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ABSTRACT

Weight sharing promises to make neural architecture search (NAS) tractable even
on commodity hardware. Existing methods in this space rely on a diverse set of
heuristics to design and train the shared-weight backbone network, a.k.a. the super-
net. Since heuristics substantially vary across different methods and have not been
carefully studied, it is unclear to which extent they impact super-net training and
hence the weight-sharing NAS algorithms. In this paper, we disentangle super-net
training from the search algorithm, isolate 14 frequently-used training heuristics,
and evaluate them over three benchmark search spaces. Our analysis uncovers that
several commonly-used heuristics negatively impact the correlation between super-
net and stand-alone performance, whereas simple, but often overlooked factors,
such as proper hyper-parameter settings, are key to achieve strong performance.
Equipped with this knowledge, we show that simple random search achieves
competitive performance to complex state-of-the-art NAS algorithms when the
super-net is properly trained.

1 INTRODUCTION

Neural architecture search (NAS) has received growing attention in the past few years, yielding state-
of-the-art performance on several machine learning tasks (Liu et al., 2019a; Wu et al., 2019; Chen
et al., 2019b; Ryoo et al., 2020). One of the milestones that led to the popularity of NAS is weight
sharing (Pham et al., 2018; Liu et al., 2019b), which, by allowing all possible network architectures to
share the same parameters, has reduced the computational requirements from thousands of GPU hours
to just a few. Figure 1 shows the two phases that are common to weight-sharing NAS (WS-NAS)
algorithms: the search phase, including the design of the search space and the search algorithm; and
the evaluation phase, which encompasses the final training protocol on the proxy task 1.

While most works focus on developing a good sampling algorithm (Cai et al., 2019; Xie et al., 2019)
or improving existing ones (Zela et al., 2020a; Nayman et al., 2019; Li et al., 2020), they tend to
overlook or gloss over important factors related to the design and training of the shared-weight
backbone network, i.e. the super-net. For example, the literature encompasses significant variations
of learning hyper-parameter settings, batch normalization and dropout usage, capacities for the initial
layers of the network, and depth of the super-net. Furthermore, some of these heuristics are directly
transferred from standalone network training to super-net training without carefully studying their
impact in this drastically different scenario. For example, the fundamental assumption of batch
normalization that the input data follows a slowly changing distribution whose statistics can be
tracked during training is violated in WS-NAS, but nonetheless typically assumed to hold.

In this paper, we revisit and systematically evaluate commonly-used super-net design and training
heuristics and uncover the strong influence of certain factors on the success of super-net training. To
this end, we leverage three benchmark search spaces, NASBench-101 (Ying et al., 2019), NASBench-
201 (Dong & Yang, 2020), and DARTS-NDS (Radosavovic et al., 2019), for which the ground-truth
stand-alone performance of a large number of architectures is available. We report the results of
our experiments according to two sets of metrics: i) metrics that directly measure the quality of the
super-net, such as the widely-adopted super-net accuracy 2 and a modified Kendall-Tau correlation
between the searched architectures and their ground-truth performance, which we refer to as sparse

1Proxy task refers to the tasks that neural architecture search aims to optimize on.
2The mean accuracy over a small set of randomly sampled architectures during super-net training.
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Figure 1: WS-NAS benchmarking. Green blocks indicate which aspects of NAS are benchmarked
in different works. A search algorithm usually consists of a search space that encompass many
architectures, and a policy to select the best one. P indicates a training protocol, and f a mapping
function from the search space to a neural network. (a) Early works fixed and compared the metrics
on the proxy task, which doesn’t allow for a holistic comparison between algorithms. (b) The
NASBench benchmark series partially alleviates the problem by sharing the stand-alone training
protocol and search space across algorithms. However, the design of the weight-sharing search space
and training protocol is still not controlled. (c) We fill this gap by benchmarking existing techniques
to construct and train the shared-weight backbone. We provide a controlled evaluation across three
benchmark spaces.

Kendall-Tau; ii) proxy metrics such as the ability to surpass random search and the stand-alone
accuracy of the model found by the WS-NAS algorithm.

Via our extensive experiments (over 700 GPU days), we uncover that (i) the training behavior of a
super-net drastically differs from that of a standalone network, e.g., in terms of feature statistics and
loss landscape, thus allowing us to define training factor settings, e.g., for batch-normalization (BN)
and learning rate, that are better suited for super-nets; (ii) while some neglected factors, such as the
number of training epochs, have a strong impact on the final performance, others, believed to be
important, such as path sampling, only have a marginal effect, and some commonly-used heuristics,
such as the use of low-fidelity estimates, negatively impact it; (iii) the commonly-adopted super-net
accuracy is unreliable to evaluate the super-net quality.

Altogether, our work is the first to systematically analyze the impact of the diverse factors of super-net
design and training, and we uncover the factors that are crucial to design a super-net, as well as
the non-important ones. Aggregating these findings allows us to boost the performance of simple
weight-sharing random search to the point where it reaches that of complex state-of-the-art NAS
algorithms across all tested search spaces. We will release our code and trained models so as to
establish a solid baseline to facilitate further research.

2 PRELIMINARIES AND RELATED WORK

We first introduce the necessary concepts that will be used throughout the paper. As shown in
Figure 1(a), weight-sharing NAS algorithms consist of three key components: a search algorithm that
samples an architecture from the search space in the form of an encoding, a mapping function fproxy
that maps the encoding into its corresponding neural network, and a training protocol for a proxy task
Pproxy for which the network is optimized.

To train the search algorithm, one needs to additionally define the mapping function fws that
generates the shared-weight network. Note that the mapping fproxy frequently differs from fws,
since in practice the final model contains many more layers and parameters so as to yield competitive
results on the proxy task. After fixing fws, a training protocol Pws is required to learn the super-net.
In practice, Pws often hides factors that are critical for the final performance of an approach, such
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as hyper-parameter settings or the use of data augmentation strategies to achieve state-of-the-art
performance (Liu et al., 2019b; Chu et al., 2019; Zela et al., 2020a). Again, Pws may differ from
Pproxy, which is used to train the architecture that has been found by the search. For example, our
experiments reveal that the learning rate and the total number of epochs frequently differ due to the
different training behavior of the super-net and stand-alone architectures.

Many strategies have been proposed to implement the search algorithm, such as reinforcement learn-
ing (Zoph & Le, 2017; Zoph et al., 2018), evolutionary algorithms (Real et al., 2017; Miikkulainen
et al., 2019; So et al., 2019; Liu et al., 2018; Lu et al., 2018), gradient-based optimization (Liu et al.,
2019b; Xu et al., 2020; Li et al., 2020), Bayesian optimization (Kandasamy et al., 2018; Jin et al.,
2019; Zhou et al., 2019; Wang et al., 2020), and separate performance predictors (Liu et al., 2018;
Luo et al., 2018). Until very recently, the common trend to evaluate NAS consisted of reporting the
searched architecture’s performance on the proxy task (Xie et al., 2019; Real et al., 2019; Ryoo et al.,
2020). This, however, hardly provides real insights about the NAS algorithms themselves, because of
the many components involved in them. Many factors that differ from one algorithm to another can
influence the performance. In practice, the literature even commonly compares NAS methods that
employ different protocols to train the final model.

Li & Talwalkar (2019) and Yu et al. (2020b) were the first to systematically compare different
algorithms with the same settings for the proxy task and using several random initializations. Their
surprising results revealed that many NAS algorithms produce architectures that do not significantly
outperform a randomly-sampled architecture. Yang et al. (2020) highlighted the importance of
the training protocol Pproxy. They showed that optimizing the training protocol can improve the
final architecture performance on the proxy task by three percent on CIFAR-10. This non-trivial
improvement can be achieved regardless of the chosen sampler, which provides clear evidence for the
importance of unifying the protocol to build a solid foundation for comparing NAS algorithms.

In parallel to this line of research, the recent series of “NASBench” works (Ying et al., 2019; Zela
et al., 2020b; Dong & Yang, 2020) proposed to benchmark NAS approaches by providing a complete,
tabular characterization of a search space. This was achieved by training every realizable stand-alone
architecture using a fixed protocol Pproxy. Similarly, other works proposed to provide a partial
characterization by sampling and training a sufficient number of architectures in a given search space
using a fixed protocol (Radosavovic et al., 2019; Zela et al., 2020a; Wang et al., 2020).

While recent advances for systematic evaluation are promising, no work has yet thoroughly stud-
ied the influence of the super-net training protocol Pws and the mapping function fws. Previous
works (Zela et al., 2020a; Li & Talwalkar, 2019) performed hyper-parameter tuning to evaluate their
own algorithms, and focused only on a few parameters. We fill this gap by benchmarking different
choices of Pws and fws and by proposing novel variations to improve the super-net quality.

Recent works have shown that sub-nets of super-net training can surpass some human designed
models without retraining (Yu et al., 2020a; Cai et al., 2020) and that reinforcement learning can
surpass the performance of random search (Bender et al., 2020). However, these findings are still
only shown on MobileNet-like search spaces where we only search for the size of convolution kernels
and the channel ratio for each layer. This is an effective approach to discover a compact network, but
it does not change the fact that on cell-based search space super-net quality remains low.

3 EVALUATION METHODOLOGY

We first isolate 14 factors that need to be considered during the design and training of a super-net,
and then introduce the metrics to evaluate the quality of the trained super-net. Note that these factors
are agnostic to the search policy that is used after training the super-net.

3.1 DISENTANGLING THE SUPER-NET FROM THE SEARCH ALGORITHM

Our goal is to evaluate the influence of the super-net mapping fws and weight-sharing training
protocol Pws. As shown in Figure 2, fws translates an architecture encoding, which typically consists
of a discrete number of choices or parameters, into a neural network. Based on a well-defined
mapping, the super-net is a network in which every sub-path has a one-to-one mapping with an
architecture encoding (Pham et al., 2018). Recent works (Xu et al., 2020; Li et al., 2020; Ying et al.,
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WS Mapping fws WS Protocol Pws

implementation low fidelity hyperparam. sampling

Dynamic Channeling # layer batch-norm FairNAS
OFA Conv train portion learning rate Random-NAS

WSBN batch size epochs Random-A
Dropout # channels weight decay

Op on Node/Edge

Table 1: Summary of factors

Macro Parameters

# cells
# channel of first 
dropout rate
etc…

Cell Parameters

# node
Topology
Operation choices
etc…

Architecture Encoding Training protocol

Train Parameters

Learning rate
Decay 
Epochs
etc…

fws

Pws(Ω)

Ω

Cell 1 Cell 2 Cell n…I Y

conv-3x3

Op Choice

conv-5x5

max-3x3

Cell

Figure 2: Constructing a super-net

2019) separate the encoding into cell parameters, which define the basic building blocks of a network,
and macro parameters, which define how cells are assembled into a complete architecture.

Weight-sharing mapping fws. To make the search space manageable, all cell and macro parameters
are fixed during the search, except for the topology of the cell and its possible operations. However, the
exact choices for each of these fixed factors differ between algorithms and search spaces. We report
the common factors in the left part of Table 1. They include various implementation choices, e.g., the
use of convolutions with a dynamic number of channels (Dynamic Channeling), super-convolutional
layers that support dynamic kernel sizes (OFA Kernel) (Cai et al., 2020), weight-sharing batch-
normalization (WSBN) that tracks independent running statistics and affine parameters for different
incoming edges (Luo et al., 2018), and path and global dropout (Pham et al., 2018; Luo et al., 2018;
Liu et al., 2019b). They also include the use of low-fidelity estimates (Elsken et al., 2019) to reduce
the complexity of super-net training, e.g., by reducing the number of layers (Liu et al., 2019b) and
channels (Yang et al., 2020; Chen et al., 2019a), the portion of the training set used for super-net
training (Liu et al., 2019b), or the batch size (Liu et al., 2019b; Pham et al., 2018; Yang et al., 2020).

Weight-sharing protocol Pws. Given a mapping fws, different training protocols Pws can be
employed to train the super-net. Protocols can differ in the training hyper-parameters and the
sampling strategies they rely on. We will evaluate the different hyper-parameter choices listed
in the right part of Table 1. This includes the initial learning rate, the hyper-parameters of batch
normalization, the total number of training epochs, and the amount of weight decay.

We randomly sample one path to train the super-net (Guo et al., 2019), which is also known as
single-path one-shot (SPOS) or Random-NAS (Li & Talwalkar, 2019). The reason for this choice
is that Random-NAS is equivalent to the initial state of many search algorithms (Liu et al., 2019b;
Pham et al., 2018; Luo et al., 2018), some of which even freeze the sampler training so as to use
random sampling to warm-up the super-net (Xu et al., 2020; Dong & Yang, 2019b). Note that we also
evaluated two variants of Random-NAS, but found their improvement to be only marginal. Please see
Appendix C.2 for more detail.

In our experiments, for the sake of reproducibility, we ensure that Pws and Pproxy, as well as fws

and fproxy , are as close to each other as possible. For the hyper-parameters of Pws, we cross-validate
each factor following the order in Table 1, and after each validation, use the value that yields the best
performance in Pproxy . For all other factors, we change one factor at a time.

Search spaces. We use three commonly-used search spaces, for which a large number of stand-alone
architectures have been trained and evaluated on CIFAR-10 (Krizhevsky et al., 2009) to obtain their
ground-truth performance. In particular, we use NASBench-101 (Ying et al., 2019), which consists
of 423, 624 architectures and is compatible with weight-sharing NAS (Yu et al., 2020b; Zela et al.,
2020b); NASBench-201 (Dong & Yang, 2020), which contains more operations than NASBench-101
but fewer nodes; and DARTS-NDS (Radosavovic et al., 2019) that contains over 1013 architectures of
which a subset of 5000 models was sampled and trained in a stand-alone fashion. See Appendix A.2
for a detailed discussion.

3.2 SPARSE KENDALL-TAU - A NOVEL SUPER-NET EVALUATION METRIC

We define a novel super-net metric, which we name sparse Kendall-Tau. It is inspired by the Kendall-
Tau metric used by Yu et al. (2020b) to measure the discrepancy between the ordering of stand-alone
architectures and the ordering that is implied by the trained super-net. An ideal super-net should yield
the same ordering of architectures as the stand-alone one and thus would lead to a high Kendall-Tau.
However, Kendall-Tau is not robust to negligible performance differences between architectures (c.f.
Figure 3). To robustify this metric, we share the rank between two architectures if their stand-alone
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Figure 3: Kendall-Tau vs sparse Kendall-Tau.
Kendall-Tau is not robust when many architectures
have similar performance. Minor performance dif-
ferences can lead to large perturbations in the rank-
ing. Our sparse Kendall-Tau alleviates this by dis-
missing minor differences in performance.

accuracies differ by less than a threshold (0.1%
here). Since the resulting ranks are sparse, we
call this metric sparse Kendall-Tau (s-KdT).
Note that we also compare Kendall-Tau and
Spearman correlation in Appendix A.3, and pro-
vide implementation details in Appendix A.4.

Although, sparse Kendall-Tau captures the
super-net quality well, it may fail in extreme
cases, such as when the top-performing archi-
tectures are ranked perfectly while poor ones
are ordered randomly. To account for such rare
situations and ensure the soundness of our analy-
sis, we also report additional metrics. We define
two groups of metrics to holistically evaluate
different aspects of a trained super-net. The first
group of metrics directly evaluates the quality of the super-net, including sparse Kendall-Tau and the
widely-adopted super-net accuracy. For the super-net accuracy, we report the average accuracy of
200 architectures on the validation set of the dataset of interest. We will refer to this metric simply
as accuracy. It is frequently used (Guo et al., 2019; Chu et al., 2019) to assess the quality of the
trained super-net, but we will show later that it is in fact a poor predictor of the final stand-alone
performance. The metrics in the second group evaluate the search performance of a trained super-net.
The first metric is the probability to surpass random search: Given the ground-truth rank r of the
best architecture found after n runs and the maximum rank rmax, equal to the total number of
architectures, the probability that the best architecture found is better than a randomly searched one is
given by p = 1− (1− (r/rmax))

n. Finally, where appropriate, we report the stand-alone accuracy of
the model that was found by the complete WS-NAS algorithm. Concretely, we randomly sample 200
architectures, select the 3 best models based on the super-net accuracy and query the ground-truth
performance. We then take the mean of these architectures as stand-alone accuracy. Note that the
same architectures are used to compute the sparse Kendall-Tau.

4 ANALYSIS

We provide an analysis on the impact of the factors that are shown in Table 1 across three different
search spaces. Note that, in this section, we present the factors that are the most important for
performance; our analysis of the remaining factors is provided in Appendix C.

4.1 EVALUATION OF A SUPER-NET
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Figure 4: Super-net evaluation. We collect all
experiments across 3 benchmark spaces. (Top)
Pairwise plots of super-net accuracy, final perfor-
mance, and the sparse Kendall-Tau. Each point
corresponds to statistics computed over a trained
super-net. (Bottom) Spearman correlation coeffi-
cients between the metrics.

The standalone performance of the architecture
that is found by a NAS algorithm is clearly
the most important metric to judge its merits.
However, in practice, one cannot access this
metric—we wouldn’t need NAS if standalone
performance was easy to query (the cost of com-
puting stand-alone performance is discussed in
Appendix B.2). Furthermore, stand-alone per-
formance inevitably depends the sampling pol-
icy, and does not directly evaluate the quality
of the super-net (see Appendix B.3). Conse-
quently, it is important to rely on metrics that
are well correlated with the final performance
but can be queried efficiently. To this end, we
collect all our experiments and plot the pairwise
correlation between final performance, sparse
Kendall-Tau, and super-net accuracy. As shown
in Figure 4, the super-net accuracy has a low
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correlation with the final performance on NASBench-101 and DARTS-NDS. Only on NASBench-201
does it reach a correlation of 0.52. The sparse Kendall-Tau yields a consistently higher correlation
with the final performance. This is evidence that one should not focus too strongly on improving the
super-net accuracy. While this metric remains computationally heavy, it serves as a middle ground
that is feasible to evaluate in real-world applications.

In the following experiments, we thus mainly rely on sparse Kendall-Tau, and use final search
performance as a reference only. We report the training details in Appendix B.1 and the complete
results of all metrics in Appendix C.6.

4.2 BATCH NORMALIZATION IN THE SUPER-NET

Batch normalization (BN) is commonly used in standalone networks to allow for faster and more
stable training. It is thus also employed in most CNN search spaces. However, BN behaves differently
in the context of WS-NAS, and special care has to be taken when using it. In a standalone network
(c.f. Figure 5 (Top)), a BN layer during training computes the batch statistics µB and σB , normalizes
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Figure 5: Batch normalization in
standalone and super-net training.
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Figure 6: Validation of BN.

the activations fA(x) as (fA(x)−µB)/σB , and finally updates
the population statistics using a moving average. For instance,
the mean statistics is updated as µ̂ ← γµ̂ + (1 − γ)µB . At
test time, the stored population statistics are used to normalize
the feature map. In the standalone setting, both batch and
population statistics are unbiased estimators of the population
distribution N (µ, σ).

By contrast, when training a super-net (Figure 5 (Bottom)) the
population statistics that are computed based on the running
average are not unbiased estimators of the population distri-
bution, because the effective architecture before the BN layer
varies in each epoch. More formally, let fAi

denote the i-th
architecture. During training, the batch statistics are computed
as µi

B =
∑

j fAi
(xj)/m, and the output feature follows the

distribution N (µi
B , σ

i
B), where the superscript i indicates that

the current batch statistics depends on Ai only. The population
mean statistics is then updated as µ̂← γµ̂+ (1− γ)µi

B . How-
ever, during training, different architecture from the super-net
are sampled. Therefore, the population mean statistics essen-
tially becomes a weighted combination of means from different
architectures, i.e., µ̂ ←∑

αiµ
i
B =

∑
αifAi

(x), where αi is
the sampling frequency of the i-th architecture. When eval-
uating a specific architecture Ai at test time, the estimated
population statistics thus depend on the other architectures in
the super-net. This leads to a train-test discrepancy. One solu-
tion to mitigate this problem is to re-calibrate the batch statistics
by recomputing the statistics on the entire training set before
the the final evaluation (Yu & Huang, 2019). While the cost of
doing so is negligible for a standalone network, NAS algorithms typically sample∼ 105 architectures
for evaluation, which makes this approach intractable.

In contrast to Dong & Yang (2020) and Bender et al. (2020) who use the training mode also during
testing, we formalize a simple, yet effective, approach to tackle the train-test discrepancy of BN in
super-net training: we leave the normalization based on batch statistics during training unchanged,
but use batch statistics also during testing. Since super-net evaluation is always conducted over a
complete dataset, we are free to perform inference in mini-batches of the same size as the ones used
during training. This allows us to compute the batch statistics on the fly in the exact same way as
during training.

Figure 6 compares standard BN to our proposed modification. Using the tracked population statis-
tics leads to many architectures with an accuracy around 10%, i.e., performing no better than
random guessing. Our proposed modification allows us to significantly increase the fraction of
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(a) Stand-alone (b) Super-net

Figure 7: Loss landscapes.

super-net acc.learning rate sparse KdT 

Figure 8: Learning rate on NASBench-201.

high-performing architectures. Our results also show that the choice of fixing vs. learning an affine
transformation in batch normalization should match the standalone protocol Pproxy .

4.3 SUPER-NET LOSS LANDSCAPES

The training loss of the super-net encompasses the task losses of all possible architectures. We suspect
that the training difficulty increases with the number of architectures represented by the super-net.
To better study this, we visualize the loss landscape (Li et al., 2018) of the standalone network and
a super-net with n = 300 architectures. Concretely, the landscape is computed over the super-net
training loss under the single-path one-shot sampling method,

Ls(x, θs) =
∑
i

Ls(x, θi), where ∀i,∪iθi = θs. (1)

Figure 7 shows that the loss landscape of the super-net is less smooth than that of a standalone
architecture, which confirms our intuition. A smoother landscape indicates that optimization will
converge more easily to a good local optimum. With a smooth landscape, one can thus use a relatively
large learning. By contrast, a less smooth landscape requires using a smaller one.

Our experiments further confirm this observation. In the standalone protocol Pproxy, the learning
rate is set to 0.2 for NASBench-101, and to 0.1 for NASBench-201 and DARTS-NDS, respectively.
All protocols use a cosine learning rate decay. Figure 8 shows that super-net training requires
lower learning rates than standalone training. The same trend is shown for other search spaces in
Appendix C.1. We set the learning rate to 0.025 to be consistent across the three search spaces.

4.4 LOWER FIDELITY ESTIMATES LOWER THE RANKING CORRELATION

Table 2: Low fidelity estimates under same com-
putational budget, reporting final search model ac-
curacy (FSA) and sparse Kendall-Tau (S-KdT) on
NASBench-201.

Metrics Settings

Repeated cells 3 2 1

S-KdT 0.751 ± 0.09 0.692 ± 0.18 0.502 ± 0.21
FSA 91.91 ± 0.09 91.95 ± 0.10 90.30 ± 0.71

Init Channel 16 8 4

S-KdT 0.740 ± 0.07 0.677 ± 0.10 0.691 ± 0.15
FSA 92.92 ± 0.48 92.32 ± 0.37 92.79 ± 0.85

Batch-size 256 128 64

S-KdT 0.740 ± 0.07 0.728 ± 0.16 0.703 ± 0.16
FSA 92.92 ± 0.48 92.37 ± 0.61 92.35 ± 0.34

Train portion 0.75 0.5 0.25

S-KdT 0.751 ± 0.11 0.742 ± 0.12 0.693 ± 0.13
FSA 92.13 ± 0.51 92.74 ± 0.43 91.47 ± 0.81

Reducing memory foot-print and training time
by proposing smaller super-nets has been an
active research direction, and the resulting
super-nets are referred to as lower fidelity es-
timates (Elsken et al., 2019). The impact of this
approach on the super-net quality, however, has
never been studied systematically over multiple
search spaces . We compare four popular strate-
gies in Table 2. We deliberately prolong the
training epochs inversely proportionally to the
computational budget that would be saved by the
low-fidelity estimates, e.g. if the channel num-
ber is reduced by half, we train the model for two
times more epoch. Note that this provides an
upper bound to the performance of low-fidelity
estimates.

A commonly-used approach to reduce memory
requirements is to decrease the batch size (Yang
et al., 2020). Surprisingly, lowering the batch size from 256 to 64 has limited impact on the accuracy,
but decreases sparse Kendall-Tau and the final searched model’s performance, the most important
metric in practice.

Another approach is to decrease the number of channels in the first layer (Liu et al., 2019b). This
reduces the total number of parameters proportionally, since the number of channels in consecutive
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Type Accuracy S-KdT P > R Final searched model

Fixed 71.52 ± 6.94 0.22 0.546 91.79 ± 1.72
Shuffle 31.79 ± 10.90 0.17 0.391 90.58 ± 1.58
Interpolate 57.53 ± 10.05 0.37 0.865 93.35 ± 3.27

Baseline† 76.91 ± 10.05 0.22 0.865 89.43 ± 4.30
Baseline-v2 75.18 ± 9.28 0.33 0.891 91.27 ± 1.18
Ours 76.95 ± 8.29 0.46 0.949 93.65 ± 0.73
† See Appendix C.3 for more details.

Table 3: Dynamic channels on NASBench-101.

X In-channel

Y out-channel

1
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Figure 9: NASBench-101 dynamic channel.

layers depends on the first one. Table 2 shows that this decreases the sparse Kendall-Tau from 0.7
to 0.5. By contrast, reducing the number of repeated cells (Pham et al., 2018; Chu et al., 2019) by
one has little impact. Hence, to train a good super-net, one should avoid changes between fws and
fproxy, but one can reduce the batch size by a factor > 0.5 and use only one repeated cell.

The last lower-fidelity factor is the portion of training data that is used (Liu et al., 2019b; Xu et al.,
2020). Surprisingly, reducing the training portion only marginally decreases the sparse Kendall-Tau
for all three search spaces. On NASBench-201, keeping only 25% of the CIFAR-10 dataset results in
a 0.1 drop in sparse Kendall-Tau. This explains why DARTS-based methods typically use only 50%
of the data to train the super-net but can still produce reasonable results.

4.5 DYNAMIC CHANNELING HURTS SUPER-NET QUALITY

Dynamic channeling is an implicit factor in many search spaces (Ying et al., 2019; Cai et al., 2019;
Guo et al., 2019; Dong & Yang, 2019b). It refers to the fact that the number of channels of the
intermediate layers depends on the number of incoming edges to the output node. This is depicted by
Figure 9 (a): for a search cell with n intermediate nodes, where X and Y are the input and output
node with Cin and Cout channels, respectively. When there are n = 2 edges (c.f. Figure 9 (b)),
the associated channel numbers decrease so that their sum equals Cout. That is, the intermediate
nodes have bCout/2c channels. In the general case, shown in Figure 9 (c), the number of channels in
intermediate nodes is thus bCout/nc for n incoming edges. A weight sharing approach has to cope
with this architecture-dependent fluctuation of the number of channels during training.

Let C denote the number of channels of a given architecture, and Cmax the maximum number of
channels for a node across the entire search space. All existing approaches allocate Cmax channels
and, during training, extract a subset of these channels. The existing methods then differ in how they
extract the channels: Guo et al. (2019) use a fixed chunk of channels, e.g., [0 : C]; Zhang et al. (2018)
randomly shuffle the channels before extracting a fixed chunk; and Dong & Yang (2019a) linearly
interpolate the Cmax channels into C channels using a moving average across neighboring channels.

Instead of sharing the channels between architectures, we propose to disable dynamic channelling
completely. As the channel number only depends on the incoming edges, we separate the search
space into a discrete number of sub-spaces, each with a fixed number of incoming edges. As shown
in Table 3, disabling dynamic channeling improves the sparse Kendall-Tau and the final search
performance by a large margin and yields a new state of the art on NASBench101.

We compose another baseline, where we enable dynamic channeling during super-net training. During
validation, we compute the average sparse Kendall-Tau of each sub-space, where we sample 200
architectures that shares the same number of channels. We call this baseline-v2. In Table 3, we can
see this surpasses the original baseline by a significant margin. It further evidence the importance of
disabling dynamic channels. Nonetheless, the best is to disable dynamic channeling during both the
training and the validation phase.

5 HOW SHOULD YOU TRAIN YOUR SUPER-NET?

Figure 10 summarizes the influence of all tested factors on the final performance. It stands out that
properly tuned hyper-parameters lead to the biggest improvements by far. Surprisingly, most other
factors and techniques either have a hardly measurable effect or in some cases even lead to worse
performance. Based on these findings, here is how you should train your super-net:
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Figure 10: Influence of factors on the final model. We plot the difference in percent between
the searched model’s performance with and without applying the corresponding factor. For the
hyper-parameters of Pws, the baseline is Random NAS, as reported in Table 4. For the other factors,
the baseline of each search space uses the best setting of the hyper-parameters. Each experiment was
run at least 3 times.

1. Do not use super-net accuracy to judge the quality of your super-net. The sparse Kendall-Tau has
much higher correlation with the final search performance.

2. When batch normalization is used, do not use the moving average statistics during evaluation.
Instead, compute the statistics on the fly over a batch of the same size as used during training.

3. The loss landscape of super-nets is less smooth than that of standalone networks. Start from a
smaller learning rate than standalone training.

4. Do not use other low-fidelity estimates than moderately reducing the training set size to decrease
the search time.

5. Do not use dynamic channeling in search spaces that have a varying number of channels in the
intermediate nodes. Break the search space into multiple sub-spaces such that dynamic channeling
is not required.

Table 4: Final results. Results on NASBench-
101 and 201 are from Yu et al. (2020b), and Dong
& Yang (2020). We report the mean over 3 runs.
Note that NASBench-101 (n = 7) in (Yu et al.,
2020b) is identical to our setting. Our new strategy
significantly surpasses the random search baseline.

Method NASBench NASBench DARTS DARTS
101 (n=7) 201 NDS NDS?

ENAS 91.83 ± 0.42 54.30 ± 0.00 94.45 ± 0.09 97.11
DARTS-V2 92.21 ± 0.61 54.30 ± 0.00 94.79 ± 0.11 97.37
NAO 92.59 ± 0.59 - - 97.10
GDAS - 93.51 ± 0.13 - 96.23

Random NAS 89.89 ± 3.89 87.66 ± 1.69 91.33 ± 0.12 96.74†

Random NAS (Ours) 93.12 ± 0.06 92.71 ± 0.15 94.26 ± 0.05 97.08
†Results from Li & Talwalkar (2019)
?Trained according to Liu et al. (2019b) for 600 epochs.
DARTS-V2 (Liu et al., 2019b), ENAS (Pham et al., 2018), NAO (Luo et al., 2018).
Random-NAS (Li & Talwalkar, 2019), GDAS (Dong & Yang, 2019b)
On NASBench-201, both random NAS and our approach samples 100 final
architectures to follow Dong & Yang (2020)

Comparison to the state of the art. Table 4
shows that carefully controlling the relevant
factors and adopting the techniques proposed
in Section 4 allow us to considerably improve
the performance of Random-NAS. Thanks to
our evaluation, we were able to show that sim-
ple Random-NAS together with an appropriate
training protocol Pws and mapping function fws

yields results that are competitive to and some-
times even surpass state-of-the-art algorithms.
Our results provide a strong baseline upon which
future work can build.
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