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Abstract

Large Language Models (LLMs) can trans-001
fer their reasoning skills to smaller models002
by teaching them to generate the intermedi-003
ate reasoning process required to solve mul-004
tistep reasoning tasks. While LLMs can accu-005
rately solve reasoning tasks through various006
strategies, even without fine-tuning, smaller007
models are not expressive enough to fit the008
LLMs distribution on all strategies when dis-009
tilled and tend to prioritize one strategy over010
the others. This reliance on one strategy poses011
a challenge for smaller models when attempt-012
ing to solve reasoning tasks that may be diffi-013
cult with their preferred strategy. To address014
this, we propose a distillation method SIKeD:015
Self-guided Iterative Knowledge Distillation,016
where the LLM teaches the smaller model to ap-017
proach a task using different strategies and the018
smaller model uses its self-generated on-policy019
outputs to choose the most suitable strategy020
for the given task. The training continues in021
a self-guided iterative manner, where for each022
training iteration, a decision is made on how to023
combine the LLM data with the self-generated024
outputs. Unlike traditional distillation methods,025
SIKeD allows the smaller model to learn which026
strategy is suitable for a given task while contin-027
uously learning to solve a task using different028
strategies. Our experiments on various math-029
ematical reasoning datasets show that SIKeD030
significantly outperforms traditional distillation031
techniques across smaller models of different032
sizes.033

1 Introduction034

Large language models (LLMs), with tens to hun-035

dreds of billions of parameters, generally outper-036

form smaller models (with billions of parameters037

or fewer) in a variety of reasoning tasks [Touvron038

et al., 2023, Achiam et al., 2023]. One notable039

strength of large models is their ability to reason040

and perform multistep reasoning tasks, often con-041

sidered an important aspect of intelligence [Gómez-042
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Figure 1: Histogram of strategy choices for the LLM
and the smaller model. LLM tends to select several
reasoning strategies, but the smaller model is biased
towards one strategy. The comparison was done on 1K
randomly sampled data from the GSM8K train set.

Veiga et al., 2018]. However, the significant size 043

and computational demands of these large models 044

present several challenges. For example, LLaMA3 045

models [Touvron et al., 2023] are trained using clus- 046

ters of 24,000 GPUs, limiting their accessibility to 047

many researchers and practitioners. 048

To bridge this gap, a key approach involves teach- 049

ing smaller models to replicate the knowledge of 050

a larger model, often referred to as knowledge dis- 051

tillation [Hinton et al., 2015]. Typically, smaller 052

models can be taught to replicate the multistep rea- 053

soning capabilities of larger models by incorporat- 054

ing a set of intermediate sequences [Kim and Rush, 055

2016, Shridhar et al., 2023]. However, these inter- 056

mediate steps can be derived from several different 057

strategies, such as Chain of Thought (CoT) [Wei 058

et al., 2022], Subquestion Decomposition [Shrid- 059

har et al., 2022, Zhou et al., 2023], and Program of 060

Thoughts (PoT) [Chen et al., 2023], among others. 061

A viable solution is to distill these reasoning capa- 062

bilities into smaller models either by distilling in- 063

dividual strategies [Magister et al., 2023, Shridhar 064

et al., 2023, Hsieh et al., 2023] or by incorporating 065

multiple strategies simultaneously [Chenglin et al., 066

2023, Zhu et al., 2024]. Although smaller models 067
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have demonstrated impressive performance when068

distilled with a single strategy, they often strug-069

gle to master multiple strategies equally well. An070

example is presented in Figure 1 where a larger071

model can use multiple strategies to generate data072

but upon distilling, a smaller model tends to fa-073

vor one over the others. This is because reasoning074

through a variety of strategies tends to emerge as075

a result of scaling language models, making it dif-076

ficult for smaller models to replicate this behavior077

[Lyu et al., 2024].078

On the other hand, learning to solve a task us-079

ing multiple strategies can help smaller models080

overcome the limitations of relying on a single ap-081

proach. However, a key challenge arises when,082

despite being trained on a fixed dataset containing083

various strategies, a distribution mismatch occurs084

between the data generated by the LLM and the085

outputs produced by the smaller model during in-086

ference. This mismatch can hinder the ability of087

the smaller model to generalize across different088

reasoning strategies. This issue, often discussed089

in imitation learning [Pomerleau, 1991, Ross and090

Bagnell, 2010], results in the student model consis-091

tently choosing one strategy, even when a different092

approach would be more appropriate. As a result,093

the student generates outputs with strategy choices094

that are highly unlikely to match those produced095

by the teacher.096

To address this challenge, we introduce our distil-097

lation methodology, SIKeD: Self-guided Iterative098

Knowledge Distillation. The process begins with099

the LLM teaching the smaller model to approach100

tasks using a variety of reasoning strategies, pro-101

viding a strong foundation for the smaller model to102

understand different problem-solving approaches.103

However, due to inherent biases and its limited104

capacity, the smaller model may still struggle to105

match the LLM’s distribution of strategy choices106

effectively. To resolve this, we take inspiration107

from constructivist learning theory [Narayan et al.,108

2013], where the learner builds knowledge during109

the “assimilation phase” and refines their under-110

standing during the “accommodation phase” to111

incorporate new insights. We propose generat-112

ing outputs using the smaller model in an on-113

policy setup and selecting the best strategies for114

the task. By mixing the LLM-generated data with115

self-generated outputs, we leverage the strengths of116

both datasets. We iteratively fine-tune the smaller117

model allowing it to recognize strategies that it118

learned from the LLM but did not initially apply.119

With this approach, we align the smaller model 120

with its own learned knowledge rather than forcing 121

its distribution to mirror that of the LLM’s. 122

Our proposed method extends beyond traditional 123

one-step distillation, as each iteration of SIKeD 124

leads to an updated policy that better grasps new in- 125

formation. We repeat multiple iterations of SIKeD 126

based on the accuracy-cost tradeoff (does the im- 127

provement justify the cost of another iteration), 128

allowing for continuous refinement and improve- 129

ment of the model’s reasoning capabilities. We 130

demonstrate the effectiveness of SIKeD on several 131

mathematical reasoning tasks using models with 132

fewer than 7 billion parameters.1 On four math- 133

ematical datasets—GSM8K [Cobbe et al., 2021], 134

SVAMP [Patel et al., 2021], ASDiv [Miao et al., 135

2020], and MultiArith [Roy and Roth, 2015]—our 136

approach achieves improvements of up to +5 points 137

over traditional distillation strategies. Additionally, 138

we show that multiple rounds of SIKeD allow the 139

model to select the appropriate strategy for a given 140

problem, while traditional distillation using LLM’s 141

data tends to leave it biased. 142

2 Preliminaries: LLM based Distillation 143

Problem Setup We consider the standard setup 144

for LLM-based distillation (also referred to as 145

knowledge distillation), where distillation data is 146

sampled from a larger model with intermediate 147

reasoning steps and a smaller distilled model is 148

fine-tuned on the data [Shridhar et al., 2023, Mag- 149

ister et al., 2023]. Two auto-regressive sequence 150

models are involved in the process: a larger model 151

or the LLM denoted as pL and a smaller model to 152

be distilled as pθsm (with learnable parameters θ). 153

In this work, we consider a reasoning distillation 154

setup where the distillation dataset D consists of 155

pairs of math questions qi and their numerical an- 156

swers ai, i ∈ {1, . . . , n}. Our work focuses on 157

improving reasoning in smaller models by teach- 158

ing them to utilize a variety of reasoning strate- 159

gies. We consider three reasoning strategies in 160

this work: Chain-of-Thought (CoT), Least-to-Most 161

(L2M), and Program-of-Thought (PoT). For each 162

question qi and a specific reasoning strategy, de- 163

noted as s ∈ S, we generate the reasoning chain 164

(or rationale), denoted as ri leading to the final 165

answer: ri ∼ pL(. | prs, qi), where, prs represents 166

the strategy-specific prompt. The prompts used for 167

1We acknowledge that “smaller model” is a relative term,
and we consider models with fewer than 7 billion parameters
to be smaller models.
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the generation of reasoning chains are provided in168

Appendix A.169

2.1 LLM based Distillation170

We begin by creating an initial training dataset DLLM171

consisting of a quadruple of {qi, ai, s, ri} for each172

data point. We perform a data filtering by extracting173

the final answer âi from the generated rationale ri174

and comparing it with the ground truth answer ai.175

We discard all samples that do not match, i.e., we176

keep samples where âi = ai. This filtering process177

eliminates incorrect rationales, ensuring that only178

high-quality data is used for distilling the smaller179

models.180

We start the distillation process by training the181

smaller model with the created dataset DLLM. The182

question qi is provided as input, and the smaller183

model pθsm (with learnable parameters θ) is first in-184

structed to generate the strategy s, followed by the185

rationale ri that leads to the final answer ai. The186

loss LL(θ) is defined as:187

LL(θ) =− E(qi,s,ri)∼DLLM

[
log pθsm (s | qi, I)

+

M∑
t=1

log pθsm (ri,t | ri,<t, s, qi, I)

]188

where M represents the number of tokens decoded189

over time t in an autoregressive manner, and I is the190

instruction used during fine-tuning. Note that this191

is analogous to traditional knowledge distillation192

from LLMs except that we make a strategy choice193

before generating rationales.194

Limitations of this standard distillation setup195

Training solely on LLM-generated data DLLM can196

lead to a distribution mismatch between the train-197

ing data and the smaller model’s output distri-198

bution. Specifically, the larger model due to its199

larger capacity, may produce correct reasoning200

across multiple strategies that the smaller model201

can find difficult to replicate directly [Agarwal202

et al., 2024]. A comparison of the strategy selected203

by the LLM and the smaller model on 1K samples204

is presented in Figure 1. The smaller model per-205

forms poorly when generating outputs on its own,206

as the training data distribution Ptrain(x) is differ-207

ent from the model’s output distribution P θ
sm(x) as208

P
(1)
train(x) = PLLM(x), where x represents the sam-209

ples (qi, s, ri), and PLLM(x) is the distribution of210

the data generated by the LLM pL.211

Proposed Solution To mitigate the distributional 212

shift in strategy choice between the LLM and 213

the smaller model, we propose to incorporate the 214

smaller model’s correct outputs into the training 215

data. This self-guided training with data mixing 216

aligns the training data distribution more closely 217

with the smaller model’s output distribution, mak- 218

ing learning more effective. A visualization of 219

the data mixing approach is presented in Figure 2 220

that demonstrates that data mixing reduces the dis- 221

tribution shift, bringing the LLM and the smaller 222

model’s output distribution closer. This allows the 223

smaller model to choose the right strategy for a 224

given task, much like the LLM. 225

3 SIKeD: Self-guided Iterative Knowledge 226

Distillation 227

We propose SIKeD , an iterative training procedure 228

where smaller models can take advantage of their 229

own generations to refine their strategy choices for 230

a given task. In a nutshell, we generate data from 231

the smaller model, filter out the correct samples 232

based on whether the generated solutions are cor- 233

rect, and mix this data with the LLM-generated 234

data to adjust its strategy preferences. The smaller 235

distilled model is used to iteratively generate data 236

in an on-policy setting where it updates itself by 237

leveraging both the LLM data and its generations. 238

This iterative process allows the smaller model to 239

improve its reasoning abilities and strategy selec- 240

tion over time by leveraging the LLM’s knowledge 241

and prior learning. The following paragraphs dis- 242

cuss the steps involved in our proposed iterative 243

distillation methodology and the training objective. 244

Data generation For each question qi and its as- 245

sociated reasoning strategy s, we first generate K 246

rationales using the current smaller model pθsm as: 247

r
(k)
i ∼ pθsm(· | s, qi, I), for k = 1, . . . ,K. Note 248

that we generate multiple samples K as the like- 249

lihood of a correct answer being present in one 250

of the rationales increases significantly with addi- 251

tional generations for smaller models [Jain et al., 252

2023, Wang et al., 2023]. 253

Data Filtering Next, we extract the predicted 254

answer â(k)i from each rationale r
(k)
i and compare 255

it with the ground truth ai. We collect the cor- 256

rect samples, where â
(k)
i = ai, into a new dataset 257

Dself =
{
(qi, s, r

(k)
i )

∣∣∣ â(k)i = ai

}
. 258
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Figure 2: Alignment of the smaller model’s strat-
egy distribution with the LLM over iterations. Each
subplot represents an iteration in the training process,
showing the probability distributions over reasoning
strategies: PoT, L2M, and CoT. The blue bars depict the
LLM’s distribution PL, while the orange bars represent
the smaller model’s distribution PSM , which is biased
towards CoT. The green bars show the training data
distribution P

(t)
train, a mixture of PL and PSM weighted

by the mixing rate α. As α decreases over iterations
(from 0.90 to 0.20), P (t)

train shifts from being similar to
the LLM’s distribution towards the smaller model’s dis-
tribution. The KL divergence between the training data
and the smaller model distributions decreases accord-
ingly, indicating increased similarity.

Data mixing We combine the LLM-generated259

dataset DLLM with the self-generated dataset Dself260

to form the mixed dataset Dmix = DLLM ∪ Dself.261

Note that, we do not always use all the data from262

LLM in Dmix, and study two variations: All when263

all LLM data is used in Dmix, and Adaptive when264

only queries that have no correct generations in265

Dself are taken from DLLM. Adaptive uses less gen-266

erated data from the LLM, resulting in more com-267

putationally efficient training.268

The corresponding training data distribution269

changes to a mixture of the LLM data distribution270

and the smaller model’s output distribution with271

correct samples:272

P
(2)
train(x) = αPLLM(x) + (1− α)P θ

sm(x),273

where α = |DLLM|
|DLLM|+|Dself| serves as a normalized274

mixing rate between the two datasets.275

Training objective By including Dself in the276

training data, we reduce the divergence be-277

tween P
(2)
train(x) and the model’s output distribution278

P θ
sm(x), thus minimizing the distribution shift and279

improving training effectiveness of choosing the280

right strategy for a given task.281

We continue training the smaller model on Dmix282

using the following loss function:283

Lmix(θ) =− E(qi,s,ri)∼Dmix

[
log pθsm (s | qi, I)

+

M∑
t=1

log pθsm (ri,t | ri,<t, s, qi, I)

] 284

The expected loss over the training data is: 285

Lmix(θ) = −E
x∼P

(2)
train(x)

[
log pθsm(x)

]
286

where x = (qi, s, ri), and pθsm(x) denotes the prob- 287

ability assigned by the model to the sample x. 288

Analogous to minimizing the KL divergence 289

Mixing the data is analogous to minimizing the 290

Kullback-Leibler (KL) divergence [Kullback and 291

Leibler, 1951] between the training data distribu- 292

tion P
(2)
train(x) and the model’s output distribution 293

P θ
sm(x): 294

DKL(P
(2)
train(x) ∥ P θ

sm(x)) =
∑

x P
(2)
train(x) log

P
(2)
train(x)

P θ
sm(x)

295

As we include more self-generated data, (1 − α) 296

increases, and P
(2)
train(x) becomes closer to P θ

sm(x). 297

This reduces the KL divergence and aligns the train- 298

ing data distribution with the model output distri- 299

bution, leading to more effective learning. Figure 2 300

demonstrates that as the value of α decreases, the 301

distribution of the training data strategy choices 302

aligns with the smaller model with correct solu- 303

tions, with a reduction in their KL value over it- 304

erations. This allows the smaller model to better 305

capture the strategy distribution of the larger model. 306

3.1 Iterative Self-Training of SIKeD 307

We repeat the data generation, filtering, mixing, 308

and training steps iteratively. In each iteration t, 309

the smaller model potentially generates new correct 310

rationales that are added to the training data. The 311

training data distribution at iteration t becomes: 312

P
(t)
train(x) = α(t)PLLM(x) + (1− α(t))P θ(t−1)

sm (x), 313

where θ(t−1) are the model parameters from the 314

previous iteration, and α(t) is updated based on 315

the sizes of DLLM and D(t)
self at iteration t. Note 316

that the generated samples from the smaller model 317

automatically govern the value of α(t) based on the 318

size of D(t)
self. 319
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This iterative process continues until the model’s320

performance converges or a predefined stopping cri-321

terion is met. Over multiple iterations, the model’s322

output distribution P θ(t)
sm (x) gradually improves,323

and the training data distribution becomes increas-324

ingly aligned with it. We present an end-to-end325

training methodology in Algorithm 1.326

Algorithm 1 SIKeD: Self-guided Iterative
Knowledge Distillation
Input: D: Reasoning dataset with questions {qi}Ni=1 and

answers {ai}Ni=1, DLLM: Reasoning dataset generated
using the LLM with questions {qi}, answers {ai},
strategy {s}, rationales {ri}, S: Set of reasoning
strategies, I : instruction, pL: LLM for rationale gen-
eration , pθ

(0)

sm : Smaller model with initial parameters
θ(0) , K: Number of samples per question and strat-
egy, T : Maximum number of iterations, Variation:
All or Adaptive,

// LLM-Based Distillation

Train pθ
(0)

sm on DLLM by minimizing LL(θ
(0)) ( (2.1))

// SIKeD: Self-guided Iterative Knowledge
Distillation

for iteration t = 1 to T do
Initialize dataset D(t)

self ← ∅
for each question qi ∈ D do

for each strategy s ∈ S do
for k = 1 to K do

Generate rationale r
(k)
i using pθ

(t−1)

sm :
r
(k)
i ∼ pθ

(t−1)

sm (· | s, qi, I)
Extract answer â(k)

i from r
(k)
i

if â(k)
i = ai then
Add (qi, s, r

(k)
i ) to D(t)

self
end

end
end

end
if Variation is All then

Combine datasets: D(t)
mix = DLLM ∪ D(t)

self

else
Identify questions with no correct self-generated

rationales: I = {i | no correct r(k)i in D(t)
self}

Include corresponding LLM data:
D(t)

LLM = {(qi, s, ri) ∈ DLLM | i ∈ I}
Combine datasets: D(t)

mix = D
(t)
LLM ∪ D

(t)
self

end

Update α(t) =
|D(t)

LLM |

|D(t)
LLM |+|D(t)

self|

Retrain pθ
(t)

sm on D(t)
mix by minimizing L(t)

mix(θ
(t)) ( (3))

end
Output: Updated smaller model pθ

(T )

sm

4 Experimental Details327

Dataset Our work demonstrates the effectiveness328

of selecting an appropriate strategy for a given329

task. We consider multi-step mathematical rea-330

soning datasets in our work, as various strategies331

can solve the task fairly well. We trained SIKeD 332

on the GSM8K training set [Cobbe et al., 2021], 333

which includes 7,473 samples, and tested it on the 334

corresponding test set of 1,319 samples. To as- 335

sess the domain transferability of our distillation 336

method, we also evaluated it on three additional 337

mathematical datasets: SVAMP [Patel et al., 2021] 338

with 1,000 samples, ASDiv [Miao et al., 2020] with 339

2,300 test samples, and MultiArith [Roy and Roth, 340

2015] with 180 samples. As the GSM8K training 341

set was used to train the smaller model, we classify 342

it as an in-distribution dataset. In contrast, no train- 343

ing data from SVAMP, ASDiv, or MultiArith was 344

used, as they were exclusively employed for testing 345

purposes and thus considered out-of-distribution. 346

Implementation Details We used the Llama3 347

70B model [Dubey et al., 2024] as the large lan- 348

guage model (LLM) to generate the rationales. We 349

performed distillation on different smaller mod- 350

els ranging from 0.5B to 7B parameters, including 351

Qwen2 0.5B [Bai et al., 2023], Qwen2 1.5B [Bai 352

et al., 2023], SmolLM 1.7B [Hugging Face, 2023], 353

Gemma 2B [Team et al., 2024], and Gemma 7B 354

[Team et al., 2024]. All smaller models were fine- 355

tuned using LoRA [Hu et al., 2022] with a rank of 356

16, and alpha of 32. We used a learning rate of 3e-4 357

for Qwen models with a cyclic scheduler, while we 358

set 2e-4 as the learning rate for other models and 359

used a linear scheduler. We train all models for 3 360

epochs. We implemented all our experiments using 361

the Unsloth FastLanguageModel [Unslothai, 2023] 362

and used the VLLM library [Kwon et al., 2023] for 363

inference. We set the temperature t = 0 for data 364

generation from the LLM while t = 0.7 was used 365

for generating samples from the smaller model at 366

each iteration. We set the number of generated 367

samples or K to 10. We report Top-1 accuracy 368

(maj@1). 369

Often, distillation is performed using only a 370

single strategy such as Chain-of-Thought (CoT) 371

[Wei et al., 2022], Program-of-Thought (PoT) 372

[Chen et al., 2023], Least-to-Most (L2M) [Zhou 373

et al., 2023] or by combining different strategies 374

[Chenglin et al., 2023, Zhu et al., 2024]. For this 375

reason, we treat single-strategy distillation (CoT, 376

PoT, L2M) and “Combined“ as baseline models in 377

our work as shown in Table 1. 378

5 Results and Discussion 379

LLM Based Distillation We start by distilling 380

smaller models using the reasoning dataset gen- 381
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Dataset Method Gemma 7B Gemma 2B SmolLM 1.7B Qwen 1.5B Qwen 0.5B

GSM8K

CoT 67.40 36.54 16.38 55.57 36.47
L2M 69.29 36.92 18.73 54.59 33.59
PoT 71.34 44.05 23.73 64.22 41.62
Combined 70.74 44.05 24.56 64.44 42.38
SIKeD (Adaptive) 73.84 (↑ +2.5) 47.23 (↑ +3.2) 27.98 (↑ +3.4) 64.97 (↑ +0.3) 43.14 (↑ +0.8)

SIKeD (All) 71.42 (↑ +0.1) 45.26 (↑ +1.2) 27.75 (↑ +3.2) 64.14 (↓ -0.3) 43.06 (↑ +0.7)

ASDiv

CoT 68.76 54.01 30.37 68.76 54.66
L2M 64.69 43.47 22.13 63.69 49.76
PoT 67.85 58.13 43.77 66.94 56.83
Combined 69.11 57.96 46.77 67.64 57.79
SIKeD (Adaptive) 70.59 (↑ +1.5) 59.05 (↑ +0.9) 47.20 (↑ +0.4) 68.98 (↑ +1.3) 58.44 (↑ +0.7)

SIKeD (All) 70.76 (↑ +1.6) 58.00 (↓ -0.1) 48.16 (↑ +1.4) 68.55 (↑ +0.9) 58.61 (↑ +0.8)

MultiArith

CoT 98.33 87.22 58.89 99.44 83.89
L2M 96.11 81.67 53.89 96.67 76.67
PoT 98.89 90.56 61.11 95.56 92.22
Combined 99.44 84.44 67.22 98.89 90.56
SIKeD (Adaptive) 99.44 (-) 91.11 (↑ +0.6) 72.22 (↑ +5.0) 99.44 (-) 93.33 (↑ +1.1)

SIKeD (All) 100.0 (↑ +0.6) 88.89 (↓ -1.6) 72.22 (↑ +5.0) 98.89 (↓ -0.5) 92.22 (-)

SVAMP

CoT 66.80 41.90 22.60 66.30 43.00
L2M 64.80 31.60 17.90 62.30 44.60
PoT 75.00 56.80 34.50 74.30 51.40
Combined 69.40 56.20 35.90 73.20 51.40
SIKeD (Adaptive) 72.90 (↓ -2.1) 58.60 (↑ +1.8) 37.80 (↑ +1.9) 75.40 (↑ +1.1) 51.70 (↑ +0.3)

SIKeD (All) 76.40 (↑ +1.4) 56.70 (↓ -0.1) 39.50 (↑ +3.6) 73.50 (↓ -0.8) 52.10 (↑ +0.7)

Table 1: Top-1 (maj@1) accuracy across four math datasets (rows) and five smaller models (columns). We report
the performance for four baseline methods: CoT, L2M, PoT, Combined and compare them with two SIKeD variants
(Adaptive / All). Best performance in each row is in bold.

erated using the LLM in two variations: using382

data from a single strategy (CoT, PoT, or L2M),383

and a combination of all three strategies (referred384

to as “Combined”). Table 1 compares the accu-385

racies of the approaches across four mathemati-386

cal datasets. The “Combined” approach benefited387

smaller models, yielding slight improvements for388

the Qwen 0.5B, Qwen 1.5B, and SmolLM 1.7B389

models. However, it showed little to no improve-390

ment, and sometimes even worse performance, for391

the larger Gemma 2B and 7B models. This indi-392

cates that simply merging the distillation data for393

each strategy is not sufficient for effective multi-394

strategy distillation.395

Consistent improvement across in-distribution396

dataset Compared to the traditional LLM-based397

distillation approaches, we observe consistent im-398

provements with SIKeD across all models, ranging399

from 0.5B to 7B parameters as shown in bold in400

Table 1. On the in-distribution GSM8K dataset,401

both Gemma 2B and 7B show significant gains402

of +3.2 points and +2.5 points respectively (44.05403

→ 47.23 and 71.34 → 73.84, respectively). Sim-404

ilarly, SmolLM showed the largest improvement405

of +3.4 points (24.56 → 27.98). Similarly, the406

smaller Qwen models see gains of +0.5 points for407

the larger variant (1.5B) and +0.8 points for the408

smaller variant (0.5B).409
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iArith

GSM
8K

ASD
iv

SV
AMP

Mult
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PoT Biased SIKeD
L2M Biased SIKeD

Figure 3: Accuracy comparison between single distilla-
tion strategies of CoT, PoT, and L2M with SIKeD bi-
ased training using the same strategy using the Gemma
7B model.

SIKeD performs well on out-of-distribution 410

datasets For the out-of-distribution datasets, 411

there is a steady improvement on the ASDiv dataset, 412

with Gemma 7B gaining +1.6 points (69.11 → 413

70.76), +0.9 points for Gemma 2B (58.13 → 414

59.05), +1.4 points for SmolLM (46.77 → 48.16), 415

+1.3 points for Qwen 1.5B (67.64 → 68.98), and 416

+0.8 points for Qwen 0.5B (57.79 → 58.61). A sim- 417

ilar trend is seen for the MultiArith dataset, where 418

SmolLM shows the largest gain of +5 points. It 419

is followed by Qwen 0.5B with +1.1 points, while 420

other models outperform the baseline. In particular, 421

Gemma 7B achieves a perfect score of 100. The 422

results are similar for the SVAMP dataset, with 423

Qwen 0.5B, Qwen 1.5B, SmolLM 1.7B, Gemma 424

2B, and Gemma 7B gaining +0.7, +1.1, +3.6, +1.8 425

and +1.4 points, respectively. 426
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Figure 4: Iterative accuracy comparison for the Gemma
2B model across all datasets. The process is stopped
when the gains diminish or when it is no longer cost-
effective to continue. Baseline represents the "Com-
bined" results from Table 1.

Biasing SIKeD in favor of our strategy of choice427

For some tasks, one strategy might be better than428

the others due to its performance, lower cost, or429

better suitability for some use cases (for example,430

PoT is significantly better for SVAMP compared431

to other strategies). In such cases, it would be432

beneficial to bias the selection towards that strat-433

egy2. This can be done by taking only the sample434

from our choice of biased strategy when more than435

one strategy is correct from the model-generated436

samples. For example, if for a given data point,437

a smaller model samples both CoT and PoT cor-438

rectly, and our biased strategy choice is PoT, we439

will ignore the CoT output and take only the PoT.440

Figure 3 compares the individual distillation strat-441

egy with the biased SIKeD . Using Gemma 7B as442

a smaller model across all datasets, SIKeD out-443

performs individual distillation strategies by a mar-444

gin of 2-4 points, highlighting the effectiveness of445

SIKeD over other distillation approaches.446

How many iterations to run for SIKeD With447

each iteration of SIKeD , the model learns to solve448

a task using different strategies and adjusts its strat-449

egy choice for a given task. This allows for con-450

tinuous training of SIKeD . Figure 4 illustrates the451

accuracy improvements across iterations for the452

Gemma 2B model on various datasets. The itera-453

tive training is stopped when accuracy shows only454

marginal improvements or declines. In our experi-455

ments, three iterations have consistently proven to456

be the optimal balance across different models and457

datasets.458

How the strategy distribution changes over it-459

erations Figure 5 illustrates the strategy distri-460

bution across different iterations for the GSM8K461

dataset using the SmolLM 1.7B model. Iteration 0462

represents the baseline “combined” training from463

2Note that this differs from the already biased selection
of the smaller model, as our biased strategy may not be the
default biased choice of the smaller model.
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Figure 5: Strategy distribution over iterations for
GSM8K dataset using SmolLM 1.7B model.

Table 1, and as expected, the smaller model is ini- 464

tially biased towards one strategy (PoT in this case). 465

Iterations 1, 2, and 3 show the model’s progression 466

using SIKeD , where it learns to diversify and se- 467

lect the suitable strategy for the given problem. 468

Notably, while PoT remains the dominant strat- 469

egy, the model improves its usage of the other two 470

strategies—CoT and L2M—which were absent in 471

the biased baseline. This diversification of strate- 472

gies results in an overall gain of +3 points over the 473

baseline. 474

Training from the last checkpoint vs training 475

from pre-trained checkpoint In our work, we 476

iteratively train from the last checkpoint using on- 477

policy training as we expect continuous improve- 478

ments in the model performance with a newly 479

learned strategy. However, an alternative approach 480

uses off-policy training (training the pre-trained 481

model at each iteration) to achieve strong perfor- 482

mance [Gulcehre et al., 2023]. We compared on- 483

policy training (our proposed approach) with off- 484

policy training (as in Gulcehre et al. [2023]), utiliz- 485

ing both LLM-generated and self-generated data, 486

and observed a notable decrease in the overall ac- 487

curacy with off-policy training. Note that we used 488

all of the LLM data at each iteration for off-policy 489

training as the training is done on the pre-trained 490

model. On the GSM8K dataset, our on-policy 491

approach outperformed off-policy training by +6 492

points (45.26 vs 38.90) using the Gemma 2B model. 493

A similar trend was observed on out-of-distribution 494

datasets, where SIKeD outperformed with a gain 495

of +4-7 points on both the SVAMP and ASDiv 496

datasets (58.6 vs 51.3 for SVAMP and 59.05 vs 497

55.44 for ASDiv) and a gain of +2 points on the 498

MultiArith dataset (91.11 vs 88.33). 499

Is data mixing better than LLM-based distil- 500

lation or self-distillation Mixing data from the 501

smaller model with the LLM helps in bridging the 502

distributional gap between the LLM and the smaller 503

model. We explore the role of the data mixing rate 504

alpha (α) to validate our hypothesis regarding data 505
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Figure 6: Accuracy comparison with different data mix
controlled by α. α = 1 means all data is from the LLM
only, while α = 0 means only smaller model data is
used.

mixing. When α is set to 1, only LLM-generated506

data is used, while at the other extreme, α = 0507

means only data generated by the smaller model is508

used. As shown in Figure 6, an α value between509

0 and 1 performs better than either of the extreme510

cases.511

Qualitative analysis demonstrating that smaller512

models learn to choose the right strategy over513

iterations The increase in the performance of514

smaller models can be attributed to the change in515

the distribution of reasoning strategies as the model516

becomes more aligned with its strategy choices.517

Figure 10 shows that a model can solve a given518

problem in the third iteration by switching the rea-519

soning strategy that it initially struggled with. Fur-520

thermore, Figure 11 shows an example of a model521

correcting its reasoning chain over time due to its522

improved reasoning capabilities.523

6 Related Work524

Knowledge Distillation for Reasoning Tasks525

Knowledge distillation [Buciluǎ et al., 2006, Hin-526

ton et al., 2015] is a widely-used technique for527

transferring knowledge from a large language528

model (LLM) to a smaller model. Previous re-529

search has focused on transferring intermediate rea-530

soning steps to smaller models, either step-by-step531

[Shridhar et al., 2023, Magister et al., 2023, Hsieh532

et al., 2023] or by combining multiple strategies533

simultaneously [Chenglin et al., 2023, Zhu et al.,534

2024]. These approaches can be viewed as aggre-535

gating diverse data sources for distillation, similar536

to the LLM data approach in our work. In contrast,537

[Hahn and Choi, 2019] and [Xu et al., 2020] fo-538

cus on self-distillation, where a model improves its539

performance without external data or knowledge.540

Specifically, [Hahn and Choi, 2019] leverages word541

embeddings, while [Xu et al., 2020] uses tempo-542

ral model checkpoints as a proxy for ground truth. 543

However, both approaches rely solely on data gen- 544

erated by the smaller model and exclude LLM data. 545

Our method balances these two extremes by us- 546

ing LLM data to learn multiple strategies and self- 547

generated data to optimize for the right strategy 548

choice. 549

Self-learning Previous studies, such as [He et al., 550

2020, Sun et al., 2021, Gulcehre et al., 2023, Liu 551

et al., 2024], have shown the effectiveness of the 552

self-training paradigm in NLP tasks but are lim- 553

ited by the choice of tasks. While ReST [Gulcehre 554

et al., 2023] uses off-policy training, we find on- 555

policy training more suitable for our case regarding 556

data efficiency and performance. On-policy train- 557

ing also allows a better choice of learning strate- 558

gies, since the model can use its most recent learn- 559

ing. Agarwal et al. [2024] introduces Generalized 560

Knowledge Distillation (GKD), an on-policy train- 561

ing method that aligns the distributions of large 562

language models (LLMs) and smaller models by 563

incorporating output sequences sampled from the 564

student during training. However, the task was 565

limited to the distribution alignment and not to 566

aligning the strategy choices in a multi-strategy dis- 567

tillation. Simply applying GKD would not address 568

this issue, as it would force the smaller model to 569

learn all strategies, which is impractical given its 570

limited capacity. 571

Finally, we compare our distillation strategies with 572

LLM-based distillation using both individual strate- 573

gies [Shridhar et al., 2023, Magister et al., 2023, 574

Hsieh et al., 2023] and a combination of several 575

strategies at once [Chenglin et al., 2023, Zhu et al., 576

2024]. 577

7 Conclusion 578

We propose SIKeD: Self-guided Iterative 579

Knowledge Distillation, which addresses the 580

challenge of distilling multistep reasoning skills 581

from large language models (LLMs) to smaller 582

models. Unlike traditional methods, which 583

often leave smaller models biased towards a 584

single strategy, SIKeD uses iterative self-guided 585

training, combining LLM and self-generated 586

data to improve overall reasoning in smaller 587

models. We evaluate our approach across various 588

mathematical reasoning datasets and demonstrate 589

that SIKeD improves the ability of smaller models 590

to handle complex reasoning, achieving significant 591

performance gains. 592
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Limitations593

Although SIKeD shows consistent performance594

gains across five models and four mathematical595

datasets, we note that SIKeD is dependent on the596

limitations of reasoning strategies. For instance,597

mathematical questions whose reasoning chains598

could not be framed in PoT, will most likely give599

less substantial increments using SIKeD as it has600

fewer strategies to utilize.601

Ethical Considerations602

Ethical considerations should be taken into account603

when deploying language models in real world ap-604

plications. We do not foresee any additional con-605

cerns emanating from this work, nor any potential606

risks.607
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Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.

Instruction: Solve the given math problem step by step. Put your final answer after ’Final answer:’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything. How much did
he pay in total?

Response: The shirts cost 3*$20=$<<3*20=60>>60 before tax The tax cost $60*.1=$<<60*.1=6>>6 So in total
they paid $60+$6=$<<60+6=6>> 66 Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month (30 days). If he
continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 7: 8-shot Chain of Thought demonstration.

Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.

Instruction: Solve the given math problem by decomposing it into smaller, manageable sub-questions. Put your final
answer after ’Final answer: ’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything. How much did
he pay in total?

Response: Sub-question 1: How much did John spend on shirts?
Answer to Sub-question 1: 3*$20=$<<3*20=60>>60
Sub-question 2: How much did John spend on tax?
Answer to Sub-question 2: $60*.1=$<<60*.1=6>>6
Sub-question 3: How much did John spend in total?
Answer to Sub-question 3: $60+$6=$<<60+6=66>>66
Final Answer: 66<eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month (30 days). If he
continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 8: 8-shot Least to Most demonstration.
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Below is an instruction that describes a task, paired with an input that provides further context. Write a response that
appropriately completes the request.

Instruction: Solve the given math problem by writing a python program. Store your result as a variable named ’an-
swer’.

Input: John buys 3 dress shirts. They sell for $20 each. He also has to pay 10% tax on everything. How much did
he pay in total?

Response: total_shirts = 3
cost_of_one_shirt = 20
total_cost_shirts = total_shirts * cost_of_one_shirt
tax_rate = 0.1
tax_amount = tax_rate * total_cost_shirts
total_cost = total_cost_shirts + tax_amount
answer = total_cost <eos>

[7 more examples randomly sampled from the training set]

Input: Thomas is training at the gym to prepare for a competition. He trained for 5 hours every day for a month (30 days). If he
continues to train for the next 12 days, how many hours will he spend on training in total?

Response: Model generated response ..

Figure 9: 8-shot Program of Thought demonstration.

Question There are twice as many boys as girls at Dr. Wertz’s school. If there are 60 girls and 5 students to every teacher, how many teachers are
there?

Baseline
girls = 60
boys = 2 ∗ girls
teachers = girls/5
answer = teachers
Final Answer: 12 ✗

Iteration1
girls = 60
boys = 2 ∗ girls
teachers = girls/5
answer = teachers
Final Answer: 12 ✗

Iteration2
girls = 60
boys = 2 ∗ girls
total_students = girls + boys
teachers_per_student = 5
total_teachers = total_students * teach-
ers_per_student
answer = total_teachers
Final Answer: 900 ✗

Iteration3
Sub-question 1: How many boys are there?
Answer to Sub-question 1: 2 ∗ 60 =<< 2 ∗ 60 = 120 >> 120
Sub-question 2: How many students are there in total?
Answer to Sub-question 2: 60 + 120 =<< 60 + 120 = 180 >> 180
Sub-question 3: How many teachers are there?
Answer to Sub-question 3: 180/5 =<< 180/5 = 36 >> 36
Final Answer: 36 ✓

Figure 10: A qualitative example showing how Gemma 2B shifts its strategy selection over iterations to solve a
given task.
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Question In a dance class of 20 students, 20% enrolled in contemporary dance, 25% of the remaining enrolled in jazz dance, and
the rest enrolled in hip-hop dance. What percentage of the entire students enrolled in hip-hop dance?

Baseline
total_students = 20
percentage_enrolled_contemporary = 0.2
students_enrolled_contemporary = total_students ∗ percentage_enrolled_contemporary
remaining_students = total_students − students_enrolled_contemporary
percentage_enrolled_jazz = 0.25
students_enrolled_jazz = remaining_students ∗ percentage_enrolled_jazz
remaining_students = remaining_students - students_enrolled_jazz
percentage_enrolled_hip_hop = 1 − percentage_enrolled_contemporary − percentage_enrolled_jazz
answer = percentage_enrolled_hip_hop
Final Answer: 0.55 ✗

Iteration1
total_students = 20
contemporary_students = total_students ∗ 0.2
remaining_students = total_students − contemporary_students
jazz_students = remaining_students ∗ 0.25
hip_hop_students = remaining_students − jazz_students
percentage_hip_hop = hip_hop_students/total_students ∗ 100
answer = percentage_hip_hop
Final Answer: 60 ✓

Figure 11: Over iteration, Gemma 2B model learned to fix its mistake using the same strategy

13


	Introduction
	Preliminaries: LLM based Distillation
	LLM based Distillation

	SIKeD: Self-guided Iterative Knowledge Distillation
	Iterative Self-Training of SIKeD 

	Experimental Details
	Results and Discussion
	Related Work
	Conclusion
	Appendix

