
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2025

TOWARDS A COMPLETE LOGICAL FRAMEWORK
FOR GNN EXPRESSIVENESS

Anonymous authors
Paper under double-blind review

ABSTRACT

Designing expressive Graph neural networks (GNNs) is an important topic in
graph machine learning fields. Traditionally, the Weisfeiler-Lehman (WL) test
has been the primary measure for evaluating GNN expressiveness. However, high-
order WL tests can be obscure, making it challenging to discern the specific graph
patterns captured by them. Given the connection between WL tests and first-order
logic, some have explored the logical expressiveness of Message Passing Neural
Networks. This paper aims to establish a comprehensive and systematic rela-
tionship between GNNs and logic. We propose a framework for identifying the
equivalent logical formulas for arbitrary GNN architectures, which not only ex-
plains existing models, but also provides inspiration for future research. As case
studies, we analyze multiple classes of prominent GNNs within this framework,
unifying different subareas of the field. Additionally, we conduct a detailed ex-
amination of homomorphism expressivity from a logical perspective and present a
general method for determining the homomorphism expressivity of arbitrary GNN
models, as well as addressing several open problems.

1 INTRODUCTION

Graph Neural Networks (GNNs) are the dominant approaches for learning graph-structured data and
have achieved remarkable success over the past few years. Among them, Message Passing Neural
Networks (MPNNs) (Kipf & Welling, 2016b) are prominent GNN models that learn node and graph
representations by aggregating information from neighbors. However, a noticeable drawback of
GNNs lies in their limited expressive power. Xu et al. (2018); Morris et al. (2019) discovered that
the separation power of MPNNs is inherently restricted by 1-dimensional Weisfeiler-Lehman (1-
WL) test. Subsequently, many studies have focused on enhancing expressiveness and designing
more powerful GNN models using the k-WL framework as a metric.

While the k-WL hierarchy offers a systematic measure of GNN expressiveness that increases with
k, it remains somewhat limited. First, it lacks interpretability. Despite 1-WL being a relatively
straightforward procedure which aggregates neighborhood information, it is hard to understand what
k-WL actually learns and how it surpasses (k − 1)-WL. Second, WL tests are arguably too coarse
to evaluate the expressive power of GNN models (Zhang et al., 2024; Morris et al., 2022; Puny
et al., 2023): many works (Qian et al., 2022; Frasca et al., 2022) only provide loose upper bounds
of expressiveness of their proposed models in terms of k-WL and most efficient GNNs are only
proved to be more expressive than 1-WL by constructing specific example graphs (Zhang & Li,
2021; Bevilacqua et al., 2021; Zhang et al., 2023).

Apart from the WL hierarchy, some works systematically study GNN expressivity from various per-
spectives. For instance, Zhang et al. (2024) identified all substructures captured by several popular
GNN models. Xu & Zou (2024) examined the approximate inference capabilities of popular GNN
models. These works, although provide novel insights about GNN expressivity, still lack extend-
ability: they do not provide a general method for analyzing the expressiveness of arbitrary GNN
models using their theoretical framework. Thus, considerable effort is required when considering
novel GNN variants.

To address these limitations, this paper studies GNN expressivity from a logical perspective. Previ-
ous research, such as Barceló et al. (2020), investigated the logical expressivity of MPNNs, while
Huang et al. (2024) explored the logical expressivity of a specific class of GNN models for link

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2025

prediction in knowledge graphs. However, these works study MPNNs and other GNN variants sepa-
rately, leaving many popular models unexamined. Additionally, there still lacks a unified framework
for assessing the logical expressivity of general GNN models.

Contributions. This paper presents a novel framework for assessing the logical expressivity of
arbitrary GNN models, provided they can be represented through a series of combination and ag-
gregation operations. We present a method for constructing the set of logical formulas captured by
these GNN models. Using this framework, we describe the logical expressivity of popular GNN
models in terms of graph-level, node-level, and link-level predictions. Furthermore, we demonstrate
how several key topics in GNN expressivity, such as homomorphism expressivity, expressivity com-
parisons, and estimating WL upper bounds, can be effectively addressed by leveraging the logical
expressivity results present in this study.

2 BACKGROUND

Notations and definitions. We use {} to denote sets and use {{}} to denote multisets. The index
set is denoted as [n] = {1, ..., n}. In this paper we consider finite, directed graphs with node and
edge labels. Let G = (VG, EG) be a graph where VG denotes the set of nodes in G and EG the set of
edges. ℓ denotes the label function that maps nodes and edges to labels: ℓ(u) is the label of node u
and ℓ(u, v) the label of (u, v) provided that edge (u, v) exists. N (u) denotes the set of neighbors of
node u. We use symbols φ,ψ, ϕ, ... to refer to logic formulas.

In this paper we focus on logic formulas and GNN models that operate on nodes and more generally
node tuples. For instance, logic formulasψ(x1, x2, x3) and GNNs that learn representations for node
pairs. We define the order of logic formulas and GNNs to be the size of node tuples considered,
e.g. the order of ψ is 3 and the order of GNNs that compute representations for node pairs is 2. For
notation brevity we use u,v,x, ... ∈ Vk to refer to node tuples where k ∈ {0, 1, ...} is the order
of them, e.g. ψ(x1, x2, x3) is represented by ψ(x) where x is a 3-order tuple x = (x1, x2, x3).
Specially, if k = 1, then u ∈ V1 represents nodes in graphs; if k = 0, then u ∈ V0 simple
represents none.

Weisfeiler-Lehman tests and graph isomorphism. Two graphs G = (VG, EG) and H =
(VH , EH) are isomorphic, denoted as G ≃ H , if |VG| = |VH | and there exists a bijective per-
mutation π : VG → VH satisfying: (1) (u, v) ∈ EG ⇐⇒ (π(u), π(v)) ∈ EH for u, v ∈ VG,
(2) ℓ(u) = ℓ(π(v)) for u ∈ VG and (3) ℓ(u, v) = ℓ(π(u), π(v)) for (u, v) ∈ EG. Such π is an
isomorphism from G to H .

Weisfeiler-Lehman (WL) tests are a family of necessary tests for graph isomorphism. Apart from
some corner cases (Cai et al., 1992), they are effective and computationally efficient tests for graph
isomorphism. Its 1-dimensional variant iteratively aggregates the colors of nodes and their neigh-
bors and then injectively hashes them into new colors. The algorithms decides two graphs non-
isomorphic if the colors of two graphs are different.

Extending from classic WL tests, k-dimensional WL test (k-WL) refines colors for node tuples. At
beginning, the color of a node tuple u is set to be injective w.r.t. the structure of u, denoted as
atp(u). That is, for arbitrary two tuples u = (u1, ..., uk) and v = (v1, ..., vk), atp(u) = atp(v)
iff there exists an isomorphism π for the subgraphs induced by nodes in u,v and π(ui) = vi for
i = 1, ..., k. k-WL then recursively refines these colors until convergence. The details of WL tests
are discussed in Appendix B.

First-order Logic. We briefly introduce first-order logic and its relation with graphs. Consider
the following formula

φ(x) := Red(x) ∧ ∃y (E(x, y) ∧ Blue(y)) .

There are two variables var(φ) = {x, y} in the formulation of φ, and φ has exactly one free variable
free(φ) = {x} which is not bounded by any quantifiers ∃,∀. φ(x) is true iff x is Red and exists
a Blue y such that E(x, y) holds. It is straightforward to relate this formula with graphs: variables
x, y are corresponded nodes in graphs and the predicates Blue,Red are corresponded to node labels
while E is corresponded to edges. Therefore, φ(x) determines whether a node x is Blue and has a
Blue neighbor.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

In this paper we focus on a fragment of the first-order logic which allows the utilization of counting
quantifiers ∃≥N . The semantic of the quantifier ∃≥N where N ∈ {1, 2, ...} is to describe “there
exists no less than N variables such that“. For example, consider

ψ(x) := ∃≥2y (E(x, y) ∧ Blue(y)) .

ψ(x) is true iff x has 2 or more Blue neighbors. Such a family of logic formulas is called First-order
Logic with Counting quantifiers (FOC) and possesses following property.

Proposition 1. (Cai et al., 1992) For any graphs G,H , k-WL assigns the same color to G and H
iff all FOC formulas with no more than k variables classifies G and H the same.

Graph neural networks. GNNs can be generally described as graph functions that are invariant
under isomorphism. Most popular GNNs follow a color refinement paradigm Zhang et al. (2024) to
achieve such invariance: they maintain a representation for each node (or more generally, node tuple)
and iteratively updates these representations via combination and aggregation functions. Consider,
for example, message passing neural networks (MPNNs) Morris et al. (2019), which maintains a
representation χ(l)(x) for node x at layer l. The representations are updated using the following
formula:

χ(l+1)(x) = COM(l)
(
χ(l)(x),AGG(l)

({{
χ(l)(y) | y ∈ N (x)

}}))
,

where COM(l)(·, ·) represents an arbitrary function combining two representations and
AGG(l)({{·}}) represents an arbitrary permutation-invariant function that aggregates a multi-set of
representations.

There are also many other popular GNNs, which are listed in Appendix C. Generally, these models
maintain a representation χ(l)(u) for node tuple u at layer l. Let L be the total number of layers of
a GNN model. Then the representation χ(L)(u) for node tuple u at layer L serves as the output of
the GNN. Since this paper studies the relationship between GNNs and logic formulas, we focus on
GNNs with binary outputs (i.e., true and false).

3 LOGICAL EXPRESSIVITY OF GRAPH NEURAL NETWORKS

3.1 EQUIVALENT LOGIC SETS

Given a GNN model M and a logic formula φ, let χ(u) be the output of M for node tuples u ∈ Vk.
We say M captures φ if the results of φ are reproduced by M , Concretely, M captures φ if the
orders of M and φ are equal, and φ(u) = χ(u) holds for arbitrary graph G and u ∈ Vk. In this
paper, we attempt to answer the question: what logic formulas can GNN models capture? This leads
to the following definition of logical expressivity.

Definition 2. The equivalent logic set of a class of GNN models is a subset Φ of first order logic
formulas captured by the GNN models, which satisfies:

• The order of φ ∈ Φ is equivalent to the order of M : suppose GNNs compute k-order
representations, then φ ∈ Φ should also be k-order;

• For all φ ∈ Φ, there exists a GNN model M such that for arbitrary graphs G and u ∈ Vk
G,

φ(u) = true iff χ(u) = true where χ is the output of M ;

• Given any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , the GNN models cannot distinguish u,v iff
all logic formulas φ ∈ Φ classify u,v the same.

The equivalent logic sets therefore sufficiently describe the logical expressiveness of GNN models.
Moreover, similar to the homomorphism expressivity (Zhang et al., 2024), the metric of equivalent
logic sets is also quantitative, as we can identify distinct logic sets for different GNN models that
precisely describe their expressiveness , making it finer than metrics based on graph isomorphism
tests which only provide qualitative results. Moreover, the equivalent logic sets can also be used to
compare the expressivity of different GNNs: a class of GNN modelsM1 is more expressive thanM2

iff Φ2 ⊂ Φ1 where Φ1,Φ2 are the equivalent logic set of M1 and M2 respectively. Above all, the

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2025

significance of logical expressivity lies in its interpretability: we can not only describe what patterns
GNN models can capture, but also understand the expressivity gap of different models by studying
the difference of the corresponding equivalent logic sets.

3.2 DESCRIBING LOGICAL EXPRESSIVITY FOR GNNS

It is evident that the equivalent logic set of GNNs can be infinite. We utilize a recursive construction
procedure to describe such sets, similar to previous works. Consider the set of graded model logic
Φ (Barceló et al., 2020) which is the equivalent logic set of MPNNs for example . Φ is defined by
specifying how its elements are recursively constructed: to begin with, let Col(x) ∈ Φ where Col
represents node colors. Each element of Φ is either Col, or one of the following:

¬φ(x), φ(x) ∧ φ′(x), ∃≥N (E(x, y) ∧ φ(y)) ,

where φ,φ′ ∈ Φ and N is a positive integer. Therefore, we define Φ by specifying how its elements
are constructed, starting from the input node colors Col. For notation brevity we can abbreviate the
definition into one line:

φ(x) := ∃≥N (φ′(x) ∧ E(x, y)) | ¬φ′(x) | φ′(x) ∧ φ′′(x) | Col(x), (1)

with the convention that logic formulas φ together with its superscript variants φ′, φ′′ belong to the
same logic set Φ. Eq. 1 discovered by Barceló et al. (2020) describes the equivalent logic set of
MPNNs with undirected, homogeneous input graphs.

4 GENERAL AGGREGATE-COMBINE NETWORKS

To formally discuss the logical expressivity of arbitrary GNN models, we first summarize GNN
models including Message Passing Neural Networks (Xu et al., 2018), Higher-order GNNs (Mor-
ris et al., 2018), Subgraph GNNs (Bevilacqua et al., 2021), via a unified design paradigm namely
General Aggregate-Combine Neural Networks (GACNNs). The basic idea is straightforward: we
decompose the structure of different GNN layers into the same, principled aggregation and com-
bination function series, which further enable us to study the expressive power of different GNN
models via a unified framework.

Formally, let χ(l)(u) be the representation of a k-order node tuple u ∈ Vk computed by the l-
th GACNN layer. The (l + 1)-th GACNN layer takes χ(l)(u) as input and evaluates χ(l+1)(u)
for u ∈ Vk. χ(l+1)(u) is computed by χ(l)(u) via a sequence of two operations: combination
(denoted by COM) and aggregation (denoted by AGG) . COM(·, ·) represents an arbitrary function
combining two representations, and AGG({{·}}) represents a permutation-invariant function that
aggregates a multi-set of representations. The evaluation of a GACNN layer is decomposed into
a series of intermediate variables {χ(l)

1 , ..., χ
(l)
K }. Denoting χ(l)

0 := χ(l) and χ(l)
K+1 = χ(l+1), we

define either

χ
(l)
i (u) = COM

(l)
i

(
χ
(l)
j (u), χ

(l)
k (u)

)
, or χ

(l)
i (u) = AGG

(l)
i

({{
χ
(l)
j (v) | v ∈ N (u)

}})
,

(2)
where 1 ≤ j, k < i ≤ K + 1, COM

(l)
i is a combination function, AGG

(l)
i is an aggregation

function and N (u) is the generalized neighbor1 of u defined by the GNN model. Specially, we
denote by χ(0) = INIT(u) the initial representation of u. The above definition generally expresses
the aggregation and combination steps of GNN layers.

Example. To better introduce the idea of GACNNs we illustrate how MPNNs are described by the
above GACNNs construction steps. Consider MPNNs Xu et al. (2018) whose layers are defined by

χ(l+1)(x) = COM(l)
(
χ(l)(x),AGG(l)

({{
χ(l)(y) | y ∈ N(x)

}}))
,

1Certain GNNs generalize the concept of neighbor in graphs in different manners. For example, 2-FGNNs
define the neighbor of a node pair (x, y) to be N2-FGNN(x, y) = {((x, z), (z, y)) | z ∈ V}

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2025

Figure 1: Left: the structure of the example GACNN. Middle: the structure of the equivalent logic
sets, each corresponding to one of the nodes in the left GACNN. Right: the structure of the equivalent
logic sets of the left GACNN, regardless of the number of layers l.

where x, y denotes nodes in graphs. We can simply decompose one layer of MPNN into

χ(l+1)(x) = COM(l)
(
χ(l)(x), χ

(l)
1 (x)

)
,

χ
(l)
1 (x) = AGG(l)

({{
χ(l)(y) | v ∈ N(x)

}})
.

In this manner we describe the MPNN layers using the principled GACNN framework. To better
explain our framework, consider Local 2-GNN Zhang et al. (2024) whose layers are defined by

χ(l+1)(x, y) = COM(l)
(
χ(l)(x, y), AGG

(l)
1

({{
χ(l)(z, y) | z ∈ N (x)

}})
,

AGG
(l)
2

({{
χ(l)(x, z) | z ∈ N (y)

}}))
.

(3)

Similarly, we can decompose one layer of Local 2-GNN into

χ(l+1)(x, y) = COM
(l)
1

(
χ(l)(x, y), χ

(l)
1 (x, y)

)
, χ

(l)
1 (x, y) = COM

(l)
2

(
χ
(l)
2 (x, y), χ

(l)
3 (x, y)

)
,

χ
(l)
2 (x, y) = AGG

(l)
1

({{
χ(l)(z, y) | z ∈ N (x)

}})
, χ

(l)
3 (x, y) = AGG

(l)
2

({{
χ(l)(x, z) | z ∈ N (y)

}})
,

(4)
where COM

(l)
1 ,COM

(l)
2 are combination functions satisfying COM

(l)
1

(
χ,COM

(l)
2 (χ′, χ′′)

)
=

COM(l)(χ, χ′, χ′′) for arbitrary representations χ, χ′, χ′′. Appendix E.6 illustrates how we build
popular GNN variants using the GACNN framework.

Structure of GACNNs. The advantage of decomposing GNN layers into a series of the principled
aggregation and combination procedures is that we can unify the study of complicated GNN models
into the study of AGG and COM modules. Consider, for example, the Local 2-GNN model. The
evaluation of this model can be illustrated as Figure 1 (a), where the node χ(l+1) represents represen-
tations of all nodes at layer l+1 and is evaluated directly by χ(l)

1 and χ(l)
2 , which are again evaluated

by their children along the hierarchy until χ(l). It is evident that by explicitly expanding the evalu-
ation procedure of χ(l+1), the whole and complicated GNN computation structure is broken down
into small and simple pieces containing only two types of computation: let χp be a (parent) node,
then if χp only has one child χl, χp is evaluated in the form of χp = AGGp ({{χl}}); otherwise χp

has two children χl, χr and is evaluated by χp = COMp (χl, χr). In this manner we break down
the computation procedure of GNNs into principled aggregation and combination procedure, each
corresponding to a parent-children pair in the computation graph. We next investigate the logical
expressivity of GACNNs by studying the local property of such parent-children pairs.

5 ON THE EQUIVALENT LOGIC FRAGMENT OF GRAPH NEURAL NETWORKS

In this section we discuss the separation power and function approximation property of general
graph neural networks by providing the equivalent logic set of arbitrary GACNNs.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2025

5.1 EQUIVALENT LOGIC SETS FOR GENERAL COMPUTATION PROCEDURE

For now let us relax the utilization of GACNN models and focus purely on the two types of com-
putation units AGG and COM proposed in Section 4. Concretely, suppose a set {χ1, χ2, ..., χK}
where χi maps a k-order node tuple u to its color χi(u) and each χi for i ∈ [K] is defined by either
χi(u) = AGGi ({{χj(v) | v ∈ Ni(u)}}), χi(u) = COMi (χj(u), χk(u)), or χi(u) = INITi (u)
where i > j, k. We generalize the concept of equivalent logic sets to model the logical expressivity
of {χi}i∈[K].

Definition 3. The equivalent logic set of χi for i ∈ [K] defined above is a subset Φi of first order
logic formulas satisfying:

• The arity of φi ∈ Φi matches the output of χi;

• For all φi ∈ Φi, there exists a series of functions {COMj}j∈[i], {AGGj}j∈[i] and
{INITj}j∈[i] such that for arbitrary graphsG and u ∈ Vk

G, φi(u) = true iff χi(u) = true;

• Given any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , χi cannot distinguish u,v iff all logic
formulas φi ∈ Φi classify u,v the same.

With the above definition, we are ready to introduce our main result. We next show that it is possible
to find the equivalent logic sets of {χi}i∈[K].

Theorem 4. Given {χ1, χ2, ..., χK} defined above, there exists {Φ1, ...,ΦK} where Φi is the equiv-
alent logic set of χi for i ∈ [K]. Moreover, each φi ∈ Φi is given by:

• χi(u) = AGGi ({{χj(v) | v ∈ Ni(u)}})
⇐⇒ φi(u) := ∃≥Nv

(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u),

• χi(u) = COMi (χj(u), χk(u))

⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

• χi(u) = INITi (u) ⇐⇒ φi(u) := atp(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

where φ′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk.

Note that by denoting φi(u) := atp(u), we mean that φi ∈ Φi is capable of capturing all structures
of the subgraph induced by u. Concretely, for each possible color Col of atp, there exists a φCol(u)
that is true if and only the color of u assigned by atp is Col. 1 is the indicator: 1condition is true iff
the condition is satisfied.

Proof sketch. The theorem represents a major technical contribution, so we present a proof sketch
below. Our proof is divided into two parts, presented in Appendix E.1. First, we show that each
logic formula φi ∈ Φ1 can be captured by χi. Obviously, for i = 1, we only have φ1(u) :=
atp(u) | ¬φ′

1(u) | φ′
1(u) ∧ φ′′

1(u), which can be directly described by χ1(u) = INIT1(u). By
induction on i, we suppose all φj ∈ Φj for j < i can be captured by χj . Then, given arbitrary
φi, we provide a method to explicitly construct the corresponding {COMj}j∈[i], {AGGj}j∈[i] and
{INITj}j∈[i] functions so that φi is captured by χi.

In the next step, we prove that for any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , χi cannot distinguish
u,v iff all φi ∈ Φi classify u,v the same. By utilizing the fact that each φi ∈ Φi is captured by χi,
the first direction is proved. It is therefore only necessary to show χi(u) ̸= χi(v) ⇒ there exists
φi ∈ Φi satisfying φi(u) ̸= φi(v). Again, we prove by induction on i. Suppose for all j < i
the statement holds. We then enumerate all possible cases where χi(u) ̸= χi(v): for example if
χi(u) = COMi (χj(u), χk(u)), then there are three cases: (1) χj(u) ̸= χj(v), χk(u) = χk(v);
(2) χj(u) = χj(v), χk(u) ̸= χk(v), and (3) χj(u) ̸= χj(v), χk(u) ̸= χk(v). For each case, we
provide a method to construct φi ∈ Φi satisfying φi(u) ̸= φi(v), thus concluding the proof.

The results in Theorem 4 specifies the construction of equivalent logic sets for arbitrary computation
procedure built upon aggregation and combination functions, which is not only confined to graphs
and GACNN models. As the central finding of this paper, it enables the study of complicated models
built upon multiple heterogeneous layers and graphs containing node and edge labels. Consider

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 1 (b) for example: the equivalent logic set of each node in the computation graph in Figure 1
(a) only depends on its local neighbors. If the equivalent logic set Φ(l) of χ(l) is known, all logic sets
in Figure 1 (b) are specified by Theorem 4. This indicates that once the input representations can be
described by logic formulas, we are able to determine the logical expressivity of arbitrary functions
over the input representations built upon aggregation and combination functions.

5.2 MAIN RESULTS

In this section we formally describe our results for GACNNs. We assume a L-layer GACNN layers
defined in the form of Eq. 2. For layer l ∈ [L], let χ(l) be the output representation at layer l
and let

{
χ
(l)
1 , ..., χ

(l)
K

}
be the set of intermediate representations when computing χ(l+1) from χ(l).

Similarly, we denote Φ(l) to be the equivalent logic set of χ(l) and Φ
(l)
i the equivalent logic set of

χ
(l)
i for i ∈ [K]. Obviously Φ(l) and Φ

(l)
i for i ∈ [K] and l ∈ [L] are directly defined by Theorem

4, which directly leads to the following result:
Corollary 5. The equivalent logic set of L-layer GACNNs defined above is given by Φ(L).

Corollary 5 requires to specify the number of GACNN layers L. To derive a general result for all
GACNNs regardless of the number of layers, we propose the following proposition.

Proposition 6. Denote χ(l)
0 = χ(l), χ

(l)
K+1 = χ(l+1) and ΦK+1 = Φ0 = Φ, Let Φ(l), {Φ(L)

i }i∈[K]

be the equivalent logic sets defined above. Then, Φ =
⋃∞

L=0 Φ
(L) and Φi =

⋃∞
L=0 Φ

(L)
i for i ∈ [K]

are defined by

• χ
(l)
i (u) = AGG

(l)
i

({{
χ
(l)
j (x) | v ∈ Ni(u)

}})
for l ∈ [0,∞)

⇐⇒ φi(u) := ∃≥Nv
(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u),

• χ
(l)
i (u) = COM

(l)
i

(
χ
(l)
j (u), χ

(l)
k (u)

)
for l ∈ [0,∞)

⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u) | atp(u),

where φi, φ
′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk for i ∈ {0} ∪ [K + 1].

The difference between Proposition 6 and Theorem 4 is that we now allow the construction of
arbitrary number of GACNN layers. As long as GACNN layers share identical structure (which
holds for most GNN models), we can fully describe their logical expressivity by Φ regardless of the
number of layers. The structure of logic sets in Proposition 6 is illustrated in Figure 1 (c), where
each set is irrelevant to the number of layers l and is constructed recursively. Given any class of
GNN models, so long as we can break down a layer into a series of aggregation and combination
operations, we can formally define its logical expressivity using Proposition 6.

About graph-level readout. Generally, GNNs compute graph representations by aggregating
node tuple representations, i.e. χG = AGG

({{
χ(L)(u) | u ∈ Vk

}})
where L is the output layer.

We determine the equivalent logic set of χG below.
Proposition 7. The equivalent logic set ΦG of the graph representation χG defined above is given
by

φG := ∃≥N (φ(u)) | ¬ω′
G | ω′

G ∧ ω′′
G,

where φG, φ
′
G, φ

′′
G ∈ ΦG, and φ ∈ Φ is the equivalent logic set of χ(L).

The results in this section provide a general method for determining the equivalent logic set of arbi-
trary GACNNs. In the remaining of this paper, we utilize these results to discuss several important
topics implied by the logical expressiveness of GNNs.

6 IMPLICATIONS

With the complete description of logical expressivity for general GNN models in previous section,
we now discuss how these results provide novel insights into understanding modern GNN frame-

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2025

works. In this section, we highlight the significance of our theory by introducing important results
induced by our theory.

6.1 REGARDING EXISTING GNN MODELS

First of all, we apply our results to formally describe the logical expressivity of popular GNNs
including models for graph-level or node-level prediction MPNNs (Xu et al., 2018), Subgraph GNNs
(Bevilacqua et al., 2021; Qian et al., 2022), Local GNNs (Zhang et al., 2024), Folklore-type GNNs
(Zhang et al., 2024) and models for link prediction NBFNet (Zhu et al., 2021), SEAL (Zhang et al.,
2020), etc. The details of these models are in Appendix C. For brevity we make the convention
that the equivalent logic set of each class of GNNs is represented by Φ and denote by φ,φ′, ... ∈ Φ
the elements of Φ. To properly express Φ it is sometimes convenient to also define an auxiliary
logic set which helps with the explanation of Φ. We denote ψ,ψ′, ... ∈ Ψ as such auxiliary logic
sets. The result is summarized in Proposition 8. For notation brevity, since the terms in the form
of φ := ¬φ′ | φ′ ∧ φ′′ | atp emerges in the definition of all logic formulas, they are omitted in the
following description.
Proposition 8. The equivalent logic sets of GNN models can be separately defined as:

• MPNN: φ(x) := ∃≥Nx (φ′(y) ∧ E(x, y)), where E is the edge predicate.

• Subgraph GNN (weak):
φ(x) := ∃≥Ny (ψ(x, y)) , ψ(x, y) := ∃≥Nz (ψ′(x, z) ∧ E(z, y)).

• Subgraph GNN (strong):
φ(x) := ∃≥Ny (φ′(y) ∧ ψ(y, x)) , ψ(x, y) := ∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y).

• NBFNet: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y)).

• Local 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E(x, z) ∧ φ′(z, y)))

• 2-FGNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ φ′′(z, y)).

• SEAL (MPNN):
φ(x, y) := ∃≥Nz (ψ(x, z, y)) , ψ(x, z, y) := ∃≥Nw (ψ(x,w, y) ∧ E(w, z))).

• 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z)) | ∃≥Nz (φ′(z, y)).

Proof sketch. The proposition directly utilize the results in Proposition 6 to derive the equivalent
logic sets of popular GNNs. We present a proof sketch for Local 2-GNNs and illustrate the pipeline
for determining the expressivity of certain GNN models. First, we explicitly write down the GNN
layers as Eq. 3. Then, we transform the GNN layers into GACNN layers by decomposing each
layer into a sequence of AGG and COM functions, as in Eq. 4. By utilizing Proposition 6, we can
directly obtain the equivalent logic set of Local 2-GNNs as below. (Again, we omit the terms in the
form of φ := ¬φ′ | φ′ ∧ φ′′ | atp for notation brevity.)

φ(x, y) := φ′(x, y) | φ1(x, y), φ1(x, y) := φ2(x, y) | φ3(x, y),

φ2(x, y) := ∃≥Nz(φ(z, y) ∧ E(x, z)), φ3(x, y) := ∃≥Nz(φ(x, z) ∧ E(z, y)),

where φ,φ′ ∈ Φ is the equivalent logic set of Local 2-GNNs, and φ1 ∈ Φ1, φ2 ∈ Φ2, φ3 ∈ Φ3 are
auxiliary logic sets. It is therefore only one step before the result in Proposition 8: by substituting
the definition of φ2, φ3 into φ1 and further substituting the definition of φ1 into φ, we can write
down the definition of φ into one line:

φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E(x, z) ∧ φ′(z, y))) .

Removing the redundant term φ(x, y) := φ′(x, y) directly yields the result in Proposition 8.

Proposition 8 gives a unified description of the logical expressivity of popular GNN models. The
result of MPNNs follows Barceló et al. (2020). Following up, it is obvious that Subgraph GNNs
(weak) surpasses MPNN by modeling more complex relations between nodes: rather than simply
the edges E, they deploy the more general logic formulas ψ for modeling relations between nodes,
which is obviously more powerful. Continuing, Subgraph GNN (strong) further strengthen ψ by not

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Figure 2: An illustration of the subgraph used for construct the homogeneous expressivity, (a) cor-
responds to the construction of φ := ∃xyzwu ((E(x, y) ∧ E(y, z) ∧ E(y, w) ∧ E(w, u)). (b) cor-
responds to 2-FGNNs.

only allowing the single-source update pattern ψ(x, y) := ∃≥Nz (ψ′(x, z) ∧ E(z, y)), but also ag-
gregating information across different sources ψ(x, y) := φ(y) (since φ(y) aggregates ψ(z, y) with
different sources z). The rest of GNNs compute node-pair representations. Starting from NBFNet,
it models the relation between two nodes φ(x, y) by checking intermediate nodes z and its relation
w.r.t. the two end nodes φ′(x, z), E(z, y). This is useful for link prediction tasks, e.g. to pre-
dict whether two nodes are connected Connect(x, y) := ∃z (Connect(x, y) ∧ E(y, z)) | E(x, y),
which predicts the unknown Connect relation by utilizing the known edges E. This pattern is sim-
ilar with the Bellman-Ford algorithm Baras & Theodorakopoulos (2022), which is a single-source
shortest path algorithm. The logic formulas φ(x, y) corresponding to NBFNet are also constructed
with the single source node x. Local 2-GNN extends NBFNet by considering two sources x, y sepa-
rately, which allows the construction of more complex logic formulas. 2-FGNNs further generalize
by defining φ(x, y) in a multi-source manner, analogous to Floyd shortest path algorithm. SEAL
also defines φ(x, y) in a multi-source manner, but it instead constructs ψ(x, z, y) and uses the inter-
mediate nodes z to perceive the relation between x, y simultaneously. 2-GNNs, although compute
node-pair representations, are not suitable for link prediction since it fails to even express the simple
logic rule GrandParent(x, y) := ∃z (Parent(x, z) ∧ Parent(z, y)).

6.2 STRUCTURAL AWARENESS OF GNNS

There has been several works that study what graph structures different GNNs are aware of, such as
cycles, cliques, etc. These concepts can be unified with logic formulas. For example, determining
whether a node is in a 3-clique can be written as

φ3-clique(x) := ∃y, z (E(x, y) ∧ E(y, z) ∧ E(z, x)) .

Therefore, whether GNN models can capture 3-clique patterns depends on whether it captures
φ3-clique. However, determining 3-clique is a trivial task, and in practice it is often necessary to
study whether GNNs can capture more complex structural patterns. We consider the concept of
homogeneous expressivity proposed by Dell et al. (2018); Zhang et al. (2024).

Homomorphism expressivity. Homomorphism expressivity is a theory developed to precisely
describe the structures of graphs being captured by GNNs. Concretely, let G = (VG, EG), H =
(VH , EH) be two graphs. A homomorphism from F to G is a mapping π : VG → VF that preserves
labels (if any) and edges, i.e. (π(u), π(v)) ∈ EH for all (u, v) ∈ EG and ℓ(u) = ℓ(π(u)) for all nodes
u, ℓ(u, v) = ℓ(π(u), π(v)) if there are node labels or edge labels respectively. Hom(F,G) is defined
to be the number of homomorphisms from F to G. The crux is, to find all subgraphs F for GNNs
such that, for all pairs of graphs G,H , GNNs distinguish G,H ⇐⇒ Hom(F,G) ̸= Hom(F,H).
Such a set of subgraphs is referred as the homomorphism expressivity of GNNs. Dell et al. (2018)
gives the homomorphism expressivity for 1-WL (MPNNs), while Zhang et al. (2024) extends the
results to several popular GNN models.

Similar as previous discussions, in this section we aim at providing a general method to determine
the homomorphism expressivity of GACNNs, based on our findings about equivalent logic sets.
Suppose we are given a class of GACNNs whose equivalent logic set is Φ. To simplify the discus-
sion, we first assume no node / edge labels. We assume that the concept of neighbors in GACNNs is

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2025

described by composition of edges: for example in MPNNs the neighbors of a node x is defined by
1y∈N (x) := E(x, y) where E is the edge predicate; similarly in NBFNet 1(x,z)∈N1(x,y) := E(y, z).
The homomorphism expressivity F can be constructed from the logic formulas in Φ via the follow-
ing procedure.

1. Remove all formulas in Φ that contains negation ¬ or ∃≥n where n ≥ 2;
2. For each formula φ ∈ Φ, add a graph F into F which is defined below:

(a) There exists a bijective mapping τ from var(φ) to VF , i.e. from the variables in φ
(we avoid the reuse of variables)2 to the nodes in F .

(b) For any variables x, y ∈ var(φ), E(x, y) is a term in φ iff E(τ(x), τ(y)) is an edge
of F .

A discussion about the reuse of variables and why we avoid this technique is in Appendix D. We
now explain the procedure. Consider for example constructing a subgraph F for the logic formula
φ := ∃xyzwu ((E(x, y) ∧ E(y, z) ∧ E(y, w) ∧ E(w, u)). The construction of F is illustrated in
Figure 2 (a), where F possesses a node corresponding to each variable x, y, z, w, u in φ and contains
edges E(x, y), E(y, z), E(y, w) and E(w, u). We have the following result:
Theorem 9. Given a class of GACNN models and suppose Φ be the equivalent logic set. Let F be
the homomorphism expressivity constructed by Φ as discussed above. For all pairs of graphs G,H .
the following statements are equivalent:

1. Hom(F,G) = Hom(F,H) for all F ∈ F .

2. All GACNNs do not distinguish G and H .

Proof sketch. Theorem 9 represents another major technical contribution of the paper, so we present
a proof sketch below. Given the homomorphism expressivity F and for any graph G, the intuition
is that we can use logic formulas to count the number of homomorphisms from each F ∈ F to
G. Consider the graph in Figure 2 (a) for example: the number of homomorphisms from it to
G is N iff φ := ∃=Nv(E(vx, vy) ∧ E(vy, vw) ∧ E(vy, vz) ∧ E(vw, vu)) evaluates true in G,
where v = (vx, vy, vz, vw, vu). The next step of our proof is involved and shows that such φ can
be expressed by logic formulas in the equivalent logic set and vice versa, which is presented in
Appendix E.2, thus concluding the proof.

Theorem 9 validates the effectiveness of our construction procedure. Together, we provide a gen-
eral method to identify the homomorphism expressivity for arbitrary GACNNs, which extends the
known results in previous works (Dell et al., 2018; Zhang et al., 2024). Meanwhile, we have solved
a conjecture in Zhang et al. (2024), i.e. when a GNN can be described by a GACNN, its homomor-
phism expressivity exists and is given by Theorem 9.

Example. We illustrate the strategy of recursively constructing homogeneous expressivity F by
investigating 2-FGNNs, whose equivalent logic set Φ (removed negation and ∃≥N for N ≥ 2) is
given by φ(x, y) := ∃z (φ′(x, z) ∧ φ′′(z, y)) | φ′(x, y) ∧ φ′′(x, y) | atp(x, y). Let Φ(l) be the
equivalent logic set of l-layer 2-FGNNs. Let F (l) be the homogeneous expressivity constructed at
iteration l. For F (0) at beginning, there are only two graphs in F (0) corresponding to φ(0) ∈ Φ(0)

where φ(0)(x, y) := atp(x, y), as illustrated in top of Figure 2 (b). At the next iteration, we consider
the more complex Φ(1), which is given by

φ(1)(x, y) := ∃z
(
φ
(0)
1 (x, z) ∧ φ(0)

2 (z, y)
)
| φ(0)

1 (x, y) ∧ φ(0)
2 (x, y) | atp(x, y).

We can simply construct F (1) by reusing the known results about F (0). Specially, to construct
φ(1)(x, y) := ∃z

(
φ
(0)
1 (x, z) ∧ φ(0)

2 (z, y)
)

, we start from an empty graph F and add three nodes

vx, vy, vz corresponding to variables x, y, z in φ(1). Then, we replace (vx, vz) and (vz, vy) with the
known subgraphs in F (0), as illustrated in middle of Figure 2 (b). By continuing this procedure, the
homomorphism expressivity F is constructed, as illustrated in bottom of Figure 2 (b).

2E.g. φ(x) := ∃y(E(x, y) ∧ ∃x(E(x, y))). The variable x is reused. This is a technique often used in the
context of logic to reduce the number of used symbols. In the construction of homogeneous expressivity we
avoid this technique and write φ(x) as φ(x) := ∃y(E(x, y) ∧ ∃z(E(z, y))) so that all variables are explicitly
expressed. As a result, there are 3 variables x, y, z in total.

10

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2025

6.3 EXPRESSIVITY COMPARISON

It is also convenient to obtain the upper bounds with regard to WL tests thanks to the relation of
logic and WL studied in Cai et al. (1992), as well as comparing the expressive power of different
GNN models. For two classes of GNN models M1,M2, let Φ1,Φ2 be the equivalent logic sets of
M1 and M2 respectively. Obviously, Φ1 ⊆ Φ2 indicates that M2 is not weaker than M1; Moreover,
if Φ1 ⊂ Φ2, M2 is strictly more expressive than M1. Furthermore, to bound GNN models with
k-WL, we have the following result:
Proposition 10. Suppose the equivalent logic set of a class of GNN models is Φ. Then, the expressive
power of the GNN models is bounded by k-WL, iff the number of variables of the logic formulas in
Φ is at most k.

Note that it is trival to check the number of variables in our setting: recall that in Propo-
sition 6 the equivalent logic sets are defined by specifying the grammar of logic formulas.
This implies that we can simply check the number of variables emerged in the grammar. For
example, consider Subgraph GNN (weak). There are 2 free variables {x, y} in φ(x) :=
∃≥Ny (φ′(y) ∧ ψ(x, y)) | ¬φ′(x) | φ′(x) ∧ φ′′(x) | atp(x) and 3 variables {x, y, z} in ψ(x, y) :=
∃≥Nz (ψ′(x, z) ∧ E(z, y)) | ¬ψ′(x) | ψ′(x) ∧ ψ′′(x) | E(x, y). Therefore, the expressive power of
Subgraph GNN (weak) is bounded by 3-WL. We summarize the section by introducing following
results for popular GNN models.
Corollary 11. The expressivity of GNN models satisfies: MPNNs = 1-WL< Subgraph GNNs (weak)
= NBFNet < Subgraph GNNs (strong) < Local 2-FGNN < 2-FGNN = 3-WL, 1-WL < SEAL < 4-
WL.

7 LIMITATION AND CONCLUSION

Limitation. The results of this paper are applicable to GNNs that can be expressed by GACNNs.
This includes most popular GNNs that learn graph-level, node-level or edge-level representations
for both directed and undirected graphs with node and edge features. However, our framework are
not applicable for GNNs which do not consist sole of aggregation and combination operations. For
example, Graphormer-GD (Zhang et al., 2023) which injects distance information into node pairs
and cannot be described by aggregation or combination layers. In the future, we plan to study GNNs
that do not consist sole of aggregation and combination operations and investigate the necessary
conditions for GNNs to possess equivalent logic sets.

Conclusion. In this paper we present a novel framework for systematically describe the logical
expressivity of arbitrary GNN models built upon combination and aggregation operations. Utilizing
the results, we analyze the logical expressivity of popular GNN models and provide new insight
about many important topics in graph representation learning including expressivity comparison,
structural awareness of GNNs, estimating WL expressivity, etc. Our framework serves as a toolbox
to understand both existed and new GNN architectures: with new GNNs being designed, one can
easily obtain the logical expressivity, study the substructures captured by them and bound these
models with WL tests.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2025

REFERENCES

Waı̈ss Azizian and Marc Lelarge. Expressive power of invariant and equivariant graph neural
networks. In International Conference on Learning Representations, 2020. URL https:
//api.semanticscholar.org/CorpusID:235358624.

John Baras and George Theodorakopoulos. Path problems in networks. Springer Nature, 2022.

Pablo Barceló, Egor V Kostylev, Mikael Monet, Jorge Pérez, Juan Reutter, and Juan-Pablo Silva.
The logical expressiveness of graph neural networks. In 8th International Conference on Learning
Representations (ICLR 2020), 2020.

Pablo Barcel’o, Floris Geerts, Juan L. Reutter, and Maksimilian Ryschkov. Graph neural networks
with local graph parameters. In Neural Information Processing Systems, 2021. URL https:
//api.semanticscholar.org/CorpusID:235421961.

Leon Bergen, Timothy J. O’Donnell, and Dzmitry Bahdanau. Systematic generalization with edge
transformers. In NeurIPS, 2021.

Beatrice Bevilacqua, Fabrizio Frasca, Derek Lim, Balasubramaniam Srinivasan, Chen Cai, G. Bal-
amurugan, Michael M. Bronstein, and Haggai Maron. Equivariant subgraph aggregation net-
works. ArXiv, abs/2110.02910, 2021. URL https://api.semanticscholar.org/
CorpusID:238407774.

Cristian Bodnar, Fabrizio Frasca, Nina Otter, Yu Guang Wang, Pietro Lio’, Guido Montúfar, and
Michael M. Bronstein. Weisfeiler and lehman go cellular: Cw networks. In Neural Information
Processing Systems, 2021a. URL https://api.semanticscholar.org/CorpusID:
235606230.

Cristian Bodnar, Fabrizio Frasca, Yu Guang Wang, Nina Otter, Guido Montúfar, Pietro Lio’, and
Michael M. Bronstein. Weisfeiler and lehman go topological: Message passing simplicial net-
works. ArXiv, abs/2103.03212, 2021b. URL https://api.semanticscholar.org/
CorpusID:232110693.

Giorgos Bouritsas, Fabrizio Frasca, Stefanos Zafeiriou, and Michael M. Bronstein. Improving
graph neural network expressivity via subgraph isomorphism counting. IEEE Transactions
on Pattern Analysis and Machine Intelligence, 45:657–668, 2020. URL https://api.
semanticscholar.org/CorpusID:219708613.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12:389–410, 1989.

Jin-Yi Cai, Martin Fürer, and Neil Immerman. An optimal lower bound on the number of variables
for graph identification. Combinatorica, 12(4):389–410, 1992.

Benjamin Paul Chamberlain, Sergey Shirobokov, Emanuele Rossi, Fabrizio Frasca, Thomas
Markovich, Nils Hammerla, Michael M Bronstein, and Max Hansmire. Graph neural networks
for link prediction with subgraph sketching. In ICLR, 2023.

Zhengdao Chen, Lei Chen, Soledad Villar, and Joan Bruna. Can graph neural networks count
substructures? ArXiv, abs/2002.04025, 2020. URL https://api.semanticscholar.
org/CorpusID:211069434.

Leonardo Cotta, Christopher Morris, and Bruno Ribeiro. Reconstruction for powerful graph repre-
sentations. ArXiv, abs/2110.00577, 2021. URL https://api.semanticscholar.org/
CorpusID:238253248.

Holger Dell, Martin Grohe, and Gaurav Rattan. Lov\’asz meets weisfeiler and leman. arXiv preprint
arXiv:1802.08876, 2018.

Fabrizio Frasca, Beatrice Bevilacqua, Michael M. Bronstein, and Haggai Maron. Understanding
and extending subgraph gnns by rethinking their symmetries. ArXiv, abs/2206.11140, 2022. URL
https://api.semanticscholar.org/CorpusID:249926758.

12

https://api.semanticscholar.org/CorpusID:235358624
https://api.semanticscholar.org/CorpusID:235358624
https://api.semanticscholar.org/CorpusID:235421961
https://api.semanticscholar.org/CorpusID:235421961
https://api.semanticscholar.org/CorpusID:238407774
https://api.semanticscholar.org/CorpusID:238407774
https://api.semanticscholar.org/CorpusID:235606230
https://api.semanticscholar.org/CorpusID:235606230
https://api.semanticscholar.org/CorpusID:232110693
https://api.semanticscholar.org/CorpusID:232110693
https://api.semanticscholar.org/CorpusID:219708613
https://api.semanticscholar.org/CorpusID:219708613
https://api.semanticscholar.org/CorpusID:211069434
https://api.semanticscholar.org/CorpusID:211069434
https://api.semanticscholar.org/CorpusID:238253248
https://api.semanticscholar.org/CorpusID:238253248
https://api.semanticscholar.org/CorpusID:249926758

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2025

Floris Geerts and Juan L. Reutter. Expressiveness and approximation properties of graph neural
networks. ArXiv, abs/2204.04661, 2022. URL https://api.semanticscholar.org/
CorpusID:248084856.

Max Horn, Edward De Brouwer, Michael Moor, Yves Moreau, Bastian Alexander Rieck, and
Karsten M. Borgwardt. Topological graph neural networks. ArXiv, abs/2102.07835, 2021. URL
https://api.semanticscholar.org/CorpusID:231934149.

Xingyue Huang, Miguel Romero, Ismail Ceylan, and Pablo Barceló. A theory of link prediction via
relational weisfeiler-leman on knowledge graphs. Advances in Neural Information Processing
Systems, 36, 2024.

Nicolas Keriven and Gabriel Peyré. Universal invariant and equivariant graph neural networks. In
Neural Information Processing Systems, 2019. URL https://api.semanticscholar.
org/CorpusID:152282292.

Thomas Kipf and Max Welling. Variational graph auto-encoders. ArXiv, abs/1611.07308, 2016a.

Thomas N Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. arXiv preprint arXiv:1609.02907, 2016b.

S. Liu, Bernardo Cuenca Grau, Ian Horrocks, and Egor V. Kostylev. Indigo: Gnn-based induc-
tive knowledge graph completion using pair-wise encoding. In Neural Information Processing
Systems, 2021. URL https://api.semanticscholar.org/CorpusID:245119728.

Haggai Maron, Heli Ben-Hamu, Nadav Shamir, and Yaron Lipman. Invariant and equivariant graph
networks. ArXiv, abs/1812.09902, 2018. URL https://api.semanticscholar.org/
CorpusID:56895597.

Haggai Maron, Heli Ben-Hamu, Hadar Serviansky, and Yaron Lipman. Provably powerful graph
networks. ArXiv, abs/1905.11136, 2019a. URL https://api.semanticscholar.org/
CorpusID:166228757.

Haggai Maron, Ethan Fetaya, Nimrod Segol, and Yaron Lipman. On the universality of invariant
networks. ArXiv, abs/1901.09342, 2019b. URL https://api.semanticscholar.org/
CorpusID:59316743.

Christopher Morris, Martin Ritzert, Matthias Fey, William L. Hamilton, Jan Eric Lenssen, Gau-
rav Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neu-
ral networks. In AAAI Conference on Artificial Intelligence, 2018. URL https://api.
semanticscholar.org/CorpusID:52919090.

Christopher Morris, Martin Ritzert, Matthias Fey, William L Hamilton, Jan Eric Lenssen, Gaurav
Rattan, and Martin Grohe. Weisfeiler and leman go neural: Higher-order graph neural networks.
In Proceedings of the AAAI conference on artificial intelligence, volume 33, pp. 4602–4609, 2019.

Christopher Morris, Gaurav Rattan, Sandra Kiefer, and Siamak Ravanbakhsh. Speqnets: Sparsity-
aware permutation-equivariant graph networks. In International Conference on Machine Learn-
ing, pp. 16017–16042. PMLR, 2022.

Pál András Papp and Roger Wattenhofer. A theoretical comparison of graph neural network ex-
tensions. ArXiv, abs/2201.12884, 2022. URL https://api.semanticscholar.org/
CorpusID:246430444.

Omri Puny, Derek Lim, Bobak Kiani, Haggai Maron, and Yaron Lipman. Equivariant polynomials
for graph neural networks. In International Conference on Machine Learning, pp. 28191–28222.
PMLR, 2023.

Chen Qian, Gaurav Rattan, Floris Geerts, Christopher Morris, and Mathias Niepert. Or-
dered subgraph aggregation networks. ArXiv, abs/2206.11168, 2022. URL https://api.
semanticscholar.org/CorpusID:249926461.

13

https://api.semanticscholar.org/CorpusID:248084856
https://api.semanticscholar.org/CorpusID:248084856
https://api.semanticscholar.org/CorpusID:231934149
https://api.semanticscholar.org/CorpusID:152282292
https://api.semanticscholar.org/CorpusID:152282292
https://api.semanticscholar.org/CorpusID:245119728
https://api.semanticscholar.org/CorpusID:56895597
https://api.semanticscholar.org/CorpusID:56895597
https://api.semanticscholar.org/CorpusID:166228757
https://api.semanticscholar.org/CorpusID:166228757
https://api.semanticscholar.org/CorpusID:59316743
https://api.semanticscholar.org/CorpusID:59316743
https://api.semanticscholar.org/CorpusID:52919090
https://api.semanticscholar.org/CorpusID:52919090
https://api.semanticscholar.org/CorpusID:246430444
https://api.semanticscholar.org/CorpusID:246430444
https://api.semanticscholar.org/CorpusID:249926461
https://api.semanticscholar.org/CorpusID:249926461

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2025

Komal K. Teru, E. Denis, and William L. Hamilton. Inductive relation prediction by subgraph
reasoning. In International Conference on Machine Learning, 2019. URL https://api.
semanticscholar.org/CorpusID:211082667.

Erik H. Thiede, Wenda Zhou, and Risi Kondor. Autobahn: Automorphism-based graph neural nets.
In Neural Information Processing Systems, 2021. URL https://api.semanticscholar.
org/CorpusID:232092767.

Kristina Toutanova, Xi Victoria Lin, Wen tau Yih, Hoifung Poon, and Chris Quirk. Compositional
learning of embeddings for relation paths in knowledge base and text. In ACL, 2016.

Boris Weisfeiler and Andrei Leman. The reduction of a graph to canonical form and the algebra
which appears therein. nti, Series, 2(9):12–16, 1968.

Keyulu Xu, Weihua Hu, Jure Leskovec, and Stefanie Jegelka. How powerful are graph neural
networks? arXiv preprint arXiv:1810.00826, 2018.

Tuo Xu and Lei Zou. Rethinking and extending the probabilistic inference capacity of gnns. In The
Twelfth International Conference on Learning Representations, 2024.

Jiaxuan You, Jonathan M. Gomes-Selman, Rex Ying, and Jure Leskovec. Identity-aware graph
neural networks. In AAAI Conference on Artificial Intelligence, 2021. URL https://api.
semanticscholar.org/CorpusID:231698873.

Bohang Zhang, Shengjie Luo, Liwei Wang, and Di He. Rethinking the expressive power
of gnns via graph biconnectivity. ArXiv, abs/2301.09505, 2023. URL https://api.
semanticscholar.org/CorpusID:256105774.

Bohang Zhang, Jingchu Gai, Yiheng Du, Qiwei Ye, Di He, and Liwei Wang. Beyond weisfeiler-
lehman: A quantitative framework for gnn expressiveness. In International Conference on Ma-
chine Learning, 2024.

Muhan Zhang and Yixin Chen. Link prediction based on graph neural networks. In Neural
Information Processing Systems, 2018. URL https://api.semanticscholar.org/
CorpusID:3573161.

Muhan Zhang and Yixin Chen. Inductive matrix completion based on graph neural networks. In
ICLR, 2020.

Muhan Zhang and Pan Li. Nested graph neural networks. ArXiv, abs/2110.13197, 2021. URL
https://api.semanticscholar.org/CorpusID:239885856.

Muhan Zhang, Pan Li, Yinglong Xia, Kai Wang, and Long Jin. Labeling trick: A theory of using
graph neural networks for multi-node representation learning. In Neural Information Processing
Systems, 2020. URL https://api.semanticscholar.org/CorpusID:239998439.

Lingxiao Zhao, Wei Jin, Leman Akoglu, and Neil Shah. From stars to subgraphs: Uplift-
ing any gnn with local structure awareness. ArXiv, abs/2110.03753, 2021. URL https:
//api.semanticscholar.org/CorpusID:238531375.

Zhaocheng Zhu, Zuobai Zhang, Louis-Pascal Xhonneux, and Jian Tang. Neural bellman-ford net-
works: A general graph neural network framework for link prediction. In Neural Information
Processing Systems, 2021. URL https://api.semanticscholar.org/CorpusID:
235422273.

14

https://api.semanticscholar.org/CorpusID:211082667
https://api.semanticscholar.org/CorpusID:211082667
https://api.semanticscholar.org/CorpusID:232092767
https://api.semanticscholar.org/CorpusID:232092767
https://api.semanticscholar.org/CorpusID:231698873
https://api.semanticscholar.org/CorpusID:231698873
https://api.semanticscholar.org/CorpusID:256105774
https://api.semanticscholar.org/CorpusID:256105774
https://api.semanticscholar.org/CorpusID:3573161
https://api.semanticscholar.org/CorpusID:3573161
https://api.semanticscholar.org/CorpusID:239885856
https://api.semanticscholar.org/CorpusID:239998439
https://api.semanticscholar.org/CorpusID:238531375
https://api.semanticscholar.org/CorpusID:238531375
https://api.semanticscholar.org/CorpusID:235422273
https://api.semanticscholar.org/CorpusID:235422273

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2025

A RELATED WORKS

In this section we discuss related works that studies the expressive power of GNNs and several GNN
models investigated in this paper.

Expressivity of GNNs. Studying the expressive power of GNNs has been a hot topic in graph
machine learning community. Xu et al. (2018) investigate the expressive power of GNNs by relating
MPNNs with 1-WL tests, making it possible to utilize many know results about WL tests for the
analysis of GNNs. Barceló et al. (2020) study the logical expressiveness of MPNNs which is close
to our work. Compared with them, we successfully design a method to describe the logical expres-
sivity for arbitrary aggregation-combination networks and analyzed several important implications
brought by our work, including homomorphism expressivity, comparison of expressive power, etc.
Zhang et al. (2024) investigate several popular GNN models and study their expressive power in the
perspective of homomorphisms. Compared with their work, we propose a general method to deter-
mine the homomorphism expressivity for arbitrary aggregation-combination networks while solving
a conjecture in Zhang et al. (2024) in the meantime.

Higher order GNNs. Since the works of Xu et al. (2018); Morris et al. (2018) that relate GNNs
with the 1-WL tests, it is straightforward to extend GNNs by imitating higher-order WL tests. Pre-
cisely, k-order WL tests assign colors for k-tuples of nodes and perform color aggregation between
different tuples. Similarly, instead of learning representations for nodes, many works choose to
apply the message passing paradigm in higher-order WL tests to GNNs and directly learn represen-
tations for node tuples (Morris et al., 2018; Maron et al., 2019a; 2018; 2019b; Keriven & Peyré,
2019; Azizian & Lelarge, 2020; Geerts & Reutter, 2022).

Subgraph GNNs. Since the higher order GNNs are often too expensive for larger graphs, many
works try to find cheaper ways to design more expressive GNNs. A variety of works feed subgraphs
to MPNNs. At each layer, a set of subgraphs is generated according to some predefined permutation-
invariant policies, including node deletion (Cotta et al., 2021), edge deletion Bevilacqua et al. (2021),
node marking (Papp & Wattenhofer, 2022), ego-networks (Zhao et al., 2021; Zhang & Li, 2021; You
et al., 2021). We will focus on the unified ESAN framework proposed by Bevilacqua et al. (2021).
Qian et al. (2022); Frasca et al. (2022) studied the expressive power of different branches of subgraph
GNNs.

Substructure counting GNNs. There is another way to design GNNs that surpass 1-WL by con-
structing structural features for GNNs. Chen et al. (2020) showed that regular MPNNs cannot cap-
ture simple patterns such as cycles, cliques and paths. Bouritsas et al. (2020); Barcel’o et al. (2021)
proposed to apply substructure counting as pre-processing, and add substructure information into
node features. Bodnar et al. (2021b;a); Thiede et al. (2021); Horn et al. (2021) further designed
novel WL variants and proposed fully-neural approaches that captures complex substructures.

GNNs for link prediction. Standard GNNs learn representations for each node. Early methods
such as GAE Kipf & Welling (2016a) use GNN as an encoder and decode link representations as
a function over node representation pairs. These methods are problematic in capturing complex
graph structures, and might lead to poor performance. Later on, labeling trick was introduced by
SEAL Zhang & Chen (2018) and adopted by GraIL Teru et al. (2019), IGMC Zhang & Chen (2020),
INDIGO Liu et al. (2021), etc. These methods encode source and target nodes to mark them differ-
ently from the rest of the graph, and are proved to be more powerful than GAE. ID-GNN You et al.
(2021) and NBFNet Zhu et al. (2021) both augments GNNs with the identity of the source nodes.
Besides, All-path Toutanova et al. (2016) encodes relations as linear projections and proposes to ef-
ficiently aggregate all paths with dynamic programming. However, All-Path is restricted to bilinear
models, has limited link prediction capability and is also not inductive. EdgeTransformer Bergen
et al. (2021) utilizes attention mechanism to learn representations for nodes and links. While it also
follows the 2-FWL message passing procedure, it operates directly on fully-connected graphs and
have no proposals for simplifications as we do, thus it is not scalable to larger graphs. ELPH and
BUDDY (Chamberlain et al., 2023) incorporate neighbor counting into node features to enhance the
link prediction performance of MPNNs.

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2025

B WEISFEILER-LEHMAN TESTS

In this section we introduce the Weisfeiler-Lehman (WL) tests and their variants.

B.1 1-WL (COLOR REFINEMENT)

The classic 1-WL test (Weisfeiler & Leman, 1968) maintains a color for each node which is refined
by aggregating the colors of their neighbors. It can be easily applied on node-featured graphs (Xu
et al., 2018) as in Algorithm 1.

Algorithm 1: The 1-WL test (color refinement)
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(xv) for all v ∈ VG;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N (v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG

}}
;

The iteration converges when the partitions of nodes no longer changes. The 1-WL test decides
two graphs are non-isomorphic if the multisets of colors of the two graphs are different. The WL
algorithm successfully distinguishes most pairs of graphs, apart from some special examples such
as regular graphs. Similarly, given a subset of nodes C, 1-WL define its color as

{{
clv | v ∈ C

}}
,

and 1-WL distinguishes two set of nodes if the colors of them are differernt.

B.2 k-WL

The k-WL tests extend 1-WL to coloring k-tuples of nodes as in Algorithm 2, where we use v to
denote a tuple of nodes, G[v] for ordered subgraphs. The neighbors N k(v) are defined as follows:
assume v = (v1, ..., vk), then N k(v) = (N k

1 (v),N k
1 (v), ...,N k

k (v)), where

N k
i (v) = {{(v1, ..., vi−1, u, vi+1, ..., vk) | u ∈ V}} .

Algorithm 2: The k-WL tests
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(G[v]) for all v ∈ Vk

G;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N k(v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG for all v ∈ v

}}
;

B.3 k-FWL

The k-FWL (Cai et al., 1989) test is equally expressive with the (k+1)-WL test. It has the same ini-
tialization with (k+1)-WL. The neighborsN k(v) are defined as follows: assume v = (v1, ..., vk),
then N k(v) =

{{
N k

u (v) | u ∈ V
}}

, where

N k
u (v) = ((u, v2, ..., vk), (v1, u, ..., vk), ..., (v1, ..., u, vk)).

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2025

Algorithm 3: The k-FWL tests
Input : G = (A,X)

1 l← 0;
2 c0v ← hash(G[v]) for all v ∈ Vk

G;
3 while not converge do
4 cl+1

v ← hash(clv,
{{
clu | u ∈ N k(v)

}}
);

5 l← l + 1;
6 end
7 return

{{
clv | v ∈ VG for all v ∈ v

}}
;

B.4 COLORS OF k-WL / k-FWL

From the previous discussions k-WL and k-FWL both assign colors for k-tuples of nodes. The color
of the graph G is defined by

cG = Hash(
{{
cv | v ∈ Vk

}}
).

Similarly, given any subset of nodes S ⊆ V , we also define its color as

cS = Hash(
{{
cv | v ∈ Sk

}}
).

C ABOUT GNN MODELS

In this section we briefly introduce several popular GNN models.

MPNN.
χ(l+1)(x) = COM

(
χ(l)(x),AGG

({{
χ(l)(y) | y ∈ N (x)

}}))
.

Subgraph GNN (weak).

χ(l+1)(x) = AGG
({{

χ(l+1)(x, y) | y ∈ V
}})

,

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

(
χ(l)(x, z) | z ∈ N (y)

))
.

Subgraph GNN (strong).

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}})
, χ(l)(y),AGG

({{
χ(l)(z) | z ∈ N (y)

}}))
,

χ(l+1)(x) = AGG
(
χ(l+1)(y, x) | y ∈ V

)
.

NBFNet.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
.

Local 2-GNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ N (x)

}})
,AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
.

2-FGNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
COM

(
χ(l)(x, z), χ(l)(z, y)

)
| z ∈ V

}}))
.

SEAL (MPNN).

χ(l+1)(x, z, y) = COM
(
χ(l)(x, z, y),AGG

({{
χ(l)(x,w, y) | w ∈ N (z)

}}))
,

χ(l+1)(x, y) = AGG
({{

χ(l+1)(x, z, y) | z ∈ N
}})

.

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2025

Figure 3: An example graph which has two groundings for φ(x) := Red(x) ∧ ∃y(E(y, x) ∧
∃z(E(z, y))).

2-GNN

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ V

}})
,AGG

({{
χ(l)(x, z) | z ∈ V

}}))
.

D ABOUT VARIABLES IN LOGIC FORMULAS

Consider the formula

φ(x) := Red(x) ∧ ∃y(E(y, x) ∧ ∃z(E(z, y))).

The formula has a free variable x which is not bounded by the quantifier ∃ and two quantified
variables y, z which are bounded by ∃. Therefore, the formula has 3 variables in total. Given a
graph G, a grounding of φ(x) in G is a mapping η from the variables in φ(x) to the nodes in G.
For example consider the graph in Figure 3. There are two groundings η1, η2 from φ(x) to it, with
η1(x) = v1, η1(y) = v2, η1(z) = v3 and η2(x) = v1, η2(y) = v2, η2(z) = v5.

To reduce the number of symbols used in logic formula, there is a trick which is to reuse the variable
x and replace every occurrence of z in φ with x, leading to:

φ′(x) := Red(x) ∧ ∃y(E(y, x) ∧ ∃x(E(x, y))).

To ground φ′(x) on G, one still needs to substitute the variables in φ′(x) with the nodes in G. This
indicates that in Figure 3, we need to substitute the outer variable x in Red(x) with v1 and the inner
variable x in ∃x(E(x, y)) with v3 or v5. Therefore, when the variables are reused, the grounding
is no longer a well-defined mapping from variables to nodes, and the essentially different variables
x, z in φ(x) are expressed by the same symbol x in φ′(x). To avoid such clunky situations, we avoid
the reuse of variables.

The properties of F constructed by φ. Recall that to construct the homomorphism expressivity,
we construct a graph F for φ which is defined below:

1. There exists a bijective mapping τ from the variables in φ to the nodes in F .

2. For any variables x, y in φ, E(x, y) is a term in φ iff E(τ(x), τ(y)) is an edge of F .

We define the concept of injective grounding:

Definition 12. An injective grounding from a logic formula φ to a graph G is a grounding from φ
to G that maps different variables in φ to different nodes in G (without the reuse of variables).

It is now obvious that F is the minimum graph that contains an injective grounding from φ.

E PROOF

E.1 PROOF OF THEOREM 4

Theorem 4. Given {χ1, χ2, ..., χm} defined above, there exists {Φ1, ...,Φm} where Φi is the
equivalent logic set of χi for i ∈ [k]. Moreover, each φi ∈ Φi is given by:

• χi(u) = AGG({{χj(x) | v ∈ Ni(u)}})
⇐⇒ φi(u) := ∃≥Nv

(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u),

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2025

• χi(u) = COM(χj(u), χk(u))

⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

• χi(u) = atp(u) ⇐⇒ φi(u) := atp(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

where φ′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk.

Proof. Recall that the definition of equivalent logic set Φ of GNN models M is defined as:

1. The arity of φ ∈ Φ matches the output of M : suppose GNNs compute k-order representa-
tion, then φ ∈ Φ should be k-ary;

2. For all φ ∈ Φ, there exists a GNN model M such that for arbitrary graphs G and u ∈ Vk
G,

φ(u) = true iff χ(u) = true;

3. Given any graphs G,H and u ∈ Vk
G,v ∈ Vk

H , the GNN models cannot distinguish u,v iff
all logic formulas φ ∈ Φ classify u,v the same.

Constraint 1 is naturally satisfied. Therefore, we need to prove Constraint 2 and 3. We prove by
induction. At beginning we have χ0(u) = atp(u) and φ0(u) = atp(u) thus the constraints are
satisfied. Suppose we are to compute χi(u). By proof by induction the equivalent set Φj of χj for
all j < i are known. There are 3 situations:

1. χi(u) = atp(u). Then φi(u) := atp(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u) naturally satisfies.

2. χi(u) = COM(χj(u), χk(u)). Let Φj ,Φk be the corresponding equivalent logic set of χj , χk

respectively and satisfy the three constraints. Then the equivalent logic set Φi is then defined as

φi(u) := φj(u) | φk(u) | ¬φ′
i(u) | φ′

i(u) ∧ φ′′
i (u),

where φi, φ
′ ∈ Φ, φj ∈ Φj , φk ∈ Φk. Let {φ1

i , ..., φ
L
i } be the series of sub-formulas of φi such that

if φp
i is a sub-formula of φq then p < q. Again, we prove by induction on the sub-formula series of

Φi.
1) At beginning for φ1

i we only have φ1
i (u) := φj(u) or φi(u) := φk(u). In this case we let

χi(u) := χj(u) or χi(u) := χk(u). Since Φj ,Φk are the equivalent sets of χj , χk respectively, φ1
i

is captured by χi.
2) Suppose at iteration l, all φp

i (u) for p < l can be captured by some χp
i (u) =

COMp(χj(u), χk(u)). We show that by designing specific COMl function there is also χl
i(u) =

COMl(χj(u), χk(u)) that captures φl
i(u). It is straightforward to prove: If φl

i(u) = ¬φ
q
i (u), then

COMl (χj(u), χk(u)) = 1− COMp (χj(u), χk(u)) .

If φl
i(u) = φp

i (u) ∧ φ
q
i (u) then

COMl (χj(u), χk(u)) = COMp (χj(u), χk(u)) ∗ COMq (χj(u), χk(u)) .

Otherwise we have φ1
i (u) = φj(u) or φi(u) = φk(u). In this case φl

i can also be captured by χi

as proven in 1).

Thus, we have shown that φi(u) ∈ Φi is always captured by χi(u). Next, we show that Φi is
maximal, i.e. all logic formulas that can be captured by χi belong to Φi. Since Φj ,Φk are the
equivalent sets of φj , φk respectively, we have:

χj(u) ̸= χj(v)⇒ Exists φj ∈ Φj satisfying φj(u) ̸= φj(v),

χk(u) ̸= χk(v)⇒ Exists φk ∈ Φk satisfying φk(u) ̸= φk(v).

Since for any u and v, χi(u) ̸= χi(v) indicates that either χj(u) ̸= χj(v) or χk(u) ̸= χk(v) (or
both), by setting φi(u) := φj(u) or φi(u) := φk(u) respectively, we also have χi(u) ̸= χj(u).
Therefore, we have:

χi(u) ̸= χi(v)⇒ Exists φi ∈ Φi satisfying φi(u) ̸= φi(v).

Thus the proof is completed.

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

3. χi(u) = AGG({{χj(v) | v ∈ Ni(u)}}). The proof is similar as above. Let Φj be the equivalent
logic set of χj , which is defined as

φi(u) := ∃≥Nv
(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u).

Let {φ1
i , ..., φ

L
i } be the series of sub-formulas of φi such that if φp

i is a sub-formula of φq then
p < q. Again, we prove by induction on the sub-formula series of Φi.
1) At beginning for φ1

i we only have φ1
i (u) := ∃≥Nv

(
φj(v) ∧ 1v∈Ni(u)

)
. In this case we let

χi(u) = AGG({{χj(v) | v ∈ Ni(u)}}) = 1 {There are no less than N v such that φj(v) is true} .
Note that since all φj ∈ Φj can be captured by χj , the above AGG function can be realized.
2) Suppose at iteration l, all φp

i (u) for p < l can be captured by some χp
i (u) =

AGGp ({{χj(v) | v ∈ Ni(u)}}). We show that by designing specific AGGl function there is also
χl
i(u) = AGGl ({{χj(v) | v ∈ Ni(u)}}) that captures φl(u). It is also straightforward to prove: If
φl
i(u) := ¬φ

q
i (u), then

AGGl ({{χj(v) | v ∈ Ni(u)}}) = 1−AGGq ({{χj(v) | v ∈ Ni(u)}}) .

If φl
i(u) := φp

i (u) ∧ φ
q
i (u) then

AGGl ({{χj(v) | v ∈ Ni(u)}}) = AGGp ({{χj(v) | v ∈ Ni(u)}})∗AGGq ({{χj(v) | v ∈ Ni(u)}}) .

Otherwise φl
i(u) := ∃≥Nv

(
φq
i (v) | v ∈ N l

i (u)
)

which is proved in 1).

Thus, we have shown that φi(u) ∈ Φi is always captured by χi(u). Next, we show that Φi is
maximal, i.e. all logic formulas that can be captured by χi belong to Φi. Since Φj is the equivalent
set of φj , we have:

χj(u) ̸= χj(v)⇒ Exists φj ∈ Φj satisfying φj(u) ̸= φj(v).

For any u and v, χi(u) ̸= χi(v) indicates that the multisets are different {{χj(w) | w ∈ Ni(u)}} ̸=
{{χj(w) | w ∈ Ni(v)}}. Then, there must exists a color X such that

|{w | w ∈ Ni(u), χj(w) = X}| ≠ |{w | w ∈ Ni(v), χj(w) = X}| .
without loss of generality we assume |{w | w ∈ Ni(u), χj(w) = X}| = N >
|{w | w ∈ Ni(v), χj(w) = X}|. Since χj is captured by Φj , there must exist φj ∈ Φj that
expresses the color X: φj(w) = true iff χj(w) = X . By letting

φi(x) := ∃≥Nw
(
φj(w) ∧ 1w∈Ni(u)

)
,

it is evident that φi(u) = true while φi(v) = false. Therefore, the proof completes.

E.2 PROOF OF THEOREM 9

Theorem 9. Given a class of GACNN models and suppose Φ be the equivalent logic set. Let F be
the homomorphism expressivity constructed by Φ as discussed above. For all pairs of graphs G,H .
the following statements are equivalent:

1. Hom(F,G) = Hom(F,H) for all F ∈ F .
2. All GACNNs do not distinguish G and H .

Proof. From Proposition 6 it is evident that statement 2 is equivalent to: All φ ∈ Φ do not distin-
guish G and H . We therefore instead prove:

All φ ∈ Φ do not distinguish G and H ⇐⇒ Hom(F,G) = Hom(F,H) for all F ∈ F .
We first prove the direction left to right. Given each φ ∈ Φ that does not contain negation ¬ or ∃≥N

where N ≥ 2, recall that the corresponding F is constructed by:

1. Start from an empty graph F ;

2. Construct the nodes of F : Add a node vx for each variable x emerged in φ (we avoid the
reuse of variables);

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2025

3. Construct the structure of F : Add an edge (vx, vy) for each edge term E(x, y) in φ. Add
F to F .

Before we start, we first introduce some useful quantifiers ∃=N ,∃≤N which express “there exists
exactly N” and “there exists no more than N” respectively. Note that the two quantifiers can be
directly deduced by ∃≥N : ∃≤N := ¬∃≥N+1 and ∃=N := ∃≥N ∧ ∃≤N .

Note that all φ satisfying the constraint (i.e. without negation or ∃≥N for N > 1) can be flattened
into the form of:

φ := ∃x1∃x2...∃xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM), (5)

where ip, jp ∈ [K] for all p ∈ [M]. We now prove that there is a logic formula ψ ∈ Φ that captures
Hom(F,G) = 1, i.e. given arbitrary graph G, ψ is true iff Hom(F,G) = 1. Suppose F is
constructed by φ as:

φ := ∃x1∃x2...∃xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM).

Then by letting

ψ := ∃=1x1∃=1x2...∃=1xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM).

We now show that for arbitrary graph G, ψ is true iff Hom(F,G) = 1. By the construc-
tion of F each variable x1, ...,xK is corresponded to a distinct node tuple in F and each term
E(xi1 , xj1), ..., E(xim , xjm) is corresponded to an distinct edge in F . If ψ is true on G, then there
exists a grounding x1 → u1, ...,xK → uK such that all E(xi1 , xj1), ..., E(xim , xjm) are true.
Then the mapping π : F → G that π(vxl

) = ul for l ∈ [K] where vxl
is the node in F correspond-

ing to the variable xl in ψ. obviously π is a homomorphism from F toG, therefore Hom(F,G) ≥ 1.
Further more, suppose Hom(F,G) > 1, then there exists another π′ ̸= π that is also a homomor-
phism from F to G, which indicates that the grounding for E(xi1 , xj1), ..., E(xiM , xjM) to be true
is not unique. In this case, ψ is not true because there exists not only one x1, ...,xK such that
E(xi1 , xj1), ..., E(xiM , xjM) is true, violating the quantifiers ∃=1 in ψ.

We next prove that there is also a logic formula ψ ∈ Φ that captures Hom(F, ·) = N for arbitraryN :
that is, for any graphs G,H , Hom(F,G) ̸= Hom(F,H)⇒ there exists ψ such that ψ evaluates to
different values onG andH . We prove by contradiction and assume all ψ ∈ Φ evaluates to the same
value on G and H . We denote ψn1n2...nK

:= ∃=n1x1∃=n2x2...∃=nKxK

(∧
m∈[M]E(xim , xjm)

)
.

By assumption ψn1n2...nK
evaluates to the same value on G,H for any n1, n2, ..., nK . We now

construct a ψ such that ψ evaluates to true on G.

Let F be constructed by varphi := ∃x1∃x2...∃xKE(xi1 , xj1) ∧ ... ∧ E(xiM , xjM) such that
Hom(F,G) = N ̸= Hom(F,H). Let X be the tuple of all variables in φ: X = (x1,x2, ...,xk).
For all homomorphisms from F to G, let V be the set of images of X from F to G. We first pick all
ψn1n2...nK

that evaluates to true on G. First, we have the following result:

Lemma 13. If nk > N for some k ∈ [K], then ψn1n2...nK
= false on G.

Therefore, there are only finite ψn1n2...nK
that evaluates to true on G, and nk ≤ N for all k ∈ [K].

For some ψn1n2...nK
= true on G, we refer to its grounding as a mapping from the variables X

in ψ to the corresponding tuple of nodes V in G, and V is the grounding result. We then have the
following result:

Lemma 14. For ψn1n2...nK
and ψm1m2...mK

, if nk ̸= mk for some k ∈ [K], then then grounding
results of ψn1n2...nK

and ψm1m2...mK
are different, i.e. there exists no V that is both a grounding

result of ψn1n2...nK
and ψm1m2...mK

.

Let S = {ψn1n2...nK
| nk ≤ N for k ∈ [K], ψn1n2...nK

= true on G} = {ψnl
1n

l
2...n

l
K
| l ∈ [L]}

where L = |S|. Then we have the following result:

ϕ :=
∧
l∈[L]

ψnl
1n

l
2...n

l
K
∈ Φ evaluates true on G.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2025

Moreover, according to Lemma 14 it is evident that the total number of different grounding results
can be evaluated as ∑

l∈[L]

Number of grounding results of ψnl
1n

l
2...n

l
K

=
∑
l∈[L]

∏
k∈[K]

nlk

Since a grounding is also exactly a homomorphism from F to G, we have∑
l∈[L]

Number of grounding results of ψnl
1n

l
2...n

l
K

=Hom(F,G) = N.

By assumption, ϕ also evaluates to true on H , which indicates that ψnl
1n

l
2...n

l
K

evaluates to true for
l ∈ [L] on H . As a result,

Hom(F,H)

≥
∑
l∈[L]

Number of grounding results of ψnl
1n

l
2...n

l
K

=N.

This yields a contradiction where we assume Hom(F,H) < Hom(F.G) = N . Thus the proof
completes.

We next prove the other direction, i.e. for any graphs G,H , there exists ψ such that ψ evaluates to
different values on G and H ⇒ Hom(F,G) ̸= Hom(F,H). Without loss of generality we assume
ψ evaluates to true on G and false on H . We first introduce the following lemma:

Lemma 15. If there is ψ ∈ Φ such that ψ evaluates to different val-
ues on G and H , then there exists ψ ∈ Φ in the form of ψn1n2...nK

:=

∃=n1x1∃=n2x2...∃=nKxK

(∧
p∈[P]E(xip , xjp)

∧
q∈[Q] ¬E(xiq , xjq)

)
that also evaluates to

different values on G and H .

Without loss of generality, we may now assume that there exists ψ in the form described by Lemma
15 that evaluates to true on G and false on H . We now prove that there must exists a F ∈ F such
that Hom(F,G) ̸= Hom(F,H).

Given

ϕ := ∃x1∃x2...∃xK

 ∧
p∈[P]

E(xip , xjp)
∧

q∈[Q]

¬E(xiq , xjq)

 ,

let grd(ϕ,G) be the number of groundings from the variables in ϕ to G. Obviously grd is a exten-
sion to hom which allows negative edges ¬E(xiq , xjq for q ∈ [Q]. We have the following result:

Lemma 16. If Hom(F,G) = Hom(F,H) for all F ∈ F , then every ϕ ∈ Φ of the above form
satisfies:

grd(ϕ,G) = grd(ϕ,H).

We define

ϕn1n2...nK
:= ∃x1

1∃x2
1...∃xx

n1
1 ∃x11

2 x12
2 ...∃x

1n2
2 ∃x21

2 ∃x22
2 ...∃x

n1n2
2 ...∃x11...1

K ...∃xn1n2...nK

K ∧
p∈[P],

E(x
l1l2...lip
ip

, x
l1l2...ljp
jp

)
∧

q∈[Q]

¬E(x
l1l2...liq
iq

, x
l1l2...ljq
jq

)

 .

Note that ϕn1n2...nK
∈ Φ for arbitrary n1, n2, ..., nK . We now prove by contradiction. As-

sume Hom(F,G) = Hom(F,H) for arbitrary F ∈ F . By Lemma 16 it is obvious that
grd(ϕn1n2...nK

, G) = grd(ϕn1n2...nK
, H) for all n1, n2, ..., nK . First consider the case where

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2025

ψ11...1 = true on G. Obviously we have grd(ϕ11...1, G) = 1 = grd(ϕ11...1, H), which in-
dicates that there exists exactly one grounding from ϕ11...1 to H and thus ψ11...1 = true on
H , which yields a contradiction. We now assume ψN1N2...NK

evaluates to true on G. We
prove that the evaluation of ψN1N2...NK

can be determined by the number of groundings from
{ϕn1n2...nK

| nk ∈ [Nk] for k ∈ [K]} to G, i.e.

(grd(ϕn1n2...nK
, G))nk∈[Nk] for k∈[K] .

By proof by induction, we already know that ψ11...1 evaluates to true on G exactly when
grd(ϕ11...1, G) = 1 and thus ψ11...1 is captured by (grd(ϕ11...1, G)). Now consider we are to prove
ψN1N2...NK

is captured by (grd(ϕn1n2...nK
, G))nk∈[Nk] for k∈[K]. Let us consider the groundings

from ϕN1N2...NK
to G. Obviously we can divide the groundings into two parts:

1. The non-injective groundings, i.e. groundings that maps different variables in ϕN1N2...NK

to the same node in G.

2. The injective groundings, i,e, groundings that maps different variables in ϕN1N2...NK
to

different nodes in G.

Obviously the number of non-injective groundings can be computed by grd(ϕn1n2...nK
, G) where

for all k ∈ [K] nk ≤ Nk, k ∈ [K] and there exists k ∈ [K] nk < Nk. Thus, the number of injective
homomorphisms can be evaluated. If the following constraints hold:

• The number of injective groundings from ϕn1n2...nK
to G is larger than 0,

• The numbers of injective groundings from ϕn1+1n2...nK
, ϕn1n2+1...nK

...ϕn1n2...nK+1 toG
are 0,

then obviously ψn1...nK
evaluates to true. Therefore this yields a contradiction and the proof com-

pletes.

E.3 PROOF OF COROLLARY 5

Corollary 5. The equivalent logic set of l-layer GACNNs defined above is given by Φ(l).

Proof. This is a direct result derived from Theorem 4 when we explicitly write down the computa-
tion procedure of a l-layer GACNNs.

E.4 PROOF OF PROPOSITION 6

Proposition 6. The equivalent logic set of all GACNNs defined above is given by Φ =
⋃∞

l=0 Φ
(l).

Moreover, let Φi =
⋃∞

l=0 Φ
(l)
i for i ∈ [K], then Φ and {Φi}i∈[K] exist and is defined by a similar

procedure as Theorem 4. For the brevity of notation we denote χ(l) as χ(l)
K+1, χ(l+1) as χ(l)

0 and Φ
as Φ0 in the following description.

• χ
(l)
i (u) = AGG

({{
χ
(l)
j (x) | v ∈ Ni(u)

}})
⇐⇒ φi(u) := ∃≥Nv

(
φj(v) ∧ 1v∈Ni(u)

)
| ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u),

• χ
(l)
i (u) = COM

(
χ
(l)
j (u), χ

(l)
k (u)

)
⇐⇒ φi(u) := φj(u) | φk(u) | ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u),

where φi, φ
′
i, φ

′′
i ∈ Φi, φj ∈ Φj , φk ∈ Φk for i ∈ {0} ∪ [K].

Proof. Obviously, to consider all numbers of layers l simultaneously, the equivalent logic set is
given by Φ =

⋃∞
l=0 Φ

(l). Since for layer l the corresponding equivalent logic set Φl is given by

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

• χ
(l)
i (u) = AGG

({{
χ
(l)
j (x) | v ∈ Ni(u)

}})
⇐⇒ φ

(l)
i (u) := ∃≥Nv

(
φ
(l)
j (v) ∧ 1v∈Ni(u)

)
| ¬φ(l)′

i(u) | φ(l)′
i(u) ∧ φ(l)′′

i (u),

• χ
(l)
i (u) = COM

(
χ
(l)
j (u), χ

(l)
k (u)

)
⇐⇒ φ

(l)
i (u) := φ

(l)
j (u) | φ(l)

k (u) | ¬φ(l)′
i(u) | φ(l)′

i(u) ∧ φ(l)′′
i (u),

where φ(l)
i , φ

(l)
i

′, φ
(l)
i

′′ ∈ Φ
(l)
i , φ

(l)
j ∈ Φ

(l)
j , φ

(l)
k ∈ Φ

(l)
k for i ∈ ∪[K], and

φ0(u) := atp(u).

It is obvious that the construction of Φi in Proposition 6 is a union of all Φ(l)
i for l ∈ [0,∞): at

beginning φi := atp(u) thus at this moment Φi = Φ
(0)
i . Suppose at some iteration Φi = Φ

(l)
i . Then

in next iteration we add

φi(u) := ∃≥Nv
(
φj(v) ∧ 1v∈Ni(u)

)
| φj(u) | φk(u) | ¬φ′

i(u) | φ′
i(u) ∧ φ′′

i (u) | atp(u)

to Φi, and we still have Φi = Φ
(l+1)
i . Therefore Φ =

⋃∞
l=0 Φ

(l) is given by Proposition 6.

E.5 PROOF OF PROPOSITION 7

Proposition 7. The equivalent logic set Ψ of the graph representation χG defined above is given by

ψ := ∃≥N (φ(u)) | ¬ψ′ | ψ′ ∧ ψ′′,

where ψ,ψ′, ψ′′ ∈ Ψ, φ ∈ Φ.

Proof. This is a direct result derived from Theorem 4. Since

χG = AGG
({{

χ(u) | u ∈ Vk
}})

where V is the set of nodes in G and k is the order of u, Ψ is specified by Theorem 4 as above.

E.6 PROOF OF PROPOSITION 8

Proposition 8. The equivalent logic sets of GNN models can be separately defined as:

• MPNN: φ(x) := ∃≥Nx (φ′(y) ∧ E(x, y)), where E is the edge predicate.
• Subgraph GNN (weak): φ(x) := ∃≥Ny (ψ(x, y)), and ψ(x, y) :=
∃≥Nz (ψ′(x, z) ∧ E(z, y)).

• Subgraph GNN (strong): φ(x) := ∃≥Ny (φ′(y) ∧ ψ(y, x)) , ψ(x, y) :=
∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y).

• NBFNet: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y)).
• Local 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E′(x, z) ∧ φ′(z, y)))

• 2-FGNN: φ(x, y) := ∃≥Nz (φ′(x, z) ∧ φ′′(z, y)).
• SEAL (MPNN): φ(x, y) := ∃≥Nz (ψ(x, z, y)) , ψ(x, z, y) :=
∃≥Nw (ψ(x,w, y) ∧ E(w, z))).

• 2-GNN: φ(x, y) := ∃≥Nz (φ′(x, z)) | ∃≥Nz (φ′(z, y)).

Proof. By utilizing the results from Proposition 6 and further simplify the resulted equivalent logic
sets, we can easily obtain these results. Note that for brevity we omit the terms φ := ¬φ′ | φ′ ∧ φ′′.

MPNN.
χ(l+1)(x) = COM

(
χ(l)(x),AGG

({{
χ(l)(y) | y ∈ N (x)

}}))
⇒φ(x) := φ′(x) | ∃≥Nx (φ′(y) ∧ E(x, y))

⇒φ(x) := ∃≥Nx (φ′(y) ∧ E(x, y)) .

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2025

Subgraph GNN (weak). The layers are given by

χ(l+1)(x) = AGG
({{

χ(l+1)(x, y) | y ∈ V
}})

,

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

(
χ(l)(x, z) | z ∈ N (y)

))
.

Therefore the equivalent logic sets are given by

φ(x) := ∃≥Ny (ψ(x, y)) ,

ψ(x, y) := ψ′(x, y) | ∃≥Nz (ψ′(x, z) ∧ E(z, y)) ,

which can be directly simplified as

φ(x) := ∃≥Ny (ψ(x, y)) ,

ψ(x, y) := ∃≥Nz (ψ′(x, z) ∧ E(z, y)) ,

Subgraph GNN (strong). The layers are given by

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}})
, χ(l)(y),AGG

({{
χ(l)(z) | z ∈ N (y)

}}))
,

χ(l+1)(x) = AGG
(
χ(l+1)(y, x) | y ∈ V

)
.

Therefore the equivalent logic sets are given by

ψ(x, y) := ψ′(x, y) | ∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y) | ∃≥Nz (φ(z) ∧ E(z, y)) ,

φ(x) := ∃≥Ny (ψ(y, x)) .

Substituting ψ(x, y) := (φ(z) ∧ E(z, y)) to the second line leads to

φ(x) := ∃≥Nz (φ′(z) ∧ E(z, x)) .

Therefore, the above Φ can also be described by

φ(x) := ∃≥Ny (φ′(y) ∧ ψ(y, x)) ,
ψ(x, y) := ∃≥Nz (ψ(x, z) ∧ E(z, y)) | φ(y).

NBFNet.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z) ∧ E(z, y))

⇒φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y)) .

Local 2-GNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ N (x)

}})
,AGG

({{
χ(l)(x, z) | z ∈ N (y)

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E′(x, z) ∧ φ′(z, y)))

⇒φ(x, y) := ∃≥Nz (φ′(x, z) ∧ E(z, y))) | ∃≥Nz (E′(x, z) ∧ φ′(z, y))) .

2-FGNN.

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
COM

(
χ(l)(x, z), χ(l)(z, y)

)
| z ∈ V

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (ψ(x, y, z)) , ψ(x, y, z) := φ(x, y) | φ(y, z)
⇒φ(x, y) := ∃≥Nz (φ′(x, z) ∧ φ′′(z, y)) .

The last line holds because 1(x, y) ∈ Φ where 1(x, y) ≡ true for all (x, y).

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2025

SEAL (MPNN). The layers are given by

χ(l+1)(x, z, y) = COM
(
χ(l)(x, z, y),AGG

({{
χ(l)(x,w, y) | w ∈ N (z)

}}))
,

χ(l+1)(x, y) = AGG
({{

χ(l+1)(x, z, y) | z ∈ N
}})

.

Therefore the equivalent logic sets are given by

φ(x, y) := ∃≥Nz (ψ(x, z, y)) ,

ψ(x, z, y) := ∃≥Nw (ψ(x,w, y) ∧ E(w, z))) .

2-GNN

χ(l+1)(x, y) = COM
(
χ(l)(x, y),AGG

({{
χ(l)(z, y) | z ∈ V

}})
,AGG

({{
χ(l)(x, z) | z ∈ V

}}))
⇒φ(x, y) := φ′(x, y) | ∃≥Nz (φ′(x, z))) | ∃≥Nz (φ′(z, y)))

⇒φ(x, y) := ∃≥Nz (φ′(x, z))) | ∃≥Nz (φ′(z, y))) .

E.7 PROOF OF PROPOSITION 10

Proposition 10. Suppose the equivalent logic set of a class of GNN models is Φ. Then, the
expressive power of the GNN models is bounded by k-WL, iff the number of variables of the logic
formulas in Φ is at most k.

Proof. Given any graphs G,H , Cai et al. (1992) states that the following statements are equivalent:

• k-WL distinguishes G,H;

• There is a FOCk formula that distinguishes G,H .

Recall that FOCk is a subset of first-order formula that allows quantifiers ∃≥N but restricts the
formulas to only possess k. Obviously, Φ in Proposition 10 is a subset of FOCk, thus the expressive
power of GNNs is bounded by k-WL.

E.8 PROOF OF COROLLARY 11

Corollary 11. The expressivity of GNN models satisfies: MPNNs = 1-WL < Subgraph GNNs
(weak) = NBFNet < Subgraph GNNs (strong) < Local 2-FGNN < 2-FGNN = 3-WL, 1-WL <
SEAL < 4-WL.

Proof. By utilizing Proposition 6, Proposition 7 and Proposition 10, obviously Corollary 11 holds.

E.9 PROOF OF LEMMA 13

Lemma 13. If nk > N for some k ∈ [K], then ψn1n2...nK
= false on G.

Proof. Obviously if nk > N for some k ∈ [K], we have

Hom(F,G)

≥
∏

k∈[K]

nk

>N,

which contradicts with the fact that Hom(F,G) = N .

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2025

E.10 PROOF OF LEMMA 14

Lemma 14. For ψn1n2...nK
and ψm1m2...mK

, if nk ̸= mk for some k ∈ [K], then then grounding
results of ψn1n2...nK

and ψm1m2...mK
are different, i.e. there exists no V that is both a grounding

result of ψn1n2...nK
and ψm1m2...mK

.

Proof. Since nk ̸= mk for some k ∈ [K], we assume that nl ̸= ml while nk = mk for k ∈
[l + 1,K]. We prove by contradiction. Suppose V = (v1, ...,vK) is both a grounding result of
ψn1n2...nK

and ψm1m2...mK
. This indicates that for ψn1n2...nK

, by fixing its variables to x1 :=
v1,x2 := v2, ...,xl−1 := vl−1, there exists exactly nl different groundings of xl satisfying

∃=nl+1xl+1∃=nl+2xl+2...∃=nKxK

 ∧
m∈[M]

E(xim , xjm)


in G. However, for ψm1m2...mK

by fixing its variables to x1 := v1,x2 := v2, ...,xl−1 := vl−1,
there exists exactly ml different groundings of xl satisfying

∃=ml+1xl+1∃=ml+2xl+2...∃=mKxK

 ∧
m∈[M]

E(xim , xjm)


in G. Since mk = nk for k ∈ [l + 1,K] and ml ̸= nl, this yields a contradiction.

E.11 PROOF OF LEMMA 15

Lemma 15. If there is ψ ∈ Φ such that ψ evaluates to different values on G and H , then there
exists φ in the form of φ := ∃=n1x1∃=n2x2...∃=nKxK

(∧
p∈[P]E(xip , xjp)

∧
q∈[Q] ¬E(xiq , xjq)

)
that also evaluates to different values on G and H .

Proof. We prove this by constructing φ of the form

φ := ∃=n1x1...

 ∧
m∈[M]

E(xim , xjm)


that explicitly captures the colors of χ. Concretely, similar as Theorem 4, suppose a series of func-
tions {χ1, ..., χL} where χl is defined by

χl(x) = hash (χp(x), χq(x)) ,

χl(x) = hash ({{χp(y) | y ∈ N (x)}}) ,
or

χl(x) = atp(x).

The difference between Theorem 4 and here is that we replace AGG and COM functions with
injective hash function. Obviously the separation power of (χl)l∈[L] here is no less than that in
Theorem 4. The above procedure can be regarded as a general color refinement algorithm where the
value of χl(x) is called the color of x computed by χl. We define the signature logic set Ψl of chil
to be the set that satisfiesfor each color C, there exists ψC ∈ Φl such that

ψC(x) = true ⇐⇒ χ(x) = C.

We now provide a method to construct the signature logic set Ψl. We define:

1.
χl(x) = hash (χp(x), χq(x))

⇒ψl(x) := ψp(x) ∧ ψq(x)

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2025

2.
χl(x) = hash ({{χp(y) | y ∈ N (x)}})

⇒ψl(x) := ∃=Ny
(
1y∈N (x)

)
∧ ∃=N1y1

(
ψp(y) ∧ 1y1∈N (x)

)
∧ ∃=N2y2

(
ψp(y) ∧ 1y2∈N (x)

)
∧ ... | ∃=0y1y∈N (x),

where N2 ≥ N1 ≥ 1.

3.
χl(x) = atp(x)
⇒ψl(x) := 1atp(x)=C

where for each possible structure of a k-node graph (k is the order of x; we consider node
orders thus there are 2k structures in total; suppose the nodes of the k-node graph are
v1, ..., vk), there is a corresponding ψl that evaluates to true iff there is an isomorphism
from the subgraph induced by x to the structure of the corresponding k-node graph that
maps vi to xi for i ∈ [k] where x = (x1, ..., xk).

We next prove that the above Ψl indeed is the signature logic set of χl. We denote ψC
l (x) as the

logic formula that evaluates to true iff χl(x) = C where C is the color of x evaluated by χl. For
situation 3 the statement obviously holds. For situation 1, suppose Ψp,Ψq are the signature logic
sets of χp, χq respectively. For each color Cl of χl where Cl = hash(Cp, Cq), we have

ψCl

l (x) := ψCp
p (x) ∧ ψCq

q (x)

which is true iff χl(x) = Cl. Thus the statement still holds.

For situation 2, suppose Ψp is the signature logic set of χp. Each color Cl of χl is defined by

Cl = hash
({{

C1
p , C

2
p , ...

}})
= hash

({
(C1

p , N1), (C
2
p , N2), ...

})
where C1

p , C
2
p , ... are colors produced by χp, and N1, N2, ... ≥ 1 are the numbers of the colors

C1
p , C

2
p , ... emerged in the multiset, We then have

ψCl

l (x) := ∃=Ny1y∈N (x)∃=N1y1

(
ψ
C1

p
p (y1) ∧ 1y1∈N (x)

)
∧∃=N2y2

(
ψ
C2

p
p (y2) ∧ 1y2∈N (x)

)
∧....

Specially, if the multiset is empty, we have

ψCl

l := ∃=0y1y∈N (x).

Then, ψCl

l (x) is true iff χl(x) = Cl. ψCl

l is also in Ψl. Therefore, we have constructed the
signature logic set of χl. Obviously, all ψl ∈ Ψl can be written in the form of

ψl(x) := ∃=N1x1...∃=NKxK

 ∧
p∈[P]

E(xip , xjp)
∧

q∈[Q]

(¬E(xsq , xtq))

 .

For two graphs G,H , if there exists ψ that distinguishes them, then obviously the corresponding χ
also distinguishes them. Without loss of generality, suppose the color of χ applied on G is C. Let
ψC be the logic formula that evaluates true iff χ = C. Then, we have

ψC evaluates to true on G and false on H.

Recall that since ψC can be written in the form of

ψC(x) := ∃=N1x1...∃=NKxK

 ∧
p∈[P]

E(xip , xjp)
∧

q∈[Q]

(¬E(xsq , xtq))

 ,

the proof completes.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

E.12 PROOF OF LEMMA 16

Lemma 16. If Hom(F,G) = Hom(F,H) for all F ∈ F , then every ϕ ∈ Φ of the above form
satisfies:

grd(ϕ,G) = grd(ϕ,H).

Proof. We prove by contradiction and assume Hom(F,G) = Hom(F,H) for all F ∈ F but there
exists ϕ ∈ Φ given by

ϕ := ∃x1∃x2...∃xK

 ∧
p∈[P]

E(xip , xjp)
∧

q∈[Q]

¬E(xiq , xjq)


that classifies G and H differently. Without loss of generality we assume ϕ evaluates to true in
G. By the definition of grd, obviously if Hom(F,G) = Hom(F,H) for all F ∈ F , we have
grd(ψ,G) = grd(ψ,H) for all ψ ∈ Ψ ⊆ Φ where ψ ∈ Ψ is of the form

ψ := ∃x1∃x2...∃xK

 ∧
p∈[P]

E(xip , xjp)

 ,

i.e. ψ contains no negative edges ¬E. We next show that we can use grd(ψ, ·) for ψ ∈ Ψ to infer
grd(ϕ, ·). We denote

ϕq := ∃x1...∃xK

 ∧
p∈[P]

E(xip , xjp)
∧
r∈[q]

(¬E(xsr , xtr))


We now show that we can use the results grd(ψ, ·) for ψ ∈ Ψ to infer grd(ϕq, ·) for q = 0, 1, ..., Q.
We denote X = (x1, ...,xK). For q = 0, obviously ϕ0 ∈ Ψ thus the statement naturally holds.
Since the groundings of ϕ0 consist of two parts:

• X that satisfy
∧

p∈[P]E(xip , xjp) ∧ E(xs1 , xt1);

• X that satisfy
∧

p∈[P]E(xip , xjp) ∧ ¬E(xs1 , xt1), corresponding to ϕ1.

Obviously the two part do not intersect. Therefore, grd(ϕ1, ·) = grd(ϕ0, ·)− grd(φ(1), ·) where

φ(1) := ∃x1...∃xK

 ∧
p∈[P]

E(xip , xjp) ∧ E(xs1 , xt1)

 .

Similarly, to infer grd(ϕ2, ·), the set of X that satisfy
(∧

p∈[P]E(xip , xjp)
)

consists of four non-
intersect parts:

•
∧

p∈[P]E(xip , xjp) ∧ E(xs1 , xt1) ∧ E(xs2 , xt2),

•
∧

p∈[P]E(xip , xjp) ∧ E(xs1 , xt1) ∧ ¬E(xs2 , xt2),

•
∧

p∈[P]E(xip , xjp) ∧ ¬E(xs1 , xt1) ∧ E(xs2 , xt2),

•
∧

p∈[P]E(xip , xjp) ∧ ¬E(xs1 , xt1) ∧ ¬E(xs2 , xt2),

According to our assumption the first part is known. For the second part, since(∧
p∈[P]E(xip , xjp) ∧ E(xs1 , xt1)

)
consists of two non-intersect parts:

•
∧

p∈[P]E(xip , xjp) ∧ E(xs1 , xt1) ∧ E(xs2 , xt2),

•
∧

p∈[P]E(xip , xjp) ∧ E(xs1 , xt1) ∧ ¬E(xs2 , xt2).

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2025

Thus the second part can also be inferred, and so does the third part. Therefore, the set of nodes that
satisfy

(∧
p∈[P]E(xip , xjp)

)
can be inferred, and thus also grd(ϕ2, G) = grd(ϕ2, H) Using the

same strategy one can show that

grd(ϕq, G) = grd(ϕq, H)

for any q. Therefore, this yields the contradiction.

30

	Introduction
	Background
	Logical Expressivity of Graph Neural Networks
	Equivalent Logic Sets
	Describing Logical expressivity for GNNs

	General Aggregate-Combine Networks
	On the Equivalent Logic Fragment of Graph Neural Networks
	Equivalent Logic Sets for General Computation Procedure
	Main Results

	Implications
	Regarding Existing GNN models
	Structural Awareness of GNNs
	Expressivity Comparison

	Limitation and Conclusion
	Related Works
	Weisfeiler-Lehman tests
	1-WL (Color Refinement)
	k-WL
	k-FWL
	Colors of k-WL / k-FWL

	About GNN models
	About variables in logic formulas
	Proof
	Proof of Theorem 4
	Proof of Theorem 9
	Proof of Corollary 5
	Proof of Proposition 6
	Proof of Proposition 7
	Proof of Proposition 8
	Proof of Proposition 10
	Proof of Corollary 11
	Proof of Lemma 13
	Proof of Lemma 14
	Proof of Lemma 15
	Proof of Lemma 16

