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Abstract

Inverse reinforcement learning (IRL) is an on-policy approach to imitation learn-
ing (IL) that allows the learner to observe the consequences of their actions at
train-time. Accordingly, there are two seemingly contradictory desiderata for IRL
algorithms: (a) preventing the compounding errors that stymie offline approaches
like behavioral cloning and (b) avoiding the worst-case exploration complexity of
reinforcement learning (RL). Prior work has been able to achieve either (a) or (b)
but not both simultaneously. In our work, we first present a negative result show-
ing that, without further assumptions, there are no efficient IRL algorithms that
avoid compounding errors in the worst case. We then provide a positive result:
under a novel structural condition we term reward-agnostic policy completeness, we
prove that efficient IRL algorithms do avoid compounding errors, giving us the best
of both worlds. We then address a practical constraint—the case of limited ex-
pert data—and propose a principled method for using sub-optimal data to further
improve the sample-efficiency of IRL algorithms.

1 Introduction

Inverse reinforcement learning (IRL) is an on-policy approach to imitation learning that involves
simultaneously learning a reward function from expert demonstrations and a policy that optimizes
the learned reward (Ziebart et al., 2008a). IRL has been applied to a diverse set of applications,
including robotics (Ratliff et al., 2007; Abbeel & Ng, 2008; Ratliff et al., 2009a; Silver et al., 2010;
Zucker et al., 2011), autonomous driving (Bronstein et al., 2022; Igl et al., 2022; Vinitsky et al.,
2022), and route finding (Ziebart et al., 2008a;b; Barnes et al., 2023).

While offline imitation learning approaches suffer from covariate shift between the training distri-
bution (the expert’s state distribution) and the test distribution (the learner’s state distribution),
interactive approaches like IRL allow the learner to roll-out its policy during train-time, effectively
sampling states from the test distribution. This provides IRL with two concrete advantages over
offline approaches like behavior cloning. First, IRL is more sample efficient, with respect to expert
samples, than behavioral cloning (Swamy et al., 2022c). Second, IRL offers better error scaling, with
respect to the horizon, than behavioral cloning (Ross & Bagnell, 2010; Swamy et al., 2021a; 2022c).
In summary, for a fixed number of expert samples, IRL achieves a tighter performance gap with the
expert policy compared to behavioral cloning.
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However, the benefits of traditional IRL come at the cost of environment interactions. Because the
reward function and policy are learned simultaneously, IRL requires policy optimization to be per-
formed repeatedly, making it susceptible to the worst-case exploration complexity of reinforcement
learning (RL) (Kakade, 2003; Swamy et al., 2023). Traditional IRL methods can require an expo-
nential number of environment interactions in the worst case (Kakade, 2003; Swamy et al., 2023).
To focus the exploration on useful states, prior work has leveraged the expert’s state distribution,
utilizing the fact that—by definition—the expert policy is optimal. Rather than reset the learner to
the true starting state distribution, the learner is instead reset to states from the expert’s demon-
strations, resulting in an exponential decrease in interaction complexity (Swamy et al., 2023). We
refer to this family of techniques as efficient IRL.

Unfortunately, the improvement of efficient IRL’s interaction efficiency sacrifices traditional IRL’s
linear error scaling. For example, Swamy et al. (2023)’s Moment Matching by Dynamic Programming
(MMDP) and No-Regret Moment Matching (NRMM) are exponentially faster than traditional IRL
algorithms, but they suffer from quadratically compounding errors in the worst case. Intuitively, this
is because a shift to a more off-policy approach (due to the expert resets) weakens the correlation
between low training error and strong test time performance.

Based on the prior work, it seems that the two desiderata of IRL—interaction efficiency and avoid-
ance of compounding errors—are contradictory, with algorithms only being able to attain one or
the other. In our paper, we recognize that the commonly imposed assumption of expert realizability
(i.e. the expert policy is within the learner’s policy class) is insufficient to address both interac-
tion efficiency and error scaling. Our key insight is that, under a novel structural condition we call
reward-agnostic policy completeness, IRL can both be efficient and avoid compounding errors.

More explicitly, our contributions are as follows:

1. We first consider the agnostic setting, where no assumptions are made about the
MDP’s structure, and present a lower bound that shows it is impossible to learn a
competitive policy with polynomial environment interaction complexity in the worst
case. In other words, efficient IRL is not possible without assuming additional structure on the
MDP.

2. We define a new structural condition, reward-agnostic policy completeness, under
which efficient, reset-based IRL algorithms are capable of avoiding quadratically com-
pounding errors. Importantly, our analysis holds for approximate policy completeness. Moreover,
our condition does not require expert realizability, which is often an unrealistic assumption in prac-
tice.

3. We propose a principled method for incorporating sub-optimal data to improve the
sample efficiency of IRL, and we prove the conditions under which it is beneficial. We
provide a theoretical analysis of the common, practical setting of having limited expert (i.e. optimal)
data but abundant quantities of sub-optimal data (e.g. poor teleoperation or imperfect driving).

2 Related Work

Reinforcement Learning. Prior work in reinforcement learning (RL) has examined leveraging
exploration distributions to improve learning (Kakade & Langford, 2002; Bagnell et al., 2003; Ross
et al., 2011). We adapt the Policy Search via Dynamic Programming (PSDP) algorithm of Bagnell
et al. (2003) as our RL solver and leverage its performance guarantees in our analysis. Prior analyses
of policy gradient RL algorithms—such as PSDP (Bagnell et al., 2003), Conservative Policy Iteration
(CPI, Kakade & Langford (2002)), and Trust Region Policy Optimization (TRPO, Schulman et al.
(2015))—use a policy completeness condition to establish a performance guarantee with respect to
the global-optimal policy (Agarwal et al., 2019; Bhandari & Russo, 2024). In other words, policy
completeness is used when comparing the learned policy to the optimal (i.e. best possible) policy
and not simply the best policy in the policy class. We generalize the policy completeness condition
from the RL setting with known rewards to the imitation learning setting with unknown rewards,
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resulting in novel structural condition we term reward-agnostic policy completeness. Our paper also
builds on work in statistically tractable agnostic RL (Jia et al., 2024). We use Jia et al. (2024)’s
lower bound on agnostic RL with expert feedback to show why agnostic IRL is hard.

Imitation Learning. Our work examines the issue of distribution shift and compounding errors
in IRL, which was introduced by Ross & Bagnell (2010). Ross et al. (2011)’s DAgger algorithm
is capable of avoiding compounding errors but requires an interactive expert and recoverability
(Rajaraman et al., 2021; Swamy et al., 2021a), which we do not assume in our setting.

Our algorithm and results are not limited to the tabular and linear MDP settings, differentiating it
from prior work in efficient imitation learning (Xu et al., 2023; Viano et al., 2024). Our work relates
to (Shani et al., 2022), who propose a Mirror Descent-based no-regret algorithm for online appren-
ticeship learning (OAL). We similarly use a mirror descent based update to our reward function, but
differ from Shani et al. (2022)’s work by leveraging resets to expert and sub-optimal data to improve
the interaction efficiency of our algorithm. Poiani et al. (2024) propose a technique of incorporating
sub-optimal experts as a means of addressing the ambiguity in IRL problems, specifically the lack
of uniqueness in reward functions that rationalize the observed behavior. In contrast, we do not use
sub-optimal data in learning a reward function, instead using it to improve policy optimization.

Inverse Reinforcement Learning. We build upon Swamy et al. (2023)’s technique of leveraging
the expert’s state distribution for learner resets to speed up IRL. We make the following improve-
ments to Swamy et al. (2023)’s work. First, we discard Swamy et al. (2023)’s assumptions of expert
realizability and infinite expert data. Second, we demonstrate how to incorporate sub-optimal data
into IRL. Third, we prove that our IRL algorithm avoids quadratically compounding errors efficiently
under the approximate policy completeness condition. Swamy et al. (2023), in contrast, failed to
show compounding error avoidance under expert realizability. Finally, our experiments focus on the
setting of efficient IRL in environment where arbitrary learner resets are not possible.

3 Setup and Motivation

3.1 Problem Setup

Markov Decision Process. We consider a finite-horizon Markov Decision Process (MDP), M =
⟨S,A, Ph, r∗, H, µ⟩ (Puterman, 2014). S and A are the state space and action space, respectively.
P = {Ph}H

h=1 is the time-dependent transition function, where Ph : S × A → ∆(S) and ∆ is the
probability simplex. r∗ : S ×A → [0, 1] is the ground-truth reward function, which is unknown, but
we assume r∗ ∈ R, whereR is a class of reward functions such that r : S×A → [0, 1] for all r ∈ R. H
is the horizon, and µ ∈ ∆(S) is the starting state distribution. Let Π = {π : S → ∆(A)} be the class
of stationary policies. We assume Π and R are convex and closed. Let the class of non-stationary
policies be defined by ΠH = {πh : S → ∆(A)}H

h=1. A trajectory is given by τ = {(sh, ah, rh)}H
h=1,

where sh ∈ S, ah ∈ A, and rh = f(sh, ah) for some f ∈ R. The distribution over trajectories formed
by a policy is given by: ah ∼ π(· | sh), rh = Rh(sh, ah), and sh+1 ∼ Ph(· | sh, ah), for h = 1, . . . , H.
Let dπ

s0,h(s) = Pπ[sh = s | s0] and dπ
s0

(s) = 1
H

∑H
h=1 dπ

s0,h(s). Overloading notation slightly, we have
dπ

µ = Es0∼µ dπ
s0

.

We index the value function by the reward function, such that for any π ∈ ΠH and r ∈ R, V π
r,h(s) :=

Eτ∼π

[∑H
h′=h rh′ | sh = s

]
, and V π

r = Eτ∼π

∑H
h=1 r(sh, ah). We do a corresponding indexing for the

advantage function. We will overload notation such that a state-action pair can be sampled from
the visitation distributions, e.g. (s, a) ∼ dπ

µ and (s, a) ∼ ρE , as well as a state, e.g. s ∼ dπ
µ and

s ∼ ρE . Note that by definition of dπ
µ, Eτ∼π

[∑H
h=1 r(st, at)

]
= H E(s,a)∼dπ

µ
[r(s, a)].

Expert Policy. Much of the theoretical analysis in IRL and IL relies on a realizable expert policy
(i.e. one that is within the learner’s policy class Π) (Swamy et al., 2021a;b; 2022a; Xu et al., 2023;
Kidambi et al., 2021; Ren et al., 2024). The assumption that the expert policy is realizable is often
unrealistic in practical applications. Consider, for example, that humanoid robots cannot exactly
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Algorithm 1 Reset-Based IRL (Dual, Swamy et al. (2023))
1: Input: Expert state-action distributions ρE , policy class Π, reward class R
2: Output: Trained policy π
3: for i = 1 to N do
4: // No-regret step over rewards
5: ri ← argmaxr∈R J(πE , r)− J(Unif(π1:i), r)
6: // Expert-competitive response by an RL algorithm
7: πi ← RL(r = ri, ρ = ρE)
8: end for
9: Return πN

replicate human movements because of differences in morphology (Zhang et al., 2024; He et al.,
2024). Or, consider that experts may have access to privileged information that the learner does
not (e.g. an autonomous vehicle’s limited perception compared to a human driver’s) (Swamy et al.,
2022b).

In contrast to prior work, we do not impose the unrealistic assumption of expert real-
izability. Instead, we consider the agnostic setting, where the expert policy πE is not necessarily
in the policy class Π. A sample of the expert policy’s trajectories are known. The dataset of state-
action pairs sampled from the expert is DE = D1 ∪ D2 ∪ . . . ∪ DH , where Dh = {sh, ah} ∼ dπE

µ,h

and |DE | = N . Let ρh be a uniform distribution over the samples in Dh, and ρE be a uniform
distribution over the samples in DE .

Goal of IRL. We cast IRL as a Nash equilibrium computation (Syed & Schapire, 2007; Swamy
et al., 2021a). The ultimate objective of IRL is to learn a policy that matches expert performance.
Because the ground-truth reward is unknown but belongs to the reward class, we aim to learn a
policy that performs well under any reward function in the reward class. This is equivalent to
finding the best policy under the worst-case reward (i.e. the reward function that maximizes the
performance difference between the expert and learner). Formally, our goal is to learn a policy π
such that

min
π∈Π

max
r∈R

J(πE , r)− J(π, r),

where J(π, r) = Eτ∼π

[∑T
t=0 r(st, at)

]
.

IRL Taxonomy. IRL algorithms consist of two steps: a reward update and a policy update.
In the reward update, a discriminator is learned with the aim of differentiating the expert and
learner trajectories. The policy is then optimized by an RL algorithm, with reward labels from the
discriminator.

IRL algorithms can be classified into primal and dual variants (Swamy et al., 2021a), the latter of
which we use in our paper. An example dual algorithm is shown in Algorithm 1. In dual-variant
IRL algorithms, the discriminator is updated slowly via a no-regret step (Line 5), and the policy is
updated via a best response (Line 7) (Ratliff et al., 2006; 2009b; Ziebart et al., 2008a; Swamy et al.,
2021a). The RL subroutine in Line 7 uses the reward labels r and the learner’s reset distribution ρ.
In traditional IRL algorithms, the reset distribution remains the true starting state distribution (i.e.
ρ = µ). In efficient IRL algorithms, we perform an expert-competitive response (Swamy et al., 2023;
Ren et al., 2024), rather than a best response, by changing the reset distribution to the expert’s
state distribution (i.e. ρ = ρE).

3.2 Agnostic IRL is Hard

Before introducing any conditions or assumptions, we start by considering the most general setting
of IRL: the agnostic setting, where no assumptions are made about the MDP’s structure, the policy
class, or the expert’s policy (i.e., we do not assume πE ∈ ΠH).
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Algorithm 2 Policy Search Via Dynamic Programming (Bagnell et al., 2003)
1: Input: Reward function ri, reset distribution ρ, and policy class Π
2: Output: Trained policy π
3: for h = H, H − 1, . . . , 1 do
4: Optimize

πh ← argmax
π′∈Π

E
s∼ρ

E
a∼π′(·|s)

Aπh+1,...,πH
ri

(s, a)

5: end for
6: Return π = {πh}H

h=1

Theorem 3.1 (Lower Bound on Agnostic RL with Expert Feedback (Jia et al., 2024)). For any
H ∈ N and C ∈ [2H ], there exists a policy class Π with |Π| = C, expert policy πE ̸∈ Π, and a
family of MDPs M with state space S of size O(2H), binary action space, and horizon H such that
any algorithm that returns a 1/4-optimal policy must either use Ω(C) queries to the expert oracle
Oexp : S × A → R, which returns QπE (s, a) (i.e. the Q value of expert policy πE), or Ω(C) queries
to a generative model1.

From Theorem 3.1, we establish that polynomial sample complexity in the agnostic IRL setting,
where πE ̸∈ Π, cannot be guaranteed. In other words, efficient IRL is not possible with no structure
assumed on the MDP.2

4 Policy Complete Inverse Reinforcement Learning

The result from Section 3.2, which establishes that efficient IRL is not possible in the agnostic
setting, begging the question:

under what conditions can efficient IRL algorithms avoid quadratically compounding errors?

Expert realizability, a commonly imposed assumption, fails to enable compound error avoidance
(Swamy et al., 2023). Expert realizability requires the learner to perform the same actions as the
expert policy, but as previously discussed, the learner may be constrained by its own morphology
and not have access to some of the expert’s actions. The learner may, nonetheless, be able to
match expert performance through a different sequence of actions. We formalize this notion via an
extension of policy completeness, a condition used in the analysis of policy gradient RL algorithms.

The policy completeness condition requires the learner have a way of improving the current policy’s
performance—without the requirement of matching actions with the optimal (i.e. expert) policy—if
some improvement is possible. Importantly, the policy completeness condition of RL algorithms
depends on the MDP’s reward function, which in the imitation learning setting is unknown and is
instead learned throughout training. We introduce reward-agnostic policy completeness, a general-
ization of policy completeness extended to the imitation learning setting.
Definition 4.1 (Reward-Indexed Policy Completeness Error). Given some expert state distribution
ρE, MDP M with policy class Π and reward class R, learned policy πi, and learned reward function

1A generative model allows the learner to query the transition and reward associated with a state-action pair
on any state, differentiated from the online interaction model that can only play actions on states in sequence in a
trajectory. For a more thorough discussion of their differences, see Jia et al. (2024).

2More specifically, Theorem 3.1 presents a lower bound on agnostic RL with expert feedback. It assumes access to
the true reward function and an expert oracle, Oexp : S × A → R, which returns QπE (s, a) for a given state-action
pair (s, a). The lower bound in Theorem 3.1 applies in the case where the expert oracle is replaced with a weaker
expert action oracle (i.e. πE(s) : S → A) (Amortila et al., 2022; Jia et al., 2024). In agnostic IRL, we consider the
even weaker setting of having a dataset of state-action pairs from the expert policy πE . It should be noted that the
classical importance sampling (IS) algorithm (Kearns et al., 1999) can be employed to find an approximately optimal
policy in the agnostic setting, but it requires an exponential number of interactions (Agarwal et al., 2019; Jia et al.,
2024).
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ri, define the reward-indexed policy completeness error of M to be

ϵπi,ri

Π := E
s∼ρE

[
max
a∈A

Aπi
ri

(s, a)
]
−max

π′∈Π
E

s∼ρE

E
a∼π′(·|s)

[
Aπi

ri
(s, a)

]
.

We first present reward-indexed policy completeness error, which measures the policy class’s ability
to approximate the maximum possible advantage over the current policy. Intuitively, we can think
of the second term as the learner’s ability to improve the policy based on its policy class, and the
first term as the maximum possible improvement.

The values and advantages are computed under current policy πi and reward ri, which represent an
intermediate reward function and policy learned during IRL training. Note that the intermediate
reward function ri is not necessarily the ground-truth reward function r∗, so the expert policy may
not be optimal under ri. Consequently, to approximate the optimal improvement (i.e. advantage)
over πi, we consider a maximum over all possible actions, rather than sampling actions from the
expert policy. In the worst case, where the policy class is poorly restricted under the expert’s state
distribution, then ϵπi,ri

Π = H, since r(s, a) ≤ 1 and A(s, a) ≤ H for all s ∈ S, a ∈ A, and r ∈ R.

Recall that, at each iteration, IRL algorithms compute a policy and reward function (πi and ri,
respectively) from the policy and reward classes (Π and R, respectively). We measure the worst-
case policy completeness error that can be attained during IRL training by adversarially selecting
the learned policy and reward function.
Definition 4.2 (Reward-Agnostic Policy Completeness Error). Given some expert state distribu-
tion ρE and MDP M with policy class Π and reward class R, define the reward-agnostic policy
completeness error of M to be

ϵΠ := max
π∈Π,r∈R

ϵπ,r
Π

= max
π∈Π,r∈R

(
E

s∼ρE

[
max
a∈A

Aπ
r (s, a)

]
−max

π′∈Π
E

s∼ρE

E
a∼π′(·|s)

[Aπ
r (s, a)]

)
Reward-agnostic policy completeness is therefore a measure of the policy class’s ability to approx-
imate the maximum possible advantage, over the expert’s state distribution, under any reward
function in the reward class. Note that 0 ≤ ϵπi,ri

Π ≤ ϵΠ ≤ H for any πi ∈ Π, ri ∈ R. In the
approximate policy completeness setting, we assume ϵΠ = O(1).

4.1 Efficient IRL Under Approximate Policy Completeness

We present GUiding ImiTaters with Arbitrary Roll-ins (GUITAR), an efficient, reset-based IRL
algorithm. The full IRL procedure is outlined in Algorithm 3. It can be summarized as (1) a
no-regret reward update using Online Mirror Descent, and (2) an expert-competitive policy update
using PSDP as the RL solver, where the learner is reset to a distribution ρ in the RL subroutine.

Existing efficient IRL algorithms, such as MMDP (Swamy et al., 2023), reset the learner exclusively
to expert states (i.e. the case where ρ = ρE). We will focus on this setting first, and we will then
consider the setting of resets to a mixture of expert and sub-optimal states (i.e. ρ = ρmix) in Section
5. In this section, we focus on the case of expert resets (i.e. ρ = ρE), and in Section 5, we discuss
the case of resets to a mixture of expert and sub-optimal data (i.e. ρ = ρmix).

Policy Update. We employ PSDP (Bagnell et al., 2003) for the policy update step, shown in
Algorithm 2, which performs an expert competitive response. We denote ρ as the reset distribution
in PSDP. We consider resets to expert states (ρ = ρE) in this section. We then incorporate sub-
optimal data into the reset distribution (ρ = ρmix) in Section 5.

Reward Update. We employ Online Mirror Descent (Nemirovskij & Yudin, 1983; Beck & Teboulle,
2003; Srebro et al., 2011) for the no-regret reward update. The reward function is updated via

ri ← argmax
r∈R

L̂(πi−1, r) + η−1∆R(r | ri−1),
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Algorithm 3 GUiding ImiTaters with Arbitrary Roll-ins (GUITAR)
1: Input: Expert state-action distributions ρE , mixture of expert and offline state-action distri-

butions ρmix, policy class Π, reward class R
2: Output: Trained policy π
3: Set π0 ∈ Π
4: for i = 1 to N do
5: Let

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)

6: Optimize
ri ← argmax

r∈R
L̂(πi−1, r) + η−1∆R(r | ri−1).

7: Optimize
πi ← PSDP(r = ri, ρ = ρmix)

8: end for
9: Return πi with lowest validation error

where ∆R is the Bregman divergence with respect to the negative entropy function R. L̂(π, r) is the
loss, defined by

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a),

with respect to the distribution of expert samples, ρE .

4.2 Analysis in the Infinite-Sample Regime

For clarity, we first present the sample complexity of Algorithm 3 in the infinite expert sample regime
(i.e., when we have infinite samples from the expert policy, so ρE = dπE

µ ). We present the bound in
the finite sample regime in Section 5.2.
Theorem 4.3 (Sample Complexity of Algorithm 3). Consider the case of infinite expert data sam-
ples, such that ρE = dπE

µ . Denote πi = (πi,1, πi,2, . . . , πi,H) as the policy returned by ϵ-approximate
PSDP at iteration i ∈ [n] of Algorithm 3. Then,

V πE − V π ≤ H2ϵ︸︷︷︸
policy optimization error

+ HϵΠ︸︷︷︸
policy completeness error

+ H

√
ln |R|

n︸ ︷︷ ︸
reward regret

,

where H is the horizon, n is the number of outer-loop iterations of the algorithm, and π is the
per-timestep average of the learned policies (i.e. πi at each iteration i ∈ [n]).

The error is comprised of three terms. The first term, H2ϵ, stems from the policy optimization error
of PSDP. It can be mitigated be improving the accuracy parameter ϵ of PSDP. Set to ϵ = 1

H , the
term is reduced to linear error in the horizon H. This error can be interpreted as representing a
tradeoff between environment interactions (i.e. computation) and error.

The second term, HϵΠ, stems from the richness of the policy class. In the worst case where the policy
class cannot approximate the maximum advantage, ϵΠ = H, resulting in quadratically compounding
errors. Unlike the policy optimization error, the policy completeness error cannot be reduced with
more environment interactions. Instead, it represents a fixed error that is a property of the MDP, the
policy class, and the reward class. Under the approximate policy completeness setting, we assume
ϵΠ = O(1), reducing the error to linear in the horizon.

Finally, the last term H
√

ln |R|
n stems from the regret of the Online Mirror Descent update to the

reward function. By the no-regret property, we can reduce this term (to zero) by running more
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outer-loop iterations of GUITAR. Assuming approximate policy completeness, such that ϵΠ = O(1),
Theorem 4.3 shows that quadratically compounding errors in the horizon can be avoided by setting
a small accuracy parameter ϵ in the PSDP procedure.

In short, with sufficient iterations of Algorithm 3, GUITAR can avoid quadratically compounding
errors under approximate policy completeness—notably, without relying on expert realizability.

5 Leveraging Sub-Optimal Data in IRL

Recall the two desiderata of IRL, which motivate our algorithm and results: (1) prevent compound-
ing errors and (2) avoid the worst-case exploration complexity of RL. We accomplish the latter with
learner resets to expert states and the former with the approximate policy completeness. In this sec-
tion, we augment these theoretical motivations with common, practical constraints that significantly
impact IRL performance.

First, much of the prior work in efficient IRL focuses on the infinite expert sample regime (Swamy
et al., 2021a; 2022c; 2023; Ren et al., 2024), with some exceptions in the IL setting (Swamy et al.,
2022c; Xu et al., 2023). This is often an unreasonable assumption to make in practice, where
collecting expert data can be a resource-intensive process. Consider, for example, how resource-
intensive the process of collecting expert data through robot teleoperation is (Fu et al., 2024). In
this section, we consider the case of limited expert data and provide sample complexity bounds in
this finite expert sample regime.

Second, in cases where collecting expert data is expensive and thus limited, there is often access to a
larger source of offline, sub-optimal data. In this section, we describe how sub-optimal data can be
leveraged in IRL. Specifically, we describe the conditions under which sub-optimal data is beneficial
to efficient IRL’s interaction efficiency.

5.1 Resetting to Sub-Optimal Data

In addition to the expert dataset, we have an offline dataset Doff = {si, ai}M
i=1, where (s, a) ∼ dπB

µ

and πB is some behavior policy that is not necessarily as a high-quality as the expert πE . We measure
the overlap of πB to the expert πE using the standard concentrability coefficient: CB =

∥∥∥ d
πE
µ

d
πB
µ

∥∥∥
∞

.
We show that we can gain benefit of using Doff as long as CB < ∞ and the number of offline data
points M is large. We define Dmix = DE ∪Doff and ρmix as the uniform distribution over Dmix. Let

ν = N

N + M
dπE

µ + M

N + M
dπB

µ .

No change to the structure of Algorithm 3 is needed to incorporate sub-optimal data. Instead, we
simply set PSDP’s reset distribution to the mixture of sub-optimal and expert states, ρ = ρmix. The
reward update remains the same,3 and the approximate policy completeness condition remains ϵΠ =
O(1). The only modification to ϵΠ is a change in the state distribution, replacing the distribution
over expert samples, ρE , with the mixed distribution, ρmix.

5.2 Analysis in the Finite-Sample Regime

Next, we present the sample complexity bounds for GUITAR with sub-optimal data in the finite expert
sample regime. For clarity, we present the case when PSDP’s accuracy parameter is set to ϵ = 0.
(The ϵ > 0 case follows Theorem 4.3’s analysis.)

3IRL aims to learn a reward function such that the expert data under the learned reward function is optimal
(Ziebart et al., 2008a; Swamy et al., 2023). Incorporating sub-optimal data into the discriminator update (i.e. the
reward function) would result in the sub-optimal behavior being valued as optimal—an undesirable training outcome.
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Theorem 5.1 (Sample Complexity of Algorithm 3). Suppose that PSDP’s accuracy parameter is
set to ϵ = 0. Then, upon termination of Algorithm 3, with probability at least 1− δ, we have

V πE − V π ≤ H min

{
ϵΠ + ϵΠ

√
CΠ,R

N
, CB

(
ϵΠ + ϵΠ

√
CΠ,R

N + M

)}
︸ ︷︷ ︸

policy completeness error

+ H

√
CR

N︸ ︷︷ ︸
statistical error of finite expert data

+ H

√
ln |R|

n︸ ︷︷ ︸
reward regret

where H is the horizon, N is the number of expert state-action pairs, M is the number of offline state-
action pairs, n is the number of reward updates, CΠ,R = ln |Π||R|

δ , CR = ln |R|
δ , and CB =

∥∥∥ d
πE
µ

d
πB
µ

∥∥∥
∞

.

Theorem 5.1 upper bounds the sample complexity of Algorithm 3 in the sub-optimal data setting.
The bound differs from Theorem 4.3 in the following ways. First, the policy optimization error
term vanishes by setting ϵ = 0. Importantly, the assumption of ϵ = 0 is not necessary but rather
convenient in simplifying the analysis. Moreover, the ϵ > 0 case was presented in Theorem 4.3.

Second, we consider the finite expert sample regime, resulting in statistical error of estimating the
expert policy’s state distribution dπE

µ with the distribution over samples ρE .

Finally, we incorporate sub-optimal data into the reset distribution, resulting in a modified policy
completeness error. We observe the condition under which sub-optimal data benefits learning is
when

ϵΠ + ϵΠ

√
C0

N
<

∥∥∥∥dπE
µ

dπB
µ

∥∥∥∥
∞

(
ϵΠ + ϵΠ

√
C0

N + M

)
.

In other words, it depends on the how well the sub-optimal data covers the expert data and the
amount of expert and sub-optimal data. Intuitively, we can think of the coverage coefficient CB as
the “exchange rate,” measuring how useful the sub-optimal data is in comparison to the expert data.
When the sub-optimal data covers the expert data well, CB =

∥∥∥ d
πE
µ

d
πB
µ

∥∥∥
∞

is small, so the sub-optimal
data may be beneficial. Considering the special case where the “sub-optimal” data is collected from
the expert policy πE , then CB =

∥∥∥d
πE
µ

d
πE
µ

∥∥∥
∞

= 1. The bound becomes equivalent to the case of having
N + M number of expert data samples. Because we only use the expert data for the reward update,
rather than the sub-optimal data, the reward error terms remain the same.

In summary, we have demonstrated the following:

1. We consider the setting with finite expert data and differentiate between three sources of error:
the policy completeness error, the statistical error from the finite expert samples, and the regret of
the reward estimate.

2. We show the conditions under which sub-optimal data improves the sample efficiency of IRL.

3. With the RL solver’s accuracy parameter set to ϵ = 0, we establish a performance bound that is
linear in the horizon under approximate policy completeness.

6 Discussion

We address the seemingly contradictory goals of preventing compounding errors in IRL and avoiding
the worst-case exploration complexity of RL. We introduce a novel structural condition, reward-
agnostic policy completeness, under which both compounding errors can be avoided efficiently. We
then present a reset-based IRL algorithm and perform a finite-sample analysis. Finally, we iden-
tify the conditions under which sub-optimal data can be beneficial to the sample-efficiency of the
algorithm. One direction for future work is generalizing our policy optimization step to other pol-
icy gradient algorithms beyond PSDP. Another direction is to empirically demonstrate the tradeoff
between the coverage and amount of sub-optimal data in terms of IRL performance.
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Broader Impact Statement

Our paper seeks to understand conditions under which efficient IRL works. Improving the efficiency
of IRL can reduce computational costs, lessening the environmental impact of training IRL agents.
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A Proofs of Section 4

A.1 Proof of Theorem 4.3

Proof. We consider the imitation gap of the expert and the average of the learned policies π,

V πE − V π = 1
n

n∑
i=1

(
E

ζ∼πE

H∑
h=1

r∗(s, a)− E
ζ∼πi

H∑
h=1

r∗(s, a)
)

= H
1
n

n∑
i=1

(
E

(s,a)∼d
πE
µ

r∗(s, a)− E
(s,a)∼d

πi
µ

r∗(s, a)
)

= H
1
n

n∑
i=1

L(πi, r∗)

≤ H
1
n

max
r∈R

n∑
i=1

L(πi, r)

≤ H
1
n

max
r∈R

n∑
i=1

(L(πi, r)− L(πi, ri) + L(πi, ri))

= H
1
n

n∑
i=1

L(πi, ri) + H
1
n

max
r∈R

n∑
i=1

(L(πi, r)− L(πi, ri))

Applying the regret bound of Online Mirror Descent (Theorem E.2), we have

V πE − V π ≤ H
1
n

n∑
i=1

L(πi, ri) + H

√
ln |R|

n

= H
1
n

n∑
i=1

(
1
H

H∑
h=1

E
(sh,ah)∼d

πE
h

ri(sh, ah)− 1
H

H∑
h=1

E
(sh,ah)∼d

πi
h

ri(sh, ah)
)

+ H

√
ln |R|

n

= 1
n

n∑
i=1

(
E

s∼µ
V πE

ri
− E

s∼µ
V πi

ri

)
+ H

√
ln |R|

n

= 1
n

n∑
i=1

H−1∑
h=0

(
E

(sh,ah)∼d
πE
h

Aπi

ri,h(sh, ah)
)

+ H

√
ln |R|

n
(1)

Focusing on the interior summation, we have

H−1∑
h=0

E
(sh,ah)∼d

πE
h

Aπi

h (sh, ah) ≤
H−1∑
h=0

E
sh∼d

πE
h

max
a∈A

Aπi

h (sh, a)

=
H−1∑
h=0

E
sh∼d

πE
h

max
a∈A

Aπi

h (sh, a)− ϵΠ,h + ϵΠ,h

=
H−1∑
h=0

max
π′∈Π

E
sh∼d

πE
h

E
a∼π′(·|s)

Aπi

h (sh, a) + ϵΠ,h

≤ H2ϵ + HϵΠ,h (2)

where the last line holds by PSDP’s performance guarantee (Bagnell et al., 2003).
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Applying (2) to (1), we have

V πE − V π ≤ 1
n

n∑
i=1

H−1∑
h=0

(
E

(sh,ah)∼d
πE
h

Aπi

ri,h(sh, ah)
)

+ H

√
ln |R|

n

≤ 1
n

n∑
i=1

(
H2ϵ + HϵΠ,h

)
+ H

√
ln |R|

n

≤ H2ϵ + HϵΠ + H

√
ln |R|

n

which completes the proof.
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B Proofs of Section 5

B.1 Lemmas of Theorem 5.1

Lemma B.1 (Reward Regret Bound). Recall that

L̂(π, r) = E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a).

Suppose that we update the reward via the Online Mirror Descent algorithm. Since 0 ≤ r(s, a) ≤ 1
for all s, a, then supπ∈Π,r∈R L̂(π, r) ≤ 1. Applying Theorem E.2 with B = 1, the regret is given by

Regn = sup
r∈R

1
n

n∑
i=1

L̂(πi, r)− 1
n

n∑
i=1

L̂(πi, ri)

≤
√

2 ln |R|
n

=
√

C1

n
,

where C1 = 2 ln |R| and n is the number of updates.
Lemma B.2 (Statistical Difference of Losses). With probability at least 1− δ,

L(π, r) ≤ L̂(π, r) +
√

C

N
,

where C = ln 2|R|
δ and N is the number of state-action pairs from the expert.

Proof. By definition of L and L̂, for any π ∈ Π and r ∈ R, we have∣∣∣L(π, r)− L̂(π, r)
∣∣∣ =

∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)−
(

E
(s,a)∼ρE

r(s, a)− E
(s,a)∼dπ

µ

r(s, a)
)∣∣∣∣∣

=

∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− E
(s,a)∼ρE

r(s, a)

∣∣∣∣∣
=

∣∣∣∣∣∣ E
(s,a)∼d

πE
µ

r(s, a)− 1
N

N∑
(si,ai)∈DE

r(si, ai)

∣∣∣∣∣∣
≤
√

1
2N

ln 2|R|
δ

≤
√

C

N
,

where C = 4 ln 2|R|
δ . The fourth line holds by Hoeffding’s inequality and a union bound. Specifically,

we apply Corollary E.1 with c = 1, since all rewards are bounded by 0 and 1. We take a union
bound over all reward functions in the reward class R. Note that the terms involving π cancel out,
so the union bound only applies to the reward function class R. Rearranging terms gives the desired
bound.

Lemma B.3 (Advantage Bound). Suppose that ϵ = 0 and reward function ri are the input parame-
ters to PSDP, and πi = (πi

1, πi
2, . . . , πi

H) is the output learned policy. Then, with probability at least
1− δ,

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, CB

(
ϵΠ + ϵΠ

√
C0

N + M

)}
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where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .

Proof. Suppose that ϵ = 0 is the input accuracy parameter to PSDP, and the advantages are
computed under reward function ri. PSDP is guaranteed to terminate and output a policy πi =
(πi

1, πi
2, . . . , πi

H), such that

Hϵ ≥ max
π′∈Π

E
sh∼ρmix,h

E
a∼π′(·|s)

Aπi

h (sh, a)

for all h ∈ [H] (Bagnell et al., 2003). Consequently, we have

Hϵ ≥ max
π′∈Π

E
s∼ρmix

E
a∼π′(·|s)

Aπi(s, a)

= max
π′∈Π

E
s∼ρmix

E
a∼π′(·|s)

Aπi(s, a) + ϵΠ,ri
− ϵΠ,ri

= E
s∼ρmix

max
a∈A

Aπi(s, a)− ϵΠ,ri

By definition, 0 ≤ ϵΠ,ri ≤ ϵΠ, so for any x ∈ R, x− ϵΠ,ri ≥ x− ϵΠ, so

Hϵ ≥ E
s∼ρmix

max
a∈A

Aπi(s, a)− ϵΠ.

Rearranging the terms gives us

E
s∼ρmix

max
a∈A

Aπi(s, a) ≤ Hϵ + ϵΠ (3)

= ϵΠ,

where the last line holds by our assumption that ϵ = 0.

Case 1: Jettison Offline Data We will first consider the case where offline data is useless, in
which case we will focus on the expert data.

Note that maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and h ∈ [H]. Applying the definition of ρmix,

E
s∼ρmix

max
a∈A

Aπi(s, a) = E
s∼ρE

max
a∈A

Aπi(s, a) + E
s∼ρb

max
a∈A

Aπi(s, a).

Consequently, we know that

ϵΠ ≥ E
s∼ρE

max
a∈A

Aπi(s, a) (4)

= 1
N

N∑
si∈DE

max
a∈A

Aπi(si, a)

Because maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S and a ∈ A, we know maxa∈A Aπi(si, a) ≤ ϵΠ for all
si ∈ DE . We apply Hoeffding’s inequality (Corollary E.1) with c = ϵΠ

2 to bound the difference
between Es∼dπE maxa∈A Aπi(s, a) and Es∼ρE

maxa∈A Aπi(s, a). We apply a union bound on the
policy and reward function. As stated previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s
inequality, with probability 1− δ, we have∣∣∣∣∣ E

s∼d
πE
µ

max
a∈A

Aπi(s, a)− E
s∼ρE

max
a∈A

Aπi(s, a)

∣∣∣∣∣ =

∣∣∣∣∣ E
s∼d

πE
µ

max
a∈A

Aπi(s, a)− 1
N

N∑
si∈DE

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤
√

ϵ2
Π

1
2N

ln |Π||R|
δ

≤ ϵΠ

√
C0

N
,
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where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying (4) yields

E
s∼d

πE
µ

max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N
.

Case 2: Leverage Offline Data Next, we consider the case where offline data is useful, specifi-
cally where there is good coverage of the expert data.

Next, we apply Hoeffding’s inequality (Corollary E.1) to bound the difference between
Es∼ν maxa∈A Aπi(s, a) and Es∼ρmix maxa∈A Aπi(s, a). We apply a union bound on the policy and
reward function. We use c = ϵ2

Π for a similar argument to the one used in Case 1. As stated
previously, maxa∈A Aπi(s, a) ≥ 0 for all s ∈ S. By Hoeffding’s inequality, with probability 1− δ, we
have∣∣∣∣ Es∼ν

max
a∈A

Aπi(s, a)− E
s∼ρmix

max
a∈A

Aπi(s, a)
∣∣∣∣ =

∣∣∣∣∣ Es∼ν
max
a∈A

Aπi(s, a)− 1
N + M

N+M∑
si∈Dmix

max
a∈A

Aπi(si, a)

∣∣∣∣∣
≤

√
ϵΠ

1
2(N + M) ln |Π||R|

δ

≤ ϵΠ

√
C0

N + M
,

where C0 = 2 ln |Π||R|
δ . Note that the cardinality of the set of advantage functions over all possible

policies is upper bounded by the cardinalities of the policy and reward classes. Rearranging the
terms and applying (3) yields

E
s∼ν

max
a∈A

Aπi(s, a) ≤ ϵΠ + ϵΠ

√
C0

N + M
. (5)

By linearity of expectation, and using the fact that 1 ≤ CB <∞, we have

E
s∼dπE

max
a∈A

Aπi(s, a) = N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + M

N + M
E

s∼dπE

max
a∈A

Aπi(s, a)

≤ N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + CB
M

N + M
E

s∼dπB

max
a∈A

Aπi(s, a)

≤ CB
N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + CB
M

N + M
E

s∼dπB

max
a∈A

Aπi(s, a)

= CB

(
N

N + M
E

s∼dπE

max
a∈A

Aπi(s, a) + M

N + M
E

s∼dπB

max
a∈A

Aπi(s, a)
)

≤ CB E
s∼ν

max
a∈A

Aπi(s, a). (6)

Applying (6) to (5), we have

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ CB E
s∼ν

max
a∈A

Aπi(s, a)

≤ CB

(
ϵΠ + ϵΠ

√
C0

N + M

)

Final Result Using the bounds from Case 1 and Case 2, we know that

E
s∼dπE

max
a∈A

Aπi(s, a) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, CB

(
ϵΠ + ϵΠ

√
C0

N + M

)}
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where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, and C0 = 2 ln |Π||R|
δ .

Lemma B.4 (Loss Bound). Suppose that ϵ = 0 and reward function ri are the input parameters to
PSDP, and πi = (πi

1, πi
2, . . . , πi

H) is the output learned policy. Then, with probability at least 1− δ,

L̂(πi, ri) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, CB

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+
√

C

N
,

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .

Proof. By Lemma B.2, we have

L̂(πi, ri) ≤ L(πi, ri) +
√

C

N

= E
(s,a)∼d

πE
µ

[ri(s, a)]− E
(s,a)∼d

πi
µ

[ri(s, a)] +
√

C

N

= 1
H

(
V πE

ri
− V πi

ri

)
+
√

C

N

= 1
H

(
H∑

h=1
E

(sh,ah)∼d
πE
h

Aπi

ri,h(sh, ah)
)

+
√

C

N

≤ 1
H

(
H∑

h=1
E

sh∼d
πE
h

max
a∈A

Aπi

ri,h(sh, a)
)

+
√

C

N

= 1
H

(
H E

s∼dπE

max
a∈A

Aπi
ri

(s, a)
)

+
√

C

N

where C = ln 2|R|
δ . The second line holds by the definition of L(πi, ri), and the third line holds

by the definition of the reward-indexed value function. The fourth line holds by the Performance
Difference Lemma (PDL). Applying Lemma B.3, we have

L̂(πi, ri) ≤ min
{

ϵΠ + ϵΠ

√
C0

N
, CB

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+
√

C

MN
,

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, C0 = 2 ln |Π||R|
δ , and C = ln 2|R|

δ .
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B.2 Proof of Theorem 5.1

Proof. We consider the imitation gap of the expert and the averaged learned policies, π,

V πE − V π = 1
n

n∑
i=0

(
E

ζ∼πE

[
H∑

h=1
r∗(sh, ah)

]
− E

ζ∼πi

[
H∑

h=1
r∗(sh, ah)

])

= 1
n

H

n∑
i=0

(
E

(s,a)∼d
πE
µ

[r∗(s, a)]− E
(s,a)∼d

πi
µ

[r∗(s, a)]
)

= 1
n

H

n∑
i=0

L(πi, r∗)

≤ 1
n

H max
r∈R

n∑
i=0

L(πi, r)

where n is the number of updates to the reward function. The second line holds by definition of dπ
µ.

The third line holds by definition of L. Applying the Statistical Difference of Losses (Lemma B.2),
we have

V πE − V π ≤ 1
n

H max
r∈R

n∑
i=0

(
L̂(πi, r) +

√
C

N

)

= 1
n

H max
r∈R

n∑
i=0

(
L̂(πi, r)− L̂(πi, ri) + L̂(πi, ri) +

√
C

N

)

where C = ln 2|R|
δ and M is the number of state-action pairs from the expert. Applying the Reward

Regret Bound (Lemma B.1), we have

V πE − V π ≤ 1
n

H

n∑
i=0

(
L̂(πi, ri) +

√
C

N

)
+ H

√
C1

n

where C1 = 2 ln |R|. Applying the Loss Bound (Lemma B.4), we have

V πE − V π ≤ 1
n

H

n∑
i=0

(
min

{
ϵΠ + ϵΠ

√
C0

N
, CB

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+
√

C

N
,

)
+ H

√
C1

n
,

which simplifies to

V πE − V π ≤ H min
{

ϵΠ + ϵΠ

√
C0

N
, CB

(
ϵΠ + ϵΠ

√
C0

N + M

)}
+ H

√
C

N
, +H

√
C1

n
,

where CB =
∥∥∥ d

πE
µ

d
πB
µ

∥∥∥
∞

, H is the horizon, N is the number of expert state-action pairs, M is the

number of offline state-action pairs, n is the number of reward updates, C0 = 2 ln |Π||R|
δ , C = ln 2|R|

δ ,
and C1 = 2 ln |R|.
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Figure 1: GUITAR, an IRL algorithm that uses resets to expert and sub-optimal data, outperforms
other IRL algorithms—FILTER (which resets to expert states) and MM (which resets to the starting
state)—on 3 out of the 4 environments considered. Standard errors are computed across 5 seeds.
For all MuJoCo tasks, we use less than 1 full trajectory (100 expert state-action pairs for Ant
and Humanoid, 300 state-action pairs for Walker, and 600 state-action pairs for Hopper). For
antmaze-large, we use 1 successful trajectory (1000 expert state-action pairs).

C Experiments

In this section, we aim to answer the following questions:

1. In settings without access to arbitrary learner resets, can the sample efficiency of IRL
be improved via roll-ins with a BC policy? We consider one additional, practical constraint to
the two outlined in Section 5: in real-world robotics training, the learner cannot be reset to arbitrary
states. In other words, the learner cannot be reset to a particular reset distribution (e.g. the expert
states). Instead, we roll-in with a BC policy trained on the intended reset distribution.

2. Does incorporating sub-optimal data improve the sample efficiency of efficient IRL
in the limited expert data setting? We consider the setting of limited expert data, which
we supplement with sub-optimal data. We compare the results of BC and IRL algorithms that
exclusively use the expert data to GUITAR, which incorporates both expert and sub-optimal data.

Because we consider the low expert data regime, we use the minimum amount of expert data that
allows the baseline IRL algorithm to learn in each environment (less than one complete trajectory).
We implement GUITAR with Soft Actor Critic (Haarnoja et al., 2018) for the policy and critic updates
and a discriminator network for reward labels. We generate sub-optimal data by rolling out the
expert policy with a probability pπb

tremble of sampling a random action. We consider both high-quality
offline data in the Walker and Hopper environments, each with pπB

tremble = 0.05, and low-quality offline
data in the Ant and Humanoid environments, where pπB

tremble = 0.25. Additional implementation
details can be found in Appendix D.

We compare GUITAR against two behavioral cloning baselines (Pomerleau, 1988) and two IRL base-
lines (Swamy et al., 2023). The first behavioral cloning baseline is trained exclusively on the ex-
pert data, BC(πE), and the second is trained on the combination of expert and sub-optimal data,
BC(πE + πb). We compare against two IRL algorithms: a traditional IRL algorithm, MM, and an
efficient IRL algorithm, FILTER (Swamy et al., 2023). The differences between MM, FILTER, and
GUITAR can be summarized by what reset distribution they use. MM resets the learner to the true
starting state (i.e. ρ = µ); FILTER resets the learner to expert states (i.e. ρ = ρE), and GUITAR
resets the learner to expert and suboptimal states (i.e. ρ = ρmix).

We see that the benefit of rolling in with a BC policy is dependent on the performance of the BC
policy. In environments where the BC policy performs poorly, FILTER does not outperform MM (Ant,
Humanoid, and Walker). However, by incorporating additional sub-optimal data, GUITAR is able
to outperform poor-performing BC policies (Ant and Humanoid) and consistently outperform the
other IRL algorithms.
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D Implementation Details

We describe the implementation details in this section. We compare GUITAR against two behavioral
cloning baselines (Pomerleau, 1988) and two IRL baselines (Swamy et al., 2023). The first behavioral
cloning baseline is trained exclusively on the expert data, BC(πE), and the second is trained on the
combination of expert and sub-optimal data, BC(πE + πb). We compare against two IRL algorithms:
(1) Swamy et al. (2021a)’s moment-matching algorithm, MM, a traditional IRL algorithm with the
Jensen-Shannon divergence replaced by an integral probability metric, and (2) Swamy et al. (2023)’s
efficient IRL algorithm, FILTER, that exclusively leverages expert data for resets. The differences
between MM, FILTER, and GUITAR can be summarized by what reset distribution they use. MM resets
the learner to the true starting state (i.e. ρ = µ); FILTER resets the learner to expert states (i.e.
ρ = ρE), and GUITAR resets the learner to expert and suboptimal states (i.e. ρ = ρmix).

We adapt Ren et al. (2024)’s codebase for our implementation and follow their implementation
details. The details are restated here, with modifications where necessary. We apply Optimistic
Adam (Daskalakis et al., 2017) for all policy and discriminator optimization. We also apply gradient
penalties (Gulrajani et al., 2017) on all algorithms to stabilize the discriminator training. The
policies, value functions, and discriminators are all 2-layer ReLu networks with a hidden size of 256.
We sample 4 trajectories to use in the discriminator update at the end of each outer-loop iteration,
and a batch size of 4096. In all IRL variants (MM, FILTER, and GUITAR), we re-label the data with
the current reward function during policy improvement, rather than keeping the labels that were set
when the data was added to the replay buffer. Ren et al. (2024) empirically observed such re-labeling
to improve performance.

The code is available at https://nico-espinosadice.github.io/efficient-IRL.

D.1 MuJoCo Tasks

We detail below the specific implementations used in all MuJoCo experiments (Ant, Hopper, Hu-
manoid, and Walker).

Parameter Value

buffer size 1e6
batch size 256
γ 0.98
τ 0.02
Training Freq. 64
Gradient Steps 64
Learning Rate Lin. Sched. 7.3e-4
policy architecture 256 x 2
state-dependent exploration true
training timesteps 1e6

Table 1: Hyperparameters for baselines using SAC.

Expert Data. To experiment under the conditions of limited expert data, we set the amount of
expert data to be the lowest amount that still enabled the baseline IRL algorithms to learn. For Ant
and Humanoid, this was 100 expert state-action pairs. For Walker, this was 300 expert state-action
pairs. For Hopper, this was 600 expert state-action pairs.

Sub-optimal Data. We generate the sub-optimal data by rolling out the expert policy with
a probability pπB

tremble of sampling a random action. pπB

tremble = 0.25 for the Ant and Humanoid
environments, and pπB

tremble = 0.05 for the Walker and Hopper environments.

https://nico-espinosadice.github.io/efficient-IRL
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Discriminator. For our discriminator, we start with a learning rate of 8e−4 and decay it linearly
over outer-loop iterations. We update the discriminator every 10,000 actor steps.

Baselines. We train all behavioral cloning baselines for 300k steps for Ant, Hopper, and Hu-
manoid, and 500,000 steps for Walker2d. For MM and FILTER baselines, we follow the exact hyper-
parameters in Ren et al. (2024), with a notable modification to how resets are performed, discussed
below. We use the Soft Actor Critic (Haarnoja et al., 2018) implementation provided by Raffin et al.
(2021) with the hyperparameters in Table 1.

Reset Substitute. We mimic resets by training a BC policy on the reset distribution specified by
each algorithm. MM does not employ resets. FILTER’s reset distribution is the expert data. GUITAR’s
reset distribution is a mixture of the expert and sub-optimal data. The BC roll-in logic follows Ren
et al. (2024)’s reset logic. The probability of performing a non-starting-state reset (i.e. an expert
reset in FILTER) is α. If a non-starting-state reset is performed, we sample a random timestep t
between 0 and the horizon, and we roll-out the BC policy in the environment for t steps.

GUITAR. GUITAR follows the same implementation and reset logic as FILTER, with the only change
being the training data for the BC roll-in policy.
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E Useful Lemmas

Theorem E.1 (Hoeffding’s Inequality). If Z1, . . . , ZM are independent with P (a ≤ Zi ≤ b) = 1 and
common mean µ, then, with probability at least 1− δ,

|ZM − µ| ≤
√

c

2M
ln 2

δ

where c = 1
M

∑M
i=1(bi − ai)2.

Lemma E.2 (Online Mirror Descent Regret). Regret is defined as

RegN = 1
N

N∑
t=1

ℓ(ŷt, zt)− inf
f∈F

1
N

N∑
t=1

ℓ(f , zt).

Given F = ∆(F ′) and ⟨f ,∇t⟩ = Ef ′∼f [ℓ(f ′, (xt, yt))], where sup∇∈D∥∇∥∞ ≤ B, let R be any

1-strongly convex function. If we use the Mirror descent algorithm with η =
√

2 supf∈F R(f)
NB2 , then,

Regn ≤
√

2B2 supf∈F R(f)
N

.

If R is the negative entropy function, then supf∈F R(f) ≤ log |F ′|.


