformer decoders
to capture the relationships between label semantic
features and fused modality sequence features.
However, these approaches primarily focus on
semantic features while overlooking aleatoric un-
certainty (Kendall and Gal, 2017), which repre-
sents inherent noise in the data and is commonly
modeled using multivariate Gaussian distributions



(Do, 2008) (for a detailed background, please refer
to Appendix A.4). In the context of MMER, such
uncertainty primarily arises from factors such as
personalized expressions, variations in emotional
intensity, and the blending of coexisting emotions
(Zhao et al., 2021). For instance, as illustrated in
Fig. 1, from a macroscopic perspective, both sam-
ples convey happiness, yet case one exhibits more
pronounced facial expressions compared to case
two. From a distributional perspective, case one
demonstrates more concentrated semantic features
near the center of the dataset’s overall distribution,
whereas case two presents features with greater
variance, positioned farther from the center. This
aleatoric uncertainty introduces ambiguity into se-
mantic feature representations, thereby diminish-
ing the effectiveness of modality fusion in existing
MMER approaches (Gao et al., 2024).

To model aleatoric uncertainty in MMER, sev-
eral challenges need to be addressed: (1) How to
represent aleatoric uncertainty: Emotional cues
are embedded in multimodal sequences, with each
modality contributing differently to emotion expres-
sion, making it difficult to extract and disentangle
emotional features. When modeled with multi-
variate Gaussian distributions, samples with the
same label often cluster together despite semantic
fuzziness. An effective distribution must capture
both the central tendency and calibrate variance of
emotional features, which is particularly challeng-
ing. (2) How to integrate semantic features with
aleatoric uncertainty: Higher uncertainty leads to
more dispersed distributions, complicating emo-
tion recognition. Without calibrated uncertainty,
semantic features can become ambiguous and less
informative. Thus, effective strategies for calibrat-
ing and integrating uncertainty are crucial to ensure
robust and discriminative emotion representations.

To address these challenges, we propose La-
tent Distribution Decouple for Uncertainty-Aware
MMER (LDDU) from the perspective of latent
emotional space probabilistic modeling. For the
first challenge, to represent aleatoric uncertainty,
LDDU extracts modality-related features using Q-
Former-like alignment (Li et al., 2023). We then de-
sign a distribution decoupling mechanism based on
Gaussian distributions to model uncertainty. To fur-
ther enhance the distinguishability of these distri-
butions, contrastive learning (Chen et al., 2020) is
employed. For the second challenge, to effectively
integrate the distributional information, we draw
inspiration from uncertainty learning (Guo et al.,

2017; Moon et al., 2020; Xu et al., 2024) and de-
velop an uncertainty-aware fusion module, which
is accompanied by uncertainty calibration. Exper-
imental results on the CMU-MOSEI and M3ED
datasets show that LDDU achieves state-of-the-art
performance. Specially, it surpasses strong base-
line CARAT 4.3% miF1 on CMU-MOSEI under
unaligned settings. In summary, the contributions
of this work are as follows:

* We introduce latent emotional space proba-
bilistic modeling for MMER. To the best of
our knowledge, this is the first work to lever-
age emotion space distribution for capturing
aleatoric uncertainty in MMER.

* We propose LDDU, which models the emo-
tion space to extract emotion features, then
uses contrastive disentagled learning to repre-
sent latent distributions and recognizes emo-
tions by integrating both semantic features
and calibrated uncertainty.

» Experiments on CMU-MOSEI and M?ED
datasets demonstrate that the proposed LDDU
method achieves state-of-the-art performance,
with mi-F1 improved 4.3% on the CMU-
MOSEI unaligned data.

2 Related Work

Multimodal Multi-label Emotion Regression. It
aims to infer human emotions from textual, audio,
and visual sequences in video clips, often encom-
passing multiple affective states. The primary chal-
lenges in MMER is integrating multimodal data.
Early studies like MISA (Hazarika et al., 2020)
address modality heterogeneity by decoupled in-
variant and modality-specific features for fusion.
MMS2S (Zhang et al., 2020) and HHMPN (Zhang
et al., 2021) focused on modeling label-to-label and
label-to-modality dependencies using Transformer
and GNNs network. Recent approaches (Peng et al.,
2024; Ge et al., 2023; Zhang et al., 2022) incorpo-
rated advanced training techniques; for example,
TAILOR (Zhang et al., 2022) utilized adversarial
learning to differentiate common and private modal
features, while AMP (Wu et al., 2020) employed
masking and parameter perturbation to mitigate
modality bias and enhance robustness. However,
these works all model from multimodal fusion in-
stead of emotion latent space.

Uncertainty-aware Learning and Calibration.
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Figure 2: The proposed LDDU framework consists of three components: (1) the transformer-base unimodal extractor
(2) a contrastive learning-based emotion space decomposition module , and (3) an uncertainty-aware fusion and

uncertainty calibration module.

Deep models often overconfidently assign high
confidence to incorrect predictions, making
uncertainty-aware learning essential to ensure con-
fidence accurately reflects prediction uncertainty
(Guo et al., 2017). The primary goal is to calibrate
model confidence to match the true probability of
correctness. There are two main approaches: cali-
brated uncertainty (Guo et al., 2017) and ordinal or
ranking-based uncertainty (Moon et al., 2020). Cal-
ibration methods, such as histogram binning, tem-
perature scaling, and accuracy versus uncertainty
calibration (Zadrozny and Elkan, 2001; Guo et al.,
2017; Krishnan and Tickoo, 2020), align predicted
confidence with actual correctness. Meanwhile,
ranking-based methods like Confidence Ranking
Loss (CRL) (Moon et al., 2020) enforce accu-
rate confidence rankings among correctly classified
samples based on feature distinctiveness.

Uncertainty-based Multimodal Fusion. Uncer-
tainty learning enhances multimodal fusion across
tasks. Subedar et al. (2019) employed Bayesian
deep learning and AvU to guide fusion, while Xu
et al. (2024) used temporal-invariant learning to re-
duce redundancy and noise, improving robustness.
But these methods incorporate uncertainty with-
out calibration. In contrast, COLD (Tellamekala
et al., 2023) leveraged GURs to model feature dis-
tributions across modalities, quantifies modality
contributions with variance norms, and integrated

both calibrated and ranking-based uncertainty to
regulate fusion variance. However, there hasn’t
exploration of uncertainty-aware for MMER.

3 Methodology

3.1 Preliminary

MMER is typically modeled as a multi-label task.
Suppose XV € R% ¥4 X@ ¢ Rsa*da gnd Xt
RstXdt denote the features of the text, visual, and
audio modalities, respectively. In this context,
Sv> Sq, S¢ denote the length of the feature se-
quences, while d,,, d,,d; is the dimension of each
features sequence. Given a multimodal sequential
dataset in joint feature space X%, denoted as
D = {(X?, X2, X}, vi)}Y,, the objective of the
MMER is to learn the function F: D — ). Here,
N is the size of dataset D and X7, X, X! repre-
sent the visual, audio and textual sequences of the
i-th sample. Y € RY represent the emotion space
containing ¢ multiple coexisting emotion labels.
In this section, we describe LDDU framework,
which comprises three components (in Figure 2).

3.2 Uni-Modal Feature Extractor

Follow the work of Peng et al. (2024), we con-
duct experiments on CMU-MOSEI (Zadeh et al.,
2018b) and M3ED (Zhao et al., 2022) datasets. In
these two benchmark, facial keypoints X" via the
MTCNN algorithm (Zhang et al., 2016), acoustic



features X with Covarep (Degottex et al., 2014)
and text features X! of sample X are extracted
using BERT (Yu et al., 2020). To capture con-
tent sequence dependencies, we employ n,, ng,
and n; Transformer layers as unimodal extractors,
generating modality visual features OV € R%v* %
audio features O% € RS+*da  and text features
O! € R%*%_Each modality O™ is derived from
its sequence data [0}, ..., 0" |, m € {v,a,t}.

Y Y S8m

3.3 Contrastive Disentangled Representation
3.3.1 Emotion Space Modeling

A primary challenge in emotion space modeling
is the establishing emotion representations within
a unified joint embedding space. Inspired by the
Q-Former’s structure (Li et al., 2023), we introduce
trainable emotion embeddings L = [I1,la, ..., {4],
where each [; represents an emotion and q is the
number of label. Because emotion-related cues
may be distributed across different segments of the
sequential data, we employ an attention mecha-
nism to automatically extract relevant features for
each emotion. Since modality-related features O™
and L reside in different feature spaces, we use
projection layers to compute the similarity a;’; be-
tween frame’s feature 0;-” and the label [;. After
obtaining the similarity matrix A™ = {a]}}, Y™ is
projected to extract modality-specific label-related
features Z™ € R7%% where dj, is the dimension
of modality-specific label-related features. This
process could formalized as follows:

e:):p(Proj(li)TProj(og’””))

ajj = om . ——m (1)
T X exp(Proj(li)t Proj(of))

Z™ = Linear(A™ Proj(O™)) (2)

where Proj represents the projection layer.

To facilitate the learning of emotion representa-
tions L, we concatenate the multimodal features of
i-th sample into Fy;,. = [Z7, Z, Z!] and process
them with an MLP-based info classifier employ-
ing sigmoid activation functions to generate the
final prediction 93" = [g&7 ... ,ng”]. The loss
function L4;, is defined as follows:

N
1 ~dir
Lair = N §BCE(%% ) 3)

where BCE(.) is the BCE loss.
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Figure 3: In the latent emotion space, we decouple
emotion-related, modality-specific samples into sepa-
rate distributions and use CL to group samples of the
same category together while separating samples from
different categories.

3.3.2 Contrastive Distentangled Distribution
Modeling

This module is composed of distentangled distribu-
tion learning (DDL) and contrastive learning (CL).
As illustrated in Figure 3, our architecture incorpo-
rates disentangled representation learning (DRL)
(Wang et al., 2024b; Kingma, 2013) to establish
label-related features into latent probabilistic dis-
tribution in emotion space. Specifically, we model
multimodal emotion representations [ZY, Z%, Z|
as multivariate normal distributions N. For each
label-related features [ZY, Z%, Z!], we leverage
an encoder (MLP in this paper) and two fully
connected layers to obtain the latent distributions
Ny, o), N(uf,of) and N (i, of). where i}
represents the semantic features of the text modality
for emotion label ¢ (Tellamekala et al., 2023) and
o! reflects the distribution region in latent space.

To ensure that the latent distribution N'(uf™, o)
accurately captures feature differences for each
label across modality m, we employ Contrastive
Learning (CL). CL could groups similar samples
together and enhances the model’s ability to dis-
tinguish between different classes (He et al., 2020;
Caron et al., 2020). Formally, given the variations
in latent distributions across labels and modalities,
we categorize them into 3¢ potential emotional dis-
tributions. For a batch of sp samples B, each sam-
ple generates 3¢ label-related and modality-specific
emotion distributions, totaling 3 x ¢ X sp distri-
butions. Each distribution in B is considered a
positive sample if the related sample contains the
corresponding emotion. For each positive distribu-
tion e € B, we identify its positive set P, (B) and
negative set AV (B) based on labels.

Besides, we promote CL from the following
two perspectives. First, Caron et al. (2020) ob-



serves that a larger batch size can enhance the net-
work abilities by providing more diverse negative
samples in CL. We introduce a queue () of size
54 to store the most recent s, emotion distribu-
tions. Thus, the final positive and negative sets
for each emotion distribution become P, (B U Q)
and V(B U Q), respectively. Besides, similarity
calculations between samples must consider both
the centers and variances of the decoupled distribu-
tions. We represent the distribution e as follows:

He,1 /’Le,dh/2 Oe,1 O-E,dh/Q
= AR ) PR | (4)
| e lte|  |oel |oe]

Finally, we introduce the SupCon loss (Khosla
et al., 2020) to for each emotion distribution:

e2leet/T)

2, e~ ©

e'eTe

where 7. = P. U N,, and z is the similarity func-
tion between emotin distribution. To simplify the
process, we calculated cosine similarity on the nor-
malized distribution parameters:

z(e1,e2) = ef ea (6)

The final contrastive loss for the entire batch is:

'Cscl = Z Escl(678+) (N

ecBt

3.4 Uncertainty Aware and Calibration
3.4.1 Uncertainty-Awared Multimodal Fusion

After modeling the emotional space, it’s crucial to
integrate latent semantic features with the distri-
bution uncertainty information. We use variance
to represent the distribution uncertainty in latent
space, as it reflects the degree of dispersion and
distribution region. Meanwhile, the center feature
represents the semantic features of a sample (Gao
et al., 2024; Tellamekala et al., 2023; Xu et al.,
2024). We hypothesize that when a sample has high
aleatoric uncertainty, its semantic features become
fuzzier, and the distribution region in latent space
becomes more discriminative for emotion recogni-
tion. Conversely, when aleatoric uncertainty is low,
the semantic features are more discriminative, and
the distribution region is narrower. Therefore, the
fusion of center feature and variance should depend
on the level of aleatoric uncertainty.

Firstly, we introduce the i-th sample’s predic-
tion g;ﬁr of Info Classifier to quantify uncertainty.

Kendall and Gal (2017) pointed out that aleatoric
uncertainty can be measured by the prediction dif-
ficulty of the sample. Specifically, if Z; correctly
classified by Info Classifier while Z; is misclassi-
fied and needs to be decoupled for further classifica-
tion. We infer that the j-th sample exhibits higher
aleatoric uncertainty(i.e., is less informative). Con-
sequently, the uncertainty can be represented as
d(y}d”, i), where ;%" is the prediction of Z;.

Then, we integrate the distribution’s informa-
tion by fusing multimodal data. After decou-
pled, the samples are represented as latent distribu-
tions N (Ev%t, MYt) where E™=[p]", ..., ']
and M™=[o{", ..., 0] for each modality m. Since
Evt and M"%! have different semantics, we im-
plement late fusion using gate network. Opera-
tionally, (EV,E%,E") and (M",M* M?") are con-
catenated and passed through final classifier to ob-
tain the predictions 7;* and ¢;°. Semantic mean
vector and the variance are dynamically fused ac-
cording to uncertainty score:

. l i “ ~di ~
g™ = APyl + (1 — A8, y))ge )

For a batch of data with size s g, the loss function
is as follows:
1 .
Las == > BCEG™, y;) )
Bl
3.4.2 Uncertainty Calibration

In this section, we impose ordinality constraint
(Moon et al., 2020) to model the relationship be-
tween uncertainty and distribution variance. When
well-calibrated, the uncertainty score acts as a
proxy for the correctness likelihood of its predic-
tion for the latent distribution. In other words, well-
calibrated uncertainty indicates the expected esti-
mation error, i.e., how far the predicted emotion is
expected to lie from its ground truth.

It has been confirmed that: frequently forgotten
samples are harder to classify, while easier sam-
ples are learned earlier in training (Toneva et al.,
2018; Geifman et al., 2018). As a result, to repre-
sent the correctness likelihood values, we use the
proportion of samples r; correctly predicted by the
Info Classifier during the SGD process (Shamir and
Zhang, 2013; Xu et al., 2024).

In our approach, the variance o; = (0V, 0%, of)
and the prediction error d(j"", y;) from the Info
Classifier are strongly correlated with the correct-
ness likelihood values of emotion classification.



Thus, the calibration can be formulated as follows:
(10)
(11)

where rk is ranking and C'orr is correlation. When
the sample contain high uncertainty, the latent
distribution variance o; and the prediction error
d; = d(j3",y;) tend to be large, while 7; tend
to be small. Conversely, when the uncertainty is
small, these features are reversed.

For a batch of size sp, we we compute the vari-
ance norm .S, distance vector D, and proxy vector
R for each sample:

1 1 1

arg max Corr(rk( m R m),rk(ri 35))

argmax Corr(rk(1—d;,1—d;),rk(rs,r;))

SZ[ , S ey ] (12)
ol [lo2ll2” " [losgll2

D=[1-dy,1—ds,.,1—ds,] (13)
R =1[r1,72,..,7s5] (14)

In order to establish the ranking constraints
among S, D and R, we impose ordinality con-
straints based on soft-ranking (Tellamekala et al.,
2023; Bruch et al., 2019). Our method employs
bidirectional KL divergence to assess mismatching
between the softmax distributions of pairs (.5, R)
and (D, R). Consequently, ordinality calibration
loss L, can be calculated as follows:

Loci :KL(PDHPR) +KL(PR||PD)

+ KL(Ps||Pr) + KL(Pg||Ps) (15)

where Pp, Pr, and Pg represent the softmax dis-
tributions of features .S, R, and D, respectively.

Overall, in the whole training process, the train-
ing loss of LDDU is as follows:

Etotal = Ecls + )‘['ocl + 5£scl + fyﬁdir (16)

where A, 5, and y are hyperparameters controlling
the weight of each regularization constraint.

4 Experiments

4.1 Experimental Setup

Datasets and Evaluation Metrics. We validate
the proposed method LDDU on two benchmark:
CMU-MOSEI (Zadeh et al., 2018b) and M3ED
(Zhao et al., 2022). CMU-MOSEI consists of
23,453 video segments across 250 topics. Each
segment is labeled with multiple emotions, includ-
ing happiness, sadness, anger, disgust, surprise,
and fear. The M>ED dataset, designed for dia-
log emotion recognition, offers greater volume and

diversity compared to IEMOCAP (Busso et al.,
2008) and MELD (Poria et al., 2018). It includes
24,449 segments, capturing diverse emotional inter-
actions with seven emotion categories: the above
six emotions with neutral. Following previous work
(Zhang et al., 2021, 2022; Wu et al., 2020; Peng
et al., 2024), in the experiments, we evaluate model
performance using accuracy (Acc), precision (P),
recall (R), and micro-F1 score (miF1).

Baselines. We compare the LDDU model with
two types methods: traditional multimodal meth-
ods and multimodal large language model (MLLM)
methods. Traditional methods include DFG (Zadeh
et al., 2018a), RAVEN (Wang et al., 2019), MulT
(Tsai et al., 2018), MISA (Hazarika et al., 2020),
MMS2S (Zhang et al., 2020), HHMPN (Zhang
etal., 2021), TAILOR (Zhang et al., 2022), AMP
(Wu et al., 2020), and CARAT (Peng et al., 2024).

Furthermore, given the significant success of
MLLMSs in multimodal tasks, we compare LDDU
with MLLMs such as GPT-4o (gpt-40-2024-11-20)
(Achiam et al., 2023), Qwen2-VL-7B (Wang et al.,
2024a), and AnyGPT (Zhan et al., 2024). They re-
spectively correspond to the open-source paradigm,
closed-source paradigm, and the omni large lan-
guage model (LLM). We conduct experiments us-
ing raw video clips (treated as unalgined data) from
the CMU-MOSEI dataset, maintaining consistent
prompts and experimental settings with the frame-
work proposed by Lian et al. (2024). Details of the
prompts are provided in Appendix A.3.

In addition, we conducted a comprehensive
comparison between the LDDU and existing
multi-label classification (MLC) approaches in-
cluding both classical methods: BR (Boutell
et al., 2004), LP (Tsoumakas and Katakis, 2008),
CC (Read et al., 2011); and single-modality meth-
ods: SGM (Yang et al., 2018), LSAN (Xiao et al.,
2019), ML-GCN (Wu et al., 2019), please see Ap-
pendix A.2 and Table 4 for full comparisons.

Implementation Details. Weset A = 0.1, 8 =
0.8, and v = 0.1, with a batch size of 128. The
learning rate is 2e-5 with 30 epochs. More details
of all experiences are shown in Appendix A.1.

4.2 Experimental Results

Main Results. In Table 1 and Table 2, we com-
pare the performance of our method with vari-
ous baseline approaches on the CMU-MOSEI and
M3ED datasets. Different from most baseline meth-
ods listed in Table 1, which use the CTC (Graves



Table 1: Performance comparison on the CMU-MOSEI dataset under aligned and unaligned settings. As LLM-based
methods process raw video segments, aligned results are unavailable. Best results are red , second-best are blue .
A full comparison between multimodal methods, MLLMs and classical methods is in Appendix A.2.

. . Aligned Unaligned
Approaches — Methods Acc P R mifl | Acw P R il
GPT-40 — — — — 0.352 0.583 0.252 0.196
LLM-based Qwen2-VL-7B — — — — 0.422 0.520 0.355 0.355
AnyGPT — — — — 0.134 0.251 0.445 0.321
DFG 0.396 0.595 0.457 0.517 0.386 0.534 0.456 0.494
RAVEN 0.416 0.588 0.461 0.517 0.403 0.633 0.429 0.511
MulT 0.445 0.619 0.465 0.501 0.423 0.636 0.445 0.523
Multimodal MISA 0.430 0.453 0.582 0.509 0.398 0.371 0.571 0.450
MMS2S 0.475 0.629 0.504 0.516 0.447 0.619 0.462 0.529
HHMPN 0.459 0.602 0.496 0.556 0.434 0.591 0.476 0.528
TAILOR 0.488 0.641 0.512 0.569 0.460 0.639 0.452 0.529
AMP 0.484 0.643 0.511 0.569 0.462 0.642 0.459 0.535
CARAT 0494 0661 0518  0.581 | 0.466 0.652 0.466  0.544
LDDU 0.494 0.647 0.531 0.587 0.496 0.638 0.543 0.587

Table 2: Performance comparison on the M?ED dataset.

Table 3: Ablation tests on the aligned CMU-MOSEI.

Methods Acc P R miF1 Approach Acc P R miF1
MMS2S 0.645 0.813 0.737 0.773 (1) w/o ESM 0.478 0.663 0510 0.577
HHMPN 0.648 0.816 0.743 0.778 2) wlo Lair 0491 0.656 0.521 0.580
TAILOR 0.647 0.814 0.739 0.775 (3) W/0 Lsel 0483 0.679 0.498 0575
AMP 0.654  0.819 0748 0.782 (4) w/o queue Q 0.487 0.655 0.487 0.578
CARAT 0.664 0.824 0.755 0.788 (5) w/o variance p 0.483 0.628 0.536 0.578
LDDU 0.690 0.843 0.774 0.807 (6) w/o center o 0492 0.647 0.527 0.581

(7) wlo Loer 0.483 0.672 0.510 0.580

(8) ow Corr(S, R) 0484 0.641 0532 0.581

(9) ow Corr(D, R) 0.490 0.647 0.533 0.584

et al., 2006) module to align non-aligned datasets, ~ _(10) ow COH(I?LS) 0492 0.633 0538 0.582
LDDU performs greatly better on unaligned data (11 £ets W/0 v 04850666 0510 0.578
ithout relying on the CTC module. The emo- (12) Lot wio g 0401 0622 EEE) 0580
Wi ' (12) LDDU 0494 0647 0531 0.587

tion extraction network in LDDU directly extracts
modality-specific features related to the labels from
the sequence data, unaffected by the varying se-
quence lengths across modalities.

Based on Tables 1 and 2, we can draw the fol-
lowing observations: (1) LDDU outperforms other
baseline methods on more crucial metrics such
as mi-F1 and accuracy(acc) although recall and
precision scores are not the highest on the CMU-
MOSEI dataset. Notably, LDDU achieved bal-
anced performance on both aligned and unaligned
datasets, with unaligned’s accuracy improved by
3% and unaligned’s mi-F1 increased by 4.3%. This
demonstrates that by modeling the emotional space
rather than sequence features, LDDU can better
capture emotion-related features. (2) LDDU also
achieved significant improvements across all met-
rics on the M?ED dataset, confirming the robust-
ness of our model. (3) TAILOR, CAFET, and
the proposed LDDU approach performed better by
separating features, emphasizing the importance
of considering each modality’s unique contribu-
tions to emotion recognition in MMER tasks. (4)

While MLLMs are excellent at video understand-
ing, the proposed method significantly outperforms
MLLMs. This maybe because their ability to cap-
ture finer-grained emotional information is limited
and smaller models outperform them in this regard.

Ablation Study. To elucidate the significance of
each component of proposed methods, we com-
pared LDDU against various ablation variants. As
shown in Table 3, where "w/0" means removing,
"ow" denotes only existing, "w/o ESM" denotes
removing trainable feature L. "w/o o, u" respec-
tively means only consider variances or centers
during CL, "w/o Corr(S,R), Corr(D,R)" denotes ig-
noring the calibration of (S,R) or (D,R), "L.s w/0
47, y*" means final classification without variance
or semantic center features. We could find:

1) Effect of emotion space modeling (ESM). We
replaced ESM with MLP-based attention in (1)
and dropped the loss Ly, in (2). Both of them
illustrated the trainable features L with supervisory



(a). t-SNE with CL

(b). t-SNE without CL

Figure 4: The t-SNE visualization of embedding with
/without CL datasets. Different colors represent differ-
ent label-related modality-special features of samples.

signals from L4;- can learn more distinguishable
features of raw multimodel sequences

2) Effect of contrastive learning. We compared
LDDU with the variants without £, in (3). Per-
formance degradation across metrics confirms the
essential role of CL in decoupling. (4) is better
than (3), which illustrates a larger batch size can en-
hance CL. Further, (5) and (6) demonstrates when
computing similarity between distributions, both
mean value and variance should be considered.

3) Effect of uncertainty calibration. Compared
with variants without cilbration, the implementa-
tions of constraints (8, 9, 10, 12) show enhanced
performance. This calibration aligned the variance
with uncertainty, generating better predictions.

4) Effect of uncertainty-awared fusion. To mod-
eling aleatoric uncertainty, we integrated the se-
mantic features with the distribution’s regional in-
formation. (11) and (12) illustrates that both of
them contributes to the final classification.

4.3 Further Analysis

Visualization of Emotion Distribution. To eval-
uate the effectiveness of Contrastive Learning (CL),
we used t-SNE (van der Maaten and Hinton, 2008)
to visualize latent emotion distributions from the
CMU-MOSEI test set, excluding samples without
specific emotions. As shown in Fig. 4, panels (a)
and (b) display distributions with and without CL,
respectively. Without CL, a clear modality gap
exists and intra-modality distributions lack distinc-
tiveness. With CL, the 3 x nl emotion distribu-
tions across labels and modalities are distinctly
separated, enhancing their distinguishability. Con-
sequently, LDDU leveraging CL can more effec-
tively learn emotion distributions across modalities
within the joint emotional space, with each cluster
representing a specific emotion.

e - A it -
Second, the terrorism by those wielding knives, the
Palestinian children, also does not exist in a vacuum.

) ]
Sad voices | Anger voices

Ground truth sad, anger
By TAILOR sad, anger, disgust
By CARET sad, anger, disgust
By LDDU(ours) sad, anger

Figure 5: The case of emotion recognition by multiple
methods. Visual and acoustic modalities revealed a
shift from sadness to anger, while the textual modality
explicitly indicated anger-related expressions.

Case Study. To validate LDDU’s effectiveness,
Figure 5 illustrates a representative case where vi-
sual/acoustic modalities indicate a transition from
sadness to anger, while textual modality explicitly
signals anger. While all methods accurately de-
tected sadness and anger, TAILOR and CARET
falsely predicted disgust due to its ambiguous emo-
tional cues in overlapping scenarios. In contrast,
LDDU effectively modeled emotion-specific uncer-
tainties through latent space Gaussian distributions
(distance vector D’s value: sad: 0.23, anger: 0.41,
disgust: 0.82). We further computed emotion cor-
relation matrices (M7;—Ms3 for methods, M for
ground truth) and measure their cosine similarities
with My: LDDU achieved 96.7% (vs. 93.3% for
TAILOR, 96.1% for CARET), demonstrating su-
perior capability in capturing inter-emotion depen-
dencies. More cases are shown in Appendix A.S.

5 Conclusion

We propose LDDU, a framework that captures
aleatoric uncertainty in MMER through latent emo-
tional space probabilistic modeling. By disentan-
¢gling semantic features and uncertainty using Gaus-
sian distributions, LDDU mitigates ambiguity aris-
ing from variations in emotional intensity and over-
lapping emotions. Furthermore, an uncertainty-
aware fusion module adaptively integrates multi-
modal features based on their distributional uncer-
tainty. Experimental results on CMU-MOSEI and
M3ED demonstrate that LDDU achieves state-of-
the-art performance. This work pioneers probabilis-
tic emotion space modeling, providing valuable in-
sights into uncertainty-aware affective computing.



Limitation

While LDDU demonstrates promising performance
in MMER, several problems remain to discuss.
LDDU models emotion uncertainty using Gaus-
sian distributions in the latent emotion space, ef-
fectively capturing inherent ambiguity. However, it
does not explicitly utilize emotion intensity labels,
as provided in the CMU-MOSEI dataset (quantized
into 0, 0.3, 0.6, and 1.0 levels). While this omis-
sion ensures fair comparisons with prior work (e.g.,
TAILOR, CARET), it also limits LDDU’s ability to
precisely distinguish emotions of varying intensi-
ties. As a result, the model may be less effective in
disambiguating overlapping emotions, particularly
in tasks requiring fine-grained intensity differen-
tiation. Integrating explicit intensity supervision
in future iterations could further refine LDDU’s
predictive capability.

Ethical Considerations

Ethical considerations are crucial in multimodal
emotion recognition research, particularly with sen-
sitive human data like emotional expressions. In
our study, we ensure that all datasets, including
CMU-MOSEI and M?ED, are publicly available
and anonymized to protect individuals’ privacy.

While our method advances emotion recogni-
tion in areas such as human-computer interaction,
we acknowledge the potential for misuse, such as
manipulation or surveillance. We emphasize the re-
sponsible use of these technologies, ensuring they
are deployed in contexts that respect privacy.

Additionally, emotional expressions vary across
cultures and individuals, and our model may not
fully capture this diversity. We recommend expand-
ing datasets to include a wider range of cultural
contexts to avoid biases and misinterpretations.

Finally, we commit to transparency by making
our code publicly available for further scrutiny and
improvement, ensuring our research aligns with
ethical principles and benefits society.

References

Josh Achiam, Steven Adler, Sandhini Agarwal, Lama
Ahmad, Ilge Akkaya, Florencia Leoni Aleman,
Diogo Almeida, Janko Altenschmidt, Sam Altman,
Shyamal Anadkat, et al. 2023. Gpt-4 technical report.
arXiv preprint arXiv:2303.08774.

Matthew R Boutell, Jiebo Luo, Xipeng Shen, and
Christopher M Brown. 2004. Learning multi-label

scene classification. Pattern recognition, 37(9):1757-
1771.

Sebastian Bruch, Xuanhui Wang, Michael Bendersky,
and Marc Najork. 2019. An analysis of the softmax
cross entropy loss for learning-to-rank with binary
relevance. In Proceedings of the 2019 ACM SIGIR
international conference on theory of information
retrieval, pages 75-78.

Carlos Busso, Murtaza Bulut, Chi-Chun Lee, Abe
Kazemzadeh, Emily Mower, Samuel Kim, Jean-
nette N Chang, Sungbok Lee, and Shrikanth S
Narayanan. 2008. Iemocap: Interactive emotional

dyadic motion capture database. Language resources
and evaluation, 42:335-359.

Mathilde Caron, Ishan Misra, Julien Mairal, Priya
Goyal, Piotr Bojanowski, and Armand Joulin. 2020.
Unsupervised learning of visual features by contrast-
ing cluster assignments. Advances in neural informa-
tion processing systems, 33:9912-9924.

Dushyant Singh Chauhan, SR Dhanush, Asif Ekbal, and
Pushpak Bhattacharyya. 2020. Sentiment and emo-
tion help sarcasm? a multi-task learning framework
for multi-modal sarcasm, sentiment and emotion anal-
ysis. In Proceedings of the 58th annual meeting of
the association for computational linguistics, pages
4351-4360.

Ting Chen, Simon Kornblith, Mohammad Norouzi, and
Geoffrey Hinton. 2020. A simple framework for
contrastive learning of visual representations. In In-
ternational conference on machine learning, pages

1597-1607. PMLR.

Gilles Degottex, John Kane, Thomas Drugman, Tuomo
Raitio, and Stefan Scherer. 2014. Covarep—a collab-
orative voice analysis repository for speech technolo-
gies. In 2014 ieee international conference on acous-
tics, speech and signal processing (icassp), pages
960-964. IEEE.

Chuong B Do. 2008. The multivariate gaussian distri-
bution. Section Notes, Lecture on Machine Learning,
CS, 229.

Zixian Gao, Xun Jiang, Xing Xu, Fumin Shen, Yujie
Li, and Heng Tao Shen. 2024. Embracing unimodal
aleatoric uncertainty for robust multimodal fusion. In
Proceedings of the IEEE/CVF Conference on Com-
puter Vision and Pattern Recognition, pages 26876~
26885.

Shiping Ge, Zhiwei Jiang, Zifeng Cheng, Cong Wang,
Yafeng Yin, and Qing Gu. 2023. Learning robust
multi-modal representation for multi-label emotion
recognition via adversarial masking and perturbation.
In Proceedings of the ACM Web Conference 2023,
pages 1510-1518.

Yonatan Geifman, Guy Uziel, and Ran El-Yaniv. 2018.
Bias-reduced uncertainty estimation for deep neural
classifiers. arXiv preprint arXiv:1805.08206.



Deepanway Ghosal, Navonil Majumder, Soujanya Poria,
Niyati Chhaya, and Alexander Gelbukh. 2019. Dia-
loguegen: A graph convolutional neural network for
emotion recognition in conversation. arXiv preprint
arXiv:1908.11540.

Alex Graves, Santiago Ferndndez, Faustino Gomez, and
Jiirgen Schmidhuber. 2006. Connectionist temporal
classification: labelling unsegmented sequence data
with recurrent neural networks. In Proceedings of the
23rd international conference on Machine learning,

pages 369-376.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Wein-
berger. 2017. On calibration of modern neural net-
works. In International conference on machine learn-
ing, pages 1321-1330. PMLR.

Devamanyu Hazarika, Roger Zimmermann, and Sou-
janya Poria. 2020. Misa: Modality-invariant and-
specific representations for multimodal sentiment
analysis. In Proceedings of the 28th ACM interna-
tional conference on multimedia, pages 1122-1131.

Kaiming He, Haoqi Fan, Yuxin Wu, Saining Xie, and
Ross Girshick. 2020. Momentum contrast for unsu-
pervised visual representation learning. In Proceed-
ings of the IEEE/CVF conference on computer vision
and pattern recognition, pages 9729-9738.

Alex Kendall and Yarin Gal. 2017. What uncertainties
do we need in bayesian deep learning for computer
vision? Advances in neural information processing
systems, 30.

Prannay Khosla, Piotr Teterwak, Chen Wang, Aaron
Sarna, Yonglong Tian, Phillip Isola, Aaron
Maschinot, Ce Liu, and Dilip Krishnan. 2020. Su-
pervised contrastive learning. Advances in neural
information processing systems, 33:18661-18673.

Diederik P Kingma. 2013. Auto-encoding variational
bayes. arXiv preprint arXiv:1312.6114.

Diederik P Kingma. 2014. Adam: A method for stochas-
tic optimization. arXiv preprint arXiv:1412.6980.

Ranganath Krishnan and Omesh Tickoo. 2020. Improv-
ing model calibration with accuracy versus uncer-
tainty optimization. Advances in Neural Information
Processing Systems, 33:18237—-18248.

Junnan Li, Dongxu Li, Silvio Savarese, and Steven Hoi.
2023. Blip-2: Bootstrapping language-image pre-
training with frozen image encoders and large lan-
guage models. In International conference on ma-
chine learning, pages 19730-19742. PMLR.

Zheng Lian, Licai Sun, Haiyang Sun, Kang Chen, Zhuo-
fan Wen, Hao Gu, Bin Liu, and Jianhua Tao. 2024.
Gpt-4v with emotion: A zero-shot benchmark for
generalized emotion recognition. Information Fu-
sion, 108:102367.

10

Jooyoung Moon, Jihyo Kim, Younghak Shin, and
Sangheum Hwang. 2020. Confidence-aware learning
for deep neural networks. In international conference
on machine learning, pages 7034-7044. PMLR.

Cheng Peng, Ke Chen, Lidan Shou, and Gang Chen.
2024. Carat: Contrastive feature reconstruction
and aggregation for multi-modal multi-label emotion
recognition. In Proceedings of the AAAI Conference
on Artificial Intelligence, volume 38, pages 14581—
14589.

Soujanya Poria, Devamanyu Hazarika, Navonil Ma-
jumder, Gautam Naik, Erik Cambria, and Rada Mi-
halcea. 2018. Meld: A multimodal multi-party
dataset for emotion recognition in conversations.
arXiv preprint arXiv:1810.02508.

Alec Radford, Jong Wook Kim, Chris Hallacy, Aditya
Ramesh, Gabriel Goh, Sandhini Agarwal, Girish Sas-
try, Amanda Askell, Pamela Mishkin, Jack Clark,
et al. 2021. Learning transferable visual models from
natural language supervision. In International confer-
ence on machine learning, pages 8748-8763. PMLR.

Jesse Read, Bernhard Pfahringer, Geoff Holmes, and
Eibe Frank. 2011. Classifier chains for multi-label
classification. Machine learning, 85:333-359.

Ohad Shamir and Tong Zhang. 2013. Stochastic gra-
dient descent for non-smooth optimization: Conver-
gence results and optimal averaging schemes. In
International conference on machine learning, pages

71-79. PMLR.

Mahesh Subedar, Ranganath Krishnan, Paulo Lopez
Meyer, Omesh Tickoo, and Jonathan Huang. 2019.
Uncertainty-aware audiovisual activity recognition
using deep bayesian variational inference. In Pro-
ceedings of the IEEE/CVF international conference
on computer vision, pages 6301-6310.

Mani Kumar Tellamekala, Shahin Amiriparian, Bjorn W
Schuller, Elisabeth André, Timo Giesbrecht, and
Michel Valstar. 2023. Cold fusion: Calibrated and or-
dinal latent distribution fusion for uncertainty-aware
multimodal emotion recognition. IEEE Transactions
on Pattern Analysis and Machine Intelligence.

Mariya Toneva, Alessandro Sordoni, Remi Tachet des
Combes, Adam Trischler, Yoshua Bengio, and Geof-
frey J Gordon. 2018. An empirical study of exam-
ple forgetting during deep neural network learning.
arXiv preprint arXiv:1812.05159.

Yao-Hung Hubert Tsai, Shaojie Bai, Paul Pu Liang,
J Zico Kolter, Louis-Philippe Morency, and Ruslan
Salakhutdinov. 2019. Multimodal transformer for un-
aligned multimodal language sequences. In Proceed-
ings of the conference. Association for computational
linguistics. Meeting, volume 2019, page 6558. NIH
Public Access.

Yao-Hung Hubert Tsai, Paul Pu Liang, Amir Zadeh,
Louis-Philippe Morency, and Ruslan Salakhutdinov.
2018. Learning factorized multimodal representa-
tions. arXiv preprint arXiv:1806.06176.



Grigorios Tsoumakas and Ioannis Katakis. 2008. Multi-
label classification: An overview. Data Warehousing
and Mining: Concepts, Methodologies, Tools, and
Applications, pages 64-74.

Laurens van der Maaten and Geoffrey Hinton. 2008.
Visualizing data using t-sne. Journal of Machine
Learning Research, 9(86):2579-2605.

Peng Wang, Shuai Bai, Sinan Tan, Shijie Wang, Zhi-
hao Fan, Jinze Bai, Keqin Chen, Xuejing Liu, Jialin
Wang, Wenbin Ge, Yang Fan, Kai Dang, Mengfei
Du, Xuancheng Ren, Rui Men, Dayiheng Liu,
Chang Zhou, Jingren Zhou, and Junyang Lin. 2024a.
Qwen2-vl: Enhancing vision-language model’s per-
ception of the world at any resolution. arXiv preprint
arXiv:2409.12191.

Xin Wang, Hong Chen, Zihao Wu, Wenwu Zhu, et al.
2024b. Disentangled representation learning. /EEE
Transactions on Pattern Analysis and Machine Intel-
ligence.

Yansen Wang, Ying Shen, Zhun Liu, Paul Pu Liang,
Amir Zadeh, and Louis-Philippe Morency. 2019.
Words can shift: Dynamically adjusting word rep-
resentations using nonverbal behaviors. In Proceed-
ings of the AAAI conference on artificial intelligence,
volume 33, pages 7216-7223.

Dongxian Wu, Shu-Tao Xia, and Yisen Wang. 2020.
Adversarial weight perturbation helps robust general-
ization. Advances in neural information processing

systems, 33:2958-2969.

Xuan Wu, Qing-Guo Chen, Yao Hu, Dengbao Wang, Xi-
aodong Chang, Xiaobo Wang, and Min-Ling Zhang.
2019. Multi-view multi-label learning with view-
specific information extraction. In IJCAI, pages
3884-3890.

Lin Xiao, Xin Huang, Boli Chen, and Liping Jing. 2019.
Label-specific document representation for multi-
label text classification. In Proceedings of the 2019
conference on empirical methods in natural language
processing and the 9th international joint conference
on natural language processing (EMNLP-1IJCNLP),
pages 466—475.

Guoyang Xu, Junqi Xue, Yuxin Liu, Zirui Wang,
Min Zhang, Zhenxi Song, and Zhiguo Zhang. 2024.
Semantic-guided multimodal sentiment decoding
with adversarial temporal-invariant learning. arXiv
preprint arXiv:2409.00143.

Pengcheng Yang, Xu Sun, Wei Li, Shuming Ma, Wei
Wu, and Houfeng Wang. 2018. Sgm: sequence gen-
eration model for multi-label classification. arXiv
preprint arXiv:1806.04822.

Wenmeng Yu, Hua Xu, Fanyang Meng, Yilin Zhu,
Yixiao Ma, Jiele Wu, Jiyun Zou, and Kaicheng
Yang. 2020. Ch-sims: A chinese multimodal sen-
timent analysis dataset with fine-grained annotation
of modality. In Proceedings of the 58th annual meet-
ing of the association for computational linguistics,
pages 3718-3727.

11

Amir Zadeh, Paul Pu Liang, Soujanya Poria, Prateek Vij,
Erik Cambria, and Louis-Philippe Morency. 2018a.
Multi-attention recurrent network for human commu-
nication comprehension. In Proceedings of the AAAI
Conference on Artificial Intelligence, volume 32.

AmirAli Bagher Zadeh, Paul Pu Liang, Soujanya Poria,
Erik Cambria, and Louis-Philippe Morency. 2018b.
Multimodal language analysis in the wild: Cmu-
mosei dataset and interpretable dynamic fusion graph.
In Proceedings of the 56th Annual Meeting of the As-
sociation for Computational Linguistics (Volume 1:

Long Papers), pages 2236-2246.

Bianca Zadrozny and Charles Elkan. 2001. Obtaining
calibrated probability estimates from decision trees

and naive bayesian classifiers. In Icml, volume 1,
pages 609-616.

Jun Zhan, Junqi Dai, Jiasheng Ye, Yunhua Zhou,
Dong Zhang, Zhigeng Liu, Xin Zhang, Ruibin Yuan,
Ge Zhang, Linyang Li, Hang Yan, Jie Fu, Tao Gui,
Tianxiang Sun, Yugang Jiang, and Xipeng Qiu. 2024.
Anygpt: Unified multimodal 1lm with discrete se-
quence modeling. Preprint, arXiv:2402.12226.

Dong Zhang, Xincheng Ju, Junhui Li, Shoushan Li,
Qiaoming Zhu, and Guodong Zhou. 2020. Multi-
modal multi-label emotion detection with modality
and label dependence. In Proceedings of the 2020
conference on empirical methods in natural language
processing (EMNLP), pages 3584-3593.

Dong Zhang, Xincheng Ju, Wei Zhang, Junhui Li,
Shoushan Li, Qiaoming Zhu, and Guodong Zhou.
2021. Multi-modal multi-label emotion recognition
with heterogeneous hierarchical message passing. In
Proceedings of the AAAI Conference on Artificial
Intelligence, volume 35, pages 14338-14346.

Kaipeng Zhang, Zhanpeng Zhang, Zhifeng Li, and
Yu Qiao. 2016. Joint face detection and alignment
using multitask cascaded convolutional networks.
IEEE signal processing letters, 23(10):1499-1503.

Yi Zhang, Mingyuan Chen, Jundong Shen, and
Chongjun Wang. 2022. Tailor versatile multi-modal
learning for multi-label emotion recognition. In Pro-
ceedings of the AAAI Conference on Artificial Intelli-
gence, volume 36, pages 9100-9108.

Jinming Zhao, Tenggan Zhang, Jingwen Hu, Yuchen
Liu, Qin Jin, Xinchao Wang, and Haizhou Li.
2022. M3ed: Multi-modal multi-scene multi-
label emotional dialogue database. arXiv preprint
arXiv:2205.10237.

Sicheng Zhao, Guoli Jia, Jufeng Yang, Guiguang Ding,
and Kurt Keutzer. 2021. Emotion recognition from
multiple modalities: Fundamentals and methodolo-
gies. IEEE Signal Processing Magazine, 38(6):59—
73.


http://jmlr.org/papers/v9/vandermaaten08a.html
https://arxiv.org/abs/2402.12226
https://arxiv.org/abs/2402.12226
https://arxiv.org/abs/2402.12226

A Appendix

A.1 Implementation Details

Weset A = 0.1, 8 = 0.8, and v = 0.1, with a
batch size of 128. For the uni-modal extraction
network, each Transformer consists of 3 layers
(I, = I, = l; = 3). The hidden dimensions are
256 for feature Y and 128 for feature Z. The latent
emotion distribution has a dimension of 64 for both
the distribution centers and variance vectors. The
contrastive learning queue Q is sized at 8192. The
number of labels (q) is 6 for CMU-MOSEI and 7
for M3ED. We optimize all model parameters using
the Adam optimizer (Kingma, 2014) with a learn-
ing rate of 2 x 10~ and a cosine decay schedule
with a warm-up rate of 0.1. All experiments are
conducted on a single GTX A6000 GPU using grid
search.

A.2 More Compared Baselines

Despite the advancements in LLM-based and
multimodal methods, we conducted a compre-
hensive and comparative analysis between the
LDDU model and existing multi-label classifica-
tion (MLC) approaches. This comparison includes
both classical methods (BR (Boutell et al., 2004),
LP (Tsoumakas and Katakis, 2008), CC (Read
et al., 2011)) and single-modality methods (SGM
(Yang et al., 2018), LSAN (Xiao et al., 2019), ML-
GCN (Wu et al., 2019)). The experimental results
are presented in Table 4.

A.3 Prompts of MLLM

In this study, we evaluated three multimodal mod-
els (GPT-40, Qwen2-VL-7B, and AnyGPT), using
video clips with an average duration of 7-8 seconds.
GPT-40 and Qwen2-VL-7B exhibit strong visual
understanding capabilities, representing closed-
source and open-source multimodal large language
models (MLLMs), respectively. AnyGPT is a ver-
satile any-to-any MLLM capable of processing
images, text, and audio. Since all these MLLMs
adopt end-to-end architectures, we ensured com-
putational efficiency and consistency by uniformly
sampling 8 frames per video clip as input for in-
ference. The specific prompts designed for each
model, including task descriptions and format re-
quirements, are detailed in Figure 6.

A.4 Detailed Info of Uncertainty Caliration

To enhance readers’ understanding of aleatoric un-
certainty and uncertainty correction, we provide
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additional supplementary materials.

A.4.1 Aleatoric Uncertainty in MMER

Aleatoric uncertainty refers to the inherent vari-
ability or noise present in the data, arising from
factors beyond the model’s control. In the context
of emotion recognition, it stems from factors such
as variations in emotional intensity, individual dif-
ferences, and the blending of multiple emotions.
This form of uncertainty is intrinsic to the data
itself.

In multimodal emotion recognition (MMER),
aleatoric uncertainty becomes particularly evident
when the same emotion is expressed by different
individuals. For example, a person may express
happiness through a broad smile (visual modality)
but with a neutral tone of voice (audio modality),
reflecting differences in emotional intensity and
expression. These inconsistencies can introduce
conflicting cues that complicate the emotion recog-
nition process. Furthermore, datasets like CMU-
MOSEI also contain varying levels of emotion in-
tensity, further contributing to aleatoric uncertainty.

This type of uncertainty is not confined to emo-
tion recognition alone. In computer vision (CV),
it can manifest as blurry faces or imprecise object
localization, introducing uncertainty in tasks like
object detection. In natural language processing
(NLP), aleatoric uncertainty arises from ambigui-
ties in language, where word meanings can shift
based on contextual factors. In all these scenar-
ios, probabilistic models are employed to capture
and account for such inherent uncertainty, thereby
enhancing the robustness of systems in diverse,
real-world environments.

A.4.2 Uncertainty Calibration

Uncertainty Calibration. Uncertainty Calibra-
tion refers to the process of adjusting model predic-
tions to more accurately reflect the true uncertainty
associated with them. In machine learning and
deep learning, models often provide predictions ac-
companied by an associated uncertainty; however,
these predictions are not always well-calibrated.
In other words, the model may exhibit excessive
confidence in certain predictions, even when the
true uncertainty is high, or it may fail to properly
estimate its own uncertainty.

The primary objective of uncertainty calibration
is to align the predicted uncertainty with the ac-
tual likelihood of a prediction being correct. In
practical terms, this means that if a model is 90%



Table 4: Performance comparison on the CMU-MOSEI dataset under aligned and unaligned settings. As LLM-based
methods process raw video segments, aligned results are unavailable. Best results are red , second-best are blue .

Aligned Unaligned
Approaches  Methods Acc P R miFl | Acc P R miFl
GPT-40 — — — — 10352 0583 0252 0.19
LLM-based Qwen2-VL-7B | —- — — — | 0422 0520 0355 0.355
AnyGPT — - . — | 0134 0251 0445 0321
BR 0222 0309 0515 038 | 0233 0321 0.545 0.404
Classical LP 0.159 0231 0377 0286 | 0.185 0252 0427 0317
CC 0225 0306 0523 038 | 0235 0320 0.550 0.404
SGM 0455 0595 0467 0523 | 0449 0.584 0476 0.524
Deep-based LSAN 0393 0550 0459 0501 | 0.403 0.582 0.460 0.514
ML-GCN 0411 0546 0476 0509 | 0437 0.573 0482 0.524
DFG 0396 0595 0457 0517 | 0.386 0.534 0456 0.494
RAVEN 0416 0.588 0461 0.517 | 0.403 0.633 0.429 0.511
MulT 0445 0619 0465 0501 | 0423 0.636 0445 0.523
Multimodal MISA 0430 0453 0582 0509 | 0.398 0371 0.571 0.450
MMS2S 0475 0.629 0504 0516 | 0447 0.619 0462 0.529
HHMPN 0459 0.602 0496 0.556 | 0.434 0591 0.476 0.528
TAILOR 0488 0.641 0512 0569 | 0460 0.639 0452 0.529
AMP 0484 0.643 0511 0569 | 0462 0.642 0.459 0.535
CARAT 0494 0.661 0518 0.581 | 0.466 0.652 0466 0.544
LDDU 0.494 0.647 0531 0.587 | 0.496 0.638 0.543 0.587

» 000/ 006

Prompt: Please play the role of a video expression classification expert. We provide 4 videos, each video with the speaker's
spoken words and 8 temporally uniformly sampled frames. For each video and its corresponding text, please judge whether
provided emotion categories are in the video based on the spoken words and corresponding frames and give out the existing
categories. Please note that each video may contain multiple emotions.

Here are the optional categories: [“happy”, “sad”, “anger”, “surprise”, “disgust”, “fear”].

Please ignore the speaker's identity and focus on their emotions both in the sampled frames and in speech context and
ignore the speaker's identity and focus on their emotions in the sampled frames and spoken words.

The output format should be {{'name", 'result':}} for these {len(video paths)} videos.

For example:

Video x:

- Content: "And I give this movie a two out of five because it's a bad movie, that's no surprise."
- Emotions in frames: emotionl, emotion2

- Emotions in spoken words: emotionl, emotion3

- Recognized categories: ' {'name": 'Video X', 'result': ['emotionl', 'emotion2', 'emotion3']}"

Figure 6: Prompts of MLLMs.
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confident in its prediction, it should be correct ap-
proximately 90% of the time over a large number
of predictions. This calibration process is particu-
larly critical in domains such as emotion recogni-
tion, medical diagnosis, and autonomous driving,
where accurate uncertainty estimates are essential
for reliable decision-making. Several methods can
be employed for uncertainty calibration, including
temperature scaling, Platt scaling, and Bayesian
approaches.

Ordinality Constraint. Ordinality Constraint
refers to a form of uncertainty calibration that is
based on the ranking of classes. This method as-
sumes that the relationship between classes or la-
bels follows a natural ordinal structure, where la-
bels have an inherent order. For instance, in senti-
ment analysis, labels such as "very negative," "neg-
ative," "neutral," "positive," and "very positive"
exhibit a natural progression from negative to pos-
itive sentiment. Ordinality constraints ensure that
the model’s predicted probabilities reflect this rank-
ing, adjusting the output so that predictions align
with the ordered nature of the classes.

In our proposed approach, the ordinality con-
straint is applied to rank the uncertainty of predic-
tions across different labels. By incorporating this
constraint, we ensure that the model not only out-
puts probabilities but also ranks the classes in a
manner that respects their inherent order.

A.4.3 Uncertainty Caliration in LDDU

Since networks learning variance and mean vectors
share similar structures, variance and mean tend to
converge and surface feature space collapse with-
out constraints. The key is to ensure that variance
vectors accurately reflect uncertainty level. We in-
troduce an ordinality (ranking) constraint (Moon
et al., 2020) to solve this problem. As shown in
Equation 1, ordinality constraint requires predicted
confidence ~ should correspond to the probabil-
ity P of correct prediction. In our approach, the
variance o; = (07, 0%, o}) and the prediction error
d(g)f”’, y; ) from the Info Classifier jointly represent
the sample’s confidence. The main challenge is es-
tablishing reliable proxy features for P. Inspired
by CRL (Xu et al., 2024), we use the proportion of
samples r; correctly predicted by the Info Classifier
during the SGD (Shamir and Zhang, 2013) process
as a proxy for P. Empirical findings from Toneva
et al. (2018) and Geifman et al. (2018) support our
hypothesis: frequently forgotten samples are harder
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to classify, while easier samples are learned earlier
in training.

When the sample contain high uncertainty, the
latent distribution variance o; and the prediction
error d; = d(gjgir, y;) tend to be large, while r;
tend to be small. Conversely, when the uncertainty
1s small, these features are reversed. Therefore, the
ordinality constraint is:

Corr(rk(—— 1y
max Corr(r (’|‘7i|‘27 HUJHZ)’ rk(ri;Tj))
(17)

argmazx Corr(rk(l — d;, 1 — dj), rk(ri, 75))
(18)

where C'orr represents correlation and rk demotes
ranking. In this paper, we impose ordinality con-
straints based on soft-ranking(Tellamekala et al.,
2023; Bruch et al., 2019). While (Tellamekala et al.,
2023) uses KL divergence to measure mismatching
of softmax distributions and (Bruch et al., 2019) ap-
plies softmax cross-entropy for ordinal regression,
our method employs bidirectional KL divergence
to assess mismatching between the softmax distri-
butions

For a batch of size sp, we compute the variance
norm .S, distance vector D, and proxy vector R for
each sample:

1 1 1
S = , yees 1 19
lloalle” [lo2ll2” " [losgll2
D=[—d,1—ds..1—ds,] (20)
R: [Tl,T’Q,..,T’SB] (21)

Inspired by (Tellamekala et al., 2023; Bruch
et al.,, 2019), we impose ordinality constraints
based on soft-ranking. While (Tellamekala et al.,
2023) uses KL divergence to measure mismatching
of softmax distributions and (Bruch et al., 2019) ap-
plies softmax cross-entropy for ordinal regression,
our method employs bidirectional KL divergence
to assess mismatching between the softmax distri-
butions of pairs (S, R) and (D, R). Consequently,
ordinality calibration loss £,.;can be calculated as
follows:

Lo :KL(PDHPR) + KL(PRHPD)

+ KL(Ps||Pr) + KL(Pg||Ps) (22)

where Pp, Pr, and Pg represent the softmax dis-
tributions of features .S, R, and D, respectively.
In summary, the total training loss is as follows:

£total = £cls + )\ﬁocl + ﬁﬁscl + 7£dir (23)



But The Simpsons The Movie not worthwhile in my
book.

Ground truth sad, anger,, surprise, disgust
By TAILOR sad, anger, disgust
By CARET sad, anger, disgust

By LDDU(ours) sad, anger, surprise, disgust

Figure 7: The case of emotion recognition by multiple
methods.

where A, 8, and ~ are hyperparameters controlling
the strength of each regularization constraint.

A.5 More Cases for Case Study

Another case is shown in Figure 7.
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