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Abstract

In this work, we tackle a challenging and extreme form of subpopulation shift,
which is termed compositional shift. Under compositional shifts, some combina-
tions of attributes are totally absent from the training distribution but present in
the test distribution. We model the data with flexible additive energy distributions,
where each energy term represents an attribute, and derive a simple alternative to
empirical risk minimization termed compositional risk minimization (CRM). We
provide an extensive theoretical analysis of CRM, where we show that our proposal
extrapolates to special affine hulls of seen attribute combinations. Empirical evalu-
ations on benchmark datasets confirms the improved robustness of CRM compared
to other popular methods designed to tackle various forms of subpopulation shifts.

1 Introduction

The ability to make sense of the rich complexity of the sensory world by decomposing it into
sets of elementary factors and recomposing these factors in new ways is a hallmark of human
intelligence. This capability is typically grouped under the umbrella term compositionality [Fodor
and Pylyshyn, 1988, Montague, 1970]. Compositionality underlies both the semantic understanding
and the imaginative prowess of humans, enabling robust generalization and extrapolation. For
instance, human language allows us to imagine situations we have never seen before, such as “a blue
elephant riding a bicycle on the Moon.” While most works on compositionality have focused on its
generative aspect, i.e., imagination, as seen in diffusion models [Yang et al., 2023a], compositionality
is equally important in discriminative tasks.

In this work, we dive into this less-explored realm of compositionality for discriminative tasks,
specifically in the context of multi-attribute data, where each input is associated with multiple
labeled categorical attributes. During training, we observe inputs from only a subset of all possible
combinations of individual attributes, but the test data contains novel combinations of attributes never
seen during training. Following Liu et al. [2023], we refer to this distribution shift as compositional
shift, which can also be viewed as an extreme case of subpopulation shift [ Yang et al., 2023b]. We
develop Compositional Risk Minimization (CRM), an adaptation of the Empirical Risk Minimization
(ERM) tailored for multi-attribute data under compositional shifts. CRM is built on additive energy
distributions, which were previously studied for generative compositionality [Liu et al., 2022a].

Contributions. a) Theory of discriminative compositional shifts: For the family of additive
energy distributions, we prove that additive energy classifiers generalize compositionally to novel
combinations of attributes represented by a special mathematical object, which we call discrete
affine hull. Our characterization of extrapolation is sharp, i.e., we show that it is not possible to
generalize beyond discrete affine hull. b) A practical method: CRM is a simple algorithm for
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training classifiers, which first trains an additive energy classifier and then adjusts the trained classifier
for tackling compositional shifts. We empirically validate the superiority of the CRM algorithm to
other prior methods proposed for robustness to various forms of subpopulation shifts.

2 Problem Setting

2.1 Generalizing under Compositional Distribution Shift

Consider an input z (e.g., image) which belongs to a group that is characterized by an attribute vector
z = (z1,...,2m) (e.g., class label, background label). There are m attributes and each attribute
z; can take d possible values, i.e., z; € {1,...,d}. Let p(z,z) = p(z)p(z|z) denote the train
distribution, and ¢(x, z) = ¢(z)q(z|z) the test distribution. We denote the support of each attribute
component z; under training distribution as Z!" and the support of z under training distribution as
Ztrain_ The corresponding supports for the test distribution are denoted as Z!*t and Z*st. We define
the Cartesian product of marginal support under training as Z* = Zirain x zfrain 5 ... Ztrain

In this work, we study compositional shifts that are characterized by:

1. p(z|z) = q(z]z),Vz € Z*.
2‘ Ztest Z Ztrain but Ztest C ZX.

The first point states that the conditional density of inputs remains invariant, i.e., the data generation
mechanism from attributes to the inputs remains invariant. The only change from train to test is the
shift in the prior probabilities of attributes from p(z) to ¢(z), which is specified by the second point
as the difference in their support. Specifically, at test we observe novel combinations of individual
attributes but not a completely new individual attribute. To illustrate the setup, we use the Waterbirds
dataset [Sagawa et al., 2019] as the running example. Each image x has two attributes, z = (y, a),
where y tells the class of the bird — Waterbird (WB) or Landbird (LB), and a tells the background —
Water (W) or Land (L). Training distribution consists of data from three groups — (WB, W), (LB, L),
(LB, W). However, the test distribution also consists of data from the novel group (WB, L) as well.

The task of compositional generalization is then to build classifiers that are robust to such composi-
tional distribution shifts. Our setup differs from the standard subpopulation shifts [ Yang et al., 2023b],
where we observe data from all the groups but some groups present much more data than the others.

2.2 Additive Energy Distribution

We assume that p(z|z) is of the form of an additive energy distribution (AED):

plalz) = e o (- i_nj Ei(a, =) M

where Z(z) = f exp (f S Ei(w, 27)) dx is the partition function. We do not make assumptions'

on the E; except Z(z) < oo, leaving the resulting p(z|z) very flexible. This form is a natural choice
to model inputs that must satisfy a conjunction of characteristics (such as being a natural image of a
landbird AND having a water background), corresponding to our attributes. Our choice of AED is
inspired by two lines of work. Firstly, these distributions were used to enhance compositionality in
generative tasks Liu et al. [2022a] but they have not been used in discriminative compositionality.
Secondly, they can interpreted through the independent mechanisms principle [Janzing and Scholkopf,
2010, Parascandolo et al., 2018], where the energy functions £; are (algorithmically) independent.

We provide an alternate way to express equation 1 using dot-products. For all z € Z
with Z = {1,...,d}™, denote o(z) € R™% as a concatenation of m one-hot vectors,
ie. o(z) = [onehot(z;),...,onehot(z,,)]". We also define a vector valued map F(z) =
[Ey(x,1),..., Ei(z,d),...,Eyn(z,1),..., En(z,d)]T where E;(z, z;) is the energy term for i‘"
attribute taking the value z;. Hence, equation 1 can be written as follows:

plals) = i e ( — (o(). El@) ) @

'The support of p(z|z) is assume to be R™, Vz € Z*.




3 Provable Compositional Generalization

Our goal is to learn a distribution ¢(z|x) that matches the test distribution ¢(z|x) and predict the
attributes at test time in a Bayes optimal manner. Towards this, we propose CRM where we first train
an additive energy classifier to predict all the attributes jointly, and then we adjust this classifier for
compositional shifts. We first introduce the notion of Discrete Affine Hull of a set of attributes that
will be used to characterize what new combinations of attributes we can extrapolate to. The discrete

affine hull of a set of attribute vectors A = {z(1), ... 2(F)} where 2() € Z, is defined as:
k k
DAff(A) = {z €cZ|JacRr o(z)= Zaia(z(i)),Zai = 1}
i=1 i=1

We now give a simple example to illustrate discrete affine hull. Let us revisit the Waterbirds dataset.
Suppose we observe data from three out of the four groups. In one-hot encoding, we represent WB
as [1,0] and LB as [0, 1]. We represent Water as [1, 0] and Land as [0, 1]. Below we show that the
attribute vector WB on L represented as [1 0 0 1] can be expressed as an affine combination of the
remaining three attribute vectors. Based on this, we can conclude that the discrete affine hull of three
one-hot concatenated vectors contains all the four possible one-hot concatenations.

0 0 1 1
1 1 0 0

(+1) - ol + (-1)- i+ (+1) - 1= 1o 3)
1 0 0 1

In Section C.4, we generalize the above finding and develop a mathematical characterization of
discrete affine hulls that leads to an easy recipe to visualize these sets. In the remainder whenever we
use affine hull it means discrete affine hull.

We now describe the first step in the proposed approach CRM, where we aim to train a perfect
estimator of training distribution p(z|z). Observe that if we apply Bayes rule to AED p(x|z), we have

exp (—(17(2)»E($)>+10gp(Z)—logZ(Z)
p(zlz) = . To guarantee that we can model p(z|z),
> .rcztrain exp | —(o(2'),E(z))+log p(z')—log Z(z')

we define our additive energy classifier with the same form, as follows:

exp ( = (o1, B(@) + logi:) - B(:) )

p(zlz) = 7 ©)

5 v €D ( (o(), B@)) + logp(=") — B(zf))

where §(z) is the empirical estimate of prior p(z), E : R™ — R is a function to be learned, B is
a lookup table containing a learnable offset for each combination of attributes. Given a data point

(z, ), cross-entropy loss £(z, p(-|x)) = — log p(z|x) measures the prediction performance of p(-|x).
Hence, we learn the optimal parameters as follows:
E, B € argmin R(p). 5)
E,B

If the minimization is over arbitrary functions, then we have a perfect estimator p(-|x) = p(+|z), Va €
R™. Now, in the second step of CRM, we compute our final predictor §(z|z) based on the learned
p(z|x) designed specifically to extrapolate to novel combinations at test time. Let §(z) be an estimate

of the marginal distribution over the attributes ¢(z) with support Z'st. For each z € Z'*t, define

exp ( ~(0(2), B(x)) +logd(:) — log B*(z))

(ele) = : , ®)
D e Frest OXD ( —(o(2"), E(x)) +log ¢(z') — log B*(z’))
where E, B correspond to the learned estimator p(z|x) (4) and B*(z) is defined as follows:
. exp (= (0(2), B() )
B*(2) = Eop(a) - - Q)
5 rezmn exp (= (o(2'), Bx)) +logp(=) — B())



We now state our main result on CRM’s extrapolation (proof in Appendix C.2). For more intuition
regarding the proof, please first check Appendix B.1, where we discuss extrapolation of p(x|z).

Theorem 1. Consider the setting where p(.|z) follows AED Yz € Z*, the test distribution q
satisfies compositional shift characterization and Z*t C DAff(Z™"). If p(z|z) = p(z|z),Vz €
Zwain vr € R" and §(2) = q(2),Vz € Z%, then the output of CRM (equation 6) matches the test
distribution, i.e., §(z|x) = q(z]x),Vz € Z'* Vo € R™

Each of the above steps are easy to operationalize, as explained in Appendix B.3. Observe that
p(-|x) = p(+|z) is a condition that even a model trained via ERM can satisfy (with sufficient capacity
and data) but it cannot match the true ¢(-|x). In contrast, CRM optimally adjusts the additive-energy
classifier (4) for compositional shifts.

So far we have made a crucial assumption that the attribute combinations in the test distribution are
in the affine hull. Is this also a necessary condition? We show this is not possible in Appendix C.5,
hence we cannot generalize to attributes outside the affine hull. Further, our results have restricted
the support of test distribution as Z't C DAff(Z'") C Z*, while the compositional shifts only
implied Z'*t C Z*. This leads to a natural question, how fast does the affine hull grow to capture
the cartesian product set? In Appendix B.2, we show for m = 2 and d values per attribute, if the
number of randomly sampled z € Z'" exceeds 8cdlog(d), then DAff(Zt!") = Z* with a high
probability (Theorem 3).

4 Experiments

4.1 Setup

We evaluate CRM on widely recognized benchmarks for subpopulation shifts [Yang et al., 2023b],
that have 2 attributes z = (y, a), where y denotes the class label and a denotes the spurious attribute
(y and a are correlated). However, the standard split between train and test data mandated in these
benchmarks does not actually evaluate robustness to compositional shifts, because both train and test
datasets contain all the groups (22" = Ztest — ZX) Therefore, we repurpose these benchmarks
for compositional shifts by discarding samples from one of the groups (z) in the train (and validation)
dataset; but we don’t change the test dataset, i.e., 2 ¢ 2" but z € Z't. Let us denote the data
splits from the standard benchmarks as (Dirain, Dyal; Drest). Then we generate multiple variants
of compositional shifts {(D.Z,, D, Drest) | 2 € 2%}, where D.%, and D_} are generated by

. I trainy “val» train
discarding samples from D;,.j, and D, , that belong to the group z.

Following this procedure, we adapted Waterbirds [Wah et al., 2011], CelebA [Liu et al., 2015],
MetaShift [Liang and Zou, 2022], MultiNLI [Williams et al., 2017], and CivilComments Borkan et al.
[2019] for experiments. We also experiment with the NICO++ dataset [Zhang et al., 2023], where we
already have Z'2in C Ztest — ZX a5 some groups were not present in the train dataset. However,
these groups are still present in the validation dataset (Z¥ = Z*). Hence, the only transformation
we apply to NICO++ is to drop samples from the validation dataset such that 2" = Zv!. For
baselines, we train classifiers via Empirical Risk Minimization (ERM), GroupDRO [Sagawa et al.,
2019], Logit Correction (LC) [Liu et al., 2022b], and supervised logit adjustment (sLA) [Tsirigotis
et al., 2024]. In all cases we employ a pretrained architecture as the representation network ¢,
followed by a linear layer W to get class predictions, and fine-tune them jointly (see Appendix D.3
for details). For evaluation metrics, we report the average accuracy, group balanced accuracy, and
worst-group accuracy on the test dataset. Due to imbalances in group distribution, a method can obtain
good average accuracy despite having bad worst-group accuracy. Therefore, the worst-group accuracy
is a more indicative metric of robustness to spurious correlations (more details in Appendix D.2).

4.2 Results

Table 1 shows the results of our experiment. For each dataset, we report the average accuracy over
its various compositional shift scenarios {(D,Z,,, Piii, Diest) | 2 € Z*} (detailed results for all
scenarios are in Appendix E.1). In all cases, CRM either outperforms or is competitive with the
baselines in terms of worst group accuracy (WGA). Further, for Waterbirds and MultiNLI, while the
logit adjustment baselines appear competitive with CRM on average, if we look more closely at the
worst case compositional shift scenario, we find that logit adjustment baselines fare much worse than

CRM. For Waterbirds, LC obtains 69.0% worst group accuracy while CRM obtains 73.0% worst



Dataset Method Average Acc WGA o Gl_r}fﬁopmh
ERM 77.9(0.1) 43.0 (0.1) | 62.3 (1.2)
G-DRO 77.9 (0.6) 42.3 (2.5) | 87.3 (0.3
Waterbirds LC 88.3 (0.7) 75.5 (0.8) | 88.7(0.3)
sLA 89.3 (0.4) 77.3(0.5) | 89.7(0.3)
CRM 87.1(0.7) 78.7 (1.6) | 86.0 (0.6)
ERM 85.8 (0.3) 39.0 (0.6) | 52.0 (1.0)
G-DRO  89.2 (0.5) 67.7 (1.3) | 91.0 (0.6)
CelebA LC 91.1 (0.2) 57.4(0.6) | 90.0 (0.6)
sLA 90.9 (0.1) 57.4(0.3) | 86.7(1.9)
CRM 91.1 (0.2) 81.8 (1.2) | 89.0 (0.6)
ERM 85.7 (0.4) 60.5 (0.6) | 63.0 (0.0)
G-DRO  86.0 (0.4) 63.8 (0.6) | 80.7 (1.3)
MetaShift LC 88.5 (0.0) 68.2 (0.5) | 80.0 (1.2)
sLA 88.4 (0.1) 63.0 (0.5) | 80.0 (1.2)
CRM 87.6 (0.2) 73.4 (0.7) | 74.7 (1.5)
ERM 69.1 (0.7) 7.2(0.6) | 68.0(1.7)
G-DRO 70.4 (0.1) 34.3 (0.5) | 57.0(2.3)
MultiNLI LC 75.9 (0.1) 54.3 (0.5) | 74.3 (1.2)
sLA 76.4 (0.5) 55.0 (1.8) | 71.7 (0.3)
CRM 74.6 (0.5) 57.7 (3.0) | 74.7 (1.3)
ERM 80.4 (0.1) 55.8 (0.4) | 61.0 (2.5)
G-DRO 80.1(0.2) 61.6 (0.4) | 64.7 (1.5)
CivilComments | LC 80.7 (0.1) 65.7 (0.5) | 67.3 (0.3)
sLA 80.6 (0.1) 65.6 (0.1) | 66.3 (0.9)
CRM 83.7 (0.1) 68.1 (0.5) | 70.0 (0.6)
ERM 85.0 (0.0) 35.3 (2.3) | 35.3 (2.3)
G-DRO  84.0 (0.0) 36.7 (0.7) | 33.7(1.2)
NICO++ LC 85.0 (0.0) 35.3 (2.3) | 35.3(2.3)
sLA 85.0 (0.0) 33.0 (0.0) | 35.3 (2.3)
CRM 84.7 (0.3) 40.3 (4.3) | 39.0 (3.2)

Table 1: Robustness under compositional shift. We report test Average Accuracy and Worst Group
Accuracy (WGA), averaged as a group is dropped from training and validation sets. Last column is
WGA under the dataset’s standard subpopulation shift benchmark, i.e. with no group dropped. All
methods have a harder time to generalize when groups are absent from training, but CRM appears
consistently more robust (standard error based on 3 random seeds).

group accuracy for the worst case scenario of dropping the group (0, 1) (Table 5). Similarly, for the
MultiNLI benchmark, sLA obtains 19.7% worst group accuracy while CRM obtains 31.0% worst
group accuracy for the worst case scenario of dropping the group (0, 0) (Table 8).

We also report the worst group accuracy (other metrics in Table 11) for the original benchmark
(Drrain, Dyaly Dirain) which was not transformed for compositional shifts, denoted WGA (No Groups
Dropped).This can be interpreted as the “oracle” performance for each benchmark, and we can
compare methods based on the performance drop in WGA due to discarding groups in compositional
shifts. ERM and GroupDRO appear the most sensitive to compositional shifts, and the logit adjustment
baselines also show a sharp drop for CelebA; while CRM is more robust to compositional shifts.

Importance of extrapolating the bias. We conduct an ablation study for CRM where we test a
variant that uses the learned bias B (e.q. 5) instead of the extrapolated bias B* (e.q. 7). Results are
presented in Table 10. They show a significant drop in worst-group accuracy if we use the learned
bias instead of the extrapolated one. Hence, our theoretically grounded bias extrapolation step is
crucial to generalize under compositional shifts.
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A Related Works

Compositional Generalization Compositionality has long been seen as an important capability on
the path to building [Fodor and Pylyshyn, 1988, Hinton, 1990, Plate et al., 1991, Montague, 1970]
human-level intelligence. The history of compositionality is very long to cover in detail here, refer to
these surveys [Lin et al., 2023, Sinha et al., 2024] for more detail. Compositionality is associated
with many different aspects, namely systematicity, productivity, substitutivity, localism, and overgen-
eralization [Hupkes et al., 2020]. In this work, we are primarily concerned with systematicity, which
evaluates a model’s capability to understand known parts or rules and combine them in new contexts.
Over the years, several popular benchmarks have been proposed to evaluate this systematicity aspect
of compositionality, Lake and Baroni [2018] proposed the SCAN dataset, Kim and Linzen [2020]
proposed the COGS dataset. These works led to development of several insightful approaches to
tackle the challenge of compositionality [Lake and Baroni, 2023, Gordon et al., 2019]. Most of these
works on systematicity have largely focused on generative tasks, [Liu et al., 2022a, Lake and Baroni,
2023, Gordon et al., 2019, Wang et al., 2024], i.e., where the model needs to recombine individual
distinct factors/concepts and generate the final output in the form of image or text. There has been
lesser work on discriminative tasks [Nikolaus et al., 2019], i.e., where the model is given an input
composed of a novel combination of factors and it has to predict the underlying novel combination.
In this work, our focus is to build an approach that can provably solve these discriminative tasks.

On the theoretical side, recently, there has been a growing interest to build provable approaches for
compositional generalization [Wiedemer et al., 2023, 2024, Brady et al., 2023, Dong and Ma, 2022,
Lachapelle et al., 2024]. These works study models where the labeling function or the decoder is
additive over individual features, and prove generalization guarantees over the Cartesian product of
the support of individual features. The ability of a model to generalize to Cartesian products of the
individual features is an important form of compositionality, which checks the model’s capability to
correctly predict in novel circumstances described as combination of contexts seen before. Dong and
Ma [2022] developed results for additive models, i.e., labeling function is additive over individual
features. While in Wiedemer et al. [2023], the authors considered a more general model class in
comparison to Dong and Ma [2022]. The labeling function/decoder in [Wiedemer et al., 2023] takes
the form f(x1, -+ ,x,) = C(¢1(x1), - ,¥n(zy,)). However, they require a strong assumption,
where the learner needs to know the function C' that is used to generate the data. Lachapelle et al.
[2024], Brady et al. [2023] extended the results from Dong and Ma [2022] to the unsupervised
setting. Lachapelle et al. [2024], Brady et al. [2023] are inspired by the success of object-centric
models and show additive decoders enable generative models (autoencoders) to achieve Cartesian
product extrapolation. While these works take promising and insightful first steps for provable
compositional guarantees, the assumption of additive deterministic decoders (labeling functions) may
come as quite restrictive. In particular a given attribute combination can then only correspond to a
unique observation, produced by a very limited interaction between generative factors, not to a rich
distribution of observations. By contrast an additive energy model can associate an almost arbitrary
distribution over observations to a given set of attributes. Hence, we take inspiration independent
mechanisms principle [Janzing and Scholkopf, 2010, Parascandolo et al., 2018] for our setting
based on additive energy models. In the spirit of this principle, we think of each factor impacting
the final distribution through an independent function, where independence is in the algorithmic
sense and not the statistical sense. Based on this more realistic assumption of additive energy, our
goal is to develop an approach that provably enables zero-shot compositional generalization in
discriminative tasks, where the model needs to robustly predict never seen before factor combinations
that the input is composed of. These additive energy distributions have also been used in generative
compositionality [Liu et al., 2022a] but not in discriminative compositionality.

Finally, in another line of work [Schug et al., 2023], the authors consider compositionality in the task
space and develop an approach that achieves provable compositional guarantees over this task space
and empirically outperforms meta-learning approaches such as MAML and ANIL. Specifically, they
operate in a student-teacher framework, where each task has a latent code that specifies the weights
for different modules that are active for that task.

Domain Generalization Generalization under subpopulation shifts, where certain groups or combi-
nations of attributes are underrepresented in the training data, is a well-known challenge in machine
learning. Group Distributionally Robust Optimization (GroupDRO) [Sagawa et al., 2019] is a promi-
nent method that minimizes the worst-case group loss to improve robustness across groups. Invariant
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Risk Minimization (IRM) Arjovsky et al. [2019] encourages the model to learn invariant representa-
tions that perform well across multiple environments. Perhaps the simplest methods are SUBG and
RWG Idrissi et al. [2022], which focus on constructing a balanced subset or reweighting examples
to minimize or eliminate spurious correlations. There are many other interesting approaches that
were proposed, see the survey for details Zhou et al. [2022]. The theoretical guarantees developed
for these approaches [Rosenfeld et al., 2020, Arjovsky et al., 2019, Ahuja et al., 2020] require a
large diversity in terms of the environments seen at the training time. In our setting, we incorporate
inductive biases based on additive energy distributions that help us arrive at provable generalization
with limited diversity in the environments.

Closely related to our proposed method are the logit adjustment methods Kang et al. [2019], Menon
et al. [2020], Ren et al. [2020] used in robust classification. Kang et al. [2019] introduced Label-
Distribution-Aware Margin (LDAM) loss for long-tail learning, proposing a method that adjusts the
logits of a classifier based on the class frequencies in the training set to counteract bias towards
majority classes. Similarly, Menon et al. [2020] and Ren et al. [2020] (Balanced Softmax), modify
the standard softmax cross-entropy loss to account for class imbalance by shifting the logits according
to the prior distribution over the classes. Closest to our work are the Logit Correction (LC) [Liu
et al., 2022b] and Supervised Logit Adjustment (sLA) [Tsirigotis et al., 2024] methods that use logit
adjustment for group robustness. LC adjusts logits based on the joint distribution of environment and
class label, reducing reliance on spurious features in imbalanced training sets. When environment
annotations are unknown, a second network infers them. Supervised Logit Adjustment (sLA) adjusts
logits according to the conditional distribution of classes given the environment. In the absence
of environment annotations, Unsupervised Logit Adjustment (uLA) uses self-supervised learning
(SSL) to pre-train a model for general feature representations, then derives a biased network from
this pre-trained model to infer the missing environment annotations.
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B Compositional Risk Minimization: Additional Details
B.1 Extrapolation of Conditional Density

We learn a set of distributions p(z|z) = % exp ( —(o(2), E(z)) ) ,Vz € Z'"n by maximizing

the likelihood over training distribution, where E denotes the estimated energy and Z denotes the
estimated partition function. Under perfect maximum likelihood maximization p(z|z) = p(x|z)
for all the training groups z € Z'™". We can define p(z|z) for all z € Z* beyond Z'" in a
natural way as follows. For each z € Z*, we have estimated every individual component z; we have

estimated F; (z, z;). We set Z(z) = f exp ( —(o(2), E(x)) )dac and the density for each z € Z*,
Palz) = 7 exp (= (0(2), B(@)) ).

Theorem 2. If the true and learned distribution (p(-|z) and p(-|z)) are additive energy distributions,
then p(+|z) = p(+|2),Vz € Z"™" — p(-|2") = p(:|7),Vz' € DAFf(Ztan).

The result above argues that so long as the group 2’ is in the discrete affine hull of 2", the estimated
density extrapolates to it. We provide a proof sketch ahead, with the full proof in Appendix C.1

Proof sketch: Under perfect maximum likelihood maximization p(z|z) = p(z|z),Vz € Zwain,
Replacing these densities by their expressions and taking their log we obtain

(0(2), B(2)) = (0(2), E(x)) + C(2), ¥z € 25" ®

where C(z) = log (Z(z)/Z(z))

For any 2’ € DAff(Z'2"), by definition there exists v such that 0(2') = Y, _ zun az0(2). Thus

(0(2'), E(z)) = 3, c zwin @z (0(2), E(x)), by linearity of the dot product. Substituting the expres-
sion for (o (z), E(x)) from equation 8, this becomes

(o), B@) = > a:((0(), B@) +C(2)) = (0(z). E@) + Y a:C(:), (g

2 € Ftrain 2 € Ftrain

From equation 9, we can conclude that (o(2'), E(z)) estimates (o(2'), E(z)) perfectly up to a
constant error that does not depend on . This difference of constant is absorbed by the partition
function and hence the conditional densities match: p(z|z’) = p(x|z’).

Using extrapolation of conditional density for compositional generalization of classification.
If, on data from training distribution p, we were able to train a good conditional density estimate
p(z|z),Vz € Z'" then Theorem 2 implies that p(x|z’) will also be a good estimate of p(z|z’) for
new unseen attributes 2’ € DAfF(Z'2"). Provided Z*t C DAff(Z2"), it is then straightforward to
obtain a classifier that generalizes to compositionally-shifted test distribution ¢. Indeed, we have

o(1z) = q(z|z)q(Z) _ p(z]2')q (=) - p(x]2')q (=)
Danezes 4(2]27)q(2") Xz P(x[27)q(2") D ez D(2]2)g(2")
where we used the property of compositional shifts ¢(x|z) = p(x|z). If we know test group prior
property p group p

q(z") (or e.g. assume it to be uniform), we can directly use this expression to compute test group
probabilities, even those for attribute combinations never seen at training.

In principle, we can obtain a classifier that generalizes under compositional shift, by first training
conditional probability density models p(z|z). But high dimensional probability density modeling
remains very challenging, and involves dealing with intractable partition functions. It is typically
deemed much simpler to learn a discriminative classifier. Therefore, we chose to focus on CRM,
which is a completely discriminative approach.
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B.2 When does Discrete Affine Hull equal the Cartesian Product Extension?

Under the assumption of compositional shifts, we know that the support of g(z), Z** is only
restricted to be a subset of the Cartesian product set Z*, but our theoretical result (Theorem 1)
required us to restrict the support further Z*t C DAff(Z'") C Z*. This leads us to a natural
question. If the training attributes that form Z*®" are drawn at random, then how many attribute
combinations do we need so that DAff(Z*?") = Z* at which point CRM can achieve Cartesian
Product Extrapolation. Another way to think about this would be to say, we want to understand how
fast does the affine hull grow and capture the Cartesian product set.

Consider the the setting with m = 2 attribute dimensions, where each attribute takes d possible values.
In such a case, we have d2 possible attribute combinations. Suppose we sample s attribute vectors z
that comprise the support Z'" uniformly at random (with replacement) from these d? possibilites.
In the next theorem, we show that if the number of sampled attribute vectors exceeds 8cd log(d), then
the affine hull of Z*2" contains all the possible d?> combinations with a high probability and as a
result CRM achieves CPE (proof in Appendix C.3).

Theorem 3. Consider the setting where p(.|z) follows AED Yz € Z*, Z'" comprises of s attribute
vectors z drawn uniformly at random from Z*, and the test distribution q satisfies compositional
shift characterization. If s > 8cdlog(d/2), where d is sufficiently large, p(z|x) = p(z|x),Vz €
Zran e e R™, §(2) = q(2),Vz € Z™% then the output of CRM (equation 6) matches the test
distribution, i.e., §(z|x) = q(z|x), Vz € Z** V& € R", with probability greater than 1 — L.

(m=>5,d="5) | m=10,d=10) | (m = 20,d = 20) |
1.0 | 1.0 | 0.986 |

Table 2: Numerical experiments to check the probability that the affine hull of random O(poly(m*d))
one-hot concatenations span the entire set Z. We sample random 3 * m * d one-hot vectors and report
the frequency of times out of 1000 runs a random one-hot concatenation is in the affine hull of the
selected set of vectors.

For the more general setting of m attributes, we conjecture that a polynomial growth in md, i.e.,
O(poly(md)), groups suffice to generalize to distributions whose support span d™ groups. To support
this conjecture, we conduct numerical experiments described in Table 2, where we show that a random
2’ € Z* is in the affine span of a random set of O(md) training groups z with a high probability.
To summarize, these results point to a surprising fact that, we need to see data from a much smaller
number of groups to achieve extrapolation to an exponentially large set.

B.3 Implementation of the Proposed Approach CRM

In a nutshell, CRM consists of: a) training a model of the form of equation 4 by maximum likelihood
(equation 5) for trainset group prediction; b) compute extrapolated biases (equation 7); ¢) infer group
probabilities on compositionally shifted test distribution using equation 6. For the case where we have
2 attributes z = (y, a), Figure 1 illustrates a basic architecture using a deep network backbone ¢(x; 6)
followed by a linear mapping (matrix W), and Algorithm 1 provides the associated pseudo-code. The
figure’s architecture computes the logits F, p(z) as implemented in the pseudocode. Alternatively
to a single linear head whose output we split, we could use separate arbitrary (non-linear) heads to
obtain the components for each attribute. Architecture and code can easily be generalized to handle
more than 2 attributes.
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Figure 1: The additive energy classifier trained in CRM computes the logits for each group z = (y, a)
by adding the energy components of each attribute via boradcasting. For the train logits, we add the
log of the prior probabilities and a learned bias B(y, a) for the groups present in train data. At test
time, the log prior term is replaced with the log of the test prior (if available, otherwise assumed
to be uniform), and the biases for novel test groups, B*(y, a), are extrapolated using Eq.7. Finally,
we obtain p(y, a|z) by applying softmax function on the adjusted logits. This adaptation from train
to test is possible because of the additive energy distribution p(z|y, a), which allows the model to
factorize the distribution into distinct components associated with each attribute.

Algorithm 1: Compositional Risk Minimization (CRM)

Input: training set D" with examples (z,y, a), where y is the class to predict and a is an
attribute spuriously correlated with y

Output: classifier parameters 6, W, B*.

e Let L, B € R%*4a be the log prior and the bias terms.

* Define logits: Fr, p(z) := —((W - ¢(2;0))1.a, + (W - ¢(2:0)) ] 11.a,+4,) + L — B

* Define log probabilities: log p(y, a|z; 8, W, L, B) := (Fr, g(x) — logsumexp(Fr g(x)))y.a
Training:

* Estimate log prior L™ from D'rain; Lirai ¢ oo if (y, a) absent from D2,

e Optimize 6, W, and B to maximize the log-likelihood over D”ai?:
0, W, B <= argmaxo,w,B ;. a)eperain 108 P(y, alz; 0, W, L"™", B)
* Extrapolate bias: B* < log (£ ", cperain €xp(Fp,o(2) — logsumexp(Fuain 5(2))))
Inference on test point x:
« Compute group probabilities, using B*, and L"™if = log ﬁ aiming for shift to uniform prior:
q(y, alx) <+ exp(log p(y, alx; 0, W, L' B*))
* Marginalize over a to get class probabilities: ¢(y|z) < >__ q(y, a|z)

14



C Proofs

Remark on proofs We want to emphasize that the proofs developed here are quite different from
related works on compositionality [Dong and Ma, 2022, Wiedemer et al., 2023]. The foundation
of proofs is built on a new mathematical object, discrete affine hull. The proof of Theorem 1
cleverly exploits properties of softmax and discrete affine hulls to show how we can learn the correct
distribution without involving the intractable partition function in learning. The proof of Theorem 3,
uses fundamental ideas from randomized algorithms to arrive at the probabilistic extrapolation
guarantees.

The proofs section is structured in the following manner, we first provide the proof for generative
extrapolation (Theorem 2), and then provide proof for the main theoretical result of extrapolation of
CRM (Theorem 1). This is done to provide intuition to the reader behind extrapolation of the energies
via the simpler proof for Theorem 2, which will be useful for the proof of the main Theorem 1.
Then we describe the proof for extrapolation of CRM with randomly sampled groups during training
(Theorem 3) in Appendix C.3, where we also introduce several important notations that will be useful
for proving Theorem 6 and Theorem 7 as well.

Before diving into these proofs, we make an observation that would be handy.
Lemma 1. If 2/ € DAff(Z""), ie, 0(2') = Y czwm:0(2), where (1,a.) = 1, then
(0(2'), B(x)) = . c zwn @z (0(2), E(x)).

Proof. (0(2), E(x)) = (¥ zuin @20(2), E(2)) = 3. c guam @z (0(2), E(2)) -

C.1 Proof for Theorem 2: Extrapolation of Conditional Density

Theorem 2. If the true and learned distribution (p(-|z) and p(-|z)) are additive energy distributions,
then p(-|z) = p(+|z),Vz € Z"™" — p(-|2') = p(:|7), V2" € DAFF(Zta").

Proof. We start by expanding the expressions for true and estimated log densities below
~log [p(a]2)] = ((2), E@)) + log(Z(2)),
—log [p(a]2)] = (0(2), E(@)) + log(Z(2)).

We equate these densities for the training attributes z € Z'2". For a fixed z € 2", we obtain that
forallz € R”

(10)

(0(2), E(x)) = (0(2), E(x)) + C(2), (11)

where C(2) = log (Z(2)/Z(2)). Since 2 € DAff(2"), we can write 2/ = 3__ s 22,
(1,0) = 1. From Lemma 1, we know that (0(2'), E(z)) = >, ¢ zuwan @z (0(2), E(x)).

We use this decomposition and equation 11 to arrive at the key identity below. For all x € R™

(o), B(z)) = Y a.(o(z), B))

= Y (o), E@) +C(2))
ZeZtrain

= (Y alio@B@))+( Y ac(2) (12)
z€ Ztrain 2 € Ftrain

=(0(),E()) + Y a.C(2)

2 € Ztrain

From this we can infer that
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:;exp(_w(z’),E(x»— > a.0() 4

zeztrain

We now use the fact that density integrates to one for continuous random variables (or alternatively
the probability sums to one for discrete random variables). Thus

/ﬁ(m|z')dm —1

/ Z(l) exp ( ~ (o(2)), B(x)) - ) 0.0(2) )z = 1
Z(lz’) exp - ezzj 0.C(2)) / exp ( — {o(). E(z) ) = 1
Z(lz/) exp ( - e; azC(z))Z(z’) =1
Z(IZ,)exp (- ; 0.C(2)) = Z(lz,) (14)
We substitute equation 14 into equation 13 to obtain
Bal?) = g e (= (o). E@) ) = plal2).¥a € B (1s)

C.2 Proof for Thorem 1: Extrapolation of CRM

Theorem 1. Consider the setting where p(.|z) follows AED ¥z € Z*, the test distribution q
satisfies compositional shift characterization and Z** C DAff(Z'2"). If p(z|z) = p(z|z),Vz €
Ztrain \r € R™ and §(2) = q(2),Vz € Z™, then the output of CRM (equation 6) matches the test
distribution, i.e., §(z|x) = q(z|x),Vz € Ztt Vo € R™.

Proof. Since g follows compositional shifts,

log q(z|2) = logp(x|z) = — (0(2), E(x)) — log Z(z) (16)
We can write it as — (0(z), E(x)) = log p(x|2) + log Z(2).
Consider 2’ € DAff(Z'"). We can express 2’ as 0(2') = >, ¢ zvan @20(2), where (1, ar;) = 1.

We use equation 16 and show that the partition function at 2z’ can be expressed as affine combination
of partition of the individual points and a correction term. We obtain the following condition.
Vz' € Z't where recall Z*t C DAff(Ztin),

log (Z(#')) = log (]Ex [exp (= (o(#), E(x)) )] )
= log (]Em {exp ( — Z a, (o(z), E(x)) ):|)7

2z € Ztrain

= log (]Em {GXP ( > a.(logp(x|z) + logZ(z)))D 7)

Zeztrain

- Z alogZ(z) + log (Ex[eXP< Z azlogp(xz))}),

zeztrain zeztrain
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where E; [f] = [ p. f(Z)dE

Denote the latter term in the above expression as
R({a.}.czwin) = log ( {exp ( Z o log p(x|z )D (18)
Zeztram

We now simplify log (¢(x|2’)) using the property of partition function from equation 17 below.
Vi € Zrest,

log (q(x]2)) = — (o(2"), E(x)) — log Z(')
= Z az<logp(x\z) + log Z(z)) —log Z(z")

Zeztrain
Z a; logp(x|z) + Z o, logZ(z Z o log Z(z) — R({a.} e zuan) (19)
z€ Ztrain z€ Ztroin z€ Ztrain
= Z o log p(x]z) — R({a.} e zwan)
Zeztrain

We now simplify the first term in the above expression, i.e., D zuwain 02 log p(z]2), in terms of

(z[).

S a(log(p(alz) = 3 azlog< ()f”))

Zeztrain ZEZ"a'" (20)
= > a.(logp(zle) ~ logn(2)) + logp(x)
zEZ"ai"
Similarly, R({,},c zwin) can be phrased in terms of p(z|x) as follows.
R({az}zezmm) = log ( [exp ( Z o, logp(z|z )D
Zeztraln
=— Z o log p(z) + log (Exwp(x) {exp ( Z a, 10gp(z|x))D @21)
2z € Ztrain z€ Ztrain
=— Z . logp(z) + S({a.} e zun),

2 € Ztrain

where S({a.},czwn) = log (Ezwp(z) [exp (Zzezm a, logp(z|x))D and E, () is the ex-
pectation w.r.t distribution p(x). We use equation 20, equation 21 to simplify equation 19 as
follows.Vz' € Ztst,

logg(e]z)) = Y a.logp(zlzr) = S({a}.ezen) + logp(z)

Zeztrain
log (W> = D a:logp(zlz) = S({az}ezmm) +logp(a) 22
L / _ p(x)
log (q(2'|z)) = Zg;am o (q(z )+ logp(z\x)) — S({a:}.ezwn) + log (@)

We use translation invariance of softmax to obtain
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q(z'|z) = Softmax(log q(z") + Z a; logp(zlx) — S({O{Z}Zeztrain)>

Zeztrain
q(z'|z) = Softmax(log q(z") + Z o, logp(z|x) — log (Emwp(m) [exp ( Z a, 10gp(z|x))} ))
2z € Ztrain 2z € Ztrain

(23)

To avoid cumbersome notation, we took the liberty to show only one input to softmax, other inputs
bear the same parametrization, they are computed at other z’s. From the above equation it is clear
that if the learner knows the marginal distribution over the groups at test time, i.e., ¢(z) and estimates
p(z|x) for all 2’s in the training distribution’s support, i.e., 2", then the learner can successfully
extrapolate to g(2’|x).

Let us now use the additive energy classifier of the form we defined in equation 4 and whose energy
E and bias B we optimized (equation 5) to match p(z|x), so that:

exp ( — (0(2). Bl +log (2) — ()

p(zle) = . .
5 ven 0D ( ~ (0(2), Bla) + og((3) - B(:) )
Consequently
S a.logp(zl)
ZeZtrain
( 3 az(<a<z>,E<x>>+1ogp<z>B(z))) —tog (> exp(~ (0(2), B@)) + logp(3) — B(2)))
z€ Ztrain 3 Ztrain

(24)
where we used the property that (1, ) = 1.

Let us use this to simplify the last term of equation 23:

o (o (3 st

zeztraln

exp (Zzezm ozz( —{o(2), B(z)) + log p(z) — E(z)))]
| (Leezmnexp (= (0(3), B(@)) +logp(2) - B(2))
[ exp( e Zuwain ozz< (o >) i

= log | Eznp(a)

R [y <<>7E(x>>+logp<> B(z>)-eXp(z@Zm%(logp(z)_B(z)))

) o (T 02 BG@)) ] -

o Emm-(zzezmexp(<a<s>,E<x>>+logp<s>B(i))- " 3 oot = B0)

) ' exp (= (0(2'), E(a)) ) ' .

B el [ SR Gy ey prEREy ) RS A(oer(s) = 50:)
> ax(logp(z) - B(2)

2 € Ftrain

(25)

where we used Lemma 1, and B* is as defined in equation 7.
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Let us also define c¢(x) = log (dezmm exp ( —{(o(2), E(x)) +logp(Z) — E(E))) so that we can

reexpress equation 24 as:

> azlogpczx)( > o~ ol A<x>>+1ogp<z>B<z>)> ) @6)

2 € Ztrain 2 € Ztrain

Subtracting equation 25 from equation 26 we get:

> a:logp(zlz) —log (Emw(m)[exp( > azlogp(z'"””))})

- ; o~ {o(2). B(@)) + logp(=) — B(z)) — ela)
- B*(z') - ; az(Ing(Z) - 3(2))
-y a:( = (0(2), B(@)) ) = e(x) - B*(2)
= ng(z'), E(x)) — c(z) — B*(¢) 27)

Substituting this inside equation 23 yields

q(Z'|z) = Softmax(log q(2") = (0(2), E(x)) — c(x) — B*(z’))
. (28)
_ Softmax( —(o(z), E(z)) +log q(+) — B*(z’))

where we removed the ¢(z) term as softmax is invariant to addition of terms that do not depend on z’.

If G(2') = q(2'), V2’ € Z*, then the expression in RHS corresponds to §(z’|x), as we had defined
it in equation 6, before stating our theorem. Thus ¢(z’|z) = §(2’|x). This completes the proof.

O
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C.3 Proof for Theorem 3: Extrapolation from a Small Set of Attribute Combinations to All
Attribute Combinations

Theorem 3. Consider the setting where p(.|z) follows AED Yz € Z*, Z'" comprises of s attribute
vectors z drawn uniformly at random from Z*, and the test distribution q satisfies compositional
shift characterization. If s > 8cdlog(d/2), where d is sufficiently large, p(z|x) = p(z|z),Vz €
Zran e e R™, §(z) = q(2),Vz € Z™% then the output of CRM (equation 6) matches the test
distribution, i.e., §(z|z) = q(z|x), Vz € 2, V& € R", with probability greater than 1 — L.

In order to prove Theorem 3 we first establish some basic lemmas. In the first lemma below, we
consider a setting with two attributes, where each attribute takes two possible values, i.e., m = 2 and
d = 2. In this setting there are four possible one-hot vectors z', 22, 2%, z*. We first show that each z*
can be expressed as an affine combination of the remaining three.

Lemma 2. Ifm = 2,d = 2, then there are four possible concatenated one-hot vectors z denoted

21, 22,23, 2% Each %* can be expressed as an affine combination of the remaining.

Proof. Below we explicitly show how each z* can be expressed in terms of other 27’s.

[07 (07 17 17
1 1 0 0
Dol + ED-{p] + GO =) (29)
11 10] 0] [1]
[07 [0 17 17
1 1 0 0
(_1)' 0 + (+1)' 1 + (+1) 0 =11 (30)
11 10] 1] 0]
17 [07 (17 [0]
0 1 0 1
-+ Dl + ED gl = |14 (31)
0] 1] 1] [o]
M1 [0 (17 [0]
0 1 0 1
Dyl + G-y + Dol = o (32)
10 10] 1] 1]
O

We illustrate the setting of Lemma 2 in Figure 2. We now understand an implication of
Lemma 2. Let us consider the setting where m = 2 and d > 2. Consider a subset of
four groups {(7,7), (¢',4),(4,5'),(¢,4’)}. Under one-hot concatenations these groups are de-
noted as 2' = [0,---,14,---0,0,--- 1,40l 22 = [0,-- ,14,---0,0,-- 15,40, 23 =
first attribute second attribute
[0,-++,14++-0,0,--+,14,---0], and 2* = [0,---,14,---0,0,-- ,1;,---0]. Observe that us-
ing Lemma 2, we get 24 = 22 + 23 — 2!, Similarly, we can express every other z* in terms of rest of
27’s in the the set {(i, j), (7', j), (i, "), (¢', 5') }.

In the setting when m = 2 and d > 2, the total number of possible values z takes is d2. Each group
recall is associated with attribute vector z = [z1, 2], where z; € {1,--- ,d} and 25 € {1,---d}.
The set of all possible values of z be visualized as d x d grid in this notation. We call this d x d grid
as G. We will first describe a specific approach of selecting observed groups z for training, which
shows that with just 2d — 1 it is possible to affine span all the possible d? groups in the grid G. We
leverage the insights from this approach and show that with a randomized approach of selecting
groups, we can continue to affine span d? groups with O(dlog(d)) groups.

Denote the set of observed groups as IN. Suppose that their affine hull contains all the points in
a subgrid S C G of size m x n. Let the subgrid S = {x1, -+ ,@m} X {y1, -+ ,yn}. Without
loss of generality, we can permute the points and make the subgrid contiguous as follows S =
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Figure 2: Setting of two binary attributes. Illustration of extrapolation from three groups to the
remaining fourth group. Three dark colored groups indicate the observed groups and the light colored
shaded group indicates the group that is the affine combination of the three observed groups.

{1,---,m} x{1,--- ,n}. Next, we add a new point g = (g,,¢g,) € G but g ¢ S. We argue that
if g, € {1,--- ,m}, then the affine hull of N U {g} contains a larger subgrid of size m x (n + 1).
Similarly, we want to argue that if g, € {1,--- ,n}, then the affine hull of N U {g} contains a larger
subgrid of size (m + 1) x n. Define C, as the Cartesian product of {g,} with {1,--- n}, i.e.,
Cy ={(92,1),(92,2), -, (gz,n)}. Define C,, as the Cartesian product of {1, --- ,m} with {g,},
i‘e" CU = {(1791/)7 (2agy)7 T (m7 gl/)}

Theorem 4. Suppose the affine hull of the observed set N contains a subgrid S of size m x n. If the
new point § = (g, gy) shares the x-coordinate with a point in S, and g ¢ S, then the the affine hull
of N U{g} contains S U C,,.

Proof. We write the set of observed groups N as N = {z%},. The affine hull of N contains
S={1,---,m} x{1,--- ,n}. We observe a new group g & .S, which shares its « coordinate with
one of the points in S. Without loss of generality let this point be g = (1,n + 1) (if this were not the
case, then we can always permute the columns and rows to achieve such a configuration). Consider
the triplet — (2%, 22, 2%) = ((1,n), (2,n), (1,n+1)). Observe that z*, 22, 23, 2* form a 2 x 2 subgrid,
where 2% = (2,n + 1). We use Lemma 2 to infer that the fourth point 2* = (2,7 + 1) on this 2 x 2
subgrid can be obtained as an affine combination of this triplet, i.e., z* = az! + 82 + v2z3. Since
2%, 22 are in the affine hull of IV, they can be written as an affine combination of seen points in IV as
follows 2! =37, (v apz?, 22 =3, _\ bpz? . As aresult, we obtain

2=zl + B2+ 423 = O‘(Zakze’“) +B(Zbk29k) NPy
= Z (aak +Bbk)zek + 723

keN

(33)

Observe that >, (aay + Bby) = (@Y pax + B>, bk) = a+ B. Since v + 8+ = 1, 2*
is an affine combination of points in N U {g}. Thus we have shown the claim for the point
(2,m + 1). We can repeat this claim for point (3,7 + 1) and so on until we reach (m,n + 1)
beyond which there would be no points in .S that are expressed as affine combination of N. We
can make this argument formal through induction. We have already shown the base case above.
Suppose all the points (j,n + 1) in j < i < m are in the affine hull of N U {g}. Consider the point
z* = (i+1,n + 1). Construct the triplet (z', 22, 2%) = ((¢,n), (i,n + 1), (i + 1,n)). Again from
Lemma 2, it follows that z* = az! + 322 4+ ~2z3. We substitute z!, 22 and 2 with their corresponding
affine combinations. 2* = « D_keNU{g} apz’ + B > keNU{g} b2 + Y 2 keNU{g) cp2%. Since
D keNULg) @k + Bbr +yer = 1, it follows that 2% is an affine combination of 2!, 22 and 2z3. This
completes the proof.

O

We now describe a simple deterministic procedure that helps us understand how many groups
we need to see before we are guaranteed that the affine hull of seen points span the whole grid
G=A1,-,dp x{1,--- ,d}.
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* We start with a base set of three points — B = {(1,1),(1,2), (2,1)}. From Lemma 2, the
affine hull contains (2, 2).

» Foreachi € {2,--- ,d—1} add the points (1,i+1), (i+1, 1) to the set B. From Theorem 4,
it follows that affine hull of BU {(1,7+ 1)} U{(i+1,1)} contains (i + 1 x 4 + 1) subgrid
{1,---,i+1} x{1,--- ,i+1} (here we apply Theorem 4 in two steps once for the addition
of (1,7 4 1) and then for the addition of (i 4+ 1,1).

At the end of the above procedure B contains 2d — 1 points and its affine hull contains the grid G.
We illustrate this procedure in Figure 3.

(a) Step 1 (b) Step 2 (c) Step 3

Figure 3: Illustration of steps of the deterministic sampling procedure for a 4 x 4 grid. (a) shows the
base set, (b) add a group in blue and the affine hull extends to include all the blue cells, (c) add a
group in yellow and the affine hull extends to include all yellow cells.

We now discuss a randomized procedure that also allows us to span the entire grid G with O(d log(d))
groups. The idea of the procedure is to start with a base set of groups and construct their affine hull S.
Then we wait to sample a group ¢ that is outside this affine hull. If this sampled group shares the
2 coordinate with affine hull of B denoted as S, then we expand the subgrid by one along with y
coordinate. Similarly, we also wait for a point that shares a y coordinate and then we expand the
subgrid by one along the x coordinate.

We use S, to denote the distinct set of z-coordinates that appear in S and same goes for S,,. We write
g = (g, gy)- The procedure goes as follows.

Set S = (), B= (0 and Flag = x.

* Sample a group g from G uniform at random. Update B = BU {g}, S = S U {g}.
e While S # G, sample a group g from G uniform at random.
- IfFlag ==, g, € Sz, 9 ¢ S, thenupdate B =B U {g}, S = SU (S; x {gy}) and

Flag = y.
- IfFlag==1y, 9, € Sy, g ¢ S, thenupdate B=B U {g}, S =S U ({g.} x Sy) and
Flag = z.

In the above procedure, in every step in the while loop a group g is sampled. Whenever the Flag
flips from z to y, then following Theorem 4, the updated set .S belongs to the affine hull of B. We
can say the same when Flag flips from y to . In the next theorem, we will show that the while loop
terminates after 8cd log(d) steps with a high probability and the affine hull of B contains the entire
grid G. We follow this strategy. We count the time it takes for Flag to flip from x to y (from y to z) as
it grows the size of S from a k x k subgridto k x (k+1) (k X (k+ 1) subgrid to (k + 1) x (k+ 1))
subgrid.

Theorem 5. Suppose we sample the groups based on the randomized procedure described above.
If the number of sampled groups is greater than 8cdlog(d), then G C DAff(B) with a probability
greater than equal to 1 — %

Proof. We take the first group g that is sampled. Without loss of generality, we say this group is
(1,1).
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Suppose the Flag is set to z. Define an event A¥: newly sampled g = (g,, gy) shares z-coordinate
with a point in .S (size k X k), g € S. Under these conditions Flag flips from z to y. To compute the
probability of this event let us count the number of scenarios in which this happens. If g, takes one
of the k values in .S, and g,, takes one of the remaining (d — k), then the event happens. As a result,

the probability of this event is P(A}) = (’C)(J#.

Suppose the Flag is set to y. Define an event A%: newly sampled g = (ga, gy) shares y-coordinate
with a point in S (size k x (k + 1)) and g & S. Under these conditions Flag flips from y to x. The

probability of this event isP(A%) = %ﬁ,d_k).
Define T} as the number of groups that need to be sampled before A% occurs. Define T¥ as the
number of groups that need to be sampled before A5 occurs. Observe that after 7 + T number

of sampled groups the size of the current subgrid S, which is in the affine hull of B, grows to
(k+1) x (k+1).

Define Tyym = Z: (le + TQ’“) T.um is the total number of groups sampled before the affine span
of the observed groups B contains the grid G.

We compute

U

-1

E(Tam] = ) (E[TY] +E[T3])

E
I

1

d d—1 (d—1)/2

> E[TY] Zdz/ —k)=2 Y d*/(k(d—Fk)) (34)
k=1 =1 k=1

(d—1)/2 (d-1)/2 1
2 > d?/(k(d— k) =2d Z { 7}x4dlog((d—l)/2)
k=1

Similarly, we obtain a similar bound for > k: E[T¥].

d (d—1)/2
> (B Zd2 (E+1)(d-k)=2 >  d/((k+1)(d-k)
k=1 = k=1 (35)
(d—1)/2 (d—1)/2 1 1
2 2/ 1) ) <2 | ~4d] -1)/2
Zd ((k+1)(d - k) dz [kHerfk} dlog((d —1)/2)
Overall E[Tyym] = 8d log(d/2). From Markov inequality, it immediately follows that P(Tg,m <

8cdlog(d/2)) > 1— +. In the above approximations, we use ZZ 1 1 ~ log d+, where 7 is Euler’s
constant. We drop asits a constant, which can always be absorbed by adapting the constant c.

O

Finally, we use the results proved above to complete the proof for Theorem 3. Suppose the support of
training distribution p(z) contains s groups. We know that these s groups are drawn uniformly at
random. From Theorem 5, it is clear that if s grows as O(d log d), then with a high probability the
entire grid of d? combinations is contained in the affine span of these observed groups. This can be
equivalently stated as Z* C DAff(Z"") with a probability greater than equal to 1 — . If Z* C
DAff(Z%2in), then from the assumption of compositional shifts, it follows that Ztst C DAff(Ztain),
We can now use Theorem 1 and arrive at our result. This completes the proof.

C.4 Discrete Affine Hull: A Closer Look
In the next result, we aim to give a characterization of discrete affine hull that helps us give a

two-dimensional visualization of DAff(Z*r2"). Before we even state the result, we illustrate discrete
affine hull of a 6 x 6 grid. Consider the 6 x 6 grid shown in Figure 4. The attribute combinations
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Steps for completing the Cartesian product

1 via small connected components of size three:

N
2

\ —> —> —

N
3 N
|
4
5
6 Cartesian Cartesian Observed Unobserved combinations
Product for Cy Product for Cy Combinations  to which we generalize

Figure 4: Illustration of the discrete affine hull. Each cell in the 6 x 6 grid represents an attribute
combination, where observed combinations are solid-colored. The elements in blue form one
connected component, C7, and the elements in yellow form another connected component, Cs.
Extrapolation is possible for unobserved combinations, represented by the crosshatched cells, as long
as the test distribution samples from the Cartesian products of the connected components. The steps
for completing the Cartesian product visually shows the intuition behind the extrapolation process.

corresponding to the observed groups are shown as solid colored cells (blue and yellow). The light
shaded elements (blue and yellow) denote the set of groups that belong to the affine hull of the solid
colored groups. We now build the characterization that helps explain this visualization.

We introduce a graph on the attribute vectors observed. Each vertex corresponds to the attribute
vector, i.e., [21, 22]. There is an edge between two vertices if the Hamming distance between the
attribute vectors is one. A connected component is a subgraph in which all vertices are connected,
i.e., between every pair in the subgraph there exists a path. Let us start by making an observation
about the connected components in this graph.

We consider a partition of observed groups into K maximally connected components, {C, - - - ,Ck }.
Define Cj; as the set of values the j th component takes in the i*"* connected component. Observe
that C;; N Cy; = 0 for i # 1. Suppose this was not that case and C;; N Cy; # (). In such a case, there
exists a point in C; and another point in C; that share the 5" component. As a result, the two points
are connected by an edge and hence that would connect C; and Cj. This contradicts the fact that C;
and C; are maximally connected, i.e., we cannot add another vertex to the graph while maintaining
that there is a path between any two points in the component. In what follows, we will show that
the afine hull of C} is Cj; x Cj2, which is the Cartesian product extension of set C';. Next, we give
some definitions and make a simple observation that allows us to think of sets C;; x C} as subgrids,
which are easier to visualize.

Definition 1. Contiguous connected component: For each coordinate j € {1,2}, consider the
smallest value and the largest value assumed by it in the connected component C' and call it
min; and max;. We say that the connected component C' is contigous if each value in the set
{min;, min; +1, - -- ,max; —1, max;} is assumed by some point in C for all j € {1,2}.

Smallest subgrid containing a contigous connected component C': The range of values assumed
by j* coordinate in C, where j € {1, 2}, are {min;, - , max; }. The subgrid {miny, - - - max; } x
{miny, - - - maxs } is the smallest subgrid containing C. Observe that this subgrid is the smallest grid
containing C' because if we drop any column or row, then some point taking that value in C' will not
be in the subgrid anymore.

The groups observed at training time can be divided into K maximally connected components
{C4, -+ ,Ck}. We argue that without any loss of generality each of these components are contiguous.
Suppose some of the components in {C', - - - , C } are not contiguous. We relabel the first coordinate
as(cjy) = >, .; |Cj1| + 7, where ¢ is the 7" point in C;;. We can similarly relabel the second
coordinate as well. Under the relabeled coordinates, each component is maximally connected and
contiguous. Also, under this relabeling the Cartesian products Cj; x Cj2 correspond to the smallest
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subgrid containing C;. Let us go back to the setting of Figure 4. The sets of observed groups
shown in solid blue and solid yellow form two connected components C; and C' respectively. Their
Cartesian product extensions are shown as well in the Figure 4. Since the connected components
were contiguous the Cartesian product extensions correspond to smallest subgrids containing the
respective connected component.

Theorem 6. Given the partition of training support as Z'" = {Cy,--- ,Ck}, we have:

* The affine span of a contiguous connected component C'is the smallest subgrid that contains
that connected component C.

e The affine span of the union over disjoint contiguous connected components is the union of
the smallest subgrids that contain the respective connected components.

Proof. C denotes the connected component under consideration and the smallest subgrid containing
itis S. Denote the affine span of C' as A. We first show that the subgrid S C A.

We start with a target point ¢t = (¢1, t) inside S. We want show that the one-hot concatention of this
point ¢ can be expressed as an affine combination of the points in C'.

Firstly, if ¢ is already in C, then the point is trivially in the affine span. If that is not the case, then let
us proceed to more involved cases. Consider the shortest path joining a point of the form (¢1, s2) € C,
where so # to, and a point of the form (s1,t2) € C, where s; # t1. If such points do not exist, then
t cannot be in S, which is a contradiction.

We assign a weight of (+1) to the concatenation of one-hot encodings of the point (¢1, s2). We then
traverse the path until we encounter a point where s, changes, note that such a point has to occur

because of existence of (s1, %) on the path. We call this point v = (3}, s,). The point before v on

the path is w = (3], s5). We assign a weight of (—1) to w. We summarize the path seen so far below.
We also write the weights assigned to the points

s = (t1,52) (+1)

u = (Sla 82)

(36)

After w, we have a weight of +1 assigned to ¢;, —1 assigned to §l1 (note that .§'1 cannot be 1, this
follows from the fact that we are on shortest path between points of the form (¢1, s2) and (s1, t2)).

We call this state S;. After w, we wait for a point on the path where 5/1 changes or we reach the

terminal state (s1,t2). The latter can happen if 5/1 = s1. In the latter case, we assign a weight (+1)
to the terminal state and thus the final weights are (+1) for ¢; and ¢5 and zero for everything else.
This leads to the desired affine combination. We call this state 77, corresponding to terminal state.

Now suppose we were in a situation where we reach a point ¢ = (s}, 5/2) The point before ¢ is

r = (5,,5,). We assign a weight of (+1) to 7. We summarize the path seen after encountering w
below.

v = (81, 82)

., 37
r = (5, 35,) (+1)
q= (81 75/2)

After r, we have a weight of +1 assigned to ¢; and a weight of 41 assigned to 5/2 We call this state
So. After r, we wait for a point where 5/2 changes. It could be that §l2 changes to to. The state before
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itis say u = (s1, 3,) and last state e = (s1,%2). Assign a weight of —1 to u and assign a weight of
+1 to e. Thus we achieve the target as affine combination of points on the path. We call this state 75,
corresponding to the terminal state.

Now let us consider the other possibility that the terminal state has not been reached. We call such a
point m = (57,55 ). The point that occurs before this point is [ = (3], 5,). We assign a weight of
(—1) to . We summarize the path taken below.

q= (Sirv 52)
, (3%)
l= (§T7§2) (_1)
m= (girv g;)

After [, t, is assigned a weight of +1 and 5 is assigned a weight of —1. We reach the state S; again.
From this point on, the same steps repeat. We keep cycling between 57 and So until we reach the
terminal state from either S7 or Sy at which point we achieve the desired affine combination. The
cycling of states only goes on for a finite number of steps as the entire path we are concerned with
has a finite length. We show the process in Figure 5. Thus S C A.

We now make an observation about the set A, which is the affine hull of set C'. Suppose the
first coordinate takes values between {min;,---,max;}. The corresponding one-hot encod-
ings of the first coordinate are written as {onehot(min;), - -- ,onehot(max;)}. Now consider
a value ¢ which is not in {miny,--- ;max;}. We claim that no affine combination of vectors
in {onehot(min,),--- ,onehot(max;)} can lead to onehot(c). We justify this claim as fol-
lows. Observe that no vector in {onehot(min;),--- ,onehot(max;)} has a non-zero entry in
the same coordinate where onehot(c) is also non-zero. Hence, any affine combination of vec-
tors in {onehot(min; ), - - - ,onehot(max;)} will always have a zero weight in the entry where
onehot(c) is non-zero. It is now clear that the first component of affine hull of A is always be-
tween {miny, - - - , max; }. Similarly, the second component of affine hull of A is always between
{ming, - -- ,maxs}. Therefore, A C S. As aresult, A = S. Another way to say this is that
DAfF(Cj) = le X Cjz.

We now move to the second part of the theorem. We have already shown that DAff(C;) = Cj1 x Cjo.
We now want to show that

K K
DAff U Cj) = U (le X Cj2)
j=1 j=1

Observe that DAff(A) C DAff(A U B) and DAff(B) C DAff(A U B), which implies DAff(A) U
DAff(B) C DAff(A U B). Therefore, from the first part and this observation it follows that

Ui, (Cji x Ci2) € DAFF(ULS, C5). We now show DAFF(UJC, C5) € UL, (Cin x ).

Take the K maximally connected components {C, - - - , C'x } and let the set of respective smallest
subgrids containing them be {Si, - , Sk }. Define a point 2’ as the affine combination of points

’ K N; . -th . . .
across these components as 2’ = 37", > ") qi;25, where 25 is the j* point in C;, which
: A : / r_ K N; B N; 5 »
contains IV; points. We can also write 2’ as 2’ = > ." | (ijl CM”> >t T i Define
=1

N. i . - . . . .
zp =32 —-—z;;. Observe that 2/ is in the affine combination of points in C; and hence 2/
21 i

. L. . N; . . . . .
is a pointin S;. Let &; = > 1 Qg In this notation, we can see 2z’ is an affine combination of

z}’s denoted as Zfil &; 7. In this representation, there is at most one point per S; in the affine
combination. There are two cases to consider. In the first case, exactly one component ¢; is non-zero
and rest all components are zero. In the second case, at least two components ¢;’s are non-zero. In
this setting, we can only keep the non-zero &;’s in the sum denoted as ) _, é; ;. Suppose z; = (ep, €q)
(without loss of generality), where e, is one-hot vector that is one on the p'" coordinate. Observe
that no other point in the sum Y, &;z/ will have a non-zero contribution on the p*" coordinate. As

26



Figure 5: Illustration of state transition in proof of Theorem 6.

a result, in the final vector the p** coordinate of the first attribute will take the value 0 < &; < 1.
This point is not a valid point in the set of all possible one-hot concatenations Z and hence it does
not belong to the affine hull DAF( U]K:1 C;). Thus we are left with the first case. Observe that
in the first case, we will always generate a point in one of the DAff(C};), where j € {1,--- , K}.
Thus DAfF({J;_; C;) € U, DAFF(C;), which implies DAff (U7, C;) € Ui—; Cj1 x Cjo. This
completes the proof.

O

C.5 No Extrapolation beyond Discrete Affine Hull

In this section, we rely on the characterization of discrete affine hulls shown in the previous section in
Theorem 6. Suppose we learn an additive energy model to estimate p(z|z) and estimate the density
p(z|2) for all training groups using maximum likelihood. In this case, we know that p(z|z) = p(z|z)
forall z € DAff(Z"2"). In the next theorem, we show that such densities that satisfy p(z|z) = p(z|z)
for all z € DAff(Z"") may not match the true density outside the affine hull. In the next result,
we assume that Vz € Z*, p(-|z) is not uniform. As a corollary, CRM does not extrapolate to points
outside the affine hull as well.

Theorem 7. Suppose we learn an additive energy model to estimate p(x|z) and estimate the density
p(z|2) for all training groups. There exist densities that maximize likelihood and exactly match the
training distributions but do not extrapolate to distributions outside the affine hull of Z*", i.e.,
Iz € Z%, where p(-|z) # p(-|2).

Proof. We first take Z" and partition the groups into & maximally connected components denoted
{C1,-+,Ck}. From Theorem 6, we know that the affine hull of Ztrain ig the union of subgrids
{S1,---, Sk}, where each subgrid S is the Cartesian product C'j; x Cjs.

Let us consider all points (Z1,22) in some subgrid Sx. For each such (21, 22) € Sj, define
Ei(x,%21) = Er(z,21) + ax(x), Ea(x,Z3) = E(x, 22) — ax(x). Note that regardless of choice

of ay, the density, p(z]z) = e (7(*):E) matches the true density p(z|z) for all groups z in

K Z(z)
Ui:l Si.

Select any group z.f = (21, 22) that is not in the union of subgrids. From the definition of Z*, it
follows that there are points of the form (z1, 25) in one of the subgrid S; and points of the form
(21, 22) are in some subgrid S,. Let a;(z) = ——El(m’zl);’EQ(I’”) and o, (z) = —El(“’zl);’EQ(r’”).
Observe that By (x, 21) + Ea(, 20) = E1(x, 21) + Ea(x, 22) + o (x) — o () = 0. Thus this choice
of aj(x) — au-(x) ensures that p(x|z1, z2) is uniform and hence cannot match the true p(x|z1, 22).
This completes the proof.

O

Based on the above proof, we now argue that there exist solutions to CRM that do not extrapolate
outside the affine hull. Let us consider solutions to CRM denoted E/, B, which satisfies the property

that (o(2), E(x)) = (0(2), E(z)), B(z) = B(2)Vz € Z"_ Following the proof above, we can
choose E's in such a way that the sum of energies at a certain reference point outside the affine hull is
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zero and at all points inside the affine hull the sum of energies achieve a perfect match. For the group
Zref = (21, 22) not in the affine hull of Z¥", we set By (x, 21) + Fa(x, 22) = (0(2), E(x)) = 0.

Suppose §(z|z) = g(z|x), V2 € DAFF(Z"2") | J{2ref }. We now compute the likelihood ratio at zref
and a point z € Z'". We obtain

d(zreflx) _ Q(Zref|-'17)

q(z]z) q(z|z)

_ 4(zref|7) __ q(zref| ) (39
log( 4(z|z) ) lOg( q(z|z) ) -

(0 (zr), B()) — (0(2), B@)) = (0(set), B(@)) — (0(2), B(@)) — (0(2) — 0(zrer))

where 6(z) corresponds to collection of all terms that only depend on z. We already know that

(0(2), E(x)) = (0(2), E(x)) and (0(2ef), E(z)) = 0. Substituting these into the above expression
we obtain

(o (2ref), E(2)) = 0(2) — 0(zref) (40)
From the above condition, it follows that q(x|zef) is uniform. This implies that p(z|zef) is also uni-

form, which contradicts the condition that p(x|zrf) is not uniform. Therefore, §(z|x) = q(z|z),Vz €
Ztain | {2y} cannot be true.
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D Experiments Setup

D.1 Dataset Details

Waterbirds [Wah et al., 2011]. The task is to classify land birds (y = 0) from water birds (y = 1),
where the spurious attributes are land background (a = 0) and water background (a = 1). Hence, we
have a total of 4 groups z = (y, a) in the dataset.

CelebA [Liu et al., 2015]. The task is to classify blond hair (y = 1) from non-blond hair (y = 0),
where the spurious attribute is gender, female (¢ = 0) and male (¢ = 1). Hence, we have a total of 4
groups z = (y, a) in the dataset.

MetaShift [Liang and Zou, 2022]. The task is to classify cats (y = 0) from dogs (y = 1), where the
spurious attribute is background, indoor (¢ = 0) and outdoor (a = 1). Hence, we have a total of 4
groups z = (y, a) in the dataset.

MultiNLI [Williams et al., 2017]. The task is to classify the relationship between the premise and
hypothesis in a text document into one of the 3 classes: netural (y = 0), contradiction (y = 1), and
entailment (y = 2). The spurious attribute are words like negation (binary attribute a), which are
correlated with the contradiction class. Hence, we have a total of 6 groups z = (y, a) in the dataset.

CivilComments [Borkan et al., 2019]. The task is to classify whether a text document contains toxic
language (y = 0) versus it doesn’t contain toxic language (y = 1), where the spurious attribute a
corresponds to 8 different demographic identities (Male, Female, LGBTQ, Christian, Muslim, Other
Religions, Black, and White). Hence, we have a total of 16 groups z = (y, a) in the dataset.

NICO++ [Zhang et al., 2023]. This is a a large scale (60 classes with 6 spurious attributes) domain
generalization benchmark, and we follow the procedure in Yang et al. [2023b] where all the groups
with less than 75 samples were dropped from training. This leaves us with 337 groups during training,
however, the validation set still has samples from all the 360 groups. Hence, we additionally discard
these groups from the validation set as well to design the compositional shift version.

Dataset | Total Classes ~ Total Groups ~ Train Size ~Val Size  Test Size
Waterbirds 2 4 4795 1199 5794
CelebA 2 4 162770 19867 19962
MetaShift 2 4 2276 349 874
MultiNLI 3 6 206175 82462 123712
CivilComments 2 16 148304 24278 71854
NICO++ 60 360 62657 8726 17483

Table 3: Statitics for the different benchmarks used in our experiments.

D.2 Metric Details

Given the test distributions z = (y,a) ~ ¢(z) and x ~ ¢(x|z), lets denote the corresponding class

predictions as §§ = M (x) as per the method M . Then average accuracy is defined as follows:
Average Acc :=E(, o) By g2 [1ly == M(a:)]]

Hence, this denotes the mean accuracy with groups drawn as per the test distribution ¢(z). However,
if certain (majority) groups have a higher probability of being sampled than others (minority groups)
as per the distribution ¢(z|x), then the average accuracy metric is more sensitive to mis-classifications
in majority groups as compared to the minority groups. Hence, a method can achieve high average
accuracy even though its accuracy for the minority groups might be low.

Therefore, we use the worst group accuracy metric, defined as follows.
Worst Group Acc := ming, o)e zesEpmg(a)2) [Lly == M(m)]]

Essentially we compute the accuracy for each group (y,a) ~ q(z) as Eyq(u)») [1ly == M (z)] 1]
and then report the worst performance over all the groups. This metrics has been widely used for
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evaluating methods for subpopulation shifts [Sagawa et al., 2019, Yang et al., 2023b].

Similarly, we define the group balanced accuracy [Tsirigotis et al., 2024] as follows, where we
compute the average of all per-group accuracy E, q(z2) [1ly == M (2)]].

1 ~
Group Balanced Acc := @ Z Ezrg(alz) []1 ly == M@)H
(y)a)eztest

D.3 Method Details

For all the methods we have a pre-trained representation network backbone with linear classifier
heads. We use ResNet-50 [He et al., 2016] for the vision datasets (Waterbirds, CelebA, MetaShift,
NICO++) and BERT [Devlin et al., 2018] for the text datasets (MultiNLI, CivilComments). The
parameters of both the representation network and linear classifier are updated with the same learning
rate, and do not employ any special fine-tuning strategy for the representation network. For vision
datasets we use the SGD optimizer (default values for momemtum 0.9), while for the text datasets we
use the AdamW optimizer [Paszke et al., 2017] (default values for beta (0.9, 0.999) ).

Hyperparameter Selection. We rely on the group balanced accuracy on the validation set to
determine the optimal hyperparameters. We specify the grids for each hyperparameter in Table 4,
and train each method with 5 randomly drawn hyperparameters. The grid sizes for hyperparameter
selection were designed following Pezeshki et al. [2023].

Dataset | Learning Rate Weight Decay ~ Batch Size  Total Epochs
Waterbirds 1 OUniform( —5,-3) 1 OUniform( —6,—3) 2Uniform(5 ,7) 5000
CelebA 10Uniform(—5,—3) 10Unif0rm(—6, -3) 2Unif0rm(5,7) 10000
MetaShift 10Uniform(—5,—3) 10Uniform(—6,—3) 2Uniform(5,7) 5000
MulitNLI 10Uniform(—6,—4) 10Uniform(—6,—3) 2Uniform(4,6) 10000
CivilComments 10Uniform( —6,—4) 10Unif0rm(—6, -3) 2Uniform(4,6) 10000
NICO++ 10Uniform(—5,—3) 10Uniform(—6,—3) 2Uniform(5,7) 10000

Table 4: Details about the grids for hyperparameter selection. The choices for grid sizes were taken
from Pezeshki et al. [2023].
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E Additional Results

E.1 Results for all the Compositional Shift Scenarios

Table 5, Table 6, Table 7, Table 8, and Table 9 present the results for the Waterbirds, CelebA,
MetaShift, MultiNLI, and CivilComments benchmark respectively. Here we do not aggregate over
the multiple compositional shift scenarios of a benchmark, and provide a more detailed analysis with
results for each scenario. For each method, we further highlight the worst case scenario for it, i.e, the
scenario with the lowest worst group accuracy amongst all the compositional shift scenarios. This
helps us easily compare the performance of methods for the respective worst case compositional shift
scenario, as opposed to the average over all scenarios in Table 1. An interesting finding is that CRM
outperforms all the baselines in the respective worst case compositional shift scenarios.

Discarded Group (y,a) | Method ~ Average Acc  Balanced Acc  Worst Group Acc

ERM  74.0 (0.0) 82.3 (0.3) 67.0 (0.0)
G-DRO  77.3(0.7) 83.0 (0.6) 59.7 (1.9)
(0,0) LC 85.7 (0.3) 88.7 (0.3) 82.0 (0.6)
sLA 86.0 (0.0) 89.0 (0.0) 82.3 (0.3)
CRM  86.7(0.9) 88.7 (0.3) 83.0 (1.5)
ERM  67.3(0.3) 71.7 (0.3) 28.0 (1.2)
G-DRO  58.3 (3.2) 70.7 (2.0) 11.7 (4.6)
(0,1) LC 82.7 (3.2) 86.0 (1.7) 72.0 (5.8)
sLA 86.3 (1.7) 88.0 (1.0) 78.7 (3.3)
CRM  86.0 (2.1) 86.7 (0.7) 73.0 (4.2)
ERM  84.0 (0.0) 78.0 (0.0) 38.3 (0.3)
G-DRO  90.0 (0.0) 86.0 (0.6) 67.0 (3.6)
(1,0) LC 93.0 (0.0) 89.0 (0.6) 79.0 (1.2)
sLA 93.0 (0.0) 89.0 (0.6) 79.3 (1.5)
CRM  86.7(0.3) 89.0 (0.0) 83.7 (0.3)
ERM  86.3 (0.3) 69.3 (0.3) 38.7 (0.7)
G-DRO  86.0 (0.6) 75.7 (2.2) 31.0 (9.2)
(1,1) LC 92.0 (0.0) 84.0 (0.6) 69.0 (1.5)
sLA 92.0 (0.0) 84.0 (0.6) 69.0 (1.5)
CRM  89.0 (0.6) 86.7 (0.7) 75.0 (3.2)

Table 5: Results for the various compositional shift scenarios for the Waterbirds benchmark. For
each metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight
the worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst
group accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in
the respective worst case compositional shift scenarios.
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Discarded Group (y,a) | Method ~Average Acc  Balanced Acc  Worst Group Acc

ERM  68.7(0.3) 74.0 (0.0) 37.7 (0.3)
G-DRO  85.0 (0.6) 88.0 (0.0) 75.0 (1.2)
(0,0) LC 88.0 (0.0) 90.3 (0.3) 82.3 (0.3)
sLA 87.7 (0.3) 90.3 (0.3) 82.3 (0.7)
CRM  91.7(0.3) 89.3 (0.3) 81.0 (2.0)
ERM  91.3(0.9) 91.0 (0.6) 86.7 (1.3)
G-DRO  85.0 (1.5) 88.7 (0.7) 72.7 (3.7)
(0,1) LC 93.0 (0.6) 87.7 (0.9) 71.0 (1.7)
sLA 92.7 (0.3) 88.0 (0.0) 71.3 (0.9)
CRM  88.3(0.9) 91.0 (0.6) 85.0 (2.0)
ERM  87.0 (0.0) 59.3 (0.3) 4.0 (0.0)
G-DRO  91.7 (0.3) 86.3 (0.7) 71.7 (0.9)
(1,0) LC 88.3 (0.3) 70.7 (0.7) 21.0 (2.1)
sLA 88.3 (0.3) 71.0 (0.6) 21.3 (1.9)
CRM  93.0 (0.0) 85.7 (0.3) 73.3 (1.8)
ERM  96.0 (0.0) 78.0 (0.6) 27.7 (2.0)
G-DRO  95.0 (0.0) 84.3 (0.3) 51.7 (1.2)
(1,1) LC 95.0 (0.0) 85.3 (0.3) 55.3 (1.9)
sLA 95.0 (0.0) 85.0 (0.6) 54.7 (2.3)
CRM  91.3(0.3) 91.0 (0.0) 88.0 (0.6)

Table 6: Results for the various compositional shift scenarios for the CelebA benchmark. For each
metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight the
worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst group
accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the
respective worst case compositional shift scenarios.

Discarded Group (y,a) | Method ~ Average Acc Balanced Acc ~ Worst Group Acc

ERM  84.3(0.3) 84.0 (0.6) 80.3 (0.9)
G-DRO  84.0 (0.6) 83.3 (0.7) 78.0 (0.6)
(0,0) LC 89.0 (0.0) 85.7 (0.3) 74.3 (1.8)
sLA 90.0 (0.0) 85.0 (0.0) 67.3 (1.9)
CRM  87.3(0.3) 84.3 (0.3) 73.3 (0.7)
ERM  85.0 (0.0) 79.0 (0.0) 49.0 (0.0)
G-DRO  86.0 (1.0) 81.7 (0.3) 55.3 (3.2)
(0,1) LC 86.0 (0.0) 84.0 (0.0) 63.7 (0.3)
sLA 86.0 (0.0) 84.0 (0.0) 64.0 (0.6)
CRM  88.3(0.3) 85.7 (0.3) 78.0 (1.0)
ERM  90.0 (0.0) 82.0 (0.0) 48.3 (0.3)
G-DRO  90.3 (0.3) 82.7 (0.9) 52.7 (2.3)
(1,0) LC 90.0 (0.0) 84.3 (0.3) 62.0 (0.0)
sLA 88.7 (0.3) 81.0 (0.0) 46.7 (0.7)
CRM  87.0(1.2) 83.3 (0.7) 70.0 (1.0)
ERM  83.3(1.2) 81.7 (0.9) 64.3 (1.2)
G-DRO  83.7 (0.9) 82.7 (0.9) 69.3 (2.0)
(1,1) LC 89.0 (0.0) 86.0 (0.0) 72.7 (0.7)
sLA 89.0 (0.0) 86.0 (0.0) 74.0 (0.0)
CRM  87.7(0.3) 85.3 (0.3) 72.3 (1.7)

Table 7: Results for the various compositional shift scenarios for the MetaShift benchmark. For each
metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight the
worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst group
accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the
respective worst case compositional shift scenarios.
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Discarded Group (y, a) \ Method Average Acc Balanced Acc  Worst Group Acc

ERM  62.7 (0.3) 66.7 (0.3) 0.7 (0.3)
G-DRO  63.3 (0.3) 68.0 (0.0) 1.7 (0.7)
(0,0) LC 68.0 (0.0) 72.0 (0.0) 20.0 (0.0)
sLA 67.7 (0.3) 72.0 (0.0) 19.7 (1.5)
CRM  64.7 (0.9) 70.7 (0.9) 31.0 (5.6)
ERM  77.7(0.3) 71.7 (0.3) 14.0 (1.0)
G-DRO  80.7 (0.7) 80.7 (0.7) 74.0 (1.0)
(0,1) LC 81.0 (0.0) 81.0 (0.0) 75.3 (0.3)
sLA 81.3 (0.3) 80.7 (0.3) 69.0 (0.6)
CRM  80.0 (0.6) 78.0 (1.2) 62.3 (8.2)
ERM  58.0 (0.0) 67.0 (0.0) 0.0 (0.0)
G-DRO  57.7 (0.3) 67.7 (0.3) 0.0 (0.0)
(1,0) LC 70.7 (0.9) 74.3 (0.3) 47.3 (4.3)
sLA 73.3 (2.7) 76.3 (1.7) 58.3 (9.7)
CRM  69.5 (0.5) 74.0 (0.0) 63.5 (0.5)
ERM  82.0(0.2) 73.0 (0.2) 20.0 (1.2)
G-DRO  80.3 (0.3) 79.3 (0.3) 72.7 (0.9)
(1,1) LC 81.7 (0.3) 81.3 (0.3) 74.3 (1.5)
sLA 82.0 (0.0) 81.0 (0.0) 75.3 (0.7)
CRM  81.3(0.3) 80.7 (0.3) 71.3 (1.8)
ERM  62.0 (0.0) 68.3 (0.3) 0.0 (0.0)
G-DRO  60.0 (0.0) 67.7 (0.3) 0.0 (0.0)
(2,0) LC 72.3 (0.3) 74.7 (0.3) 48.7 (0.7)
sLA 72.7 (0.7) 74.3 (0.3) 48.3 (0.9)
CRM  68.7(0.3) 72.7 (0.3) 50.0 (0.6)
ERM  81.3(0.3) 74.3 (0.3) 17.3 (2.4)
G-DRO  80.7 (0.3) 79.0 (0.0) 57.3 (2.2)
(2,1) LC 82.0 (0.0) 80.7 (0.3) 60.0 (1.2)
sLA 81.7 (0.3) 80.3 (0.3) 59.3 (0.9)
CRM  81.3(0.3) 80.0 (0.6) 72.7 (0.9)

Table 8: Results for the various compositional shift scenarios for the MultiNLI benchmark. For each
metric, report the mean (standard error) over 3 random seeds on the test dataset. We highlight the
worst case compositional shift scenario for each method, i.e, the scenario with the lowest worst group
accuracy amongst all the compositional shift scenarios. CRM outperforms all the baselines in the
respective worst case compositional shift scenarios.
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Discarded Group (y, a) ‘ Method Average Acc Balanced Acc Worst Group Acc

ERM 79.0 (0.6)  78.7(0.3) 61.3 (1.5)
G-DRO  79.3(1.2)  79.0(0.0) 64.7 (3.0)
(0,0) LC 79.7(0.3)  79.0 (0.0) 64.3 (0.9)
SLA 79.7(0.3)  79.3(0.3) 66.7 (1.8)
CRM 84.0 (0.0)  78.7(0.3) 67.0 (2.5)
ERM 78.0 (0.6)  78.3(0.3) 64.3 (1.2)
G-DRO  78.0(0.6)  78.7(0.3) 64.3 (1.5)
(0,1) LC 79.3(0.3)  79.0(0.0) 64.3 (0.9)
SLA 79.7(0.3)  79.0 (0.0) 65.3 (0.3)
CRM 83.3(0.7)  78.7(0.3) 71.0 (1.5)
ERM 78.3(0.3)  77.7(0.3) 38.0 (1.0)
(0,2) G-DRO  79.0(0.6)  78.3(0.3) 43.7 (0.3)
LC 79.0 (0.6)  79.0 (0.0) 53.7 (2.3)
SLA 79.3(0.3)  79.0 (0.0) 55.0 (2.1)
CRM 83.3(0.3)  78.7(0.3) 68.0 (1.0)
ERM 80.5(0.5)  79.0 (0.0) 66.0 (2.0)
G-DRO  80.0(0.6)  79.0(0.0) 67.3 (2.7)
(0,3) LC 81.3(0.3)  79.0(0.0) 69.0 (1.2)
SLA 80.7 (0.7)  79.0(0.0) 66.7 (2.7)
CRM 83.7(0.3)  78.7(0.3) 69.7 (0.3)
ERM 78.0 (0.0)  77.7(0.3) 38.0 (0.6)
G-DRO  78.7(0.9)  78.7(0.3) 52.0 (3.2)
(0,4) LC 79.0 (0.0)  79.0 (0.0) 60.7 (1.5)
SLA 78.3(0.3)  79.0 (0.0) 62.0 (1.0)
CRM 83.7(0.3)  79.0(0.0) 69.7 (1.9)
ERM 80.0 (0.0)  79.0 (0.0) 61.0 (0.6)
G-DRO  80.0(0.6)  79.0(0.0) 67.3 (1.8)
(0, 5) LC 79.3(0.9)  79.0 (0.0) 65.7 (2.3)
SLA 80.0 (0.0)  79.7(0.3) 66.7 (0.3)
CRM 84.0 (0.0)  78.7(0.3) 71.0 (1.0)
ERM 78.7(0.3)  78.0(0.0) 36.3 (1.2)
G-DRO  78.3(0.3)  78.3(0.3) 46.3 (1.2)
(0, 6) LC 80.7(0.3)  79.0(0.0) 58.7 (2.3)
SLA 79.7(0.9)  79.0(0.0) 57.0 (3.1)
CRM 83.3(0.7)  78.7(0.3) 70.0 (1.0)
ERM 79.0 (0.0)  77.7(0.3) 40.0 (1.2)
G-DRO  77.7(0.3)  78.7(0.3) 49.7 (0.3)
0,7) LC 79.7(0.3)  79.0(0.0) 60.0 (2.3)
SLA 78.7(0.3)  79.0 (0.0) 56.3 (1.3)
CRM 83.3(0.3)  78.3(0.3) 64.0 (1.2)
ERM 81.3(0.3)  79.0(0.0) 60.3 (0.3)
G-DRO  82.3(0.7)  79.0(0.0) 69.7 (1.3)
(1,0) LC 81.3(0.3)  79.0(0.0) 71.0 (0.6)
SLA 81.3(0.9)  79.0(0.0) 70.0 (1.2)
CRM 84.0 (0.0)  78.0(0.0) 68.3 (0.9)
ERM 81.7(0.3)  77.7(0.3) 60.3 (1.2)
G-DRO  82.0(0.6)  79.0(0.0) 67.3 (0.9)
(1,1) LC 80.7 (0.3)  79.0(0.0) 69.3 (0.9)
SLA 81.3(0.3)  79.0(0.0) 71.0 (1.2)
CRM 84.0 (0.0)  78.3(0.3) 70.0 (0.6)
ERM 81.3(0.3)  78.7(0.3) 61.3 (0.7)
G-DRO  80.7(0.3)  79.0(0.0) 63.7 (2.4)
(1,2) LC 82.0 (0.6)  79.0 (0.0) 70.0 (2.1)
SLA 82.0 (0.6)  79.0 (0.0) 69.7 (1.8)
CRM 83.7(0.3)  78.3(0.3) 63.7 (3.2)
ERM 82.3(0.9)  78.0(0.0) 59.0 (1.5)
G-DRO  81.0(0.6)  79.0(0.0) 67.3 (2.6)
(1,3) LC 82.0 (0.0)  79.0 (0.0) 70.0 (1.5)
SLA 82.7(0.9)  79.3(0.3) 69.0 (1.5)
CRM 83.7(0.3)  78.0(0.0) 71.0 (1.5)
ERM 82.3(0.3)  78.7(0.3) 58.3 (1.8)
G-DRO  80.3(0.3)  79.0(0.0) 68.0 (0.6)
(1,4) LC 82.0 (0.0)  79.3(0.3) 70.7 (0.3)
SLA 82.0 (0.6)  79.3(0.3) 70.0 (0.6)
CRM 83.7(0.3)  78.3(0.3) 60.0 (1.5)
ERM 82.0 (0.0)  78.7(0.3) 63.7 (0.3)
G-DRO  81.7(0.3)  79.0(0.0) 64.7 (1.3)
(1,5) LC 81.3(0.3)  79.3(0.3) 68.3 (0.7)
SLA 82.0 (0.6)  79.0 (0.0) 71.3 (0.9)
CRM 83.7(0.3)  78.3(0.3) 70.0 (1.0)
ERM 82.0(0.6)  79.0(0.0) 65.3 (2.4)
G-DRO  81.0(0.0)  79.3(0.3) 66.0 (1.2)
(1,6) LC 81.7(0.7)  79.0(0.0) 69.7 (2.3)
SLA 80.7 (0.3)  79.0(0.0) 66.7 (0.3)
CRM 84.0 (0.0)  78.3(0.3) 70.0 (1.5)
ERM 82.0(1.2)  78.7(0.3) 63.3 (1.8)
G-DRO  81.0(0.0)  79.0(0.0) 64.3 (0.3)
(1,7) LC 81.7(0.3)  79.0(0.0) 66.0 (1.5)
SLA 82.3(0.3)  79.0(0.0) 67.0 (1.5)
CRM 84.0 (0.3)  77.0(0.0) 65.0 (1.0)

Table 9: Results for the various compositional shift scenarios for the CivilComments benchmark.
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E.2 Results for Ablations with CRM

In the implementation of CRM in Algorithm 1, we have the following two choices; 1) we use the
extrapolated bias B* (equation 7); 2) we set §(z) as the uniform distribution, i.e, §(z = (y,a)) =
dyTlda' We now conduct ablation studies by varying these components as follows.

* Bias B* + Emp Prior: We still use the extrapolated bias B* but instead of uniform §(z), we
use test dataset to obtain the counts of each group, denoted as the empirical prior. Note that
this approach assumes the knowledge of test distribution of groups, hence we expect this to
improve the average accuracy but not the necessarily the worst group accuracy.

* Bias B + Unf Prior: We still use the uniform prior for §(z) but instead of the extrapolated
bias B*, we use the learned bias B (equation 5). This ablation helps us to understand
whether extrapolated bias B* are crucial for CRM to generalize to compositional shifts.

* Bias B+ Emp Prior: Here we change both aspects of CRM as we use the learned bias B
and empirical prior from the test dataset for (z).

Table 10 presents the results of the ablation study. We find that extrapolated bias is crucial for CRM
as the worst group accuracy with learned bias is much worse! Further, using empirical prior instead
of the uniform prior leads to improvement in average accuracy at the cost of worst group accuracy.

Dataset | Ablation Average Acc  Balanced Acc  Worst Group Acc
CRM 87.1(0.7) 87.8 (0.1) 78.7 (1.6)
Bias B* + Emp Prior  91.6 (0.2) 87.4 (0.3) 75.2 (1.3)
Waterbirds Bias B + Unf Prior ~ 81.2 (0.6) 82.7 (0.2) 55.7 (1.0)
Bias B + Emp Prior ~ 84.3 (0.6) 81.6 (0.3) 51.3 (1.0)
CRM 91.1 (0.2) 89.2 (0.3) 81.8 (1.2)
Bias B* + Emp Prior  94.3 (0.1) 75.8 (0.4) 34.1 (1.0)
CelebA Bias B + Unf Prior ~ 83.6 (0.1) 84.7 (0.2) 58.9 (0.4)
Bias B + Emp Prior  90.9 (0.1) 77.2 (0.3) 35.4 (0.7)
CRM 87.6 (0.2) 84.7 (0.1) 73.4 (0.7)
Bias B* + Emp Prior  89.2 (0.2) 84.0 (0.4) 65.1 (1.4)
MetaShift Bias B + Unf Prior ~ 87.2 (0.3) 82.9 (0.4) 58.7 (0.6)
Bias B + Emp Prior ~ 88.1 (0.1) 82.1 (0.1) 56.1 (0.4)
CRM 74.6 (0.5) 76.1 (0.4) 57.7 (3.0)
Bias B* + Emp Prior  75.0 (0.5) 72.2 (0.4) 39.7 (3.2)
MultiNLI Bias B + Unf Prior ~ 72.9 (0.9) 74.0 (0.4) 28.9 (2.1)
Bias B + Emp Prior  73.6 (0.9) 70.8 (0.4) 20.2 (0.2)
CRM 83.7 (0.1) 78.4 (0.1) 68.1 (0.5)
Bias B* + Emp Prior  87.0 (0.0) 74.1 (0.3) 48.0 (1.2)
CivilComments | Bias B + Unf Prior ~ 76.8 (0.2) 77.8 (0.0) 51.9 (1.0)
Bias B + Emp Prior ~ 83.5 (0.1) 78.0 (0.0) 62.2 (0.6)
CRM 84.7 (0.3) 84.7 (0.3) 40.3 (4.3)
Bias B* + Emp Prior  85.0 (0.0) 85.0 (0.0) 41.0 (4.9)
NICO++ Bias B + Unf Prior 85.0 (0.0) 85.0 (0.0) 31.0 (1.0)
Bias B + Emp Prior  85.0 (0.0) 85.0 (0.0) 27.7 (3.9)

Table 10: Ablation study with CRM. We consider the average performance over the different
compositional shift scenarios for each benchmark, and report the mean (standard error) over 3 random
seeds on the test dataset. CRM corresponds to the usual implementation with extrapolated bias
B* and uniform prior for §(z). CRM obtains better worst group accuracy than all the ablations,
highlighting the importance of both extrapolated bias and uniform prior! Extrapolated bias is critical
for generalization to compositional shifts as the performance with learned bias is much worse.
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E.3 Results for the Original Benchmarks

We present results for the original benchmarks (Dxain, Dyal, Dirain) in Table 11, which corresponds
to the standard subpopulation shift case for these benchmarks. For Waterbirds, CelebA, MetaShift,
and MultiNLI, subpopulation shift implies all the groups z = (y, a) are present in both the train and
test dataset (22" = Z'est = ZX) however, the groups sizes change from train to test, inducing a
spurious correaltion between class labels y and attributes a. For the NICO++ dataset, we have a total
of 360 groups in the test dataset but only 337 of them are present in the train dataset. But still this is
not a compositional shift as the validation dataset contains all the 360 groups. We find that CRM is
still competitive to the baselines for the standard subpopulation shift scenario of each benchmark!

Dataset | Method ~ Average Acc  Balanced Acc  Worst Group Acc
ERM 87.3 (0.3) 84.0 (0.0) 62.3 (1.2)
G-DRO 91.7 (0.3) 91.0 (0.0) 87.3 (0.3)
Waterbirds LC 92.0 (0.0) 91.0 (0.0) 88.7(0.3)
sLA 92.3 (0.3) 91.0 (0.0) 89.7 (0.3)
CRM 91.3 (0.9) 91.0 (0.0) 86.0 (0.6)
ERM 95.7 (0.3) 84.0 (0.0) 52.0 (1.0)
G-DRO  92.0 (0.6) 93.0 (0.0) 91.0 (0.6)
CelebA LC 92.0 (0.6) 92.0 (0.0) 90.0 (0.6)
sLA 92.3 (0.3) 91.7 (0.3) 86.7 (1.9)
CRM 93.0 (0.0) 92.0 (0.0) 89.0 (0.6)
ERM 90.0 (0.0) 84.0 (0.0) 63.0 (0.0)
G-DRO  90.3 (0.3) 88.3 (0.3) 80.7 (1.3)
MetaShift LC 89.7 (0.3) 87.7(0.3) 80.0 (1.2)
sLA 90.0 (0.6) 87.7(0.3) 80.0 (1.2)
CRM 88.3 (0.7) 85.7 (0.3) 74.7 (1.5)
ERM 81.7 (0.3) 80.7 (0.3) 68.0 (1.7)
G-DRO  80.7 (0.3) 78.0 (0.0) 57.0 (2.3)
MultiNLI LC 82.0 (0.0) 82.0 (0.0) 74.3 (1.2)
sLA 82.0 (0.0) 82.0 (0.0) 71.7 (0.3)
CRM 81.7 (0.3) 81.7 (0.3) 74.7 (1.3)
ERM 80.3 (0.3) 79.0 (0.0) 61.0 (2.5)
G-DRO 79.7 (0.3) 79.0 (0.0) 64.7 (1.5)
CivilComments | LC 80.7 (0.3) 79.7 (0.3) 67.3 (0.3)
sLA 80.3 (0.3) 79.0 (0.0) 66.3 (0.9)
CRM 83.3 (0.3) 78.0 (0.0) 70.0 (0.6)
ERM 85.3 (0.3) 85.0 (0.0) 35.3 (2.3)
G-DRO  83.7 (0.3) 83.3 (0.3) 33.7(1.2)
NICO++ LC 85.0 (0.0) 85.0 (0.0) 35.3 (2.3)
sLA 85.0 (0.0) 85.0 (0.0) 35.3 (2.3)
CRM 85.0 (0.0) 84.7 (0.3) 39.0 (3.2)

Table 11: Results for the standard subpopulation shift case for each benchmark. Here we do not
transform the datasets for compositional shifts, hence all the groups are present in both the train and
the test dataset (except the NICO++ benchmark). CRM is still competitive with the baselines for this
scenario where no groups were discarded additionally.
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