
Under review as a conference paper at ICLR 2022

ON THE UNREASONABLE EFFECTIVENESS OF
FEATURE PROPAGATION IN LEARNING ON
GRAPHS WITH MISSING NODE FEATURES

Anonymous authors
Paper under double-blind review

ABSTRACT

While Graph Neural Networks (GNNs) have recently become the de facto stan-
dard for modeling relational data, they impose a strong assumption on the avail-
ability of the node or edge features of the graph. In many real-world applications,
however, features are only partially available; for example, in social networks,
age and gender are available only for a small subset of users. We present a general
approach for handling missing features in graph machine learning applications
that is based on minimization of the Dirichlet energy and leads to a diffusion-type
differential equation on the graph. The discretization of this equation produces
a simple, fast and scalable algorithm which we call Feature Propagation. We
experimentally show that the proposed approach outperforms previous methods
on seven common node-classification benchmarks and can withstand surprisingly
high rates of missing features: on average we observe only around 4% relative
accuracy drop when 99% of the features are missing. Moreover, it takes only 10
seconds to run on a graph with ∼2.5M nodes and ∼123M edges on a single GPU.

1 INTRODUCTION

Graph Neural Networks (GNNs) (Gori et al., 2005; Scarselli et al., 2008; Kipf & Welling, 2017;
Gilmer et al., 2017a; Veličković et al., 2018; Bronstein et al., 2017) have been successful on a broad
range of problems and in a variety of fields (Duvenaud et al., 2015; Ying et al., 2018; Zitnik et al.,
2018; Gainza et al., 2020; Sanchez-Gonzalez et al., 2020; Shlomi et al., 2020; Derrow-Pinion et al.,
2021). GNNs typically operate by a message-passing mechanism (Battaglia et al., 2018; Gilmer
et al., 2017b), where at each layer, nodes send their feature representations (“messages”) to their
neighbors. The feature representation of each node is initialized to their original features, and is
updated by repeatedly aggregating incoming messages from neighbors. Being able to combine the
topological information with feature information is what distinguishes GNNs from other purely
topological learning approaches such as random walks (Perozzi et al., 2014; Grover & Leskovec,
2016) or label propagation (Zhu & Ghahramani, 2002), and arguably what leads to their success.

GNN models typically assume a fully observed feature matrix, where rows represent nodes and
columns feature channels. However, in real-world scenarios, each feature is often only observed
for a subset of the nodes. For example, demographic information can be available for only a small
subset of social network users, while content features are generally only present for the most active
users. In a co-purchase network, not all products may have a full description associated with them.
With the rising awareness around digital privacy, data is increasingly available only upon explicit
user consent. In all the above cases, the feature matrix contains missing values and most existing
GNN models cannot be directly applied.

While classic imputation methods (Liu et al., 2020; Yoon et al., 2018; Kingma & Welling, 2014)
can be used to fill the missing values of the feature matrix, they are unaware of the underlying
graph structure. Graph Signal Processing, a field attempting to generalize classical Fourier analysis
to graphs, offers several methods that reconstruct signals on graphs (Narang et al., 2013). How-
ever, they do not scale beyond graphs with a few thousand nodes, making them infeasible for prac-
tical applications. More recently, SAT (Chen et al., 2020), GCNMF (Taguchi et al., 2021) and
PaGNN (Jiang & Zhang, 2021) have been proposed to adapt GNNs to the case of missing features.

1

Under review as a conference paper at ICLR 2022

Feature
Propagation GNN

Known Feature

Unknown Feature

Prediction

Reconstructed Feature

Figure 1: A diagram illustrating our Feature Propagation framework. On the left, a graph with miss-
ing node features. In the initial reconstruction step, Feature Propagation reconstructs the missing
features by iteratively diffusing the known features in the graph. Subsequently, the graph and the re-
constructed node features are fed into a downstream GNN model, which then produces a prediction.

However, they are not evaluated at high missing features rates (> 90%), which occur in many real-
world scenarios, and where we find them to suffer. Moreover, they are unable to scale to graphs
with more than a few hundred thousand nodes. At the time of writing, PaGNN is the state-of-the-art
method for node classification with missing features.

Contributions We present a general approach for handling missing node features in graph
machine learning tasks. The framework consists of an initial diffusion-based feature reconstruction
step followed by a downstream GNN. The reconstruction step is based on Dirichlet energy
minimization, which leads to a diffusion-type differential equation on the graph. Discretization
of this differential equation leads to a very simple, fast, and scalable iterative algorithm which
we call Feature Propagation (FP). FP outperforms state-of-the-art methods on six standard node-
classification benchmarks and presents the following advantages:

• Theoretically Motivated: FP emerges naturally as the gradient flow minimizing the Dirichlet
energy and can be interpreted as a diffusion equation on the graph with known features used as
boundary conditions.

• Robust to high rates of missing features: FP can withstand surprisingly high rates of missing
features. In our experiment, we observe on average around 4% relative accuracy drop when up to
99% of the features are missing. In comparison, GCNMF and PaGNN have an average drop of
53.33% and 21.25% respectively.

• Generic: FP can be combined with any GNN model to solve the downstream task; in contrast,
GCNMF and PaGNN are specific GCN-type models.

• Fast and Scalable: FP takes only around 10 seconds for the reconstruction step on OGBN-
Products (a graph with ∼2.5M nodes and ∼123M edges) on a single GPU. GCNMF and PaGNN
run out-of-memory on this dataset.

2 PRELIMINARIES

Let G = (V,E) be an undirected graph with n × n adjacency matrix A and a node feature vector1

x ∈ Rn.

The graph Laplacian is an n×n positive semi-definite matrix ∆ = I−Ã, where Ã = D−
1
2 AD−

1
2

is the normalized adjacency matrix and D = diag(
∑

j a1j , . . . ,
∑

j anj) is the diagonal degree
matrix.

1For convenience, we assume scalar node features. Our derivations apply straightforwardly to the case of
d-dimensional features represented as an n× d matrix X.

2

Under review as a conference paper at ICLR 2022

Denote by Vk ⊆ V the set of nodes on which the features are known, and by Vu = V c
k = V \ Vk the

unknown ones. We further assume the ordering of the nodes such that we can write

x =

[
xk

xu

]
A =

[
Akk Aku

Auk Auu

]
∆ =

[
∆kk ∆ku

∆uk ∆uu

]
.

Because the graph is undirected, A is symmetric and thus A>ku = Auk and ∆>ku = ∆uk. We will
tacitly assume this in the following discussion.

Graph feature interpolation is the problem of reconstructing the unknown features xu given
the graph structure G and the known features xk. The interpolation task requires some prior on
the behavior of the features of the graph, which can be expressed in the form of an energy function
`(x, G). The most common assumption is feature homophily (i.e., that the features of every node are
similar to those of the neighbours), quantified using a criterion of smoothness such as the Dirichlet
energy. Since in many cases the behavior of the features is not known, the energy can possibly be
learned from the data.

Learning on a graph with missing features is a transductive learning problem (typically node-
wise classification or regression using some GNN architecture) where the structure of the graph
G is known while the labels and node features are only partially known on the subsets Vl and Vk
of nodes, respectively (that might be different and even disjoint). Specifically, we try to learn a
function f(xk, G) such that fi ≈ yi for i ∈ Vl. Learning with missing features can be done by
a pre-processing step of graph signal interpolation (reconstructing an estimate x̃ of the full feature
vector x from xk) independent of the learning task, followed by the learning task of f(x̃, G) on the
inferred fully-featured graph. In some settings, we are not interested in recovering the features per
se, but rather ensuring that the output of the function f on these features is correct – arguably a more
‘forgiving’ setting.

3 FEATURE PROPAGATION

We assume to be given xk and attempt to find the missing node features xu by means of interpolation
that minimizes some energy `(x, G). In particular, we consider the Dirichlet energy `(x, G) =
1
2x>∆x = 1

2

∑
ij ãij(xi − xj)2, where ãij are the individual entries of the normalized adjacency

Ã. The Dirichlet energy is widely used as a smoothness criterion for functions defined on the nodes
of the graph and thus promotes homophily. Functions minimizing the Dirichlet energy are called
harmonic; without boundary conditions, it is minimized by a constant function.

While the Dirichlet energy is convex and it is possible to derive its minimizer in a closed-form,
as shown below, the computational complexity makes it unfeasible for graphs with many nodes
with missing features. Instead, we consider the associated gradient flow ẋ(t) = −∇`(x(t)) as a
differential equation with boundary condition xk(t) = xk whose solution at the missing nodes,
xu = limt→∞ xu(t), provides the desired interpolation.

Gradient flow. For the Dirichlet energy, ∇x` = ∆x and the gradient flow takes the form of the
standard isotropic heat diffusion equation on the graph,

ẋ(t) = −∆x(t) (IC) x(0) =

[
xk

xu(0)

]
(BC) xk(t) = xk

where IC and BC stand for initial conditions and boundary conditions respectively. By incorporating
the boundary conditions, we can compactly express the diffusion equation as[

ẋk(t)
ẋu(t)

]
= −

[
0 0

∆uk ∆uu

] [
xk

xu(t)

]
= −

[
0

∆ukxk + ∆uuxu(t)

]
. (1)

As expected, the gradient flow of the observed features is 0, given that they do not change during
the diffusion.

The evolution of the missing features can be regarded as a heat diffusion equation with a constant
heat source ∆ukxk coming from the boundary (known) nodes. Since the graph Laplacian matrix is

3

Under review as a conference paper at ICLR 2022

positive semi-definite, the Dirichlet energy ` is convex. Its global minimizer is given by the solution
to the closed-form equation ∇xu

` = 0 and by rearranging the final |Vu| rows of Equation 1 we get
the solution xu = −∆−1uu∆>kuxk. This solution always exists as ∆uu is non-singular, by virtue of
the following:
Proposition 1 (The sub-Laplacian matrix of an undirected connected graph is invertible). Take
any undirected, connected graph with adjacency matrix A ∈ {0, 1}n×n, and its Laplacian ∆ =
I − D−1/2AD−1/2, with D being the degree matrix of A. Then, for any principle sub-matrix
Lu ∈ Rb×b of the Laplacian, where 1 ≤ b < n, Lu is invertible.

Proof: See Appendix A. Also, while the proposition assumes that the graph is connected, our anal-
ysis and method generalize straightforwardly in the cases of disconnected graph as we can simply
apply Feature Propagation to each connected component independently.

However, solving a system of linear equations is computationally expensive (incurring O(|Vu|3)
complexity for matrix inversion) and thus intractable for anything but only small graphs.

Iterative scheme. As an alternative, we can discretize the diffusion equation (1) and solve it by
an iterative numerical scheme. Approximating the temporal derivative as forward difference with
the time variable t discretized using a fixed step (t = hk for step size h > 0 and k = 1, 2, . . .), we
obtain the explicit Euler scheme:

x(k+1) = x(k) − h
[

0 0
∆uk ∆uu

]
x(k) =

(
I−

[
0 0

h∆uk h∆uu

])
x(k) =

[
I 0

−h∆uk I− h∆uu

]
x(k)

For the special case of h = 1, we can use the following observation

Ã = I−∆ =

[
I 0
0 I

]
−
[
∆kk ∆ku

∆uk ∆uu

]
=

[
I−∆kk −∆ku

−∆uk I−∆uu

]
,

to write the iteration formula as

x(k+1) =

[
I 0

Ãuk Ãuu

]
x(k). (2)

0 500 1000 1500 2000 2500
Eigenvalue Index

0.000
0.005
0.010
0.015
0.020
0.025
0.030
0.035
0.040

Sp
ec

tra
l C

oe
ffi

cie
nt Original Feature

Reconstructed Feature (30% missing)
Reconstructed Feature (60% missing)
Reconstructed Feature (99% missing)

Figure 2: Graph Fourier transform magni-
tudes of the original Cora features (red) and
those reconstructed by FP for varying rates
of missing rates (we take the average over
feature channels). Since FP minimizes the
Dirichlet energy, it can be interpreted as a
low-pass filter, which is stronger for a higher
rate of missing features.

The Euler scheme is the gradient descent of the
Dirichlet energy. Thus, applying the scheme de-
creases the Dirichlet energy and results in the fea-
tures becoming increasingly smooth. Iteration (2)
can be interpreted as successive low-pass filtering.
Figure 2 depicts the magnitude of the graph Fourier
coefficients of the original and reconstructed fea-
tures on the Cora dataset, indicating that the higher
the rate of missing features, the stronger the low-
pass filtering effect.

The following results shows that the iterative scheme
with h = 1 always converges and its steady state is
equal to the closed form solution. Importantly, the
solution does not depend on the initial values x

(0)
u

given to the unknown features.
Proposition 2. Take any undirected and connected
graph with adjacency matrix A ∈ {0, 1}n×n, and
normalised Adjacency Ã = D−1/2AD−1/2, with
D being the degree matrix of A. Let X ∈ Rn×d =
X(0) ∈ Rn×d be a feature matrix and define the following recursive relation

X(k) =

[
I 0

Ãuk Ãuu

]
X(k−1).

Then this recursion converges and the steady state is given to be

lim
n→∞

X(n) =

[
Xk

−∆−1kk ÃukXk

]
.

Proof: See Appendix A.

4

Under review as a conference paper at ICLR 2022

Algorithm 1 Feature Propagation
1: y← x
2: while x has not converged do
3: x← Ãx . Propagate features
4: xk ← yk . Reset known features
5: end while

Feature Propagation Algorithm. Equation
2 provides an extremely simple and scalable it-
erative algorithm to reconstruct the missing fea-
tures, which we refer to as Feature Propaga-
tion (FP). While xu can be initialized to any
value, we initialize xu to zero and find 40 iter-
ations to be enough to provide convergence for
all datasets we experimented on. At each iter-
ation, the diffusion occurs from the nodes with
known features to the nodes with unknown fea-
tures as well as among the nodes with unknown features.

It is worth noting that the proposed algorithm bears some similarity with Label Propagation (Zhu
& Ghahramani, 2002) (LP), which predicts a class for each node by propagating the known labels
in the graph. Differently from our setting of diffusion of continuous node features, they deal with
discrete label classes directly, resulting in a different diffusion operator. However, the key difference
between them lies in how they are used. LP is used to directly perform node classification, taking
into account only the graph structure and being unaware of node features. On the other hand, FP
is used to reconstruct missing features, which are then fed into a downstream GNN classifier. FP
allows a GNN model to effectively combine features and graph structures, even when most of the
features are missing. Our experiments show that FP+GNN always outperforms LP, even in cases
of extremely high rates of missing features, suggesting the effectiveness of FP. Also, the derived
scheme is a special case of Neural Graph PDEs, and in turn it is also related to the iterative scheme
presented in Zhou & Schölkopf (2004).

Extension to Vector-Valued Features. The method extends to vector-valued features by simply
replacing the feature vector x with a n×d feature matrix X in Algorithm 1, where d is the number of
features. Multiplying the diffusion matrix A by the feature matrix X diffuses each feature channel
independently.

Learning. One significant advantage of FP is that it can be easily combined with any graph learn-
ing model to generate predictions for the downstream task. Moreover, FP is not aimed at merely
reconstructing the node features, and instead by only reconstructing the lower frequency compo-
nents of the signal, it is by design very well suited to be combined with GNNs, which are known
to mainly leverage these lower frequency components (Wu et al., 2019). Our approach is generic
and can be used for any graph-related task for missing features, such as node classification, link
prediction and graph classification. In this paper, we focus on node classification.

4 RELATED WORK

Matrix completion. Several optimization-based approaches (Candès & Recht, 2009; Hu et al.,
2008) as well as learning-based approaches (Liu et al., 2020; Yoon et al., 2018; Kingma & Welling,
2014) have been proposed to solve the matrix completion problem. However, they are unaware of
the underlying graph structure. Graph matrix completion (Kalofolias et al., 2014; van den Berg et al.,
2017; Monti et al., 2017; Rao et al., 2015) extends the above approaches to make use of an underlying
graph. Similarly, Graph Signal Processing offers several methods to interpolate signals on graphs.
Narang et al. (2013) prove the necessary conditions for a graph signal to be recovered perfectly, and
provide a corresponding algorithm. However, due to the optimisation problems involved, most above
approaches are too computationally intensive and cannot scale to graphs with more than ∼1,000
nodes. Moreover, the goal of all above approaches is to reconstruct the missing entries of the matrix,
rather than solving a downstream task.

Extending GNNs to missing node features. SAT (Chen et al., 2020) consists of a Transformer-
like model for feature reconstruction and a GNN model to solve the downstream task. GC-
NMF (Taguchi et al., 2021) adapts GCN (Kipf & Welling, 2017) to the case of missing node features
by representing the missing data with a Gaussian mixture model. PaGNN (Jiang & Zhang, 2021) is a
GCN-like model which uses a partial message-passing scheme to only propagate observed features.

5

Under review as a conference paper at ICLR 2022

While showing a reasonable performance for low rates of missing features, these methods suffer in
regimes of high rates of missing features, and do not scale to large graphs.

Other related GNN works. Several papers investigate how to augment GNNs when no node
features are available (Cui et al., 2021), as well as investigating the performance of GNNs with
random features (Sato et al., 2021; Abboud et al., 2021). Dirichlet energy minimization has been
widely used as a regularizer in several graph-related tasks (Zhu et al., 2003; Zhou & Schölkopf,
2004; Weston et al., 2008). Discretizion of continuous diffusion on graphs has already been explored
in Chamberlain et al. (2021) and Xhonneux et al. (2020).

5 EXPERIMENTS AND DISCUSSION

Datasets. We evaluate on the task of node classification on several benchmark datasets: Cora,
Citeseer and PubMed (Sen et al., 2008), Amazon-Computers, Amazon-Photo (Shchur et al., 2018)
and OGBN-Arxiv (Hu et al., 2020). To test the scalability of our method, we also test it on OGBN-
Products (2,449,029 nodes, 123,718,280 edges). We report dataset statistics in table 3 (Appendix).

Baselines. We compare to Label Propagation (Zhu & Ghahramani, 2002), a strong feature-
agnostic baseline which only makes use of the graph structure by propagating labels on the graph.
We additionally compare to feature-imputation methods that are graph-agnostic, such as setting the
missing features to 0 (Zero), a random value from a standard Gaussian (Random), or the global mean
of that feature over the graph (Global Mean) 2. We also compare to a simple graph-based imputation
baseline, which sets a missing feature to the mean (of that same feature) over the neighbors of a
node (Neighbor Mean). We additionally experiment with MGCNN (Monti et al., 2017), a geometric
graph completion method which learns how to reconstruct the missing features by making use of
the observed features and the graph structure. For all the above imputation and matrix completion
baselines, as well as for our Feature Propagation, we experiment with both GCN (Kipf & Welling,
2017) and GraphSage with mean aggregator (Hamilton et al., 2017) as downstream GNNs. We
also compare to recently state-of-the-art methods for learning in the missing features setting (GC-
NMF (Taguchi et al., 2021) and PaGNN (Jiang & Zhang, 2021)). For GCNMF we use the publicly
available code.3 We could not find publicly available code for PaGNN so use our own implemen-
tation for this comparison. We do not compare to other commonly used imputation based methods
such as VAE (Kingma & Welling, 2014) or GAIN (Yoon et al., 2018), nor to the Transformer-based
method SAT (Chen et al., 2020), as they have previously been shown to consistently underperform
GCNMF and PaGNN (Taguchi et al., 2021; Jiang & Zhang, 2021).

Experimental Setup. We report the mean and standard error of the test accuracy, computed over
10 runs, in all experiments. Each run has a different train/validation/test split (apart from OGBN
datasets where we use the provided splits) and mask of missing features4. The splits are generated at
random by assigning 20 nodes per class to the training set, 1500 nodes in total to the validation set
and the rest to the test set, similar to Klicpera et al. (2019). For a fair comparison, we use the same
standard hyperparameters for all methods across all experiments. We train using the Adam (Kingma
& Ba, 2015) optimizer with a learning rate of 0.005 for a maximum of 10000 epochs, combined
with early stopping with a patience of 200. Downstream GNN models (as well as GCNMF and
PaGNN) use 2 layers with a hidden dimension of 64 and a dropout rate of 0.5 for all datasets,
apart from OGBN datasets where 3 layers and a hidden dimension of 256 are used. For OGBN-
Arxiv we also employ the Jumping Knowledge scheme (Xu et al., 2018) with max aggregation.
Feature Propagation uses 40 iterations to diffuse the features. We want to emphasize that we did
not perform any hyperparameter tuning, and FP proved to perform consistently with any reasonable
choice of hyperparameters. We use neighbor sampling (Hamilton et al., 2017) when training on
OGBN-Products. All experiments are conducted on an AWS p3.16xlarge machine with 8 NVIDIA
V100 GPUs5.

2If a feature is not observed for any of the node’s neighbors, we set it to zero.
3https://github.com/marblet/GCNmf
4Each entry of the feature matrix is independently missing with a probability equal to the missing rate.
5Each V100 GPU has 16GB of memory.

6

Under review as a conference paper at ICLR 2022

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

Cora

Label Propagation

Random

Zero

Global Mean

Neighbors Mean

MGCNN

FP (Ours)

GCNMF

PaGNN

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

T
es

t
A

cc
ur

ac
y

CiteSeer

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

PubMed

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Photo

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Computers

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.2

0.3

0.4

0.5

0.6

0.7

T
es

t
A

cc
ur

ac
y

OGBN-Arxiv

Figure 3: Test accuracy for varying rate of missing features on six common node-classification
benchmarks. For methods that require a downstream GNNs, a 2-layer GCN (Kipf & Welling, 2017)
is used. On OGBN-Arxiv, GCNMF goes out-of-memory and is not reported.

Dataset Full Features 50.0% Missing 90.0% Missing 99.0% Missing

Cora 80.39% 79.70%(-0.86%) 79.77%(-0.77%) 78.22%(-2.70%)
CiteSeer 67.48% 65.74%(-2.57%) 65.57%(-2.82%) 65.40%(-3.08%)
PubMed 77.36% 76.68%(-0.89%) 75.85%(-1.96%) 74.29%(-3.97%)
Photo 91.73% 91.29%(-0.48%) 89.48%(-2.46%) 87.73%(-4.36%)
Computers 85.65% 84.77%(-1.04%) 82.71%(-3.43%) 80.94%(-5.51%)
OGBN-Arxiv 72.22% 71.42%(-1.10%) 70.47%(-2.43%) 69.09%(-4.33%)
OGBN-Products 78.70% 77.16%(-1.96%) 75.94%(-3.51%) 74.94%(-4.78%)
Average 79.08% 78.11%(-1.27%) 77.11%(-2.48%) 75.80%(-4.10%)

Table 1: Performance of Feature Propagation (combined with a GCN model) for 50%, 90% and
99% of missing features, and relative drop compared to the performance of the same model when
all features are present. On average, our method loses only 2.50% of relative accuracy with 90% of
missing features, and 4.12% with 99% of missing features.

Dataset GCNMF PaGNN Label Propagation FP (Ours)

Cora 34.54±2.07 58.03±0.57 74.68±0.36 78.22±0.32
CiteSeer 30.65±1.12 46.02±0.58 64.60±0.40 65.40±0.54
PubMed 39.80±0.25 54.25±0.70 73.81±0.56 74.29±0.55
Photo 29.64±2.78 85.41±0.28 83.45±0.94 87.73±0.27
Computers 30.74±1.95 77.91±0.33 74.48±0.61 80.94±0.37
OGBN-Arxiv OOM 53.98±0.08 67.56±0.00 69.09±0.06
OGBN-Products OOM OOM 74.42±0.00 74.94±0.07

Table 2: Performance of GCNMF, PaGNN and FP(+GCN) with 99% of features missing, as well as
Label Propagation (which is feature-agnostic). GCNMF and PaGNN perform respectively 58.33%
and 21.25% worse in terms of relative accuracy in this scenario compared to when all the features
are present. In comparison, FP has only a 4.12% drop.

Node Classification Results. Figure 3 shows the results for different rates of missing features (x-
axis), when using GCN as a downstream GNN (results with GraphSAGE are reported in Figure 6
of the Appendix). FP matches or outperforms other methods in all scenarios. Both GCNMF and
PaGNN are consistently outperformed by the simple Neighbor Mean baseline. This is not com-
pletely unexpected, as Neighbor Mean can be seen as a first-order approximation of Feature Propa-

7

Under review as a conference paper at ICLR 2022

0.0 0.2 0.4 0.6 0.8

Homophily

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
ur

ac
y

50% Missing Features

0.0 0.2 0.4 0.6 0.8

Homophily

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
ur

ac
y

80% Missing Features

0.0 0.2 0.4 0.6 0.8

Homophily

0.2

0.4

0.6

0.8

1.0

T
es

t
A

cc
ur

ac
y

99% Missing Features
No Missing Features

Zero

FP (Ours)

Figure 5: Test accuracy on the synthetic datasets from Abu-El-Haija et al. (2019) with different
levels of homophily. We use GraphSage as downstream model as it is preferable to GCN on low
homophily data (Zhu et al., 2020).

gation, where only one step of propagation is performed (and with a slightly different normalization
of the diffusion operator). We elaborate on the relation between Neighbor Mean and Feature Propa-
gation as well as on the results of the other baselines in Section A.4 of the Appendix. Interestingly,
most methods perform extremely well up to 50% of missing features, suggesting that in general
node features are redundant, as replacing half of them with zeroa (Zero baseline) has little effect
on the performance. The gap between methods opens up from around 60% of missing features,
and is particularly large for extremely high rates of missing features (90% or 99%): FP is the only
feature-aware method which is robust to these high rates on all datasets (see Table 2). Moreover, FP
outperforms Label Propagation on all datasets, even in the extreme case of 99% missing features.
On some datasets, such as Cora, Photo, and Computers, the gap is especially significant. We con-
clude that reconstructing the missing features using FP is indeed useful for the downstream task.
We highlight the surprising results that, on average, FP with 99% missing features performs only
4.12% worse (in relative accuracy terms) than the same GNN model used with no missing features,
compared to 58.33% and 21.25% for GCNMF and PaGNN respectively.

FP (Ours) PaGNN GCNMF
0

5

10

15

20

25

R
un

ni
ng

T
im

e
(s

)

7.89

24.12 23.87

Computers

FP (Ours) PaGNN GCNMF
0

50

100

150

200

250

R
un

ni
ng

T
im

e
(s

)

98.45

271.85

OOM

OGBN-Arxiv

Figure 4: Run-time (in seconds) of FP, PaGNN and GCNMF.
FP is 3x faster than both other methods. GCNMF goes out-of-
memory (OOM) on OGBN-Arxiv.

Run-time analysis. Feature
Propagation scales to extremely
large graphs, as it only consists
of repeated sparse-to-dense ma-
trix multiplications. Moreover,
it can be regarded as a pre-
processing step, and performed
only once, separately from
training. In Figure 4 we com-
pare the run-time to complete
the training of the model for FP,
PaGNN and GCNMF. The time
for FP includes both the feature
propagation step to reconstruct
the missing features, as well as training of a downstream GCN model. FP is around 3x faster than
PaGNN and GCNMF. The propagation step of FP takes only a fraction of the total running time, and
the vast majority of the time is spent in training of the donwstream model. The feature propagation
step takes only ∼0.6s for Computers, ∼0.8s for OGBN-Arxiv and ∼10.5s for OGBN-Products
using a single GPU. Both PaGNN and GCNMF go out-of-memory on OGBN-Products.

When does Feature Propagation work? Since FP can be interpreted as a low-pass filter that
smoothes the features on the graph, we expect it to be suitable in the case of homophilic graph
data (where neighbors tend to have similar attributes), and, conversely, to suffer in scenarios of low
homophily. To verify this, we experiment on the synthetic dataset from Abu-El-Haija et al. (2019),
which consists of 10 graphs with different levels of homophily. Figure 5 confirms our hypothesis:
when the homophily is high, Feature Propagation performs similarly to the case when all the features
are known. As the homophily decreases, the gap between the two widens to become extremely large

8

Under review as a conference paper at ICLR 2022

in cases of zero homophily. In such scenarios, FP is only slightly better than setting the missing
features to zero (Zero baseline). This observation calls for a different kind of non-homogeneous
diffusion dependent on the features that can potentially be made learnable for low-homophily data.
We leave this as future work.

6 CONCLUSION

We have introduced a novel approach for handling missing node features in graph-learning tasks.
Our Feature Propagation model can be directly derived from energy minimization, and can be im-
plemented as an efficient iterative algorithm where the features are multiplied by a diffusion matrix,
before resetting the known features to their original value. Experiments on a number of datasets sug-
gest that FP can reconstruct the missing features in a way that is useful for the downstream task, even
when 99% of the features are missing. FP outperforms recently proposed methods by a significant
margin on common benchmarks, while also being extremely scalable.

Limitations. While our method is designed for homophilic graphs, a more general learnable diffu-
sion could be adopted to perform well in low homophily scenarios, as discussed in Section 5. Feature
Propagation is designed for graphs with only one node and edge type, however it could be extended
to heterogenous graphs by having separate diffusions for different types of edges and nodes. Finally,
Feature Propagation treats feature channels independently. To account for dependencies, diffusion
with channel mixing should be used.

Reproducibility Statement. The datasets used in this paper are publicly available and can be ob-
tained from either the Pytorch-Geometric library (Fey & Lenssen, 2019) or Open Graph Bench-
mark (Hu et al., 2020). In the supplementary material we provide our code, together with a
README file explaining in detail how to reproduce the results presented in the paper. All hy-
perparameters and their values are listed in section 5.

Ethical Statement. Our work is aimed at improving the performance of Graph Neural Networks.
While we believe that nothing in our work raises specific ethical concerns, the recent broad adop-
tion of GNNs in industrial applications opens the possibility to the misuse of such methods with
potentially detrimental societal impact.

REFERENCES

Ralph Abboud, İsmail İlkan Ceylan, Martin Grohe, and Thomas Lukasiewicz. The surprising power
of graph neural networks with random node initialization. In Proceedings of the Thirtieth Inter-
national Joint Conference on Artificial Intelligence, IJCAI-21, pp. 2112–2118, 2021.

Sami Abu-El-Haija, Bryan Perozzi, Amol Kapoor, Hrayr Harutyunyan, Nazanin Alipourfard,
Kristina Lerman, Greg Ver Steeg, and Aram Galstyan. Mixhop: Higher-order graph convolu-
tion architectures via sparsified neighborhood mixing. In International Conference on Machine
Learning (ICML), 2019.

Peter Battaglia, Jessica Blake Chandler Hamrick, Victor Bapst, Alvaro Sanchez, Vinicius Zambaldi,
Mateusz Malinowski, Andrea Tacchetti, David Raposo, Adam Santoro, Ryan Faulkner, Caglar
Gulcehre, Francis Song, Andy Ballard, Justin Gilmer, George E. Dahl, Ashish Vaswani, Kelsey
Allen, Charles Nash, Victoria Jayne Langston, Chris Dyer, Nicolas Heess, Daan Wierstra, Push-
meet Kohli, Matt Botvinick, Oriol Vinyals, Yujia Li, and Razvan Pascanu. Relational inductive
biases, deep learning, and graph networks. arXiv preprint arXiv:1806.01261, 2018.

Abraham Berman and Robert J. Plemmons. Nonnegative Matrices in the Mathematical Sciences.
SIAM, 1994.

Michael M. Bronstein, Joan Bruna, Yann LeCun, Arthur Szlam, and Pierre Vandergheynst. Geo-
metric deep learning: Going beyond Euclidean data. IEEE Signal Processing Magazine, 34(4):
18–42, 2017.

Emmanuel J. Candès and Benjamin Recht. Exact matrix completion via convex optimization. Foun-
dations of Computational mathematics, 9(6):717–772, 2009.

9

Under review as a conference paper at ICLR 2022

Benjamin Paul Chamberlain, James R. Rowbottom, Maria I. Gorinova, Stefan Webb, Emanuele
Rossi, and Michael M. Bronstein. GRAND: Graph neural diffusion. In International Conference
on Machine Learning (ICML), 2021.

Xu Chen, Siheng Chen, Jiangchao Yao, Huangjie Zheng, Ya Zhang, and Ivor Tsang. Learning on
attribute-missing graphs. IEEE Transactions on Pattern Analysis and Machine Intelligence, PP,
2020.

Fan R. K. Chung. Spectral Graph Theory. Number 92. American Mathematical Soc., 1997.

Hejie Cui, Zijie Lu, Pan Li, and Carl Yang. On positional and structural node features for graph
neural networks on non-attributed graphs. International Workshop on Deep Learning on Graphs
(DLG-KDD), 2021.

Austin Derrow-Pinion, Jennifer She, David Wong, Oliver Lange, Todd Hester, Luis Perez, Marc
Nunkesser, Seongjae Lee, Xueying Guo, Peter W Battaglia, Vishal Gupta, Ang Li, Zhongwen
Xu, Alvaro Sanchez-Gonzalez, Yujia Li, and Petar Veličković. Traffic Prediction with Graph
Neural Networks in Google Maps. 2021.

David Duvenaud, Dougal Maclaurin, Jorge Aguilera-Iparraguirre, Rafael Gómez-Bombarelli, Tim-
othy Hirzel, Alán Aspuru-Guzik, and Ryan P. Adams. Convolutional networks on graphs for
learning molecular fingerprints. In Proceedings of the 28th International Conference on Neural
Information Processing Systems, pp. 2224–2232, 2015.

Matthias Fey and Jan E. Lenssen. Fast graph representation learning with PyTorch Geometric. In
ICLR Workshop on Representation Learning on Graphs and Manifolds, 2019.

Pablo Gainza, Freyr Sverrisson, Federico Monti, Emanuele Rodolà, Michael M. Bronstein, and
Bruno E. Correia. Deciphering interaction fingerprints from protein molecular surfaces. Nature
Methods, 17(2):184–192, 2020.

Justin Gilmer, Samuel S Schoenholz, Patrick F Riley, Oriol Vinyals, and George E Dahl. Neural
message passing for quantum chemistry. In International conference on machine learning, pp.
1263–1272. PMLR, 2017a.

Justin Gilmer, Samuel S. Schoenholz, Patrick F. Riley, Oriol Vinyals, and George E. Dahl. Neural
message passing for quantum chemistry. In Proceedings of the 34th International Conference on
Machine Learning, volume 70 of Proceedings of Machine Learning Research, pp. 1263–1272,
2017b.

Marco Gori, Gabriele Monfardini, and Franco Scarselli. A new model for learning in graph domains.
In Proceedings. 2005 IEEE International Joint Conference on Neural Networks, 2005., volume 2,
pp. 729–734. IEEE, 2005.

Aditya Grover and Jure Leskovec. node2vec: Scalable feature learning for networks. In Proceedings
of the 22nd ACM SIGKDD international conference on Knowledge discovery and data mining,
pp. 855–864, 2016.

William L. Hamilton, Rex Ying, and Jure Leskovec. Inductive representation learning on large
graphs. In Proceedings of the 31st International Conference on Neural Information Processing
Systems, pp. 1025–1035, 2017.

Weihua Hu, Matthias Fey, Marinka Zitnik, Yuxiao Dong, Hongyu Ren, Bowen Liu, Michele Catasta,
and Jure Leskovec. Open Graph Benchmark: Datasets for machine learning on graphs. arXiv
preprint arXiv:2005.00687, 2020.

Yifan Hu, Yehuda Koren, and Chris Volinsky. Collaborative filtering for implicit feedback datasets.
In 2008 Eighth IEEE International Conference on Data Mining, pp. 263–272, 2008.

Bo Jiang and Ziyan Zhang. Incomplete graph representation and learning via partial graph neural
networks. arXiv preprint arXiv:2003.10130, 2021.

Vassilis Kalofolias, Xavier Bresson, Michael M. Bronstein, and Pierre Vandergheynst. Matrix com-
pletion on graphs. ArXiv preprint arXiv:1408.1717, 2014.

10

Under review as a conference paper at ICLR 2022

Diederik P. Kingma and Jimmy Ba. Adam: A method for stochastic optimization. In 3rd Interna-
tional Conference on Learning Representations, ICLR, 2015.

Diederik P. Kingma and Max Welling. Auto-encoding variational Bayes. In International Confer-
ence on Learning Representations, ICLR, 2014.

Thomas N. Kipf and Max Welling. Semi-supervised classification with graph convolutional net-
works. In International Conference on Learning Representations, ICLR, 2017.

Johannes Klicpera, Stefan Weißenberger, and Stephan Günnemann. Diffusion improves graph learn-
ing. In Conference on Neural Information Processing Systems (NeurIPS), 2019.

Xinwang Liu, Xinzhong Zhu, Miaomiao Li, Lei Wang, En Zhu, Tongliang Liu, Marius Kloft, Ding-
gang Shen, Jianping Yin, and Wen Gao. Multiple kernel k-means with incomplete kernels. IEEE
Transactions on Pattern Analysis and Machine Intelligence, 42(5):1191–1204, 2020.

Federico Monti, Michael M. Bronstein, and Xavier Bresson. Geometric matrix completion with
recurrent multi-graph neural networks. In Proceedings of the 31st International Conference on
Neural Information Processing Systems, NIPS’17, pp. 3700–3710, 2017. ISBN 9781510860964.

Sunil K. Narang, Akshay Gadde, and Antonio Ortega. Signal processing techniques for interpolation
in graph structured data. In 2013 IEEE International Conference on Acoustics, Speech and Signal
Processing, pp. 5445–5449, 2013.

Bryan Perozzi, Rami Al-Rfou, and Steven Skiena. Deepwalk: Online learning of social repre-
sentations. In Proceedings of the 20th ACM SIGKDD international conference on Knowledge
discovery and data mining, pp. 701–710, 2014.

Nikhil Rao, Hsiang-Fu Yu, Pradeep K Ravikumar, and Inderjit S Dhillon. Collaborative filter-
ing with graph information: Consistency and scalable methods. In C. Cortes, N. Lawrence,
D. Lee, M. Sugiyama, and R. Garnett (eds.), Advances in Neural Information Processing Sys-
tems, volume 28. Curran Associates, Inc., 2015. URL https://proceedings.neurips.
cc/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf.

Alvaro Sanchez-Gonzalez, Jonathan Godwin, Tobias Pfaff, Rex Ying, Jure Leskovec, and Peter
Battaglia. Learning to simulate complex physics with graph networks. In International Confer-
ence on Machine Learning (ICML), 2020.

Ryoma Sato, Makoto Yamada, and Hisashi Kashima. Random features strengthen graph neural
networks. In Proceedings of the 2021 SIAM International Conference on Data Mining, SDM, pp.
333–341. SIAM, 2021.

Franco Scarselli, Marco Gori, Ah Chung Tsoi, Markus Hagenbuchner, and Gabriele Monfardini.
The graph neural network model. IEEE transactions on neural networks, 20(1):61–80, 2008.

Prithviraj Sen, Galileo Namata, Mustafa Bilgic, Lise Getoor, Brian Gallagher, and Tina Eliassi-Rad.
Collective classification in network data. AI Magazine, 29(3):93–106, 2008.

Oleksandr Shchur, Maximilian Mumme, Aleksandar Bojchevski, and Stephan Günnemann. Pitfalls
of graph neural network evaluation. Relational Representation Learning Workshop, NeurIPS,
2018.

Jonathan Shlomi, Peter Battaglia, and Jean-Roch Vlimant. Graph neural networks in particle
physics. Machine Learning: Science and Technology, 2(2):021001, 2020.

Hibiki Taguchi, Xin Liu, and Tsuyoshi Murata. Graph convolutional networks for graphs containing
missing features. Future Generation Computer Systems, 117:155–168, 2021.

Rianne van den Berg, Thomas N Kipf, and Max Welling. Graph convolutional matrix completion.
arXiv preprint arXiv:1706.02263, 2017.

Petar Veličković, Guillem Cucurull, Arantxa Casanova, Adriana Romero, Pietro Liò, and Yoshua
Bengio. Graph attention networks. International Conference on Learning Representations, ICLR,
2018.

11

https://proceedings.neurips.cc/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf
https://proceedings.neurips.cc/paper/2015/file/f4573fc71c731d5c362f0d7860945b88-Paper.pdf

Under review as a conference paper at ICLR 2022

Jason Weston, Frédéric Ratle, and Ronan Collobert. Deep learning via semi-supervised embedding.
In Proceedings of the 25th International Conference on Machine Learning, pp. 1168–1175, New
York, NY, USA, 2008. Association for Computing Machinery. ISBN 9781605582054.

Felix Wu, Amauri Souza, Tianyi Zhang, Christopher Fifty, Tao Yu, and Kilian Weinberger. Sim-
plifying graph convolutional networks. In Kamalika Chaudhuri and Ruslan Salakhutdinov (eds.),
Proceedings of the 36th International Conference on Machine Learning, volume 97 of Proceed-
ings of Machine Learning Research, pp. 6861–6871. PMLR, 09–15 Jun 2019.

Louis-Pascal Xhonneux, Meng Qu, and Jian Tang. Continuous graph neural networks. In Interna-
tional Conference on Machine Learning, pp. 10432–10441. PMLR, 2020.

Keyulu Xu, Chengtao Li, Yonglong Tian, Tomohiro Sonobe, Ken ichi Kawarabayashi, and Stefanie
Jegelka. Representation learning on graphs with jumping knowledge networks. In Jennifer Dy and
Andreas Krause (eds.), Proceedings of the 35th International Conference on Machine Learning,
volume 80 of Proceedings of Machine Learning Research, pp. 5453–5462. PMLR, 10–15 Jul
2018.

Rex Ying, Ruining He, Kaifeng Chen, Pong Eksombatchai, William L. Hamilton, and Jure
Leskovec. Graph convolutional neural networks for web-scale recommender systems. In Pro-
ceedings of the 24th ACM SIGKDD International Conference on Knowledge Discovery & Data
Mining, pp. 974–983. Association for Computing Machinery, 2018. ISBN 9781450355520.

Jinsung Yoon, James Jordon, and Mihaela van der Schaar. GAIN: Missing data imputation using
generative adversarial nets. In Proceedings of the 35th International Conference on Machine
Learning (ICML), volume 80 of Proceedings of Machine Learning Research, pp. 5689–5698.
PMLR, 2018.

Dengyong Zhou and Bernhard Schölkopf. A regularization framework for learning from graph data.
In Workshop on Statistical Relational Learning (ICML), 2004.

Jiong Zhu, Yujun Yan, Lingxiao Zhao, Mark Heimann, Leman Akoglu, and Danai Koutra. Beyond
homophily in graph neural networks: Current limitations and effective designs. Advances in
Neural Information Processing Systems (NeurIPS), 2020.

Xiaojin Zhu and Zoubin Ghahramani. Learning from labeled and unlabeled data with label propa-
gation. In Technical Report CMU-CALD-02-107, Carnegie Mellon University, 2002.

Xiaojin Zhu, Zoubin Ghahramani, and John Lafferty. Semi-supervised learning using gaussian
fields and harmonic functions. In Proceedings of the Twentieth International Conference on In-
ternational Conference on Machine Learning, ICML’03, pp. 912–919. AAAI Press, 2003. ISBN
1577351894.

Marinka Zitnik, Monica Agrawal, and Jure Leskovec. Modeling polypharmacy side effects with
graph convolutional networks. Bioinformatics, 34(13):i457–i466, 2018.

A APPENDIX

A.1 CLOSED-FORM SOLUTION FOR HARMONIC INTERPOLATION

Given the Dirichlet energy `(x, G) = 1
2x>∆x, we want to solve for missing features xu =

argminxu
`, leading to the optimality condition ∇xu

` = 0. From Eq. 1 we find ∇xu` = 0 to
be the solution of ∆ukxk + ∆uuxu = 0. The unique solution to this system of linear equations is
xu = −∆−1uu∆ukxk. We show this solution always exists by proving ∆uu is non-singular (Propo-
sition 1). The proof of this result follows from the following Lemma.

Lemma 1. Take any undirected and connected graph with adjacency matrix A ∈ {0, 1}n×n, and
normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix of A. Let Ãuu be the
bottom right submatrix of Ã where 1 ≤ b < n. Then ρ(Ãuu) < 1 where ρ(·) denotes spectral
radius.

12

Under review as a conference paper at ICLR 2022

Proof. Define

Ãup =

[
0u 0uk

0ku Ãuu

]
,

to be the matrix equal to Ãuu in the lower right b × b sub-matrix and padded with zero entries
elsewhere. Clearly Ãup ≤ Ã elementwise and Ãup 6= Ã. Furthermore, Ãup + Ã represents an
adjacency matrix of some strongly connected graph and is therefore irreducible (Berman & Plem-
mons, 1994, Theorem 2.2.7). These observations allow us to deduce that ρ(Ãup) < ρ(Ã) (Berman
& Plemmons, 1994, Corollary 2.1.5). Note that ρ(Ãup) = ρ(Ãuu) as Ãup and Ãuu share the same
non-zero eigenvalues. Furthermore, ρ(Ã) ≤ 1 as we can write Ã = I −∆ and ∆ is known to
have eigenvalues in the range [0, 2] (Chung, 1997). Combining these inequalities gives the result
ρ(Ãuu) = ρ(Ãup) < ρ(Ã) ≤ 1.

Proposition 1 (The sub-Laplacian matrix of a undirected connected graph is invertible). Take any
undirected, connected graph with adjacency matrix A ∈ {0, 1}n×n, and its Laplacian ∆ = I −
D−1/2AD−1/2, with D being the degree matrix of A. Then, for any principle sub-matrix Lu ∈
Rb×b of the Laplacian, where 1 ≤ b < n, Lu is invertible.

Proof. To prove ∆uu is non-singular it is enough to show 0 is not an eigenvalue. Note that ∆uu =
I− Ãuu so 0 is not an eigenvalue if and only if Ãuu does not have an eigenvalue equal to 1, which
follows from Lemma 1.

A.2 CLOSED-FORM SOLUTION FOR THE EULER SCHEME

Proposition 2. Take any undirected and connected graph with adjacency matrix A ∈ {0, 1}n×n,
and normalised Adjacency Ã = D−1/2AD−1/2, with D being the degree matrix of A. Let X ∈
Rn×d = X(0) ∈ Rn×d be a feature matrix and define the following recursive relation

X(k) =

[
Il 0ku

Ãuk Ãuu

]
X(k−1).

Then this recursion converges and the steady state is given to be

lim
n→∞

X(n) =

[
Xk

−∆−1kk ÃukXk

]
.

Proof. The recursive relation can be written in the following form[
X

(k)
k

X
(k)
u

]
=

[
Il 0ku

Ãuk Ãuu

][
X

(k−1)
k

X
(k−1)
u

]
=

[
X

(k−1)
k

ÃukX
(k−1)
k + ÃuuX

(k−1)
u

]
.

The first l rows remain the same so we can write X
(k)
k = X

(k−1)
k = Xk and consider just the

convergence of the last u rows

X(k−1)
u = ÃukXk + ÃuuX(k−1)

u .

We can look at the stationary behaviour by unrolling this recursion and taking the limit to find
stationary state

lim
n→∞

X(n)
u = lim

n→∞
Ãn

uuX(0)
u +

(
n∑

i=1

Ã(i−1)
uu

)
ÃukXk.

Using Lemma 1 we find limn→∞ Ãn
uuX

(0)
u = 0 and the geometric series converges giving us the

following limit

lim
n→∞

X(n)
u =

(
Iu − Ãuu

)−1
ÃukXk = −∆−1kk ÃukXk.

13

Under review as a conference paper at ICLR 2022

Dataset Nodes Edges Features Classes

Cora 2,485 5,069 1,433 7
CiteSeer 2,120 3,679 3,703 6
PubMed 19,717 44,324 500 3
Photo 7,487 119,043 745 8
Computers 13,381 245,778 767 10
OGBN-Arxiv 169,343 1,166,243 128 40
OGBN-Products 2,449,029 123,718,280 100 47

Table 3: Dataset statistics.

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.3

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

Cora

Label Propagation

Random

Zero

Global Mean

Neighbors Mean

MGCNN

FP (Ours)

GCNMF

PaGNN

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.25

0.30

0.35

0.40

0.45

0.50

0.55

0.60

0.65

0.70

T
es

t
A

cc
ur

ac
y

CiteSeer

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

T
es

t
A

cc
ur

ac
y

PubMed

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Photo

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.4

0.5

0.6

0.7

0.8

0.9

T
es

t
A

cc
ur

ac
y

Computers

0.00 0.10 0.20 0.30 0.40 0.50 0.60 0.70 0.80 0.90 0.99

Rate of Missing Features

0.2

0.3

0.4

0.5

0.6

0.7

T
es

t
A

cc
ur

ac
y

OGBN-Arxiv

Figure 6: Test accuracy for varying rate of missing features on six common node-classification
benchmarks. For methods that require a downstream GNNs, a 2-layer GraphSAGE (Hamilton et al.,
2017) is used. On OGBN-Arxiv, GCNMF goes out-of-memory and is not reported.

14

Under review as a conference paper at ICLR 2022

A.3 BASELINES’ IMPLEMENTATION AND TUNING

Label Propagation We use the label propagation implementation provided in Pytorch-
Geometric (Fey & Lenssen, 2019). Since the method is quite sensitive to the value of the α
hyperparameter, we perform a gridsearch separately on each dataset over the following values:
[0.1, 0.2, 0.3, 0.4, 0.5, 0.6, 0.7, 0.8, 0.9, 0.95, 0.99].

MGCNN We re-implement MGCNN (Monti et al., 2017) in Pytorch by taking inspiration from
the authors’ public TensorFlow code 6. For simplicity, we use the version of the model with only
graph convolutional layers and without an LSTM. For the matrix completion training process, we
split the observed features into 50% input data, 40% training targets and 10% validation data. Once
the MGCNN model is trained, we feed it the matrix with all the observed features to predict the
whole feature matrix. This reconstructed features matrix is then used as input for a downstream
GNN (as for the feature-imputation baselines).

A.4 DISCUSSION OVER BASELINES’ PERFORMANCE

Neighborhood Averaging As for some intuition to why Neighborhood Averaging works so well,
let’s assume to have a single feature channel for simplicity. The average of neighbors’ features is a
good estimator of the true feature of a given node when the feature is observed for enough neighbors
(and it is homophilous over the graph). However, as the rate of missing features increases, the feature
may be present for only a few neighbors (or none at all), causing the estimator to have a much
higher variance (and therefore less likely to be correct). On the other hand, Feature Propagation
allows information to travel longer distances in the graph by repeatedly multiplying by the diffusion
matrix. This means that even if we do not observe the feature for any of a node’s neighbors, we
can still estimate it from nodes further away in the graph. This can be observed empirically: the
gap between Neighborhood Averaging and Feature Propagation becomes increasingly significant
for higher rates of missing features.

Zero vs Random We thank the Reviewer for bringing up this important point, and we will stress
it in the revised version of our paper. Our intuition is that in models such as GCN and GraphSage,
where node embeddings are computed as (weighted) average of neighbors embeddings, the effect
of the Zero baseline is simply to reduce the norm of the average embeddings of all nodes (since all
nodes have the same expected proportion of neighbors with missing features). On the other hand,
the Random baseline corrupts this weighted average. More generally, while for a GNN model it
could be relatively easy to learn to ignore features set to zero, and only focus on known (non-zero)
features, it would be basically impossible for the model to do the same when setting the missing
features to a random value.

However, we find Random to perform better than Zero when all features are missing. This is in line
with findings in the literature (Sato et al., 2021; Abboud et al., 2021), where Random features have
been shown to work well in conjunction with GNNs as they act as signatures for the nodes. On the
other hand, if all nodes have all zero vectors, it becomes basically impossible to distinguish them.
After applying a GNN, all nodes will still have very similar embeddings and the task performance
will be close to a random guess.

6https://github.com/fmonti/mgcnn

15

	Introduction
	Preliminaries
	Feature Propagation
	Related Work
	Experiments and Discussion
	Conclusion
	Appendix
	Closed-Form Solution for Harmonic Interpolation
	Closed-Form Solution for the Euler scheme
	Baselines' Implementation and Tuning
	Discussion Over Baselines' Performance

