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Abstract
Multimodal multi-label emotion recognition001
(MMER) aims to identify the concurrent pres-002
ence of multiple emotions in multimodal data.003
Existing studies primarily focus on improv-004
ing fusion strategies and modeling modality-005
to-label dependencies. However, they often006
overlook the impact of aleatoric uncertainty,007
which is the inherent noise in the multimodal008
data and hinders the effectiveness of modal-009
ity fusion by introducing ambiguity into fea-010
ture representations. To address this issue and011
effectively model aleatoric uncertainty, this012
paper proposes Latent emotional Distribution013
Decomposition with Uncertainty perception014
(LDDU) framework from a novel perspective015
of latent emotional space probabilistic mod-016
eling. Specifically, we introduce a contrastive017
disentangled distribution mechanism within the018
emotion space to model the multimodal data,019
allowing for the extraction of semantic features020
and uncertainty. Furthermore, we design an021
uncertainty-aware fusion multimodal method022
that accounts for the dispersed distribution of023
uncertainty and integrates distribution informa-024
tion. Experimental results show that LDDU025
achieves state-of-the-art performance on the026
CMU-MOSEI and M3ED datasets, highlight-027
ing the importance of uncertainty modeling in028
MMER. We will release the related code.029

1 Introduction030

Human interactions convey multiple emotions031

through various channels: micro-expressions, vocal032

intonations, and text. Multimodal multi-label emo-033

tion recognition (MMER) seeks to identify multi-034

ple emotions (e.g., happiness, sadness) from mul-035

timodal data (e.g., audio, text, and video) (Zhang036

et al., 2021). It could support many downstream037

applications such as emotion analysis (Tsai et al.,038

2019), human-computer interaction (Chauhan et al.,039

2020), and dialogue systems (Ghosal et al., 2019).040

The main topics of MMER lie in extracting041

emotion-relevant features by effectively fusing mul-042

Figure 1: An illustration of aleatoric uncertainty in
MMER task. When adopting Gaussian distribution
modeling in latent emotion space, case two’s seman-
tic feature is more fuzzed with a larger variance due to
cold speaking style than case one. Meanwhile, case one
has stronger emotion intense located closer to the center
of global distribution.

timodal data and modeling modality-to-label de- 043

pendencies (Zhang et al., 2021; Hazarika et al., 044

2020). To implement the fusion of multimodal 045

data, some work (Zhang et al., 2020; Wang et al., 046

2024b) employed projection layers to mitigate the 047

modality gap (Radford et al., 2021), while other 048

methods (Zhang et al., 2021; Tsai et al., 2019) uti- 049

lized attention mechanisms. Additionally, several 050

studies (Hazarika et al., 2020; Zhang et al., 2022; 051

Ge et al., 2023; Xu et al., 2024) decomposed modal- 052

ity features into common and private components. 053

Recently, CARET (Peng et al., 2024) introduced 054

emotion space modeling, where emotion-related 055

features were extracted prior to fusion, achieving 056

state-of-the-art performance. Regarding modality- 057

to-label dependencies, many approaches (Zhang 058

et al., 2021, 2022) leveraged Transformer decoders 059

to capture the relationships between label semantic 060

features and fused modality sequence features. 061

However, these approaches primarily focus on 062

semantic features while overlooking aleatoric un- 063

certainty (Kendall and Gal, 2017), which repre- 064

sents inherent noise in the data and is commonly 065

modeled using multivariate Gaussian distributions 066
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(Do, 2008) (for a detailed background, please refer067

to Appendix A.4). In the context of MMER, such068

uncertainty primarily arises from factors such as069

personalized expressions, variations in emotional070

intensity, and the blending of coexisting emotions071

(Zhao et al., 2021). For instance, as illustrated in072

Fig. 1, from a macroscopic perspective, both sam-073

ples convey happiness, yet case one exhibits more074

pronounced facial expressions compared to case075

two. From a distributional perspective, case one076

demonstrates more concentrated semantic features077

near the center of the dataset’s overall distribution,078

whereas case two presents features with greater079

variance, positioned farther from the center. This080

aleatoric uncertainty introduces ambiguity into se-081

mantic feature representations, thereby diminish-082

ing the effectiveness of modality fusion in existing083

MMER approaches (Gao et al., 2024).084

To model aleatoric uncertainty in MMER, sev-085

eral challenges need to be addressed: (1) How to086

represent aleatoric uncertainty: Emotional cues087

are embedded in multimodal sequences, with each088

modality contributing differently to emotion expres-089

sion, making it difficult to extract and disentangle090

emotional features. When modeled with multi-091

variate Gaussian distributions, samples with the092

same label often cluster together despite semantic093

fuzziness. An effective distribution must capture094

both the central tendency and calibrate variance of095

emotional features, which is particularly challeng-096

ing. (2) How to integrate semantic features with097

aleatoric uncertainty: Higher uncertainty leads to098

more dispersed distributions, complicating emo-099

tion recognition. Without calibrated uncertainty,100

semantic features can become ambiguous and less101

informative. Thus, effective strategies for calibrat-102

ing and integrating uncertainty are crucial to ensure103

robust and discriminative emotion representations.104

To address these challenges, we propose La-105

tent Distribution Decouple for Uncertainty-Aware106

MMER (LDDU) from the perspective of latent107

emotional space probabilistic modeling. For the108

first challenge, to represent aleatoric uncertainty,109

LDDU extracts modality-related features using Q-110

Former-like alignment (Li et al., 2023). We then de-111

sign a distribution decoupling mechanism based on112

Gaussian distributions to model uncertainty. To fur-113

ther enhance the distinguishability of these distri-114

butions, contrastive learning (Chen et al., 2020) is115

employed. For the second challenge, to effectively116

integrate the distributional information, we draw117

inspiration from uncertainty learning (Guo et al.,118

2017; Moon et al., 2020; Xu et al., 2024) and de- 119

velop an uncertainty-aware fusion module, which 120

is accompanied by uncertainty calibration. Exper- 121

imental results on the CMU-MOSEI and M3ED 122

datasets show that LDDU achieves state-of-the-art 123

performance. Specially, it surpasses strong base- 124

line CARAT 4.3% miF1 on CMU-MOSEI under 125

unaligned settings. In summary, the contributions 126

of this work are as follows: 127

• We introduce latent emotional space proba- 128

bilistic modeling for MMER. To the best of 129

our knowledge, this is the first work to lever- 130

age emotion space distribution for capturing 131

aleatoric uncertainty in MMER. 132

• We propose LDDU, which models the emo- 133

tion space to extract emotion features, then 134

uses contrastive disentagled learning to repre- 135

sent latent distributions and recognizes emo- 136

tions by integrating both semantic features 137

and calibrated uncertainty. 138

• Experiments on CMU-MOSEI and M3ED 139

datasets demonstrate that the proposed LDDU 140

method achieves state-of-the-art performance, 141

with mi-F1 improved 4.3% on the CMU- 142

MOSEI unaligned data. 143

2 Related Work 144

Multimodal Multi-label Emotion Regression. It 145

aims to infer human emotions from textual, audio, 146

and visual sequences in video clips, often encom- 147

passing multiple affective states. The primary chal- 148

lenges in MMER is integrating multimodal data. 149

Early studies like MISA (Hazarika et al., 2020) 150

address modality heterogeneity by decoupled in- 151

variant and modality-specific features for fusion. 152

MMS2S (Zhang et al., 2020) and HHMPN (Zhang 153

et al., 2021) focused on modeling label-to-label and 154

label-to-modality dependencies using Transformer 155

and GNNs network. Recent approaches (Peng et al., 156

2024; Ge et al., 2023; Zhang et al., 2022) incorpo- 157

rated advanced training techniques; for example, 158

TAILOR (Zhang et al., 2022) utilized adversarial 159

learning to differentiate common and private modal 160

features, while AMP (Wu et al., 2020) employed 161

masking and parameter perturbation to mitigate 162

modality bias and enhance robustness. However, 163

these works all model from multimodal fusion in- 164

stead of emotion latent space. 165

Uncertainty-aware Learning and Calibration. 166
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Figure 2: The proposed LDDU framework consists of three components: (1) the transformer-base unimodal extractor
(2) a contrastive learning-based emotion space decomposition module , and (3) an uncertainty-aware fusion and
uncertainty calibration module.

Deep models often overconfidently assign high167

confidence to incorrect predictions, making168

uncertainty-aware learning essential to ensure con-169

fidence accurately reflects prediction uncertainty170

(Guo et al., 2017). The primary goal is to calibrate171

model confidence to match the true probability of172

correctness. There are two main approaches: cali-173

brated uncertainty (Guo et al., 2017) and ordinal or174

ranking-based uncertainty (Moon et al., 2020). Cal-175

ibration methods, such as histogram binning, tem-176

perature scaling, and accuracy versus uncertainty177

calibration (Zadrozny and Elkan, 2001; Guo et al.,178

2017; Krishnan and Tickoo, 2020), align predicted179

confidence with actual correctness. Meanwhile,180

ranking-based methods like Confidence Ranking181

Loss (CRL) (Moon et al., 2020) enforce accu-182

rate confidence rankings among correctly classified183

samples based on feature distinctiveness.184

Uncertainty-based Multimodal Fusion. Uncer-185

tainty learning enhances multimodal fusion across186

tasks. Subedar et al. (2019) employed Bayesian187

deep learning and AvU to guide fusion, while Xu188

et al. (2024) used temporal-invariant learning to re-189

duce redundancy and noise, improving robustness.190

But these methods incorporate uncertainty with-191

out calibration. In contrast, COLD (Tellamekala192

et al., 2023) leveraged GURs to model feature dis-193

tributions across modalities, quantifies modality194

contributions with variance norms, and integrated195

both calibrated and ranking-based uncertainty to 196

regulate fusion variance. However, there hasn’t 197

exploration of uncertainty-aware for MMER. 198

3 Methodology 199

3.1 Preliminary 200

MMER is typically modeled as a multi-label task. 201

Suppose Xv ∈ Rsv×dv , Xa ∈ Rsa×da and Xt ∈ 202

Rst×dt denote the features of the text, visual, and 203

audio modalities, respectively. In this context, 204

sv, sa, st denote the length of the feature se- 205

quences, while dv, da,dt is the dimension of each 206

features sequence. Given a multimodal sequential 207

dataset in joint feature space X v,a,t, denoted as 208

D = {(Xv
i , X

a
i , X

t
i , yi)}Ni=1, the objective of the 209

MMER is to learn the function F : D → Y . Here, 210

N is the size of dataset D and Xv
i , X

a
i , X

t
i repre- 211

sent the visual, audio and textual sequences of the 212

i-th sample. Y ∈ Rq represent the emotion space 213

containing q multiple coexisting emotion labels. 214

In this section, we describe LDDU framework, 215

which comprises three components (in Figure 2). 216

3.2 Uni-Modal Feature Extractor 217

Follow the work of Peng et al. (2024), we con- 218

duct experiments on CMU-MOSEI (Zadeh et al., 219

2018b) and M3ED (Zhao et al., 2022) datasets. In 220

these two benchmark, facial keypoints Xv via the 221

MTCNN algorithm (Zhang et al., 2016), acoustic 222
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features Xa with Covarep (Degottex et al., 2014)223

and text features Xt of sample X are extracted224

using BERT (Yu et al., 2020). To capture con-225

tent sequence dependencies, we employ nv, na,226

and nt Transformer layers as unimodal extractors,227

generating modality visual features Ov ∈ Rsv×dv ,228

audio features Oa ∈ Rsa×da , and text features229

Ot ∈ Rst×dt . Each modality Om is derived from230

its sequence data [om1 , . . . , omsm ], m ∈ {v, a, t}.231

3.3 Contrastive Disentangled Representation232

3.3.1 Emotion Space Modeling233

A primary challenge in emotion space modeling234

is the establishing emotion representations within235

a unified joint embedding space. Inspired by the236

Q-Former’s structure (Li et al., 2023), we introduce237

trainable emotion embeddings L = [l1, l2, ..., lq],238

where each li represents an emotion and q is the239

number of label. Because emotion-related cues240

may be distributed across different segments of the241

sequential data, we employ an attention mecha-242

nism to automatically extract relevant features for243

each emotion. Since modality-related features Om244

and L reside in different feature spaces, we use245

projection layers to compute the similarity amij be-246

tween frame’s feature omj and the label li. After247

obtaining the similarity matrix Am = {amij }, Y m is248

projected to extract modality-specific label-related249

features Zm ∈ Rq×dh , where dh is the dimension250

of modality-specific label-related features. This251

process could formalized as follows:252

amij =
exp(Proj(li)

TProj(omj ))∑sm
j′=1 exp(Proj(li)TProj(omj′ ))

(1)253

254

Zm = Linear(AmProj(Om)) (2)255

where Proj represents the projection layer.256

To facilitate the learning of emotion representa-257

tions L, we concatenate the multimodal features of258

i-th sample into Fdir = [Zv
i , Z

a
i , Z

t
i ] and process259

them with an MLP-based info classifier employ-260

ing sigmoid activation functions to generate the261

final prediction ŷdiri = [ŷdiri1 , . . . , ŷdiriq ]. The loss262

function Ldir is defined as follows:263

Ldir =
1

N

N∑
i=1

BCE(yi, ŷdiri ) (3)264

where BCE(.) is the BCE loss.265

Figure 3: In the latent emotion space, we decouple
emotion-related, modality-specific samples into sepa-
rate distributions and use CL to group samples of the
same category together while separating samples from
different categories.

3.3.2 Contrastive Distentangled Distribution 266

Modeling 267

This module is composed of distentangled distribu- 268

tion learning (DDL) and contrastive learning (CL). 269

As illustrated in Figure 3, our architecture incorpo- 270

rates disentangled representation learning (DRL) 271

(Wang et al., 2024b; Kingma, 2013) to establish 272

label-related features into latent probabilistic dis- 273

tribution in emotion space. Specifically, we model 274

multimodal emotion representations [Zv, Za, Zt] 275

as multivariate normal distributions N . For each 276

label-related features [Zv
i , Z

a
i , Z

t
i ], we leverage 277

an encoder (MLP in this paper) and two fully 278

connected layers to obtain the latent distributions 279

N (µv
i , σ

v
i ), N (µa

i , σ
a
i ) and N (µt

i, σ
t
i). where µt

i 280

represents the semantic features of the text modality 281

for emotion label i (Tellamekala et al., 2023) and 282

σt
i reflects the distribution region in latent space. 283

To ensure that the latent distribution N (µm
i , σm

i ) 284

accurately captures feature differences for each 285

label across modality m, we employ Contrastive 286

Learning (CL). CL could groups similar samples 287

together and enhances the model’s ability to dis- 288

tinguish between different classes (He et al., 2020; 289

Caron et al., 2020). Formally, given the variations 290

in latent distributions across labels and modalities, 291

we categorize them into 3q potential emotional dis- 292

tributions. For a batch of sB samples B, each sam- 293

ple generates 3q label-related and modality-specific 294

emotion distributions, totaling 3 × q × sB distri- 295

butions. Each distribution in B+ is considered a 296

positive sample if the related sample contains the 297

corresponding emotion. For each positive distribu- 298

tion e ∈ B+, we identify its positive set Pe(B) and 299

negative set Ne(B) based on labels. 300

Besides, we promote CL from the following 301

two perspectives. First, Caron et al. (2020) ob- 302
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serves that a larger batch size can enhance the net-303

work abilities by providing more diverse negative304

samples in CL. We introduce a queue Q of size305

sq to store the most recent sq emotion distribu-306

tions. Thus, the final positive and negative sets307

for each emotion distribution become Pe(B ∪ Q)308

and Ne(B ∪ Q), respectively. Besides, similarity309

calculations between samples must consider both310

the centers and variances of the decoupled distribu-311

tions. We represent the distribution e as follows:312

e =

(
µe,1

|µe|
, . . . ,

µe,dh/2

|µe|
,
σe,1
|σe|

, . . . ,
σe,dh/2

|σe|

)
(4)313

Finally, we introduce the SupCon loss (Khosla314

et al., 2020) to for each emotion distribution:315

Lscl(e,B+) =
−1

|Pe|
∑

e+∈Pe

log
ez(e,e

+/τ)∑
e′∈Te

ez(e,e
′)/τ

(5)316

where Te = Pe ∪ Ne, and z is the similarity func-317

tion between emotin distribution. To simplify the318

process, we calculated cosine similarity on the nor-319

malized distribution parameters:320

z(e1, e2) = eT1 e2 (6)321

The final contrastive loss for the entire batch is:322

Lscl =
∑
e∈B+

Lscl(e,B+) (7)323

3.4 Uncertainty Aware and Calibration324

3.4.1 Uncertainty-Awared Multimodal Fusion325

After modeling the emotional space, it’s crucial to326

integrate latent semantic features with the distri-327

bution uncertainty information. We use variance328

to represent the distribution uncertainty in latent329

space, as it reflects the degree of dispersion and330

distribution region. Meanwhile, the center feature331

represents the semantic features of a sample (Gao332

et al., 2024; Tellamekala et al., 2023; Xu et al.,333

2024). We hypothesize that when a sample has high334

aleatoric uncertainty, its semantic features become335

fuzzier, and the distribution region in latent space336

becomes more discriminative for emotion recogni-337

tion. Conversely, when aleatoric uncertainty is low,338

the semantic features are more discriminative, and339

the distribution region is narrower. Therefore, the340

fusion of center feature and variance should depend341

on the level of aleatoric uncertainty.342

Firstly, we introduce the i-th sample’s predic-343

tion ŷdiri of Info Classifier to quantify uncertainty.344

Kendall and Gal (2017) pointed out that aleatoric 345

uncertainty can be measured by the prediction dif- 346

ficulty of the sample. Specifically, if Zi correctly 347

classified by Info Classifier while Zj is misclassi- 348

fied and needs to be decoupled for further classifica- 349

tion. We infer that the j-th sample exhibits higher 350

aleatoric uncertainty(i.e., is less informative). Con- 351

sequently, the uncertainty can be represented as 352

d(ŷi
dir, yi), where ŷi

dir is the prediction of Zi. 353

Then, we integrate the distribution’s informa- 354

tion by fusing multimodal data. After decou- 355

pled, the samples are represented as latent distribu- 356

tions N
(
Ev,a,t,Mv,a,t

)
where Em=[µm

1 , ..., µm
q ] 357

and Mm=[σm
1 , ..., σm

q ] for each modality m. Since 358

Ev,a,t and Mv,a,t have different semantics, we im- 359

plement late fusion using gate network. Opera- 360

tionally, (Ev,Ea,Et) and (Mv,Ma,M t) are con- 361

catenated and passed through final classifier to ob- 362

tain the predictions ŷi
µ and ŷi

σ. Semantic mean 363

vector and the variance are dynamically fused ac- 364

cording to uncertainty score: 365

ŷfnli = d(ŷdiri , yi)ŷ
µ
i + (1− d(ŷdiri , yi))ŷ

σ
i (8) 366

For a batch of data with size sB , the loss function 367

is as follows: 368

Lcls =
1

|B|
∑
i∈B

BCE(ŷfnli , yi) (9) 369

3.4.2 Uncertainty Calibration 370

In this section, we impose ordinality constraint 371

(Moon et al., 2020) to model the relationship be- 372

tween uncertainty and distribution variance. When 373

well-calibrated, the uncertainty score acts as a 374

proxy for the correctness likelihood of its predic- 375

tion for the latent distribution. In other words, well- 376

calibrated uncertainty indicates the expected esti- 377

mation error, i.e., how far the predicted emotion is 378

expected to lie from its ground truth. 379

It has been confirmed that: frequently forgotten 380

samples are harder to classify, while easier sam- 381

ples are learned earlier in training (Toneva et al., 382

2018; Geifman et al., 2018). As a result, to repre- 383

sent the correctness likelihood values, we use the 384

proportion of samples ri correctly predicted by the 385

Info Classifier during the SGD process (Shamir and 386

Zhang, 2013; Xu et al., 2024). 387

In our approach, the variance σi = (σv
i , σ

a
i , σ

t
i) 388

and the prediction error d(ŷdiri , yi) from the Info 389

Classifier are strongly correlated with the correct- 390

ness likelihood values of emotion classification. 391
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Thus, the calibration can be formulated as follows:392

argmax Corr(rk( 1
∥σi∥2

, 1
∥σj∥2

),rk(ri,rj)) (10)393

argmax Corr(rk(1−di,1−dj),rk(ri,rj)) (11)394

where rk is ranking and Corr is correlation. When395

the sample contain high uncertainty, the latent396

distribution variance σi and the prediction error397

di = d(ŷdiri , yi) tend to be large, while ri tend398

to be small. Conversely, when the uncertainty is399

small, these features are reversed.400

For a batch of size sB , we we compute the vari-401

ance norm S, distance vector D, and proxy vector402

R for each sample:403

S = [
1

||σ1||2
,

1

||σ2||2
, ..,

1

||σsB ||2
] (12)404

D = [1− d1, 1− d2, .., 1− dsB ] (13)405

R = [r1, r2, .., rsB ] (14)406

In order to establish the ranking constraints407

among S, D and R, we impose ordinality con-408

straints based on soft-ranking (Tellamekala et al.,409

2023; Bruch et al., 2019). Our method employs410

bidirectional KL divergence to assess mismatching411

between the softmax distributions of pairs (S,R)412

and (D,R). Consequently, ordinality calibration413

loss Locl can be calculated as follows:414

Locl =KL(PD||PR) +KL(PR||PD)415

+KL(PS ||PR) +KL(PR||PS) (15)416

where PD, PR, and PS represent the softmax dis-417

tributions of features S, R, and D, respectively.418

Overall, in the whole training process, the train-419

ing loss of LDDU is as follows:420

Ltotal = Lcls + λLocl + βLscl + γLdir (16)421

where λ, β, and γ are hyperparameters controlling422

the weight of each regularization constraint.423

4 Experiments424

4.1 Experimental Setup425

Datasets and Evaluation Metrics. We validate426

the proposed method LDDU on two benchmark:427

CMU-MOSEI (Zadeh et al., 2018b) and M3ED428

(Zhao et al., 2022). CMU-MOSEI consists of429

23,453 video segments across 250 topics. Each430

segment is labeled with multiple emotions, includ-431

ing happiness, sadness, anger, disgust, surprise,432

and fear. The M3ED dataset, designed for dia-433

log emotion recognition, offers greater volume and434

diversity compared to IEMOCAP (Busso et al., 435

2008) and MELD (Poria et al., 2018). It includes 436

24,449 segments, capturing diverse emotional inter- 437

actions with seven emotion categories: the above 438

six emotions with neutral. Following previous work 439

(Zhang et al., 2021, 2022; Wu et al., 2020; Peng 440

et al., 2024), in the experiments, we evaluate model 441

performance using accuracy (Acc), precision (P), 442

recall (R), and micro-F1 score (miF1). 443

Baselines. We compare the LDDU model with 444

two types methods: traditional multimodal meth- 445

ods and multimodal large language model (MLLM) 446

methods. Traditional methods include DFG (Zadeh 447

et al., 2018a), RAVEN (Wang et al., 2019), MulT 448

(Tsai et al., 2018), MISA (Hazarika et al., 2020), 449

MMS2S (Zhang et al., 2020), HHMPN (Zhang 450

et al., 2021), TAILOR (Zhang et al., 2022), AMP 451

(Wu et al., 2020), and CARAT (Peng et al., 2024). 452

Furthermore, given the significant success of 453

MLLMs in multimodal tasks, we compare LDDU 454

with MLLMs such as GPT-4o (gpt-4o-2024-11-20) 455

(Achiam et al., 2023), Qwen2-VL-7B (Wang et al., 456

2024a), and AnyGPT (Zhan et al., 2024). They re- 457

spectively correspond to the open-source paradigm, 458

closed-source paradigm, and the omni large lan- 459

guage model (LLM). We conduct experiments us- 460

ing raw video clips (treated as unalgined data) from 461

the CMU-MOSEI dataset, maintaining consistent 462

prompts and experimental settings with the frame- 463

work proposed by Lian et al. (2024). Details of the 464

prompts are provided in Appendix A.3. 465

In addition, we conducted a comprehensive 466

comparison between the LDDU and existing 467

multi-label classification (MLC) approaches in- 468

cluding both classical methods: BR (Boutell 469

et al., 2004), LP (Tsoumakas and Katakis, 2008), 470

CC (Read et al., 2011); and single-modality meth- 471

ods: SGM (Yang et al., 2018), LSAN (Xiao et al., 472

2019), ML-GCN (Wu et al., 2019), please see Ap- 473

pendix A.2 and Table 4 for full comparisons. 474

Implementation Details. We set λ = 0.1, β = 475

0.8, and γ = 0.1, with a batch size of 128. The 476

learning rate is 2e-5 with 30 epochs. More details 477

of all experiences are shown in Appendix A.1. 478

4.2 Experimental Results 479

Main Results. In Table 1 and Table 2, we com- 480

pare the performance of our method with vari- 481

ous baseline approaches on the CMU-MOSEI and 482

M3ED datasets. Different from most baseline meth- 483

ods listed in Table 1, which use the CTC (Graves 484
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Table 1: Performance comparison on the CMU-MOSEI dataset under aligned and unaligned settings. As LLM-based
methods process raw video segments, aligned results are unavailable. Best results are red , second-best are blue .
A full comparison between multimodal methods, MLLMs and classical methods is in Appendix A.2.

Approaches Methods Aligned Unaligned
Acc P R miF1 Acc P R miF1

LLM-based
GPT-4o —- —- —- —- 0.352 0.583 0.252 0.196

Qwen2-VL-7B —- —- —- —- 0.422 0.520 0.355 0.355
AnyGPT —- —- —- —- 0.134 0.251 0.445 0.321

Multimodal

DFG 0.396 0.595 0.457 0.517 0.386 0.534 0.456 0.494
RAVEN 0.416 0.588 0.461 0.517 0.403 0.633 0.429 0.511

MulT 0.445 0.619 0.465 0.501 0.423 0.636 0.445 0.523
MISA 0.430 0.453 0.582 0.509 0.398 0.371 0.571 0.450

MMS2S 0.475 0.629 0.504 0.516 0.447 0.619 0.462 0.529
HHMPN 0.459 0.602 0.496 0.556 0.434 0.591 0.476 0.528
TAILOR 0.488 0.641 0.512 0.569 0.460 0.639 0.452 0.529

AMP 0.484 0.643 0.511 0.569 0.462 0.642 0.459 0.535
CARAT 0.494 0.661 0.518 0.581 0.466 0.652 0.466 0.544
LDDU 0.494 0.647 0.531 0.587 0.496 0.638 0.543 0.587

Table 2: Performance comparison on the M3ED dataset.

Methods Acc P R miF1
MMS2S 0.645 0.813 0.737 0.773
HHMPN 0.648 0.816 0.743 0.778
TAILOR 0.647 0.814 0.739 0.775

AMP 0.654 0.819 0.748 0.782
CARAT 0.664 0.824 0.755 0.788
LDDU 0.690 0.843 0.774 0.807

et al., 2006) module to align non-aligned datasets,485

LDDU performs greatly better on unaligned data486

without relying on the CTC module. The emo-487

tion extraction network in LDDU directly extracts488

modality-specific features related to the labels from489

the sequence data, unaffected by the varying se-490

quence lengths across modalities.491

Based on Tables 1 and 2, we can draw the fol-492

lowing observations: (1) LDDU outperforms other493

baseline methods on more crucial metrics such494

as mi-F1 and accuracy(acc) although recall and495

precision scores are not the highest on the CMU-496

MOSEI dataset. Notably, LDDU achieved bal-497

anced performance on both aligned and unaligned498

datasets, with unaligned’s accuracy improved by499

3% and unaligned’s mi-F1 increased by 4.3%. This500

demonstrates that by modeling the emotional space501

rather than sequence features, LDDU can better502

capture emotion-related features. (2) LDDU also503

achieved significant improvements across all met-504

rics on the M3ED dataset, confirming the robust-505

ness of our model. (3) TAILOR, CAFET, and506

the proposed LDDU approach performed better by507

separating features, emphasizing the importance508

of considering each modality’s unique contribu-509

tions to emotion recognition in MMER tasks. (4)510

Table 3: Ablation tests on the aligned CMU-MOSEI.

Approach Acc P R miF1
(1) w/o ESM 0.478 0.663 0.510 0.577
(2) w/o Ldir 0.491 0.656 0.521 0.580
(3) w/o Lscl 0.483 0.679 0.498 0.575
(4) w/o queue Q 0.487 0.655 0.487 0.578
(5) w/o variance µ 0.483 0.628 0.536 0.578
(6) w/o center σ 0.492 0.647 0.527 0.581
(7) w/o Locl 0.483 0.672 0.510 0.580
(8) ow Corr(S, R) 0.484 0.641 0.532 0.581
(9) ow Corr(D, R) 0.490 0.647 0.533 0.584
(10) ow Corr(D, S) 0.492 0.633 0.538 0.582
(11) Lcls w/o ŷµ 0.485 0.666 0.510 0.578
(12) Lcls w/o ŷσ 0.494 0.622 0.543 0.580
(12) LDDU 0.494 0.647 0.531 0.587

While MLLMs are excellent at video understand- 511

ing, the proposed method significantly outperforms 512

MLLMs. This maybe because their ability to cap- 513

ture finer-grained emotional information is limited 514

and smaller models outperform them in this regard. 515

Ablation Study. To elucidate the significance of 516

each component of proposed methods, we com- 517

pared LDDU against various ablation variants. As 518

shown in Table 3, where "w/o" means removing, 519

"ow" denotes only existing, "w/o ESM" denotes 520

removing trainable feature L. "w/o σ, µ" respec- 521

tively means only consider variances or centers 522

during CL, "w/o Corr(S,R), Corr(D,R)" denotes ig- 523

noring the calibration of (S,R) or (D,R), "Lcls w/o 524

ŷσ, ŷµ" means final classification without variance 525

or semantic center features. We could find: 526

1) Effect of emotion space modeling (ESM). We 527

replaced ESM with MLP-based attention in (1) 528

and dropped the loss Ldir in (2). Both of them 529

illustrated the trainable features L with supervisory 530
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(a). t-SNE with CL (b). t-SNE without CL

Figure 4: The t-SNE visualization of embedding with
/without CL datasets. Different colors represent differ-
ent label-related modality-special features of samples.

signals from Ldir can learn more distinguishable531

features of raw multimodel sequences532

2) Effect of contrastive learning. We compared533

LDDU with the variants without Lscl in (3). Per-534

formance degradation across metrics confirms the535

essential role of CL in decoupling. (4) is better536

than (3), which illustrates a larger batch size can en-537

hance CL. Further, (5) and (6) demonstrates when538

computing similarity between distributions, both539

mean value and variance should be considered.540

3) Effect of uncertainty calibration. Compared541

with variants without cilbration, the implementa-542

tions of constraints (8, 9, 10, 12) show enhanced543

performance. This calibration aligned the variance544

with uncertainty, generating better predictions.545

4) Effect of uncertainty-awared fusion. To mod-546

eling aleatoric uncertainty, we integrated the se-547

mantic features with the distribution’s regional in-548

formation. (11) and (12) illustrates that both of549

them contributes to the final classification.550

4.3 Further Analysis551

Visualization of Emotion Distribution. To eval-552

uate the effectiveness of Contrastive Learning (CL),553

we used t-SNE (van der Maaten and Hinton, 2008)554

to visualize latent emotion distributions from the555

CMU-MOSEI test set, excluding samples without556

specific emotions. As shown in Fig. 4, panels (a)557

and (b) display distributions with and without CL,558

respectively. Without CL, a clear modality gap559

exists and intra-modality distributions lack distinc-560

tiveness. With CL, the 3 × nl emotion distribu-561

tions across labels and modalities are distinctly562

separated, enhancing their distinguishability. Con-563

sequently, LDDU leveraging CL can more effec-564

tively learn emotion distributions across modalities565

within the joint emotional space, with each cluster566

representing a specific emotion.567

Figure 5: The case of emotion recognition by multiple
methods. Visual and acoustic modalities revealed a
shift from sadness to anger, while the textual modality
explicitly indicated anger-related expressions.

Case Study. To validate LDDU’s effectiveness, 568

Figure 5 illustrates a representative case where vi- 569

sual/acoustic modalities indicate a transition from 570

sadness to anger, while textual modality explicitly 571

signals anger. While all methods accurately de- 572

tected sadness and anger, TAILOR and CARET 573

falsely predicted disgust due to its ambiguous emo- 574

tional cues in overlapping scenarios. In contrast, 575

LDDU effectively modeled emotion-specific uncer- 576

tainties through latent space Gaussian distributions 577

(distance vector D’s value: sad: 0.23, anger: 0.41, 578

disgust: 0.82). We further computed emotion cor- 579

relation matrices (M1–M3 for methods, M0 for 580

ground truth) and measure their cosine similarities 581

with M0: LDDU achieved 96.7% (vs. 93.3% for 582

TAILOR, 96.1% for CARET), demonstrating su- 583

perior capability in capturing inter-emotion depen- 584

dencies. More cases are shown in Appendix A.5. 585

5 Conclusion 586

We propose LDDU, a framework that captures 587

aleatoric uncertainty in MMER through latent emo- 588

tional space probabilistic modeling. By disentan- 589

gling semantic features and uncertainty using Gaus- 590

sian distributions, LDDU mitigates ambiguity aris- 591

ing from variations in emotional intensity and over- 592

lapping emotions. Furthermore, an uncertainty- 593

aware fusion module adaptively integrates multi- 594

modal features based on their distributional uncer- 595

tainty. Experimental results on CMU-MOSEI and 596

M3ED demonstrate that LDDU achieves state-of- 597

the-art performance. This work pioneers probabilis- 598

tic emotion space modeling, providing valuable in- 599

sights into uncertainty-aware affective computing. 600
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Limitation601

While LDDU demonstrates promising performance602

in MMER, several problems remain to discuss.603

LDDU models emotion uncertainty using Gaus-604

sian distributions in the latent emotion space, ef-605

fectively capturing inherent ambiguity. However, it606

does not explicitly utilize emotion intensity labels,607

as provided in the CMU-MOSEI dataset (quantized608

into 0, 0.3, 0.6, and 1.0 levels). While this omis-609

sion ensures fair comparisons with prior work (e.g.,610

TAILOR, CARET), it also limits LDDU’s ability to611

precisely distinguish emotions of varying intensi-612

ties. As a result, the model may be less effective in613

disambiguating overlapping emotions, particularly614

in tasks requiring fine-grained intensity differen-615

tiation. Integrating explicit intensity supervision616

in future iterations could further refine LDDU’s617

predictive capability.618

Ethical Considerations619

Ethical considerations are crucial in multimodal620

emotion recognition research, particularly with sen-621

sitive human data like emotional expressions. In622

our study, we ensure that all datasets, including623

CMU-MOSEI and M3ED, are publicly available624

and anonymized to protect individuals’ privacy.625

While our method advances emotion recogni-626

tion in areas such as human-computer interaction,627

we acknowledge the potential for misuse, such as628

manipulation or surveillance. We emphasize the re-629

sponsible use of these technologies, ensuring they630

are deployed in contexts that respect privacy.631

Additionally, emotional expressions vary across632

cultures and individuals, and our model may not633

fully capture this diversity. We recommend expand-634

ing datasets to include a wider range of cultural635

contexts to avoid biases and misinterpretations.636

Finally, we commit to transparency by making637

our code publicly available for further scrutiny and638

improvement, ensuring our research aligns with639

ethical principles and benefits society.640
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A Appendix923

A.1 Implementation Details924

We set λ = 0.1, β = 0.8, and γ = 0.1, with a925

batch size of 128. For the uni-modal extraction926

network, each Transformer consists of 3 layers927

(la = lv = lt = 3). The hidden dimensions are928

256 for feature Y and 128 for feature Z. The latent929

emotion distribution has a dimension of 64 for both930

the distribution centers and variance vectors. The931

contrastive learning queue Q is sized at 8192. The932

number of labels (q) is 6 for CMU-MOSEI and 7933

for M3ED. We optimize all model parameters using934

the Adam optimizer (Kingma, 2014) with a learn-935

ing rate of 2× 10−5 and a cosine decay schedule936

with a warm-up rate of 0.1. All experiments are937

conducted on a single GTX A6000 GPU using grid938

search.939

A.2 More Compared Baselines940

Despite the advancements in LLM-based and941

multimodal methods, we conducted a compre-942

hensive and comparative analysis between the943

LDDU model and existing multi-label classifica-944

tion (MLC) approaches. This comparison includes945

both classical methods (BR (Boutell et al., 2004),946

LP (Tsoumakas and Katakis, 2008), CC (Read947

et al., 2011)) and single-modality methods (SGM948

(Yang et al., 2018), LSAN (Xiao et al., 2019), ML-949

GCN (Wu et al., 2019)). The experimental results950

are presented in Table 4.951

A.3 Prompts of MLLM952

In this study, we evaluated three multimodal mod-953

els (GPT-4o, Qwen2-VL-7B, and AnyGPT), using954

video clips with an average duration of 7–8 seconds.955

GPT-4o and Qwen2-VL-7B exhibit strong visual956

understanding capabilities, representing closed-957

source and open-source multimodal large language958

models (MLLMs), respectively. AnyGPT is a ver-959

satile any-to-any MLLM capable of processing960

images, text, and audio. Since all these MLLMs961

adopt end-to-end architectures, we ensured com-962

putational efficiency and consistency by uniformly963

sampling 8 frames per video clip as input for in-964

ference. The specific prompts designed for each965

model, including task descriptions and format re-966

quirements, are detailed in Figure 6.967

A.4 Detailed Info of Uncertainty Caliration968

To enhance readers’ understanding of aleatoric un-969

certainty and uncertainty correction, we provide970

additional supplementary materials. 971

A.4.1 Aleatoric Uncertainty in MMER 972

Aleatoric uncertainty refers to the inherent vari- 973

ability or noise present in the data, arising from 974

factors beyond the model’s control. In the context 975

of emotion recognition, it stems from factors such 976

as variations in emotional intensity, individual dif- 977

ferences, and the blending of multiple emotions. 978

This form of uncertainty is intrinsic to the data 979

itself. 980

In multimodal emotion recognition (MMER), 981

aleatoric uncertainty becomes particularly evident 982

when the same emotion is expressed by different 983

individuals. For example, a person may express 984

happiness through a broad smile (visual modality) 985

but with a neutral tone of voice (audio modality), 986

reflecting differences in emotional intensity and 987

expression. These inconsistencies can introduce 988

conflicting cues that complicate the emotion recog- 989

nition process. Furthermore, datasets like CMU- 990

MOSEI also contain varying levels of emotion in- 991

tensity, further contributing to aleatoric uncertainty. 992

This type of uncertainty is not confined to emo- 993

tion recognition alone. In computer vision (CV), 994

it can manifest as blurry faces or imprecise object 995

localization, introducing uncertainty in tasks like 996

object detection. In natural language processing 997

(NLP), aleatoric uncertainty arises from ambigui- 998

ties in language, where word meanings can shift 999

based on contextual factors. In all these scenar- 1000

ios, probabilistic models are employed to capture 1001

and account for such inherent uncertainty, thereby 1002

enhancing the robustness of systems in diverse, 1003

real-world environments. 1004

A.4.2 Uncertainty Calibration 1005

Uncertainty Calibration. Uncertainty Calibra- 1006

tion refers to the process of adjusting model predic- 1007

tions to more accurately reflect the true uncertainty 1008

associated with them. In machine learning and 1009

deep learning, models often provide predictions ac- 1010

companied by an associated uncertainty; however, 1011

these predictions are not always well-calibrated. 1012

In other words, the model may exhibit excessive 1013

confidence in certain predictions, even when the 1014

true uncertainty is high, or it may fail to properly 1015

estimate its own uncertainty. 1016

The primary objective of uncertainty calibration 1017

is to align the predicted uncertainty with the ac- 1018

tual likelihood of a prediction being correct. In 1019

practical terms, this means that if a model is 90% 1020
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Table 4: Performance comparison on the CMU-MOSEI dataset under aligned and unaligned settings. As LLM-based
methods process raw video segments, aligned results are unavailable. Best results are red , second-best are blue .

Approaches Methods
Aligned Unaligned

Acc P R miF1 Acc P R miF1

LLM-based
GPT-4o —- —- —- —- 0.352 0.583 0.252 0.196

Qwen2-VL-7B —- —- —- —- 0.422 0.520 0.355 0.355
AnyGPT —- —- —- —- 0.134 0.251 0.445 0.321

Classical
BR 0.222 0.309 0.515 0.386 0.233 0.321 0.545 0.404
LP 0.159 0.231 0.377 0.286 0.185 0.252 0.427 0.317
CC 0.225 0.306 0.523 0.386 0.235 0.320 0.550 0.404

Deep-based
SGM 0.455 0.595 0.467 0.523 0.449 0.584 0.476 0.524
LSAN 0.393 0.550 0.459 0.501 0.403 0.582 0.460 0.514

ML-GCN 0.411 0.546 0.476 0.509 0.437 0.573 0.482 0.524

Multimodal

DFG 0.396 0.595 0.457 0.517 0.386 0.534 0.456 0.494
RAVEN 0.416 0.588 0.461 0.517 0.403 0.633 0.429 0.511

MulT 0.445 0.619 0.465 0.501 0.423 0.636 0.445 0.523
MISA 0.430 0.453 0.582 0.509 0.398 0.371 0.571 0.450

MMS2S 0.475 0.629 0.504 0.516 0.447 0.619 0.462 0.529
HHMPN 0.459 0.602 0.496 0.556 0.434 0.591 0.476 0.528
TAILOR 0.488 0.641 0.512 0.569 0.460 0.639 0.452 0.529

AMP 0.484 0.643 0.511 0.569 0.462 0.642 0.459 0.535
CARAT 0.494 0.661 0.518 0.581 0.466 0.652 0.466 0.544
LDDU 0.494 0.647 0.531 0.587 0.496 0.638 0.543 0.587

Figure 6: Prompts of MLLMs.

13



confident in its prediction, it should be correct ap-1021

proximately 90% of the time over a large number1022

of predictions. This calibration process is particu-1023

larly critical in domains such as emotion recogni-1024

tion, medical diagnosis, and autonomous driving,1025

where accurate uncertainty estimates are essential1026

for reliable decision-making. Several methods can1027

be employed for uncertainty calibration, including1028

temperature scaling, Platt scaling, and Bayesian1029

approaches.1030

Ordinality Constraint. Ordinality Constraint1031

refers to a form of uncertainty calibration that is1032

based on the ranking of classes. This method as-1033

sumes that the relationship between classes or la-1034

bels follows a natural ordinal structure, where la-1035

bels have an inherent order. For instance, in senti-1036

ment analysis, labels such as "very negative," "neg-1037

ative," "neutral," "positive," and "very positive"1038

exhibit a natural progression from negative to pos-1039

itive sentiment. Ordinality constraints ensure that1040

the model’s predicted probabilities reflect this rank-1041

ing, adjusting the output so that predictions align1042

with the ordered nature of the classes.1043

In our proposed approach, the ordinality con-1044

straint is applied to rank the uncertainty of predic-1045

tions across different labels. By incorporating this1046

constraint, we ensure that the model not only out-1047

puts probabilities but also ranks the classes in a1048

manner that respects their inherent order.1049

A.4.3 Uncertainty Caliration in LDDU1050

Since networks learning variance and mean vectors1051

share similar structures, variance and mean tend to1052

converge and surface feature space collapse with-1053

out constraints. The key is to ensure that variance1054

vectors accurately reflect uncertainty level. We in-1055

troduce an ordinality (ranking) constraint (Moon1056

et al., 2020) to solve this problem. As shown in1057

Equation 1, ordinality constraint requires predicted1058

confidence κ should correspond to the probabil-1059

ity P of correct prediction. In our approach, the1060

variance σi = (σv
i , σ

a
i , σ

t
i) and the prediction error1061

d(ŷdiri , yi) from the Info Classifier jointly represent1062

the sample’s confidence. The main challenge is es-1063

tablishing reliable proxy features for P . Inspired1064

by CRL (Xu et al., 2024), we use the proportion of1065

samples ri correctly predicted by the Info Classifier1066

during the SGD (Shamir and Zhang, 2013) process1067

as a proxy for P . Empirical findings from Toneva1068

et al. (2018) and Geifman et al. (2018) support our1069

hypothesis: frequently forgotten samples are harder1070

to classify, while easier samples are learned earlier 1071

in training. 1072

When the sample contain high uncertainty, the 1073

latent distribution variance σi and the prediction 1074

error di = d(ŷdiri , yi) tend to be large, while ri 1075

tend to be small. Conversely, when the uncertainty 1076

is small, these features are reversed. Therefore, the 1077

ordinality constraint is: 1078

max Corr(rk(
1

||σi||2
,

1

||σj ||2
), rk(ri, rj))

(17)

1079

argmax Corr(rk(1− di, 1− dj), rk(ri, rj))
(18)

1080

where Corr represents correlation and rk demotes 1081

ranking. In this paper, we impose ordinality con- 1082

straints based on soft-ranking(Tellamekala et al., 1083

2023; Bruch et al., 2019). While (Tellamekala et al., 1084

2023) uses KL divergence to measure mismatching 1085

of softmax distributions and (Bruch et al., 2019) ap- 1086

plies softmax cross-entropy for ordinal regression, 1087

our method employs bidirectional KL divergence 1088

to assess mismatching between the softmax distri- 1089

butions 1090

For a batch of size sB , we compute the variance 1091

norm S, distance vector D, and proxy vector R for 1092

each sample: 1093

S = [
1

||σ1||2
,

1

||σ2||2
, ..,

1

||σsB ||2
] (19) 1094

D = [1− d1, 1− d2, .., 1− dsB ] (20) 1095

R = [r1, r2, .., rsB ] (21) 1096

Inspired by (Tellamekala et al., 2023; Bruch 1097

et al., 2019), we impose ordinality constraints 1098

based on soft-ranking. While (Tellamekala et al., 1099

2023) uses KL divergence to measure mismatching 1100

of softmax distributions and (Bruch et al., 2019) ap- 1101

plies softmax cross-entropy for ordinal regression, 1102

our method employs bidirectional KL divergence 1103

to assess mismatching between the softmax distri- 1104

butions of pairs (S,R) and (D,R). Consequently, 1105

ordinality calibration loss Loclcan be calculated as 1106

follows: 1107

Locl =KL(PD||PR) +KL(PR||PD) 1108

+KL(PS ||PR) +KL(PR||PS) (22) 1109

where PD, PR, and PS represent the softmax dis- 1110

tributions of features S, R, and D, respectively. 1111

In summary, the total training loss is as follows: 1112

Ltotal = Lcls + λLocl + βLscl + γLdir (23) 1113
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Figure 7: The case of emotion recognition by multiple
methods.

where λ, β, and γ are hyperparameters controlling1114

the strength of each regularization constraint.1115

A.5 More Cases for Case Study1116

Another case is shown in Figure 7.1117
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