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ABSTRACT

Learning a transition model via Maximum Likelihood Estimation (MLE) followed
by planning inside the learned model is perhaps the most standard and simplest
Model-based Reinforcement Learning (RL) framework. In this work, we show
that such a simple Model-based RL scheme, when equipped with optimistic and
pessimistic planning procedures, achieves strong regret and sample complexity
bounds in online and offline RL settings. Particularly, we demonstrate that under
the conditions where the trajectory-wise reward is normalized between zero and
one and the transition is time-homogenous, it achieves nearly horizon-free and
second-order bounds.

1 INTRODUCTION

The framework of model-based Reinforcement Learning (RL) often consists of two steps: fitting
a transition model using data and then performing planning inside the learned model. Such a simple
framework turns out to be powerful and has been used extensively in practice on applications such
as robotics and control (e.g., (Aboaf et al., 1989; Deisenroth et al., 2011; Venkatraman et al., 2017;
Williams et al., 2017; Chua et al., 2018; Kaiser et al., 2019; Yang et al., 2023)).

The simplicity of model-based RL also attracts researchers to analyze its performance in settings
such as online RL (Sun et al., 2019) and offline RL (Uehara & Sun, 2021). Mania et al. (2019)
showed that this simple scheme — fitting model via data followed by optimal planning inside the
model, has a strong performance guarantee under the classic linear quadratic regulator (LQR) control
problems. Liu et al. (2023) showed that this simple MBRL framework when equipped with optimism
in the face of the uncertainty principle, can achieve strong sample complexity bounds for a wide
range of online RL problems with rich function approximation for the models. For offline settings
where the model can only be learned from a static offline dataset, Uehara & Sun (2021) showed
that MBRL equipped with the pessimism principle can again achieve robust performance guarantees
for a large family of MDPs. Ross & Bagnell (2012) showed that in the hybrid RL setting where one
has access to both online and offline data, this simple MBRL framework again achieves favorable
performance guarantees without any optimism/pessimism algorithm design.

In this work, we do not create new MBRL algorithms, instead, we show that the extremely simple
and standard MBRL algorithm – fitting models using Maximum Likelihood Estimation (MLE),
followed by optimistic/pessimistic planning (depending on whether operating in online RL or offline
RL mode), can already achieve surprising theoretical guarantees. Particularly, we show that under
the conditions that trajectory-wise reward is normalized between zero and one, and the transition is
time-homogenous, they can achieve nearly horizon-free and instance-dependent regret and sample
complexity bounds, in both online and offline RL with non-linear function approximation. Nearly
horizon-free bounds mean that the regret or sample complexity bounds have no explicit polynomial de-
pendence on the horizon H . The motivation for studying horizon-free RL is to see if RL problems are
harder than bandits due to the longer horizon planning in RL. Our result here indicates that, even under
non-linear function approximation, long-horizon planning is not the bottleneck of achieving statistical
efficiency in RL. For instance-dependent bounds, we focus on second-order bounds. A second-order
regret bound scales with respect to the variances of the returns of policies and also directly implies a
first-order regret bound which scales with the expected reward of the optimal policy. Thus our instance-
dependent bounds can be small under situations such as nearly-deterministic systems or the optimal
policy having a small value. When specializing to the case of deterministic ground truth transitions
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(but the algorithm does not need to know this a priori), we show that these simple MBRL algorithms
demonstrate a faster convergence rate than the worst-case rates. The key message of our work is

Simple and standard MLE-based MBRL algorithms are sufficient for achieving nearly horizon-free
and second-order bounds in online and offline RL with function approximation.

We provide a fairly standard analysis to support the above claim. Our analysis follows the standard
frameworks of optimism/pessimism in the face of uncertainty. For online RL. we use ℓ1 Eluder
dimension (Liu et al., 2022; Wang et al., 2024), a condition that uses both the MDP structure and the
function class, to capture the structural complexity of exploration. For offline RL, we use the similar
concentrability coefficient in Ye et al. (2024) to capture the coverage condition of the offline data.
The key technique we leverage is the triangular discrimination – a divergence that is equivalent to
the squared Hellinger distance up to some universal constants. Triangular discrimination was used in
contextual bandit and model-free RL for achieving first-order and second-order instance-dependent
bounds (Foster & Krishnamurthy, 2021; Wang et al., 2023, 2024). Here we show that it also plays an
important role in achieving horizon-free bounds. Our contributions can be summarized as follows.
1. Our results extend the scope of the prior work on horizon-free RL which only ap-

plies to tabular MDPs or MDPs with linear functions. Given a finite model class P
(which could be exponentially large), we show that in online RL, the agent achieves an
O (
√

(∑k VaRπk) ⋅ dRL log(KH ∣P ∣/δ) + dRL log(KH ∣P ∣/δ)) regret, where K is the number of
episodes, dRL is the ℓ1 Eluder dimension, VaRπk is the variance of the total reward of pol-
icy πk learned in episode k and δ ∈ (0,1) denotes the failure probability. Similarly, for offline
RL, the agent achieves an O (

√

Cπ∗VaRπ∗ log(∣P ∣/δ)/K +C
π∗ log(∣P ∣/δ)/K) performance gap in

finding a comparator policy π∗, where Cπ∗ is the single policy concentrability coefficient over π∗,
K denotes the number of offline trajectories, VaRπ∗ is the variance of the total reward of π∗. For
offline RL with finite P , our result is completely horizon-free, not even with logH dependence.

2. When specializing to MDPs with deterministic ground truth transition (but rewards, and models
in the model class could still be stochastic), we show that the same simple MBRL algorithms
can adapt to the deterministic environment and achieve a better statistical complexity. For online
RL, the regret becomes O(dRL log(KH ∣P ∣/δ)), which only depends on the number of episodes
K poly-logarithmically. For offline RL, the performance gap to a comparator policy π∗ becomes
O (Cπ∗ log(∣P ∣/δ)/K), which is tighter than the worst-case O(1/

√
K) rate. All our results can

be extended to continuous model class P using bracket number as the complexity measure.

Overall, our work identifies the minimalist algorithms and analysis for nearly horizon-free and
instance-dependent (first & second-order) online & offline RL. By saying ”minimalist” we mean the
algorithm designs and analysis are much simpler than previous work on horizon-free and second-order
RL.

2 RELATED WORK

Model-based RL. Learning transition models with function approximation and planning with the
learned model is a standard approach in RL and control. In the control literature, certainty-equivalence
control learns a model from some data and plans using the learned model, which is simple but effective
for controlling systems such as Linear Quadratic Regulators (LQRs) (Mania et al., 2019). In RL, such
a simple model-based framework has been widely used in theory with rich function approximation,
for online RL (Sun et al., 2019; Foster et al., 2021; Song & Sun, 2021; Zhan et al., 2022; Liu et al.,
2022, 2023; Zhong et al., 2022), offline RL (Uehara & Sun, 2021), RL with representation learning
(Agarwal et al., 2020; Uehara et al., 2021), and hybrid RL using both online and offline data for
model fitting (Ross & Bagnell, 2012). Our work builds on the maximum-likelihood estimation (MLE)
approach, a standard method for estimating transition models in model-based RL.

Horizon-free and Instance-dependent bounds. Most existing works on horizon-free RL typically
focus on tabular settings or linear settings. For instance, Wang et al. (2020) firstly studied horizon-free
RL for tabular MDPs and proposed an algorithm that depends on horizon logarithmically. Several
follow-up work studied horizon-free RL for tabular MDP with better sample complexity (Zhang
et al., 2021a), offline RL (Ren et al., 2021), stochastic shortest path (Tarbouriech et al., 2021) and
RL with linear function approximation (Kim et al., 2022; Zhang et al., 2021b; Zhou & Gu, 2022;
Di et al., 2023; Zhang et al., 2024b, 2023; Zhao et al., 2023b). Note that all these works have
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logarithmic dependence on the horizon H . For the tabular setting, recent work further improved
the regret or sample complexity to be completely independent of the horizon (i.e., removing the
logarithmic dependence on the horizon) (Li et al., 2022; Zhang et al., 2022) with a worse dependence
on the cardinality of state and action spaces ∣S ∣ and ∣A∣. A recent work Li & Yang (2023) further
improved the dependence on ∣S ∣ and ∣A∣. To compare with, we show that simple MBRL algorithms
are already enough to achieve completely horizon-free (i.e., no log dependence) sample complexity
for offline RL when the transition model class is finite, and we provide a simpler approach to achieve
the nearly horizon-free results for tabular MDPs, compared with Zhang et al. (2021a). A recent
work (Huang et al., 2024) also studied the horizon-free and instance-dependent online RL in the
function approximation setting with small Eluder dimensions. They estimated the variances to
conduct variance-weighted regression. To compare, in our online RL part, we use the simple and
standard MLE-based MBRL approach and analysis to get similar guarantees. A more recent work
also studied horizon-free behavior cloning Foster et al. (2024), which is different from our settings.

Besides horizon-free RL, another line of work aimed to provide algorithms with instance-dependent
sample complexity/regret bounds, which often enjoy tighter statistical complexity compared with
previous work. To mention a few, Zanette & Brunskill (2019) proposed an EULER algorithm with
an instance-dependent regret which depends on the maximum variance of the policy return over all
policies. Later, Wagenmaker et al. (2022); Wang et al. (2023) proposed algorithms with first-order
regret bounds. A more refined second-order regret bound has been studied. The second-order regret
bound is a well-studied instance-dependent bound in the online learning and bandit literature (Cesa-
Bianchi et al., 2007; Ito et al., 2020; Olkhovskaya et al., 2024), and compared to the bounds that
depend on the maximum variance over all policies, it can be much smaller and it also implies a first-
order regret bound. Zhang et al. (2024a); Zhou et al. (2023) proposed algorithms for tabular MDP with
second-order regret bounds. Zhao et al. (2023b) studied the RL with linear function approximation and
proposed algorithms with both horizon-free and variance-dependent regret bounds. The closest work
to us is Wang et al. (2023, 2024), which used model-free distributional RL methods to achieve first-
order and second-order regret bounds in RL. Their approach relies on distributional RL, a somewhat
non-conventional approach for RL. Their regret bounds have explicit polynomial dependence on the
horizon. Our work focuses on the more conventional model-based RL algorithms and demonstrates
that they are indeed sufficient to achieve horizon-free and second-order regret bounds.

3 PRELIMINARIES

Markov Decision Processes. We consider finite horizon time-homogenous MDP M =
{S,A,H,P ⋆, r, s0} where S,A are the state and action space (could be large or even continuous),
H ∈ N+ is the horizon, P ⋆ ∶ S ×A↦∆(S) is the ground truth transition, r ∶ S ×A↦ R is the reward
signal which we assume is known to the learner, and s0 is the fixed initial state.1 Note that the transi-
tion P ⋆ here is time-homogenous. For notational easiness, we denote [K − 1] = {0,1, . . . ,K − 1}.
We denote π as a deterministic non-stationary policy π = {π0, . . . , πH−1} where πh ∶ S ↦ A maps
from a state to an action. Let Π denote the set of all such policies. V π

h (s) represents the expected
total reward of policy π starting at sh = s, and Qπ

h(s, a) is the expected total reward of the process
of executing a at s at time step h followed by executing π to the end. The optimal policy π⋆ is
defined as π⋆ = argmaxπ V

π
0 (s0). For notation simplicity, we denote V π ∶= V π

0 (s0). We will denote
dπh(s, a) as the state-action distribution induced by policy π at time step h. We sometimes will
overload notation and denote dπh(s) as the corresponding state distribution at h. Sampling s ∼ dπh
means executing π starting from s0 to h and returning the state at time step h.

Since we use the model-based approach for learning, we define a general model class P ⊂ S ×A↦
∆(S). Given a transition P , we denote V π

h;P and Qπ
h;P as the value and Q functions of policy π

under the model P . Given a function f ∶ S ×A↦ R, we denote the (Pf)(s, a) ∶= Es′∼P (s,a)f(s′).
We then denote the variance induced by one-step transition P and function f as (VP f)(s, a) ∶=
(Pf2) (s, a) − (Pf(s, a))2 which is equal to Es′∼P (s,a)f

2(s′) − (Es′∼P (s,a)f(s′))
2
.

Assumptions. We make the realizability assumption that P ⋆ ∈ P . We assume that the rewards
are normalized such that r(τ) ∈ [0,1] for any trajectory τ ∶= {s0, a0, . . . , sH−1, aH−1} where r(τ) is

1For simplicity, we assume initial state s0 is fixed and known. Our analysis can be easily extended to a
setting where the initial state is sampled from an unknown fixed distribution.
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short for ∑H−1
h=0 r(sh, ah). Note that this setting is more general than assuming each one-step reward

is bounded, i.e., r(sh, ah) ∈ [0,1/H], and allows to represent the sparse reward setting. Without
loss of generalizability, we assume V π

h;P (s) ∈ [0,1], for all π ∈ Π, h ∈ [0,H], P ∈ P, s ∈ S2.

Online RL. For the online RL setting, we focus on the episodic setting where the learner can
interact with the environment for K episodes. At episode k, the learner proposes a policy πk (based
on the past interaction history), executes πk starting from s0 to time step H − 1. We measure the
performance of the online learning via regret: ∑K−1

k=0 (V π⋆ − V πk). To achieve meaningful regret
bounds, we often need additional structural assumptions on the MDP and the model class P . We
use a ℓ1 Eluder dimension (Liu et al., 2022) as the structural condition due to its ability to capture
non-linear function approximators (formal definition will be given in Section 4).

Offline RL. For the offline RL setting, we assume that we have a pre-collected offline dataset
D = {τ i}Ki=1 which contains K trajectories 3. For each trajectory, we allow it to potentially be
generated by an adversary, i.e., at step h in trajectory k, (i.e., skh), the adversary can select akh based
on all history (the past k − 1 trajectories and the steps before h within trajectory k) with a fixed
strategy, with the only condition that the state transitions follow the underlying transition dynamics,
i.e., sih+1 ∼ P ⋆(sih, aih). We emphasize that D is not necessarily generated by some offline trajectory
distribution. Given D, we can split the data into HK many state-action-next state (s, a, s′) tuples
which we can use to learn the transition. To succeed in offline learning, we typically require the
offline dataset to have good coverage over some high-quality comparator policy π∗ (formal definition
of coverage will be given in Section 5). Our goal here is to learn a policy π̂ that is as good as π∗, and
we are interested in the performance gap between π̂ and π∗, i.e., V π∗ − V π̂ .

Horizon-free and Second-order Bounds. Our goal is to achieve regret bounds (online RL) or per-
formance gaps (offline RL) that are (nearly) horizon-free, i.e., logarithmical dependence on H . In addi-
tion to the horizon-free guarantee, we also want our bounds to scale with respect to the variance of the
policies. Denote VaRπ as the variance of trajectory reward, i.e., VaRπ ∶= Eτ∼π(r(τ) −Eτ∼πr(τ))2.
Second-order bounds in offline RL scales with VaRπ∗ – the variance of the comparator policy. Second-
order regret bound in online setting scales with respect to

√
∑k VaRπk instead of

√
K. Note that

in the worst case,
√
∑k VaRπk scales in the order of

√
K, but can be much smaller in benign cases

such as nearly deterministic MDPs. We also note that second-order regret bound immediately implies
first-order regret bound in the reward maximization setting, which scales in the order

√
KV π⋆ instead

of just
√
K. The first order regret bound

√
KV π⋆ is never worse than

√
K since V π⋆ ≤ 1. Thus, by

achieving a second-order regret bound, our algorithm immediately achieves a first-order regret bound.

Additional notations. Given two distributions p ∈ ∆(X ) and q ∈ ∆(X ), we denote the trian-
gle discrimination D△(p ∥ q) = ∑x∈X

(p(x)−q(x))2
p(x)+q(x) , and squared Hellinger distance H2(p ∥ q) =

1
2 ∑x∈X (

√
q(x) −

√
p(x))

2
(we replace sum via integral whenX is continuous and p and q are pdfs).

Note that D△ and H2 are equivalent up to universal constants. We will frequently use the following
key lemma in (Wang et al., 2024) to control the difference between means of two distributions.
Lemma 1 (Lemma 4.3 in Wang et al. (2024)). For two distributions f ∈∆([0,1]) and g ∈∆([0,1]):

∣Ex∼f [x] −Ex∼g[x]∣ ≤ 4
√
VaRf ⋅D△(f ∥ g) + 5D△(f ∥ g). (1)

where VaRf ∶= Ex∼f(x −Ex∼f [x])2 denotes the variance of the distribution f .

The lemma plays a key role in achieving second-order bounds (Wang et al., 2024). The intuition is the
means of the two distributions can be closer if one of the distributions has a small variance. A more
naive way of bounding the difference in means is ∣Ex∼f [x] − Ex∼g[x]∣ ≤ (maxx∈X ∣x∣)∥f − g∥1 ≲
(maxx∈X ∣x∣)H(f ∥ g) ≲ (maxx∈X ∣x∣)

√
D△(f ∥ g). Such an approach would have to pay the

maximum range maxx∈X ∣x∣ and thus can not leverage the variance VaRf . In the next sections, we
show this lemma plays an important role in achieving horizon-free and second-order bounds.

2r(τ) ∈ [0,1] implies V π
h;P⋆(s) ∈ [0,1]. If we do not assume V π

h;P (s) ∈ [0,1] for all P ∈ P , we can simply
add a filtering step in the algorithm to only choose π,P with V π

h;P (s0) ∈ [0,1] to get the same guarantees.
3Our algorithms and analysis can also apply to the case where the dataset only consists of transitions, as they

rely solely on transition-level information from the offline dataset

4
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Algorithm 1 Optimistic Model-based RL (O-MBRL)
1: Input: model class P , confidence parameter δ ∈ (0,1), threshold β.
2: Initialize π0, initialize dataset D = ∅.
3: for k = 0→K − 1 do
4: Collect a trajectory τ = {s0, a0,⋯, sH−1, aH−1} from πk, split it into tuples of {s, a, s′} and

add to D.
5: Construct a version space P̂k:

P̂k =
⎧⎪⎪⎨⎪⎪⎩
P ∈ P ∶ ∑

s,a,s′∈D
logP (s′i∣si, ai) ≥max

P̃ ∈P
∑

s,a,s′∈D
log P̃ (s′i∣si, ai) − β

⎫⎪⎪⎬⎪⎪⎭
.

6: Set (πk, P̂ k)← argmaxπ∈Π,P ∈P̂k V π
0;P (s0).

7: end for

4 ONLINE SETTING

In this section, we study the online setting. We present the optimistic model-based RL algorithm
(O-MBRL) in Algorithm 1. The algorithm starts from scratch, and iteratively maintains a version
space P̂k of the model class using the historical data collected so far. Again the version space is
designed such that for all k ∈ [0,K − 1], we have P ⋆ ∈ P̂k with high probability. The policy πk in
this case is computed via the optimism principle, i.e., it selects πk and P̂ k such that V πk

P̂k ≥ V π⋆ .

Note that the algorithm design in Algorithm 1 is not new and in fact is quite standard in the model-
based RL literature. For instance, Sun et al. (2019) presented a similar style of algorithm except that
they use a min-max GAN style objective for learning models. Zhan et al. (2022) used MLE oracle
with optimism planning for Partially observable systems such as Predictive State Representations
(PSRs), and Liu et al. (2023) used them for both partially and fully observable systems. However,
their analyses do not give horizon-free and instance-dependent bounds. We show that under the
structural condition that captures nonlinear function class with small eluder dimensions, Algorithm 1
achieves horizon-free and second-order bounds. Besides, since second-order regret bound implies
first-order bound (Wang et al., 2024), our result immediately implies a first-order bound as well.

We first introduce the ℓp Eluder dimension as follows.
Definition 1 (ℓp Eluder Dimension). DEp(Ψ,X , ϵ) is the eluder dimension for X with function
class Ψ, when the longest ϵ-independent sequence x1, . . . , xL ⊆ X enjoys the length less than
DEp(Ψ,X , ϵ). We say that a sequence x1, . . . , xL ⊆ X is ϵ-independent if there exists g ∈ Ψ such
that for all t ∈ [L], ∑t−1

l=1 ∣g(xl)∣p ≤ ϵp and ∣g(xt)∣ > ϵ.

We work with the ℓ1 Eluder dimension DE1(Ψ,S ×A, ϵ) with the function class Ψ specified as:

Ψ = {(s, a)↦ H2(P ⋆(s, a) ∥ P (s, a)) ∶ P ∈ P} .
Remark 1. The ℓ1 Eluder dimension has been used in previous works such as Liu et al. (2022).
We have the following corollary to demonstrate that the ℓ1 dimension generalizes the original ℓ2
dimension of Russo & Van Roy (2013), it can capture tabular, linear, and generalized linear models.
Lemma 2 (Proposition 19 in (Liu et al., 2022)). For any Ψ,X , ϵ > 0, DE1(Ψ,X , ϵ) ≤ DE2(Ψ,X , ϵ).

We are ready to present our main theorem for the online RL setting with finite class P .

Theorem 1 (Main theorem for online setting with finite P). For any δ ∈ (0,1), let β = 4 log (K∣P ∣
δ
),

with probability at least 1 − δ, Algorithm 1 achieves the following regret bound:

K−1
∑

k=0
(V π⋆

− V πk

) ≤ O(

¿

Á
ÁÀ

K−1
∑

k=0
VaRπk ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(KH ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(KH ∣P ∣ /δ) log(KH)) . (2)

The above theorem indicates the standard and simple O-MBRL algorithm is already enough to
achieve horizon-free and second-order regret bounds: our bound does not have explicit polynomial
dependences on horizon H , the leading term scales with

√
∑k VaRπk instead of the typical

√
K.
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We have the following result about the first-order regret bound.

Corollary 1 (Horizon-free and First-order regret bound). Let β = 4 log (K∣P ∣
δ
), with probability at

least 1 − δ, Algorithm 1 achieves the following regret bound:
K−1
∑

k=0
V π⋆

− V πk

≤ O(
√

KV π⋆ ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(KH ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(KH ∣P ∣ /δ) log(KH)) .

Proof. Note that VaRπ ≤ V π ≤ V π⋆ where the first inequality is because the trajectory-wise reward is
bounded in [0,1]. Therefore, combining with Theorem 1, we directly obtain the first-order result.

Note that the above bound scales with respect to
√
KV π⋆ instead of just

√
K. Since V π⋆ ≤ 1, this

bound improves the worst-case regret bound when the optimal policy has total reward less than one.4

Faster rates for deterministic transitions. When the underlying MDP has deterministic transitions,
we can achieve a smaller regret bound that only depends on the number of episodes logarithmically.
Corollary 2 (logK regret bound with deterministic transitions). When the transition dynamics of the
MDP are deterministic, setting β = 4 log (K∣P ∣

δ
), w.p. at least 1 − δ, Algorithm 1 achieves:

K−1
∑
k=0

V π⋆ − V πk

≤ O (DE1(Ψ,S ×A,1/KH) ⋅ log(KH ∣P ∣ /δ) log(KH)) .

Extension to infinite class P . For infinite model class P , we have a similar result. First, we define
the bracketing number of an infinite model class as follows.
Definition 2 (Bracketing Number (Geer, 2000)). Let G be a set of functions mapping X → R. Given
two functions l, u such that l(x) ≤ u(x) for all x ∈ X , the bracket [l, u] is the set of functions g ∈ G
such that l(x) ≤ g(x) ≤ u(x) for all x ∈ X . We call [l, u] an ϵ-bracket if ∣∣u − l∣∣ ≤ ϵ. Then, the
ϵ-bracketing number of G with respect to ∣∣ ⋅ ∣∣, denoted by N[](ϵ,G, ∣∣ ⋅ ∣∣) is the minimum number of
ϵ-brackets needed to cover G.

As an example, according to Appendix C.2 of Uehara & Sun (2021), the bracketing number of Linear
Mixture MDPs is N[](ϵ,P, ∣∣ ⋅ ∣∣) = O(1/ϵ)d. We use the bracketing number of P to denote the
complexity of the model class, similar to ∣P ∣ in the finite class case. Next, we propose a corollary to
characterize the regret with an infinite model class.
Corollary 3 (Regret bound for Algorithm 1 with infinite model class P). When the model class P is
infinite, let β = 7 log(KN[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞)/δ), with probability at least 1 − δ, Algorithm 1
achieves the following regret bound:

K−1
∑

k=0
V π⋆

− V πk

≤ O
⎛

⎝

DE1(Ψ,S ×A,
1

KH
) log(

KHN[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞)

δ
) log(KH)

+

¿

Á
ÁÀ

K−1
∑

k=0
VaRπk ⋅DE1(Ψ,S ×A,

1

KH
) log(

KHN[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞)

δ
) log(KH)

⎞

⎠

,

where N[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞) is the bracketing number defined in Definition 2.

A specific example of the infinite model class is the tabular MDP, where P is the collection of all the
conditional distributions over S ×A→∆(S). By Corollary 3, we also have a new regret bound for
MBRL under the tabular MDP setting, which is nearly horizon-free and second-order.
Example 1 (Tabular MDPs). When specializing to tabular MDPs, use the fact that tabular MDP has
ℓ2 Eluder dimension being at most ∣S ∣∣A∣ (Section D.1 in Russo & Van Roy (2013)), ℓ1 dimension
is upper bounded by ℓ2 dimension (Lemma 2), and use the standard ϵ-net argument to show that

4Typically a first-order regret bound makes more sense in the cost minimization setting instead of reward
maximization setting. We believe that our results are transferable to the cost-minimization setting.
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N[](ϵ,P, ∥ ⋅ ∥∞) is upper-bounded by (c/ϵ)∣S∣2∣A∣ (e.g., see Uehara & Sun (2021)), we can show that
Algorithm 1 achieves the following regret bound for tabular MDP: with probability at least 1 − δ,

∑

k

V π⋆
− V πk

≤ O(∣S ∣1.5∣A∣

¿

Á
ÁÀ
∑

k

VaRπk ⋅ log(
KH ∣S ∣

δ
) log(KH) + ∣S ∣3∣A∣2 log(

KH ∣S ∣

δ
) log(KH)) .

In summary, we have shown that a simple MLE-based MBRL algorithm is enough to achieve nearly
horizon-free and second-order regret bounds under non-linear function approximation.

4.1 PROOF SKETCH OF THEOREM 1

Now we are ready to provide a proof sketch of Theorem 1 with the full proof deferred to Appendix D.1.
For ease of presentation, we use dRL to denote DE1(Ψ,S ×A,1/KH), and ignore some log terms.

Overall, our analysis follows the general framework of optimism in the face of uncertainty, but with
(1) careful analysis in leveraging the MLE generalization bound and (2) more refined proof in the
training-to-testing distribution transfer via Eluder dimension.

By standard MLE analysis, we can show w.p. 1 − δ, for all k ∈ [K − 1], we have P ⋆ ∈ P̂k, and

k−1
∑
i=0

H−1
∑
h=0

H2(P ⋆(sih, aih)∣∣P̂ k(sih, aih)) ≤ O(log(K ∣P ∣ /δ)) . (3)

From here, trivially applying training-to-testing distribution transfer via the Eluder dimension as
previous works (e.g., Wang et al. (2024)) would cause poly-dependence on H . With new techniques
detailed in Appendix B, which is one of our technical contributions and may be of independent
interest, we can get: there exists a set K ⊆ [K − 1] such that ∣K∣ ≤ O(dRL log(K ∣P ∣/δ)), and

∑
k∈[K−1]∖K

∑
h

H2(P ⋆(skh, akh) ∥ P̂ k(skh, akh)) ≤ O(dRL ⋅ log(K ∣P ∣ /δ) log(KH)) . (4)

Recall that (πk, P̂ k) ← argmaxπ∈Π,P ∈P̂k V π
0;P (s0), with the above realization guarantee P ⋆ ∈ P̂k,

we can get the following optimism guarantee: V ⋆0;P ⋆ ≤maxπ∈Π,P ∈P̂k V π
0;P = V πk

0;P̂k .

At this stage, one straight-forward way to proceed is to use the standard simulation lemma (Lemma 7):

K−1
∑
k=0

V πk

0;P̂k − V πk

0;P ⋆ ≤
K−1
∑
k=0

H−1
∑
h=0

E
s,a∼dπk

h

[∣Es′∼P ⋆(s,a)V
πk

h+1;P̂k(s′) −Es′∼P̂k(s,a)V
πk

h+1;P̂k(s′)∣] . (5)

However, from here, if we naively bound each term on the RHS via E
s,a∼dπk

h

∥P ⋆(s, a) − P̂ (s, a)∥1,
which is what previous works such as Uehara & Sun (2021) did exactly, we would end up paying a
linear horizon dependence H due to the summation over H on the RHS the above expression. Given
the mean-to-variance lemma (Lemma 1), we may consider using it to bound the difference between
two means Es′∼P ⋆(s,a)V

πk

h+1;P̂k(s′)−Es′∼P̂k(s,a)V
πk

h+1;P̂k(s′). This still can not work if we start from

here, because we would eventually get ∑k∑hEs,a∼dπk

h

[H2(P ⋆(s, a)∣∣P̂ k(s, a))] terms, which can
not be further upper bounded easily with the MLE generalization guarantee.

To achieve horizon-free and second-order bounds, we need a novel and more careful analysis.

First, we carefully decompose and upper bound the regret in K̃ ∶= [K −1]∖K w.h.p. as follows using
Bernstain’s inequality (for regret in K we simply upper bound it by ∣K∣)

∑

k∈K̃
(V πk

0;P̂k(s
k
h) −

H−1
∑

h=0
r(skh, a

k
h)) + ∑

k∈K̃
(

H−1
∑

h=0
r(skh, a

k
h) − V

πk

0;P⋆) ≲

√

∑

k∈K̃
∑

h

(VP⋆V πk

h+1;P̂k
)(skh, a

k
h)

+ ∑

k∈K̃
∑

h

∣Es′∼P̂k(sk
h
,ak

h
)V

πk

h+1;P̂k(s
′
) − Es′∼P∗(sk

h
,ak

h
)V

πk

h+1;P̂k(s
′
)∣ +

√

∑

k

VaRπk log(1/δ) . (6)
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Then, we bound the difference of two means Es′∼P̂k(sk
h
,ak

h
)V

πk

h+1;P̂k(s′) −Es′∼P ∗(sk
h
,ak

h
)V

πk

h+1;P̂k(s′)
using variances and the triangle discrimination (see Lemma 1 for more details), together with the fact
that D△ ≤ 4H2, and information processing inequality on the squared Hellinger distance, we have

∣Es′∼P̂k(sk
h
,ak

h
)V

πk

h+1;P̂k(s
′
) − Es′∼P∗(sk

h
,ak

h
)V

πk

h+1;P̂k(s
′
)∣

≤ O(

√

(VP⋆V πk

h+1;P̂k
)(skh, a

k
h)D△(V

πk

h+1;P̂k
(s′ ∼ P ⋆(skh, a

k
h)) ∥ V

πk

h+1;P̂k(s
′ ∼ P̂ k(skh, a

k
h)))

+D△(V
πk

h+1;P̂k(s
′
∼ P ⋆(skh, a

k
h)) ∥ V

πk

h+1;P̂k(s
′
∼ P̂ k

(skh, a
k
h))))

≤ O(

√

(VP⋆V πk

h+1;P̂k
)(skh, a

k
h)H2(P ⋆(skh, a

k
h) ∥ P̂

k(skh, a
k
h)) +H

2
(P ⋆(skh, a

k
h) ∥ P̂

k
(skh, a

k
h)))

where we denote V π∗

h+1;P̂ (s
′ ∼ P ⋆(s, a)) as the distribution of the random variable V π∗

h+1;P̂ (s
′) with

s′ ∼ P ⋆(s, a). This is the key lemma used by Wang et al. (2024) to show distributional RL can
achieve second-order bounds. We show that this is also crucial for achieving a horizon-free bound.

Then, summing up over k, h, with Cauchy-Schwartz and the MLE generalization bound via Eluder
dimension in Equation 4, we have

∑

k∈K̃
∑

h

∣Es′∼P̂k(sk
h
,ak

h
)V

πk

h+1;P̂k(s
′
) − Es′∼P∗(sk

h
,ak

h
)V

πk

h+1;P̂k(s
′
)∣ ≤ O(∑

k∈K̃
∑

h

H2
(P ⋆(skh, a

k
h) ∥ P̂

k
(skh, a

k
h))

+

¿

Á
ÁÀ∑

k∈K̃
∑

h

(VP⋆V πk

h+1;P̂k
)(skh, a

k
h)∑

k∈K̃
∑

h

H2(P ⋆(skh, a
k
h) ∥ P̂

k(skh, a
k
h)))

≤ O(
√

∑

k∈K̃
∑

h

(VP⋆V πk

h+1;P̂k
)(skh, a

k
h)dRL log(K ∣P ∣ /δ) log(KH) + dRL log(K ∣P ∣ /δ) log(KH)) . (7)

Note that we have (VP ⋆V
πk

h+1;P̂k
)(skh, akh) depending on P̂ k. To get a second-order bound, we need

to convert it to the variance under ground truth transition P ⋆, and we want to do it without incurring
any H dependence. This is another key difference from Wang et al. (2024).

We aim to replace (VP ⋆V
πk

h+1;P̂k
)(skh, akh) by (VP ⋆V

πk

h+1)(skh, akh) which is the variance under
P ⋆ (recall that V π is the value function of π under P ⋆), and we want to control the difference
(VP ⋆ (V πk

h+1;P̂k − V πk

h+1) )(skh, akh). To do so, we need to bound the 2m moment of the difference

V πk

h+1;P̂k −V πk

h+1 following the strategy in Zhang et al. (2021a); Zhou & Gu (2022); Zhao et al. (2023b).
Let us define the following terms:

A ∶= ∑
k∈K̃
∑

h

[(VP⋆V
πk

h+1;P̂k)(s
k
h, a

k
h)] ,Cm ∶= ∑

k∈K̃
∑

h

[(VP⋆(V
πk

h+1;P̂k − V
πk

h+1)
2m
)(skh, a

k
h)] ,

B ∶= ∑
k∈K̃
∑

h

[(VP⋆V
πk

h+1)(s
k
h, a

k
h)] ,G ∶=

√

A ⋅ dRL log(
K ∣P ∣

δ
) log(KH) + dRL log(

K ∣P ∣

δ
) log(KH) .

With the fact VP ⋆(a + b) ≤ 2VP ⋆(a) + 2VP ⋆(b) we have A ≤ 2B + 2C0. For Cm, we prove that
w.h.p. it has the recursive form Cm ≲ 2mG +

√
log(1/δ)Cm+1 + log(1/δ), during which process we

also leverage the above Equation 7 and some careful analysis (detailed in Appendix D.1). Then, with
the recursion lemma (Lemma 11), we can get C0 ≲ G, which further gives us

A ≲ B + dRL log(
K ∣P ∣

δ
) log(KH) +

√

A ⋅ dRL log(
K ∣P ∣

δ
) log(KH) ≤ O(B + dRL log(

K ∣P ∣

δ
) log(KH)) ,

where in the last step we use the fact x ≤ 2a + b2 if x ≤ a + b√x. Finally, we note that B ≤
O(∑k VaRπk + log(1/δ)) w.h.p.. Plugging the upper bound of A back into Equation 7 and then to
Equation 6, we conclude the proof.

5 OFFLINE SETTING

For the offline setting, we directly analyze the Constrained Pessimism Policy Optimization (CPPO-
LR) algorithm (Algorithm 2) proposed by Uehara & Sun (2021). We first explain the algorithm and
then present its performance gap guarantee in finding the comparator policy π∗.

8
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Algorithm 2 (Uehara & Sun (2021)) Constrained Pessimistic Policy Optimization with Likelihood-
Ratio based constraints (CPPO-LR)

1: Input: dataset D = {s, a, s′}, model class P , policy class Π, confidence parameter δ ∈ (0,1),
threshold β.

2: Calculate the confidence set based on the offline dataset:

P̂ = {P ∈ P ∶
n

∑
i=1

logP (s′i∣si, ai) ≥max
P̃ ∈P

n

∑
i=1

log P̃ (s′i∣si, ai) − β} .

3: Output: π̂ ← argmaxπ∈ΠminP ∈P̂ V π
0;P (s0).

Algorithm 2 splits the offline trajectory data that contains K trajectories into a dataset of (s, a, s′)
tuples (note that in total we have n ∶=KH many tuples) which is used to perform maximum likelihood
estimation maxP̃ ∈P ∑

n
i=1 log P̃ (s′i∣si, ai). It then builds a version space P̂ which contains models

P ∈ P whose log data likelihood is not below by too much than that of the MLE estimator. The
threshold for the version space is constructed so that with high probability, P ⋆ ∈ P̂ . Once we build a
version space, we perform pessimistic planning to compute π̂.

We first define the single policy coverage condition as follows.
Definition 3 (Single policy coverage). Given any comparator policy π∗, denote the data-dependent
single policy concentrability coefficient Cπ∗

D as follows:

Cπ∗

D ∶= max
h,P ∈P

E
s,a∼dπ∗

h
H2
(P (s, a) ∥ P ⋆(s, a))

1/K∑
K
k=1H2 (P (skh, a

k
h) ∥ P

⋆(skh, a
k
h))

.

We assume w.p. at least 1 − δ over the randomness of the generation of D, we have Cπ∗

D ≤ Cπ∗ .

The existence of Cπ∗ is certainly an assumption. We now give an example in the tabular MDP
where we show that if the data is generated from some fixed behavior policy πb which has non-trivial
probability of visiting every state-action pair, then we can show the existence of Cπ∗ .
Example 2 (Tabular MDP with good behavior policy coverage). If the K trajectories are collected
i.i.d. with a fixed behavior policy πb, and dπ

b

h (s, a) ≥ ρmin,∀s, a, h (similar to Ren et al. (2021)),
then we have: if K is large enough, i.e., K ≥ 2 log(∣S ∣∣A∣H)/ρ2min, w.p. at least 1− δ, Cπ∗

D ≤ 2/ρmin.

Our coverage definition (Definition 3) shares similar spirits as the one in Ye et al. (2024). It reflects
how well the state-action samples in the offline dataset D cover the state-action pairs induced by
the comparator policy π⋆. It is different from the coverage definition in Uehara & Sun (2021) in
which the denominator is E

s,a∼dπb

h

H2
(P (s, a) ∥ P ⋆(s, a)) where πb is the fixed behavior policy used

to collect D. This definition does not apply in our setting since D is not necessarily generated by
some underlying fixed behavior policy. On the other hand, our horizon-free result does not hold in
the setting of Uehara & Sun (2021) where D is collected with a fixed behavior policy πb with the
concentrability coefficient defined in their way. We leave the derivation of horizon-free results in the
setting from Uehara & Sun (2021) as a future work.

Now we are ready to present the main theorem of Algorithm 2 for finite P , which provides a tighter
performance gap than that by Uehara & Sun (2021).
Theorem 2 (Performance gap of Algorithm 2 with finite P). For any δ ∈ (0,1), let β = 4 log(∣P ∣/δ),
w.p. at least 1 − δ, Algorithm 2 learns a policy π̂ that enjoys the following performance gap with
respect to any comparator policy π∗:

V π∗ − V π̂ ≤ O (
√
Cπ∗VaRπ∗ log(∣P ∣/δ)/K +Cπ∗ log(∣P ∣/δ)/K) .

Comparing to the theorem (Theorem 2) of CPPO-LR from Uehara & Sun (2021), our bound has two
improvements. First, our bound is horizon-free (not even any log(H) dependence), while the bound
in Uehara & Sun (2021) has poly(H) dependence. Second, our bound scales with VaRπ∗ ∈ [0,1],
which can be small when VaRπ∗ ≪ 1. For deterministic system and policy π∗, we have VaRπ∗ = 0
which means the sample complexity now scales at a faster rate Cπ∗/K. The proof is in Appendix E.1.
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We show that the same algorithm can achieve 1/K rate when P ⋆ is deterministic (but rewards could
be random, and the algorithm does not need to know the condition that P ⋆ is deterministic).

Corollary 4 (Cπ∗/K performance gap of Algorithm 2 with deterministic transitions). When the
ground truth transition P ⋆ of the MDP is deterministic, for any δ ∈ (0,1), let β = 4 log(∣P ∣/δ), w.p.
at least 1 − δ, Algorithm 2 learns a policy π̂ that enjoys the following performance gap with respect
to any comparator policy π∗:

V π∗ − V π̂ ≤ O (Cπ∗ log(∣P ∣/δ)/K) .

For infinite model class P , we have a similar result in the following corollary.
Corollary 5 (Performance gap of Algorithm 2 with infinite model class P). When the model class
P is infinite, for any δ ∈ (0,1), let β = 7 log(N[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞)/δ), w.p. at least 1 − δ,
Algorithm 2 learns a policy π̂ that enjoys the following PAC bound w.r.t. any comparator policy π∗:

V π∗
− V π̂

≤ O
⎛

⎝

√

Cπ∗VaRπ∗ log(N[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞)/δ)

K
+

Cπ∗ log(N[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞)/δ)

K

⎞

⎠

,

where N.[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞) is the bracketing number defined in Definition 2.

Our next example gives the explicit performance gap bound for tabular MDPs.
Example 3 (Tabular MDPs). For tabular MDPs, we have N[](ϵ,P, ∥ ⋅ ∥∞) upper-bounded by
(c/ϵ)∣S∣2∣A∣ (e.g., see Uehara & Sun (2021)). Then with probability at least 1 − δ, let β =
7 log(N[]((KH ∣S ∣)−1,P, ∥ ⋅ ∥∞)/δ), Algorithm 2 learns a policy π̂ satisfying the following per-
formance gap with respect to any comparator policy π∗:

V π∗ − V π̂ ≤ O (∣S ∣
√
∣A∣Cπ∗VaRπ∗ log(KH ∣S ∣/δ)/K + ∣S ∣2∣A∣Cπ∗ log(KH ∣S ∣/δ)/K) ,

The closest result to us is from Ren et al. (2021), which analyzes the MBRL for tabular MDPs and
obtains a performance gap Õ(

√
1

Kdm
+ ∣S∣

Kdm
), where dm is the minimum visiting probability for the

behavior policy to visit each state and action. Note that their result is not instance-dependent, which
makes their gap only Õ(1/

√
K) even when the environment is deterministic and π∗ is deterministic.

In a sharp contrast, our analysis shows a better Õ(1/K) gap under the deterministic environment. Our
result would still have the logH dependence, and we leave getting rid of this logarithmic dependence
on the horizon H as an open problem.

6 CONCLUSION

In this work, we presented a minimalist approach for achieving nearly horizon-free and second-order
bounds in online and offline RL: simply train transition models via Maximum Likelihood Estimation
followed by optimistic or pessimistic planning, depending on whether we operate in the online or
offline learning mode. Our horizon-free bounds for function approximation look quite similar to the
bounds in Contextual bandits, indicating that the need for long-horizon planning does not make RL
harder than CB from a statistical perspective.

Our work has some limitations. First, though our results can achieve completely horizon free (not
even logH dependence) for offline RL with finite model classes, in other settings we have logH
dependence. We conjecture that the log(H) can be eliminated by using more careful analyses in
dealing with the learned models’ extrapolation errors via eluder dimensions, and using techniques
such as peeling/chaining (Dudley, 1978; Zhang, 2006) when tackling infinite model classes. We
leave this as an important future direction. Second, our model-based framework cannot capture
problems that need to be solved via model-free approaches such as linear MDPs (Jin et al., 2020).
An interesting future work is to see if we can extend our analysis to incorporate the function classes
with small distributional Eduler dimensions, and if we can develop model-free approaches that can
achieve horizon-free and instance-dependent bounds for RL with general function approximation.
Finally, the algorithms studied in this work are not computationally tractable. This is due to the need
of performing optimism/pessimism planning for exploration. Deriving computationally tractable RL
algorithms for the rich function approximation setting is a long-standing question.
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A SUMMARY OF CONTENTS IN THE APPENDIX

The Appendix is organized as follows.

In Appendix B, we provide some new analyses for Eluder dimension, which we will use for proving
the regret bounds for the online RL setting.

In Appendix C, we provide some other supporting lemmas that will be used in our proofs.

In Appendix D, we provide the detailed proofs for the online RL setting (Section 4). Specifically, in
Appendix D.1 we give the proof of Theorem 1; in Appendix D.2, we show the proof of Corollary 2;
in Appendix D.3, we give the proof of Corollary 3.

In Appendix E, we provide the detailed proofs for the offline RL setting (Section 5). Specifically, in
Appendix E.1 we give the proof of Theorem 2; in Appendix E.2, we show the proof of Corollary 4;
in Appendix E.3, we give the proof of Corollary 5; in Appendix E.4, we show the proof of the claim
in Example 2.

B ANALYSIS REGARDING THE ELUDER DIMENSION

For simplicity, we denote xk
h = (skh, akh).

First we have two technical lemma. The first lemma bounds the summation of “self-normalization”
terms by the Eluder dimension. Our result generalizes the previous result by Zhao et al. (2023a) from
the ℓ2-Eluder dimension to the ℓ1 case.
Lemma 3. Suppose for all g ∈ Ψ, ∣g∣ ≤ 1 and λ > 1, then we have

K

∑
k=1

H

∑
h=1

min{1, sup
g∈Ψ

∣g(xk
h)∣

∑k−1
k′=1∑H

h′=1 ∣g(xk′
h′)∣ +∑

h−1
h′=1 ∣g(xk

h′)∣ + λ
}

≤ 12 log2(4λKH) ⋅DE1(Ψ,S ×A,1/(8λKH)) + λ−1.

Proof of Lemma 3. We follow the proof steps of Theorem 4.6 in Zhao et al. (2023a). For simplicity,
we use n =KH , i = kH + h to denote the indices and denote xk

h by xi. Then we need to prove
n

∑
i=1

min{1, sup
g∈Ψ

∣g(xi)∣
∑i−1

t=1 ∣g(xt)∣ + λ
} ≤ 12 log2(4λn) ⋅DE1(Ψ,S ×A,1/(8λn)) + λ−1 (8)

Let

gi = argmax
g∈Ψ

∣g(xi)∣
∑i−1

j=1 ∣g(xj)∣ + λ
(9)

For any 1/(λn) ≤ ρ ≤ 1 and 1 ≤ j ≤ ⌈log(4λn)⌉, we define

Aj
ρ = {i ∈ [n] ∶ 2−j < ∣gi(xi)∣ ≤ 2−j+1,

∣gi(xi)∣
∑i−1

t=1 ∣gi(xt)∣ + λ
≥ ρ/2}, dj ∶=DE1(Ψ,S ×A,2−j). (10)

Next we only consider the set Aj
ρ where ∣Aj

ρ∣ > dj . We denote Aj
ρ = {a1, . . . , aA}, where A = ∣Aj

ρ∣
and {ai} keeps the same order as {xi}. Next we do the following constructions. We maintain
k = ⌊(A − 1)/dj⌋ number of queues Q1, . . . ,Qk, all of them initialized as emptysets. We put a1 into
Q1. For ai, i ≥ 2, we put ai into Ql, where Ql is the first queue where ai is 2−j-independent of all
elements in Ql. Let imax be the smallest i when we can not put ai into any existing queue.

We claim that imax indeed exists, i.e., our construction will stop before we put all elements in Aj
ρ into

Q1, . . . ,Qk. In fact, note the fact that the length of each Ql is always no more than dj , which is due
to the fact that any 2−j-independent sequence’s length is at most dj . Meanwhile, since we only have
k = ⌊(A − 1)/dj⌋, then the amount of elements in Q1 ∪ ⋅ ⋅ ⋅ ∪Qk will be upper bounded by k ⋅ dj < A.
That suggests at least one element in Aj

ρ is not contained by Q1 ∪ ⋅ ⋅ ⋅ ∪Qk, i.e., imax exists.

By the definition of imax, we know that aimax is 2−j-dependent to each Ql. Next we give a bound of
A. First, note

imax−1
∑
t=1
∣gimax(xt)∣ ≥ ∑

t∈Q1∪⋅⋅⋅∪Qk

∣gimax(at)∣ =
k

∑
l=1
∑
t∈Ql

∣gimax(at)∣ > k ⋅ 2−j , (11)
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where the first inequality holds since Ql are the elements that appear before aimax , the second one
holds due to the following induction of Eluder dimension: since aimax is 2−j-dependent to Ql, then
we have

∀g ∈ Ψ, ∑
t∈Ql

∣g(at)∣ ≤ 2−j ⇒ ∣g(aimax)∣ ≤ 2−j . (12)

Therefore, given the fact ∣gimax(aimax)∣ > 2−j (recall the definition of Aj
ρ), we must have

∑t∈Ql
∣gimax(at)∣ > 2−j as well, which suggests the second inequality of Equation 11 holds. Second,

we have
imax−1
∑
t=1
∣gimax(xt)∣ ≤ 2/ρ ⋅ ∣gimax(aimax)∣ ≤ 4 ⋅ 2−j/ρ, (13)

where both inequalities hold due to the definition of Aj
ρ. Combining Equation 11 and Equation 13,

we have

k < 4/ρ⇒ A ≤ 4dj/ρ + dj ≤ 5dj/ρ. (14)

Therefore, we have that for all ρ, j, ∣Aj
ρ∣ ≤ 5dj/ρ.

Finally we prove Equation 8. 1/(λn) ≤ ρ ≤ 1 and 1 ≤ j ≤ ⌈log(4λn)⌉ = J . Denote

Aρ = {i ∈ [n] ∶
∣gi(xi)∣

∑i−1
t=1 ∣gi(xt)∣ + λ

≥ ρ/2}. (15)

Then it is easy to notice that ∣Aρ∣ = ∑j ∣Aj
ρ∣ ≤ ⌈log(4λn)⌉ ⋅ 5dJ/ρ, where we use the fact that the

Eluder dimension dj is increasing. Therefore, by the standard peeling technique, we have
n

∑
i=1

min{1, sup
g∈Ψ

∣g(xi)∣
∑i−1

t=1 ∣g(xt)∣ + λ
} = ∑

j∈[⌈log(λn)⌉]
∑

i∈A2−j∖A2−j+1

+ ∑
j=⌈log(λn)⌉

∑
i∉A2−j+1

≤ ∑
j∈[⌈log(λn)⌉]

∑
i∈A2−j∖A2−j+1

2−j−1 + n ⋅ 1/(λn)

≤ ∑
j∈[⌈log(λn)⌉]

∑
i∈A2−j

2−j−1 + n ⋅ 1/(λn)

≤ ⌈log(λn)⌉ ⋅ ⌈log(4λn)⌉ ⋅ 3dJ + λ−1,
which concludes our proof.

Next lemma gives a bound to bound the number of episodes where the behavior along these episodes
are “bad”. Intuitively speaking, our lemma suggests we only have limited number of bad episodes,
therefore won’t affect the final performance of our algorithm.
Lemma 4. Given λ > 1. There exists at most

13 log2(4λKH) ⋅DE1(Ψ,S ×A,1/(8λKH)) (16)

number of k ∈ [K] satisfying the following claim

sup
g∈Ψ

λ +∑k
k′=1∑H

h′=1 ∣g(xk′

h′)∣
λ +∑k−1

k′=1∑H
h′=1 ∣g(xk′

h′)∣
> 4. (17)

Proof of Lemma 4. Note that

K

∑
k=1

min{2, log sup
g∈Ψ

λ +∑k
k′=1∑H

h′=1 ∣g(xk′

h′)∣
λ +∑k−1

k′=1∑H
h′=1 ∣g(xk′

h′)∣
}

≤
K

∑
k=1

min{2, log
H

∏
h=1

sup
g∈Ψ

λ +∑k−1
k′=1∑H

h′=1 ∣g(xk′

h′)∣ +∑
h
h′=1 ∣g(xk

h′)∣
λ +∑k−1

k′=1∑H
h′=1 ∣g(xk′

h′)∣ +∑
h−1
h′=1 ∣g(xk

h′)∣
}

=
K

∑
k=1

min{2,
H

∑
h=1

log(1 + sup
g∈Ψ

∣g(xk
h)∣

λ +∑k−1
k′=1∑H

h′=1 ∣g(xk′
h′)∣ +∑

h−1
h′=1 ∣g(xk

h′)∣
)}
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≤
K

∑
k=1

H

∑
h=1

min{2, sup
g∈Ψ

∣g(xk
h)∣

∑k−1
k′=1∑H

h′=1 ∣g(xk′
h′)∣ +∑

h−1
h′=1 ∣g(xk

h′)∣ + λ
},

≤ 2
K

∑
k=1

H

∑
h=1

min{1, sup
g∈Ψ

∣g(xk
h)∣

∑k−1
k′=1∑H

h′=1 ∣g(xk′
h′)∣ +∑

h−1
h′=1 ∣g(xk

h′)∣ + λ
}

≤ 24 log2(4λKH) ⋅DE1(Ψ,S ×A,1/(8λKH)) + 2λ−1

≤ 26 log2(4λKH) ⋅DE1(Ψ,S ×A,1/(8λKH)). (18)

where the first inequality holds since supg∏ f(g) ≤ ∏ supg f(g), the second one holds since
log(1 + x) ≤ x, the fourth one holds due to Lemma 3. Therefore, there are at most

26 log2(4λKH) ⋅DE1(Ψ,S ×A,1/(8λKH))/2
number of k satisfying

log sup
g∈Ψ

λ +∑k
k′=1∑H

h′=1 ∣g(xk′

h′)∣
λ +∑k−1

k′=1∑H
h′=1 ∣g(xk′

h′)∣
> 2,

which concludes the proof.

We next have the following lemma, which bounds the regret by the Eluder dimension.
Lemma 5 (Theorem 5.3, Wang et al. 2023). Let C ∶= sup(s,a)∈S×A,f∈Ψ∣f((s, a))∣ be the envelope.
For any sequences f (1), . . . , f (N) ⊆ Ψ, (s, a)(1), . . . , (s, a)(N) ⊆ S ×A, let β be a constant such
that for all n ∈ [N] we have, ∑n−1

i=1 ∣f (n)((s, a)i)∣ ≤ β. Then, for all n ∈ [N], we have
n

∑
t=1
∣f (t)((s, a)t)∣ ≤ inf

0<ϵ≤1
{DE1(Ψ,S ×A, ϵ)(2C + β log(C/ϵ)) + nϵ} .

Given Lemma 4 and Lemma Lemma 5, we are able to prove the following key lemma.
Lemma 6 (New Eluder Pigeon Lemma). Let the event E be

E ∶ ∀k ∈ [K],
k−1
∑
i=1

H

∑
h=1

H2(P̂ k(sih, aih)∣∣P ∗(sih, aih)) ≤ η. (19)

Then under event E , there exists a set K ∈ [K] such that

• We have ∣K∣ ≤ 13 log2(4ηKH) ⋅DE1(Ψ,S ×A,1/(8ηKH)).

• We have

∑
k∈[K]∖K

H

∑
h=1

H2(P ⋆(skh, akh) ∥ P̂ k(skh, akh))

≤ inf
0<ϵ≤1

{DE1(Ψ,S ×A, ϵ)(2 + 7η log(1/ϵ)) +KHϵ}

≤ DE1(Ψ,S ×A,1/KH)(2 + 7η log(KH)) + 1 , (20)

where the function class Ψ = {(s, a)↦ H2(P ⋆(s, a) ∥ P (s, a)) ∶ P ∈ P}.

Proof of Lemma 6. We interchangeably use n = kH + h to denote the indices of skh, a
k
h. We set

f (n)((s, a)) in Lemma 5 as H2(P k(s, a)∣∣P ∗(s, a)).
First, we prove that the β in Lemma 5 can be selected as 7η under event E . To show that, let K denote
all the k stated in Lemma 4. Then for all k such that k + 1 ∉ K, h = 2, ...,H , let n = kH + h, we have

n−1
∑
i=0
∣f (n)((s, a)i)∣ ≤

kH+H
∑
i=0
∣f (n)((s, a)i)∣
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= (λ +
kH

∑
i=0
∣f (n)((s, a)i)∣) ⋅ ∑

kH+H
i=0 ∣f (n)((s, a)i)∣ + λ
∑kH

i=0 ∣f (n)((s, a)i)∣ + λ
− λ

≤ (λ +
kH

∑
i=0
∣f (n)((s, a)i)∣) ⋅ 4 − λ

≤ 7η, (21)

where the second inequality holds due to Lemma 4, the last one holds due to the definition of E .
Therefore, we prove our lemma by the conclusion of Lemma 5 with β = 7η.

C OTHER SUPPORTING LEMMAS

Lemma 7 (Simulation Lemma (Agarwal et al. (2019))). We have

V π
0;P ⋆ − V π

0;P̂
≤

H−1
∑
h=0

Es,a∼dπ
h
[∣Es′∼P ⋆(s,a)V

π
h+1;P̂ (s

′) −Es′∼P̂ (s,a)V
π
h+1;P̂ (s

′)∣] .

Lemma 8 (Change of Variance Lemma (Lemma C.5 in Jin et al. (2018))).
H−1
∑
h=0

Es,a∼dπ
h
[(VP ⋆V

π
h+1;P ⋆)(s, a)] = VaRπ.

Lemma 9 (Generalization bounds of MLE for finite model class (Theorem E.4 in Wang et al.
(2023))). Let X be the context/feature space and Y be the label space, and we are given a dataset
D = {(xi, yi)}i∈[n] from a martingale process: for i = 1,2, ..., n, sample xi ∼ Di(x1∶i−1, y1∶i−1) and
yi ∼ p(⋅ ∣ xi). Let f⋆(x, y) = p(y ∣ x) and we are given a realizable, i.e., f⋆ ∈ F , function class
F ∶ X ×Y →∆(R) of distributions. Suppose F is finite. Fix any δ ∈ (0,1), set β = log(∣F ∣/δ) and
define

F̂ = {f ∈ F ∶
n

∑
i=1

log f(xi, yi) ≥max
f̃∈F

n

∑
i=1

log f̃(xi, yi) − 4β} .

Then w.p. at least 1 − δ, the following holds:

(1) The true distribution is in the version space, i.e., f⋆ ∈ F̂ .

(2) Any function in the version space is close to the ground truth data-generating distribution,
i.e., for all f ∈ F̂

n

∑
i=1

Ex∼Di
[H2(f(x, ⋅) ∥ f⋆(x, ⋅))] ≤ 22β.

Lemma 10 (Generalization bounds of MLE for infinite model class (Theorem E.5 in Wang et al.
(2023))). Let X be the context/feature space and Y be the label space, and we are given a dataset
D = {(xi, yi)}i∈[n] from a martingale process: for i = 1,2, ..., n, sample xi ∼ Di(x1∶i−1, y1∶i−1)
and yi ∼ p(⋅ ∣ xi). Let f⋆(x, y) = p(y ∣ x) and we are given a realizable, i.e., f⋆ ∈ F , function
class F ∶ X × Y → ∆(R) of distributions. Suppose F is finite. Fix any δ ∈ (0,1), set β =
log(N[]((n∣Y ∣)−1,F , ∥ ⋅ ∥∞)/δ) (where N[]((n∣Y ∣)−1,F , ∥ ⋅ ∥∞) is the bracketing number defined
in Definition 2) and define

F̂ = {f ∈ F ∶
n

∑
i=1

log f(xi, yi) ≥max
f̃∈F

n

∑
i=1

log f̃(xi, yi) − 7β} .

Then w.p. at least 1 − δ, the following holds:

(1) The true distribution is in the version space, i.e., f⋆ ∈ F̂ .

(2) Any function in the version space is close to the ground truth data-generating distribution,
i.e., for all f ∈ F̂

n

∑
i=1

Ex∼Di
[H2(f(x, ⋅) ∥ f⋆(x, ⋅))] ≤ 28β.
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Lemma 11 (Recursion Lemma). Let G > 0 be a positive constant, a < G/2 is also a positive constant,

and let {Cm}
N=⌈log2(KH

G )⌉
m=0 be a sequence of positive real numbers satisfying:

1. Cm ≤ 2mG +
√
aCm+1 + a for all m ≥ 0,

2. Cm ≤KH for all m ≥ 0, where K > 0 and H > 0 are positive constants.

Then, it holds that:
C0 ≤ 4G.

Proof of Lemma 11. We will prove by induction that for all m ≥ 0,

Cm ≤ 2m+2G.

Then, for m = 0, this would immediately show C0 ≤ 4G.

1. The base case m = N :

Since N = ⌈log2(KH
G
)⌉, it is obvious that 2N+2G ≥KH . Thus, CN ≤KH ≤ 2N+2G, the inequality

holds for m = N .

2. The induction step:

Assume that for some m ≥ 0, for Cm+1, we have:

Cm+1 ≤ 2m+1+2G = 2m+3G.

Then, we have

Cm ≤ 2mG +
√
aCm+1 + a

≤ 2mG +
√
a2m+3G + a

≤ 2mG +
√

G

2
⋅ 2m+3G + G

2

= G ⋅ (2m + 2m/2+1 + 2−1)
≤ G ⋅ (2m + 2m+1 + 2m)
= 2m+2G. (22)

Therefore, by induction, we have for all m ≥ 0,

Cm ≤ 2m+2G.

And the proof follows by setting m = 0.

D DETAILED PROOFS FOR THE ONLINE SETTING IN SECTION 4

D.1 PROOF OF THEOREM 1

The following is the full proof of Theorem 1.

For notational simplicity, throughout this whole section, we denote

A ∶= ∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V

πk

h+1;P̂k)(skh, akh)]

B ∶= ∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V

πk

h+1)(skh, akh)] ,

Cm ∶= ∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆(V πk

h+1;P̂k − V πk

h+1)2
m

)(skh, akh)]

18
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G ∶=

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1;P̂k
)(skh, akh)] ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

Ikh ∶= Es′∼P ∗(sk
h
,ak

h
)V

πk

h+1;P̂k(s′) − V πk

h+1;P̂k(skh+1) (23)

We use I{⋅} to denote the indicator function. We define the following events which we will later show
that they happen with high probability.

E1 ∶= {∀k ∈ [K − 1] ∶ P ⋆ ∈ P̂k, and
k−1
∑
i=0

H−1
∑
h=0

H2(P ⋆(sih, aih)∣∣P̂ k(sih, aih)) ≤ 22 log(K ∣P ∣ /δ).} ,

(24)

E2 ∶= { ∑
k∈[K−1]∖K

H−1
∑
h=0

Ikh ≲

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
(VP ⋆V πk

h+1;P̂k
)(skh, akh) log(1/δ) + log(1/δ)} , (25)

E3 ∶= E1 ∩ {∀m ∈ [0, ⌈log2(
KH

G
)⌉] ∶ Cm ≲ 2mG +

√
log(1/δ) ⋅Cm+1 + log(1/δ)} , (26)

E4 ∶= {
K−1
∑
k=0

H−1
∑
h=0
[(VP ⋆V

πk

h+1)(skh, akh)] ≲
K−1
∑
k=0

VaRπk + log(1/δ)} , (27)

E5 ∶= {
K−1
∑
k=0

H

∑
h=1

r(skh, akh) −
K−1
∑
k=0

V πk

0;P ∗ ≲

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ) + log(1/δ)} , (28)

E ∶= E2 ∩ E3 ∩ E4 ∩ E5 . (29)

First, by the realizability assumption, the standard generalization bound for MLE (Lemma 9) with
simply setting Di to be the delta distribution on the realized (skh, akh) pairs, and a union bound over
K episodes, we have that w.p. at least 1 − δ, for any k ∈ [0,K − 1]:

(1) P ⋆ ∈ P̂k;

(2)
k−1
∑
i=0

H−1
∑
h=0

H2(P ⋆(sih, aih)∣∣P̂ k(sih, aih)) ≤ 22 log(K ∣P ∣ /δ). (30)

This directly indicates that
P (I{E1}) ≥ 1 − δ . (31)

Under event E1, with the realizability in above (1), and by the optimistic algorithm design (πk, P̂ k)←
argmaxπ∈Π,P ∈P̂k V π

0;P (s0), for any k ∈ [0,K − 1], we have the following optimism guarantee

V ⋆0;P ⋆ ≤ max
π∈Π,P ∈P̂k

V π
0;P = V πk

0;P̂k .

Then, under event E1, we use Lemma 6 and Equation 30 to get the following:

There exists a set K ⊆ [K − 1] such that

• ∣K∣ ≤ 13 log2(88 log(K ∣P ∣ /δ)KH) ⋅DE1(Ψ,S ×A,1/(176 log(K ∣P ∣ /δ)KH))
• And

∑
k∈[K−1]∖K

H−1
∑
h=0

H2(P ⋆(skh, akh) ∥ P̂ k(skh, akh))

≤ DE1(Ψ,S ×A,1/KH) ⋅ (2 + 154 log(K ∣P ∣ /δ) log(KH)) + 1
≲ DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH) . (32)
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We upper bound the regret with optimism, and by dividing k ∈ [K − 1] into K and [K − 1] ∖K with
the assumption that the trajectory-wise cumulative reward is normalized in [0,1], as follows

K−1
∑
k=0

V ⋆0;P ⋆ −
K−1
∑
k=0

H

∑
h=1

r(skh, akh)

≤ ∣K∣ + ∑
k∈[K−1]∖K

(V πk

0;P̂k −
H−1
∑
h=0

r(skh, akh))

≲ log2(log(K ∣P ∣ /δ)KH) ⋅DE1(Ψ,S ×A,1/(log(K ∣P ∣ /δ)KH)) + ∑
k∈[K−1]∖K

(V πk

0;P̂k −
H−1
∑
h=0

r(skh, akh)) .

(33)

We then do the following decomposition. Note that for any k ∈ [K − 1], policy πk is deterministic.
We have that for any k ∈ [K − 1]

V πk

0;P̂k(sk0) −
H−1
∑
h=0

r(skh, akh)

= Qπk

0;P̂k(sk0 , ak0) −
H−1
∑
h=0

r(skh, akh)

= r(sk0 , ak0) +Es′∼P̂k(sk0 ,ak
0)
V πk

1;P̂k(s′) −
H−1
∑
h=0

r(skh, akh)

= Es′∼P̂k(sk0 ,ak
0)
V πk

1;P̂k(s′) −
H

∑
h=1

r(skh, akh)

= Es′∼P ∗(sk0 ,ak
0)
V πk

1;P̂k(s′) −
H

∑
h=1

r(skh, akh) +Es′∼P̂k(sk0 ,ak
0)
V πk

1;P̂k(s′) −Es′∼P ∗(sk0 ,ak
0)
V πk

1;P̂k(s′)

= V πk

1;P̂k(sk1) −
H−1
∑
h=1

r(skh, akh) +Es′∼P ∗(sk0 ,ak
0)
V πk

1;P̂k(s′) − V πk

1;P̂k(sk1)
´¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¸¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¹¶

Ik
0

+Es′∼P̂k(sk0 ,ak
0)
V πk

1;P̂k(s′) −Es′∼P ∗(sk0 ,ak
0)
V πk

1;P̂k(s′) ,

where we use the Bellman equation for several times.

Then, by doing this recursively, we can get for any k ∈ [K − 1]

V πk

0;P̂k(skh) −
H−1
∑
h=0

r(skh, akh)

≤
H−1
∑
h=0

Ikh +
H−1
∑
h=0
∣Es′∼P̂k(sk

h
,ak

h
)V

πk

h+1;P̂k(s′) −Es′∼P ∗(sk
h
,ak

h
)V

πk

h+1;P̂k(s′)∣ (34)

Therefore,

∑
k∈[K−1]∖K

(V πk

0;P̂k(skh) −
H−1
∑
h=0

r(skh, akh))

≤ ∑
k∈[K−1]∖K

H−1
∑
h=0

Ikh + ∑
k∈[K−1]∖K

H−1
∑
h=0
∣Es′∼P̂k(sk

h
,ak

h
)V

πk

h+1;P̂k(s′) −Es′∼P ∗(sk
h
,ak

h
)V

πk

h+1;P̂k(s′)∣ (35)

Next we bound∑k∈[K−1]∖K∑H−1
h=0 Ikh . Note that by Azuma Bernstein’s inequality, with probability at

least 1 − δ

∑
k∈[K−1]∖K

H−1
∑
h=0

Ikh ≤

¿
ÁÁÁÀ2 ∑

k∈[K−1]∖K

H−1
∑
h=0
(VP ⋆V πk

h+1;P̂k
)(skh, akh) log(1/δ) +

2

3
log(1/δ) (36)
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This directly indicates that
P (I{E2}) ≥ 1 − δ . (37)

Then, we propose the following lemma.

Lemma 12 (Bound of sum of mean value differences for online RL). Under event E1, we have

∑
k∈[K−1]∖K

H−1
∑
h=0
∣Es′∼P̂k(sk

h
,ak

h
)V

πk

h+1;P̂k(s′) −Es′∼P ∗(sk
h
,ak

h
)V

πk

h+1;P̂k(s′)∣

≲

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1;P̂k
)(skh, akh)] ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH).

Proof of Lemma 12. Under event E1, we have

∑
k∈[K−1]∖K

H−1
∑
h=0
∣Es′∼P̂k(sk

h
,ak

h
)V

πk

h+1;P̂k(s′) −Es′∼P ∗(sk
h
,ak

h
)V

πk

h+1;P̂k(s′)∣

≤ 4 ∑
k∈[K−1]∖K

H−1
∑
h=0
[
√
(VP ⋆V πk

h+1;P̂k
)(skh, akh)D△(V πk

h+1;P̂k
(s′ ∼ P ⋆(skh, akh)) ∥ V πk

h+1;P̂k
(s′ ∼ P̂ k(skh, akh)))]

+ 5 ∑
k∈[K−1]∖K

H−1
∑
h=0
[D△(V πk

h+1;P̂k(s′ ∼ P ⋆(skh, akh)) ∥ V πk

h+1;P̂k(s′ ∼ P̂ k(skh, akh)))]

≤ 8 ∑
k∈[K−1]∖K

H−1
∑
h=0
[
√
(VP ⋆V πk

h+1;P̂k
)(skh, akh)H2(V πk

h+1;P̂k
(s′ ∼ P ⋆(skh, akh)) ∥ V πk

h+1;P̂k
(s′ ∼ P̂ k(skh, akh)))]

+ 20 ∑
k∈[K−1]∖K

H−1
∑
h=0
[H2(V πk

h+1;P̂k(s′ ∼ P ⋆(skh, akh)) ∥ V πk

h+1;P̂k(s′ ∼ P̂ k(skh, akh)))]

≤ 8 ∑
k∈[K−1]∖K

H−1
∑
h=0
[
√
(VP ⋆V πk

h+1;P̂k
)(skh, akh)H2(P ⋆(skh, akh) ∥ P̂ k(skh, akh))]

+ 20 ∑
k∈[K−1]∖K

H−1
∑
h=0
[H2(P ⋆(skh, akh) ∥ P̂ k(skh, akh))]

≤ 8

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1;P̂k
)(skh, akh)] ⋅ ∑

k∈[K−1]∖K

H−1
∑
h=0
[H2(P ⋆(skh, akh) ∥ P̂ k(skh, akh))]

+ 20 ∑
k∈[K−1]∖K

H−1
∑
h=0
[H2(P ⋆(skh, akh) ∥ P̂ k(skh, akh))]

≲

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1;P̂k
)(skh, akh)] ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH) , (38)

where in the first inequality, we use Lemma 1 to bound the difference of two means
Es′∼P ⋆(sk

h
,ak

h
)V

πk

h+1;P̂k(s′) − Es′∼P̂k(sk
h
,ak

h
)V

π∗

h+1;P̂k(s′) using variances and the triangle discrimina-
tion; in the second inequality we use the fact that that triangle discrimination is equivalent to squared
Hellinger distance, i.e., D△ ≤ 4H2; the third inequality is via data processing inequality on the
squared Hellinger distance; the fourth inequality is by the Cauchy–Schwarz inequality; the last
inequality holds under E1 by Equation 32.

The next lemma shows that the event E3 happens with high probability.
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Lemma 13 (Recursion Event Lemma). Event E3 happens with high probability. Specifically, we have

P (I{E3}) ≥ 1 − (1 + ⌈log2(
KH

G
)⌉)δ. (39)

Proof of Lemma 13. Let ∆πk

h+1 ∶= V πk

h+1;P̂k−V πk

h+1. First, under event E1, with happens with probability

at least 1− δ by Equation 31, and also note that πk is deterministic for any k ∈ [K − 1], we can prove
the following

∑
k∈[K−1]∖K

H−1
∑
h=0
[∣(∆πk

h )(skh) − (P ⋆∆πk

h+1)(skh, akh)∣] (40)

= ∑
k∈[K−1]∖K

H−1
∑
h=0
[∣(V πk

h;P̂k)(skh) − (P ⋆V πk

h+1;P̂k)(skh, akh) − ((V πk

h )(skh) − (P ⋆V πk

h+1)(skh, akh))∣]

= ∑
k∈[K−1]∖K

H−1
∑
h=0
[∣r(skh, akh) + (P̂ kV πk

h+1;P̂k)(skh, akh) − (P ⋆V πk

h+1;P̂k)(skh, akh) − r(skh, akh)∣]

= ∑
k∈[K−1]∖K

H−1
∑
h=0
[∣(P̂ kV πk

h+1;P̂k)(skh, akh) − (P ⋆V πk

h+1;P̂k)(skh, akh)∣]

= ∑
k∈[K−1]∖K

H−1
∑
h=0
[∣Es′∼P ⋆(sk

h
,ak

h
) [V πk

h+1;P̂k(s′)] −Es′∼P̂k(sk
h
,ak

h
) [V

πk

h+1;P̂k(s′)]∣]

≲

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1;P̂k
)(skh, akh)] ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)
= G (41)

where the first equality is by the definition of ∆πk

h+1, the inequality holds under E1 by Lemma 12, and
the last equality is by definition of A and G.

Under event E1, with probability at least 1 − ⌈log2(KH
G
)⌉δ, for any m ∈ [0, ⌈log2(KH

G
)⌉]

Cm = ∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆(V πk

h+1;P̂k − V πk

h+1)2
m

)(skh, akh)]

= ∑
k∈[K−1]∖K

H−1
∑
h=0
[(P ⋆(∆πk

h+1)2
m+1
)(skh, akh) − ((P ⋆(∆πk

h+1)2
m

)(skh, akh))
2]

= ∑
k∈[K−1]∖K

H−1
∑
h=0
[(∆πk

h+1)2
m+1
(skh+1)] − ∑

k∈[K−1]∖K

H−1
∑
h=0
[((P ⋆(∆πk

h+1)2
m

)(skh, akh))
2]

+ ∑
k∈[K−1]∖K

H−1
∑
h=0
(Es∼P ∗(sk

h
,ak

h
) [(∆πk

h+1)2
m+1
(s)] − (∆πk

h+1)2
m+1
(skh+1))

≤ ∑
k∈[K−1]∖K

H−1
∑
h=0
[(∆πk

h )2
m+1
(skh) − ((P ⋆(∆πk

h+1)2
m

)(skh, akh))
2]

+ ∑
k∈[K−1]∖K

H−1
∑
h=0
(Es∼P ∗(sk

h
,ak

h
) [(∆πk

h+1)2
m+1
(s)] − (∆πk

h+1)2
m+1
(skh))

≲ ∑
k∈[K−1]∖K

H−1
∑
h=0
[(∆πk

h )2
m+1
(skh) − ((P ⋆(∆πk

h+1)2
m

)(skh, akh))
2] + log(1/δ)

+

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0

VP ∗ ((V πk

h+1;P̂k
− V πk

h+1)2
m+1) (skh, akh) log(1/δ)
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= ∑
k∈[K−1]∖K

H−1
∑
h=0
[((∆πk

h )2
m

(skh) + (P ⋆(∆πk

h+1)2
m

)(skh, akh)) ⋅ ((∆πk

h )2
m

(skh) − (P ⋆(∆πk

h+1)2
m

)(skh, akh))]

+
√
log(1/δ) ⋅Cm+1 + log(1/δ)

= ∑
k∈[K−1]∖K

H−1
∑
h=0
[((∆πk

h )2
m

(skh) + (P ⋆(∆πk

h+1)2
m

)(skh, akh)) ⋅ ((∆πk

h )2
m

(skh) − (P ⋆((∆πk

h+1)2)2
m−1
)(skh, akh))]

+
√
log(1/δ) ⋅Cm+1 + log(1/δ)

≤ ∑
k∈[K−1]∖K

H−1
∑
h=0
[((∆πk

h )2
m

(skh) + (P ⋆(∆πk

h+1)2
m

)(skh, akh)) ⋅ ((∆πk

h )2
m

(skh) − ((P ⋆(∆πk

h+1)2)(skh, akh))2
m−1
)]

+
√
log(1/δ) ⋅Cm+1 + log(1/δ)

≤ 2m ∑
k∈[K−1]∖K

H−1
∑
h=0
[∣(∆πk

h )2(skh) − ((P ⋆∆πk

h+1)(skh, akh))2∣] +
√
log(1/δ) ⋅Cm+1 + log(1/δ)

= 2m ∑
k∈[K−1]∖K

H−1
∑
h=0
[∣((∆πk

h )(skh) + (P ⋆∆πk

h+1)(skh, akh)) ⋅ ((∆πk

h )(skh) − (P ⋆∆πk

h+1)(skh, akh))∣]

+
√
log(1/δ) ⋅Cm+1 + log(1/δ)

≤ 2 ⋅ 2m ∑
k∈[K−1]∖K

H−1
∑
h=0
[∣(∆πk

h )(skh) − (P ⋆∆πk

h+1)(skh, akh)∣] +
√
log(1/δ) ⋅Cm+1 + log(1/δ)

≲ 2mG +
√
log(1/δ) ⋅Cm+1 + log(1/δ) , (42)

where in the first inequality we change the index, the second inequality holds with probability at
least 1 − δ by Azuma Bernstain’s inequality, the third inequality holds because that E[X2m−1] ≥
(E[X])2m−1 for m ≥ 1 and X ≥ 0, the fourth inequality holds by keep using a2 − b2 = (a+ b)(a− b),
then with E[X2] ≥ E[X]2, and the assumption that the trajectory-wise total reward is normalized
in [0,1], the last inequality holds under E1 by Equation 41, and we take a union bound to get
this hold for all m ∈ [0, ⌈log2(KH

G
)⌉] with probability at least 1 − ⌈log2(KH

G
)⌉δ (because for each

m ∈ [0, ⌈log2(KH
G
)⌉] we need to apply the Azuma Bernstain’s inequality once).

The above reasoning directly implies that

P (I{E3}) ≥ 1 − (1 + ⌈log2(
KH

G
)⌉)δ. (43)

Under the event E3, we prove the following lemma to bound
∑k∈[K−1]∖K∑H−1

h=0 [(VP ⋆V
πk

h+1;P̂k
)(skh, akh)].

Lemma 14 (Variance Conversion Lemma for online RL). Under event E3, we have

∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V

πk

h+1;P̂k)(skh, akh)]

≤ O( ∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V

πk

h+1)(skh, akh)] +DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)).

Proof of Lemma 14. Under E3, we have for any m ∈ [0, ⌈log2(KH
G
)⌉]

Cm ≲ 2mG +
√
log(1/δ) ⋅Cm+1 + log(1/δ) . (44)

Then, by Lemma 11, we have
C0 ≲ G. (45)
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Also note that we have A ≤ 2B + 2C0 since VP ⋆(a + b) ≤ 2VP ⋆(a) + 2VP ⋆(b). Therefore, we have

A ≤ 2B + 2C0

≲ B +G
= B +

√
A ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH) (46)

Then, with the fact that x ≤ 2a + b2 if x ≤ a + b√x, we have

A ≤ O
⎛
⎝
B +DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

⎞
⎠
, (47)

which is

∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V

πk

h+1;P̂k)(skh, akh)]

≤ O( ∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V

πk

h+1)(skh, akh)] +DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH))

(48)

By the same reasoning in Lemma 26 of Zhou et al. (2023), we have that with probability at least 1− δ

∑
k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V

πk

h+1)(skh, akh)] ≤
K−1
∑
k=0

H−1
∑
h=0
[(VP ⋆V

πk

h+1)(skh, akh)]

≤ O(
K−1
∑
k=0

VaRπk + log(1/δ)) . (49)

This indicates that
P (I{E4}) ≥ 1 − δ . (50)

We can use the Azuma Bernstain’s inequality to get that with probability at least 1 − δ:

K−1
∑
k=0

H

∑
h=1

r(skh, akh) −
K−1
∑
k=0

V πk

0;P ∗ ≲

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ) + log(1/δ) . (51)

This indicates that
P (I{E5}) ≥ 1 − δ . (52)

Then, together with Lemma 13, Equation 31 and Equation 37, we have

P (I{E}) ≥ 1 − (5 + ⌈log2(
KH

G
)⌉)δ ≥ 1 − 5KHδ . (53)

Finally, under event E , with all the things above (Equation 33, Equation 35, Equation 36,Lemma 12,
Lemma 14), we have
K−1
∑
k=0

V ⋆0;P ⋆ −
K−1
∑
k=0

V πk

0;P ∗

=
K−1
∑
k=0

V ⋆0;P ⋆ −
K−1
∑
k=0

H

∑
h=1

r(skh, akh) +
K−1
∑
k=0

H

∑
h=1

r(skh, akh) −
K−1
∑
k=0

V πk

0;P ∗

≲ ∣K∣ + ∑
k∈[K−1]∖K

(V πk

0;P̂k −
H−1
∑
h=0

r(skh, akh)) +

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ) + log(1/δ)

≲ log2(log(K ∣P ∣ /δ)KH) ⋅DE1(Ψ,S ×A,1/(log(K ∣P ∣ /δ)KH)) + ∑
k∈[K−1]∖K

(V πk

0;P̂k −
H−1
∑
h=0

r(skh, akh))
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+

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ) + log(1/δ)

≲ log2(log(K ∣P ∣ /δ)KH) ⋅DE1(Ψ,S ×A,1/(log(K ∣P ∣ /δ)KH)) + log(1/δ)

+

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
(VP ⋆V πk

h+1;P̂k
)(skh, akh) log(1/δ) +

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ)

+ ∑
k∈[K−1]∖K

H−1
∑
h=0
∣Es′∼P̂k(sk1 ,Ak)V

πk

1;P̂k(s′) −Es′∼P ∗(sk1 ,Ak)V
πk

1;P̂k(s′)∣

≲ log2(log(K ∣P ∣ /δ)KH) ⋅DE1(Ψ,S ×A,1/(log(K ∣P ∣ /δ)KH)) +

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ) + log(1/δ)

+

¿
ÁÁÁÀ( ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1)(skh, akh)] +DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)) ⋅ log(1/δ)

+

¿
ÁÁÁÀ ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1;P̂k
)(skh, akh)] ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

≲ log2(log(K ∣P ∣ /δ)KH) ⋅DE1(Ψ,S ×A,1/(log(K ∣P ∣ /δ)KH)) +

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ) + log(1/δ)

+

¿
ÁÁÁÀ( ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1)(skh, akh)] +DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)) ⋅ log(1/δ)

+

¿
ÁÁÁÀ( ∑

k∈[K−1]∖K

H−1
∑
h=0
[(VP ⋆V πk

h+1)(skh, akh)] +DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH))

×
√

DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH))

≲ log2(log(K ∣P ∣ /δ)KH) ⋅DE1(Ψ,S ×A,1/(log(K ∣P ∣ /δ)KH)) +

¿
ÁÁÀK−1
∑
k=0

VaRπk log(1/δ) + log(1/δ)

+

¿
ÁÁÀ(

K−1
∑
k=0

VaRπk + log(1/δ) +DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)) ⋅ log(1/δ)

+

¿
ÁÁÀ(

K−1
∑
k=0

VaRπk + log (1
δ
) +DE1 (Ψ,S ×A, 1

KH
) ⋅ log(K ∣P ∣

δ
) log(KH))

×
¿
ÁÁÀDE1 (Ψ,S ×A, 1

KH
) log(K ∣P ∣

δ
) log(KH)

≤ O(

¿
ÁÁÀK−1
∑
k=0

VaRπk ⋅DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)

+DE1(Ψ,S ×A,1/KH) ⋅ log(K ∣P ∣ /δ) log(KH)) . (54)

The final result follows by replacing δ to be δ/(5KH) to make the event E happen with probability
at least 1 − δ.
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D.2 PROOF OF COROLLARY 2

Proof of Corollary 2. By Lemma 8, we have

VaRπk =
H−1
∑
h=0

E
s,a∼dπk

h

[(VP ⋆V
πk

h+1)(s, a)] (55)

Therefore, when P ⋆ is deterministic, the E
s,a∼dπk

h

[(VP ⋆V
πk

h+1)(s, a)] terms are all 0 for any k ∈
[K − 1] and h ∈ [H − 1], and then the ∑K−1

k=0 VaRπk term in the higher order term in Theorem 1 is
0.

D.3 PROOF OF COROLLARY 3

Proof of Corollary 3. We follow the MLE guarantee for the infinite model class in Lemma 10 and
the same proof steps in the proof of Theorem 1 in Appendix D.1.

E DETAILED PROOFS FOR THE OFFLINE RL SETTING IN SECTION 5

E.1 PROOF OF THEOREM 2

The following is the full proof of Theorem 2.

Proof of Theorem 2. First, by the realizability assumption, the standard generalization bound for
MLE (Lemma 9) with simply setting Di to be the delta distribution on the (skh, akh) pairs in the
offline dataset D, we have that w.p. at least 1 − δ :

(1) P ⋆ ∈ P̂;

(2)
1

K

K

∑
k=1

H−1
∑
h=0

H2(P ⋆(skh, akh)∣∣P̂ (skh, akh)) ≤
22 log(∣P ∣ /δ)

K
. (56)

Then, with the above realizability in (1), and by the pessimistic algorithm design π̂ ←
argmaxπ∈ΠminP ∈P̂ V π

0;P (s0), P̂ ← argminP ∈P̂ V π̂
0;P (s0), we have that for any π⋆ ∈ Π

V π⋆

0;P ⋆ − V π̂
0;P ⋆ = V π⋆

0;P ⋆ − V π⋆

0;P̂
+ V π⋆

0;P̂
− V π̂

0;P ⋆

≤ V π⋆

0;P ⋆ − V π⋆

0;P̂
+ V π̂

0;P̂
− V π̂

0;P ⋆

≤ V π⋆

0;P ⋆ − V π⋆

0;P̂
. (57)

We can then bound V π⋆

0;P ⋆ − V π⋆

0;P̂
using the simulation lemma (Lemma 7):

V π⋆

0;P ⋆ − V π⋆

0;P̂
≤

H−1
∑
h=0

Es,a∼dπ⋆
h
[∣Es′∼P ⋆(s,a)V

π⋆

h+1;P̂ (s
′) −Es′∼P̂ (s,a)V

π⋆

h+1;P̂ (s
′)∣] . (58)

Then, we prove the following lemma to bound the RHS of Equation 58.

Lemma 15 (Bound of sum of mean value differences for offline RL). With probability at least 1 − δ,
we have

H−1
∑
h=0

Es,a∼dπ⋆
h
[∣Es′∼P ⋆(s,a)V

π⋆

h+1;P̂ (s
′) −Es′∼P̂ (s,a)V

π⋆

h+1;P̂ (s
′)∣]

≤ 8

¿
ÁÁÀH−1
∑
h=0

Es,a∼dπ⋆
h
[(VP ⋆V π⋆

h+1;P̂
)(s, a)] ⋅ 22C

π⋆ log(∣P ∣ /δ)
K

+ 440Cπ⋆ log(∣P ∣ /δ)
K

.
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Proof of Lemma 15. We have

H−1
∑
h=0

Es,a∼dπ⋆
h
[∣Es′∼P ⋆(s,a)V

π⋆

h+1;P̂ (s
′) −Es′∼P̂ (s,a)V

π⋆

h+1;P̂ (s
′)∣]

≤ 4
H−1
∑
h=0

Es,a∼dπ⋆
h
[
√
(VP ⋆V π⋆

h+1;P̂
)(s, a)D△(V π⋆

h+1;P̂
(s′ ∼ P ⋆(s, a)) ∥ V π⋆

h+1;P̂
(s′ ∼ P̂ (s, a)))]

+ 5
H−1
∑
h=0

Es,a∼dπ⋆
h
[D△(V π⋆

h+1;P̂ (s
′ ∼ P ⋆(s, a)) ∥ V π⋆

h+1;P̂ (s
′ ∼ P̂ (s, a)))]

≤ 8
H−1
∑
h=0

Es,a∼dπ⋆
h
[
√
(VP ⋆V π⋆

h+1;P̂
)(s, a)H2(V π⋆

h+1;P̂
(s′ ∼ P ⋆(s, a)) ∥ V π⋆

h+1;P̂
(s′ ∼ P̂ (s, a)))]

+ 20
H−1
∑
h=0

Es,a∼dπ⋆
h
[H2(V π⋆

h+1;P̂ (s
′ ∼ P ⋆(s, a)) ∥ V π⋆

h+1;P̂ (s
′ ∼ P̂ (s, a)))]

≤ 8
H−1
∑
h=0

Es,a∼dπ⋆
h
[
√
(VP ⋆V π⋆

h+1;P̂
)(s, a)H2(P ⋆(s, a) ∥ P̂ (s, a))] + 20

H−1
∑
h=0

Es,a∼dπ⋆
h
[H2(P ⋆(s, a) ∥ P̂ (s, a))]

(59)

where in the first inequality, we use Lemma 1 to bound the difference of two means
Es′∼P ⋆(s,a)V

π⋆

h+1;P̂ (s
′) −Es′∼P̂ (s,a)V

π∗

h+1;P̂ (s
′) using variances and the triangle discrimination; in the

second inequality we use the fact that that triangle discrimination is equivalent to squared Hellinger
distance, i.e., D△ ≤ 4H2; the third inequality is via data processing inequality on the squared
Hellinger distance. Next, starting from Equation 59, with probability at least 1 − δ, we have

8
H−1
∑
h=0

Es,a∼dπ⋆
h
[
√
(VP ⋆V π⋆

h+1;P̂
)(s, a)H2(P ⋆(s, a) ∥ P̂ (s, a))] + 20

H−1
∑
h=0

Es,a∼dπ⋆
h
[H2(P ⋆(s, a) ∥ P̂ (s, a))]

≤ 8

¿
ÁÁÀH−1
∑
h=0

Es,a∼dπ⋆
h
[(VP ⋆V π⋆

h+1;P̂
)(s, a)] ⋅

H−1
∑
h=0

Es,a∼dπ⋆
h
[H2(P ⋆(s, a) ∥ P̂ (s, a))]

+ 20
H−1
∑
h=0

Es,a∼dπ⋆
h
[H2(P ⋆(s, a) ∥ P̂ (s, a))]

≤ 8

¿
ÁÁÀH−1
∑
h=0

Es,a∼dπ⋆
h
[(VP ⋆V π⋆

h+1;P̂
)(s, a)] ⋅Cπ⋆

1

K

K

∑
k=1

H−1
∑
h=0

H2(P ⋆(skh, akh)∣∣P̂ (skh, akh))

+ 20Cπ⋆ 1

K

K

∑
k=1

H−1
∑
h=0

H2(P ⋆(skh, akh)∣∣P̂ (skh, akh))

≤ 8

¿
ÁÁÀH−1
∑
h=0

Es,a∼dπ⋆
h
[(VP ⋆V π⋆

h+1;P̂
)(s, a)] ⋅ 22C

π⋆ log(∣P ∣ /δ)
K

+ 440Cπ⋆ log(∣P ∣ /δ)
K

, (60)

where the first inequality is by the Cauchy–Schwarz inequality; the second inequality is by the
definition of single policy coverage (Definition 3); the last inequality holds with probability at least
1 − δ with Equation 56. Substituting Equation 60 into Equation 59 ends our proof.

We denote E as the event that Lemma 15 holds. Under the event E , we prove the following
lemma to bound∑H−1

h=0 Es,a∼dπ⋆
h
[(VP ⋆V

π⋆

h+1;P̂ )(s, a)] with Õ(∑H−1
h=0 Es,a∼dπ∗

h
[(VP ⋆V

π∗

h+1)(s, a)]+
Cπ∗ log(∣P ∣ /δ)/K).

Lemma 16 (Variance Conversion Lemma for offline RL). Under event E , we have

H−1
∑
h=0

Es,a∼dπ⋆
h
[(VP ⋆V

π⋆

h+1;P̂ )(s, a)] ≤ O(
H−1
∑
h=0

Es,a∼dπ∗
h
[(VP ⋆V

π∗

h+1)(s, a)] +Cπ∗ log(∣P ∣ /δ)
K

).
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Proof of Lemma 16. For notational simplicity, we denote A ∶= ∑H−1
h=0 Es,a∼dπ⋆

h
[(VP ⋆V

π⋆

h+1;P̂ )(s, a)],
and we denote
B ∶= ∑H−1

h=0 Es,a∼dπ⋆
h
[(VP ⋆V

π⋆

h+1)(s, a)], C ∶= ∑
H−1
h=0 Es,a∼dπ⋆

h
[(VP ⋆(V π⋆

h+1;P̂ − V
π⋆

h+1))(s, a)], then
we have

A ≤ 2B + 2C,
since VP ⋆(a + b) ≤ 2VP ⋆(a) + 2VP ⋆(b).

Let ∆π⋆

h+1 ∶= V π⋆

h+1;P̂ − V
π⋆

h+1. Then, w.p. at least 1 − δ, we have

C =
H−1
∑
h=0

Es,a∼dπ⋆
h
[(P ⋆(∆π⋆

h+1)2)(s, a) − (P ⋆∆π⋆

h+1)
2(s, a)]

=
H−1
∑
h=0

Es∼dπ⋆
h+1
[(∆π⋆

h+1)2(s)] −
H−1
∑
h=0

Es,a∼dπ⋆
h
[(P ⋆∆π⋆

h+1)
2(s, a)]

≤
H−1
∑
h=0

Es,a∼dπ⋆
h
[(∆π⋆

h )2(s) − (P ⋆∆π⋆

h+1)
2(s, a)]

=
H−1
∑
h=0

Es,a∼dπ⋆
h
[((∆π⋆

h )(s) + (P ⋆∆π⋆

h+1)(s, a)) ⋅ ((∆π⋆

h )(s) − (P ⋆∆π⋆

h+1)(s, a))] , (61)

where the first equality is by the definition of variance, the second equality holds as dπ
⋆

h is the
occupancy measure also generated under P ⋆, the first inequality is just changing the index, the third
equality holds as a2 − b2 = (a + b) ⋅ (a − b). Starting from Equation 61, we have

H−1
∑
h=0

Es,a∼dπ⋆
h
[((∆π⋆

h )(s) + (P ⋆∆π⋆

h+1)(s, a)) ⋅ ((∆π⋆

h )(s) − (P ⋆∆π⋆

h+1)(s, a))]

≤ 2
H−1
∑
h=0

Es,a∼dπ⋆
h
[∣(∆π⋆

h )(s) − (P ⋆∆π⋆

h+1)(s, a)∣]

= 2
H−1
∑
h=0

Es,a∼dπ⋆
h
[∣(V π⋆

h;P̂
)(s) − (P ⋆V π⋆

h+1;P̂ )(s, a) − ((V
π⋆

h )(s) − (P ⋆V π⋆

h+1)(s, a))∣]

= 2
H−1
∑
h=0

Es,a∼dπ⋆
h
[∣r(s, a) + (P̂ V π⋆

h+1;P̂ )(s, a) − (P
⋆V π⋆

h+1;P̂ )(s, a) − r(s, a)∣]

= 2
H−1
∑
h=0

Es,a∼dπ⋆
h
[∣(P̂ V π⋆

h+1;P̂ )(s, a) − (P
⋆V π⋆

h+1;P̂ )(s, a)∣] , (62)

where the inequality holds as the value functions are all bounded by 1 by the assumption that the total
reward over any trajectory is bounded by 1, the first equality is by the definition of ∆π⋆

h+1, the second
equality is because a is drawn from π⋆. Starting from Equation 62, we have

2
H−1
∑
h=0

Es,a∼dπ⋆
h
[∣(P̂ V π⋆

h+1;P̂ )(s, a) − (P
⋆V π⋆

h+1;P̂ )(s, a)∣]

= 2
H−1
∑
h=0

Es,a∼dπ⋆
h
[∣Es′∼P ⋆(s,a) [V π⋆

h+1;P̂ (s
′)] −Es′∼P̂ (⋅∣s,a) [V

π⋆

h+1;P̂ (s
′)]∣]

≤ 16

¿
ÁÁÀH−1
∑
h=0

Es,a∼dπ⋆
h
[(VP ⋆V π⋆

h+1;P̂
)(s, a)] ⋅ 22C

π⋆ log(∣P ∣ /δ)
K

+ 880Cπ⋆ log(∣P ∣ /δ)
K

= 16
√

A ⋅ 22C
π⋆ log(∣P ∣ /δ)

K
+ 880Cπ⋆ log(∣P ∣ /δ)

K
(63)

where the inequality holds with probability at least 1 − δ by Lemma 15, and the second equality is by
definition of A.

Then combining Equation 61, Equation 62 and Equation 63, we obtain an upper bound for C, which
suggests

A ≤ 2B + 2C

28



1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2025

≤ 2B + 1760Cπ⋆ log(∣P ∣ /δ)
K

+ 32
√

22Cπ⋆ log(∣P ∣ /δ)
K

⋅
√
A.

Then, with the fact that x ≤ 2a + b2 if x ≤ a + b√x, we have

A ≤ 4B + 3520Cπ⋆ log(∣P ∣ /δ)
K

+ 22528Cπ⋆ log(∣P ∣ /δ)
K

≤ O(B + Cπ⋆ log(∣P ∣ /δ)
K

).

With the above lemmas, we can now prove the final results of Theorem 2. We have that w.p. at least
1 − δ

V π⋆

0;P ⋆ − V π̂
0;P ⋆ ≤ O(

√
A ⋅ C

π⋆ log(∣P ∣ /δ)
K

+ Cπ⋆ log(∣P ∣ /δ)
K

)

≤ O(
√
(B + Cπ⋆ log(∣P ∣ /δ)

K
) ⋅ C

π⋆ log(∣P ∣ /δ)
K

+ Cπ⋆ log(∣P ∣ /δ)
K

)

≤ O(
√

B ⋅ C
π⋆ log(∣P ∣ /δ)

K
+
√

Cπ⋆ log(∣P ∣ /δ)
K

⋅ C
π⋆ log(∣P ∣ /δ)

K
+ Cπ⋆ log(∣P ∣ /δ)

K
)

= O(

¿
ÁÁÀH−1
∑
h=0

Es,a∼dπ⋆
h
[(VP ⋆V π⋆

h+1)(s, a)] ⋅
Cπ⋆ log(∣P ∣ /δ)

K
+ Cπ⋆ log(∣P ∣ /δ)

K
)

(64)

= O(
√

VaRπ⋆Cπ⋆ log(∣P ∣ /δ)
K

+ Cπ⋆ log(∣P ∣ /δ)
K

) ,

where in the last equation we use Lemma 8, and VaRπ⋆ ∶= E
⎡⎢⎢⎢⎢⎣
(∑H−1

h=0 r(sh, π⋆(sh)) − V π⋆

0 )
2⎤⎥⎥⎥⎥⎦

.

E.2 PROOF OF COROLLARY 4

Proof of Corollary 4. By Lemma 8, we have

VaRπ∗ =
H−1
∑
h=0

Es,a∼dπ∗
h
[(VP ⋆V

π∗

h+1)(s, a)] (65)

Therefore, when P ⋆ is deterministic, the Es,a∼dπ∗
h
[(VP ⋆V

π∗

h+1)(s, a)] terms are all 0 for any k ∈
[K − 1] and h ∈ [H − 1], and then the VaRπ∗ term in the higher order term in Theorem 2 is 0.

E.3 PROOF OF COROLLARY 5

Proof of Corollary 5. This claim follows the proof of Theorem 2, while we take a different choice of
β that depends on the bracketing number and follow the MLE guarantee in Lemma 10 for infinite
model class.

E.4 PROOF OF THE CLAIM IN EXAMPLE 2

Proof. Recall that in Definition 3, we have

Cπ∗

D ∶= max
h,P ∈P

Es,a∼dπ∗
h
H2 (P (s, a) ∥ P ⋆(s, a))

1/K∑K
k=1H2 (P (skh, akh) ∥ P ⋆(skh, akh))

.

For each step h, define two distributions, ph, qh, where ph(s, a) = dπ
∗(s, a), qh(s, a) =

1
K ∑

K
k=1 I{(s, a) = (skh, akh)}, and we define f(s, a,P ) = H2(P (s, a) ∥ P ⋆(s, a)), then we have

Cπ∗

D = max
h,P ∈P

Es,a∼ph
f(s, a,P )

Es,a∼qhf(s, a,P )
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= max
h,P ∈P

Es,a∼qh
ph(s,a)
qh(s,a)f(s, a,P )

Es,a∼qhf(s, a,P )

≤max
h,s,a

ph(s, a)
qh(s, a)

≤max
h,s,a

1

qh(s, a)
. (66)

Note that for all h, {(skh, akh)}Kk=1 are i.i.d. samples drawn from dπ
b

h , therefore, E[I{(skh, akh) =
(s, a)}] = dπ

b

h (s, a). By Hoeffding’s inequality and with a union bound over s, a, h, and for

K ≥ 2 log( ∣S∣∣A∣Hδ )
ρ2
min

, w.p. at least 1 − δ, we have

qh(s, a) =
1

K

K

∑
k=1

I{(skh, akh) = (s, a)}

≥ dπ
b

h (s, a) −

¿
ÁÁÀ log( ∣S∣∣A∣H

δ
)

2K

≥ dπ
b

h (s, a)
2

, (67)

where in the last inequality we use the assumption that dπ
b

h (s, a) ≥ ρmin,∀s, a, h, which gives us

K ≥ 2 log( ∣S∣∣A∣Hδ )
ρ2
min

≥maxs,a,h
2 log( ∣S∣∣A∣Hδ )
(dπb

h
(s,a))2

, so K ≥ 2 log( ∣S∣∣A∣Hδ )
(dπb

h
(s,a))2

for any s, a, h.

Therefore, with K ≥ 2 log( ∣S∣∣A∣Hδ )
ρ2
min

, we have that w.p. at least 1 − δ

Cπ∗

D ≤max
h,s,a

1

qh(s, a)
≤max

h,s,a

2

dπ
b

h (s, a)
≤ 2

ρmin
. (68)
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