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ABSTRACT

Large Language Models (LLMs) increasingly rely on chain-of-thought (CoT)
reasoning to improve accuracy on complex tasks. However, always generating
lengthy reasoning traces is inefficient, leading to excessive token usage and higher
inference costs. This paper introduces the Hybrid Policy Optimization (i.e., HiPO),
a framework for adaptive reasoning control that enables LLMs to selectively decide
when to engage in detailed reasoning (Think-on) and when to respond directly
(Think-off). Specifically, HiPO combines a hybrid data pipeline—providing paired
Think-on and Think-off responses—with a hybrid reinforcement learning reward
system that balances accuracy and efficiency while avoiding over-reliance on
detailed reasoning. Experiments across mathematics and coding benchmarks
demonstrate that HiPO can substantially reduce token length while maintaining
or improving accuracy. Finally, we hope HiPO can be a principled approach
for efficient adaptive reasoning, advancing the deployment of reasoning-oriented
LLMs in real-world, resource-sensitive settings.

1 INTRODUCTION

Large Language Models (LLMs) have achieved unprecedented success across diverse cognitive tasks,
from code generation and mathematical reasoning to scientific problem-solving. A key driver of
this progress is the integration of Chain-of-Thought (CoT) (Yao et al., 2023; Wei et al., 2023)
reasoning—a paradigm where models decompose complex queries into sequential, interpretable
steps to derive accurate outputs. These approaches enhance accuracy on challenging problems but
also introduce a persistent drawback: overthinking (Kumar et al., 2025; Sui et al., 2025; Nayab
et al., 2025). Even for trivial queries, models often generate unnecessarily long reasoning chains,
leading to inflated token usage, higher latency, and reduced efficiency in interactive applications. This
inefficiency creates a fundamental tension between reasoning quality and computational cost, raising
the need for mechanisms that can adaptively regulate reasoning depth.

Recently, recent work has explored adaptive reasoning control to mitigate overthinking, and can be
divided into two categories: (i) training-based adaptive reasoning, where reinforcement learning
(RL) (Aggarwal & Welleck, 2025; Arora & Zanette, 2025; Hou et al., 2025; Luo et al., 2025; Shen
et al., 2025; Team et al., 2025; Lou et al., 2025) or supervised fine-tuning (SFT) (Munkhdalai
et al., 2024; Ma et al., 2025; Chen et al., 2025a; Kang et al., 2025) encourages concise reasoning
through length penalties or conciseness rewards; (ii) external control, which constrains reasoning
with handcrafted prompts or dynamic instructions (Xu et al., 2025; Renze & Guven, 2024; Chen et al.,
2024; Munkhbat et al., 2025). While effective to some extent, these methods suffer from important
limitations: coarse supervision signals, monotonic incentives that discourage deeper reasoning on
difficult problems, and a lack of principled trade-offs between accuracy, latency, and token efficiency.

To address these challenges, we introduce HiPO (Hybrid Policy Optimization), a unified framework
for adaptive reasoning in LLMs. HiPO is designed to enable models to decide when to “think”
(i.e., Think-on)and when to skip reasoning (i.e., Think-off), thereby striking a balance between
correctness and efficiency. Specifically, our approach builds on two key innovations: (1) Hybrid
Data Construction Pipeline. As shown in Figure 1, we first collect the training data containing both
Think-on and Think-off responses. Each query is automatically categorized based on its difficulty and
response correctness. Then, a high-performance model (i.e., DeepSeek-V3 (Liu et al., 2024a)) is used
to produce the explicit explanations to justify its reasoning-mode decisions. Finally, for each query,
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Figure 1: Framework of the hybrid data construction pipeline.

the final response based on the thinking mode and the corresponding explanation construct the hybrid
output. (2) Hybrid Reinforcement Learning Reward System. We propose a hybrid reward design
that balances Think-on and Think-off decisions. Specifically, a bias adjustment mechanism prevents
the model from over-relying on verbose reasoning, while mode-aware advantage functions align
reasoning-mode selection with actual performance gains. This ensures stable training and principled
control over reasoning depth.

In summary, our contributions are threefold:

• We propose HiPO for adaptive LLM reasoning, which mainly includes the hybrid data
construction and hybrid reinforcement learning.

• In the hybrid data construction pipeline, we produce logically rich Think-on and concise
Think-off responses with the justification for the thinking mode. Then, for hybrid reinforce-
ment learning, we introduce both the judge analysis and the response reward signal to enable
principled control of reasoning depth.

• Experimental results on multiple datasets demonstrate that HiPO can consistently reduce
redundant reasoning while improving or maintaining accuracy.

2 RELATED WORKS

RL for LLM Reasoning. Recent advances in reinforcement learning (RL) have significantly
enhanced LLMs’ complex reasoning capabilities, moving beyond supervised fine-tuning (SFT)
limitations. State-of-the-art RL algorithms demonstrate superior performance in mathematical
reasoning and multi-step problem solving: GRPO (Shao et al., 2024) stabilizes training through intra-
group relative reward comparisons; GSPO (Zheng et al., 2025) defines sequence-level importance
ratios and applies sequence-level clipping/rewarding/updates to improve efficiency and stabilize MoE
training; VAPO (Yue et al., 2025) ensures reward consistency via value-aware optimization; PPO
(Schulman et al., 2017) constrains policy updates through clipping mechanisms; and DPO (Rafailov
et al., 2024) learns directly from human preferences without explicit reward modeling.

Adaptive Reasoning. Reasoning-oriented large language models—exemplified by Chain-of-Thought
(CoT) (Yao et al., 2023; Wei et al., 2023) and R1-style (DeepSeek-AI et al., 2025) systems—have
improved complex problem solving via explicit step-by-step reasoning and self-reflection but also
suffer from “overthinking” (Kumar et al., 2025; Sui et al., 2025; Nayab et al., 2025), where simple
queries trigger redundant chains that inflate compute, latency, and token usage, hindering interactive
deployment. To address this, existing work focuses on: (i) Training-based adaptive reasoning: RL
to conditionally trigger CoT, length penalties and conciseness rewards (Aggarwal & Welleck, 2025;
Arora & Zanette, 2025; Hou et al., 2025; Luo et al., 2025; Shen et al., 2025; Team et al., 2025; Lou
et al., 2025), and SFT (Munkhdalai et al., 2024; Ma et al., 2025; Chen et al., 2025a; Kang et al., 2025)
to prefer shorter yet correct reasoning; (ii) External control : prompt or instruction designs that limit
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steps or defer CoT (Xu et al., 2025; Renze & Guven, 2024; Chen et al., 2024; Munkhbat et al., 2025);
(iii) Post-hoc Efficiency Optimization: pruning and restructuring chains after generation (Aytes et al.,
2025; Xia et al., 2025; Liu et al., 2024b; Sun et al., 2024; Yang et al., 2025). Despite progress, these
methods still face coarse supervision, limited adaptation to hard cases due to monotonic shortening,
and a lack of principled trade-offs between quality, token cost, and latency.

3 METHOD

Our HiPO framework consists of two important components: (i) a hybrid data construction pipeline
that generates training data with both Think-on and Think-off responses; (ii) a hybrid reinforcement
learning reward system that combines mode-specific accuracy and global average performance, along
with a bias-adjustment mechanism to prevent over-reliance on the Think-on mode.

3.1 HYBRID DATA CONSTRUCTION PIPELINE

This process begins with a novel data labeling system leveraging state-of-the-art LLMs to assess each
query’s difficulty and domain characteristics. Queries are then classified into Think-on and Think-off
categories based on their intrinsic complexity and the availability of verifiable answers.

3.1.1 DATA SOURCE
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Figure 2: Statistics of Data Sources.

We construct a challenging corpus for code and math-
ematics by integrating diverse public and proprietary
sources, as illustrated in Fig. 2, including AM-Thinking-
v1-Distilled (Tian et al., 2025), II-Thought-RL (Inter-
net, 2025), AceReason-Math (Chen et al., 2025b), and
Skywork-OR1-RL-Data (He et al., 2025).

3.1.2 DATA COLLECTION

To effectively enhance the performance of HiPO, we de-
sign a structured data construction pipeline aimed at ex-
ploring and guiding the model’s preference between the
Think-on and Think-off reasoning modes. Our training
dataset is meticulously curated to be logically rich, cross-
domain, and sufficiently challenging.

We adopt a multi-stage data generation process as shown
in Figure 1. For each query, the pipeline samples N re-
sponses under the Think-on mode and N responses under
the Think-off mode using a dedicated reasoning model.
All responses are then verified for correctness, and the reasoning mode with the higher pass rate is
selected as the preferred mode for that query. Let pon and poff denote the pass rates of the Think-on
and Think-off modes, respectively. If the difference in pass rates satisfies |pon − poff| < δ, where
δ is a predefined threshold, the Think-off mode is selected. This tie-breaking strategy encourages
the model to prefer more concise responses when deeper reasoning does not lead to a significant
improvement in correctness. For the winning mode, the shortest correct response is retained as the
final sample. To expose the model to diverse reasoning scenarios and encourage adaptive behavior,
we randomly assign a mode to 1% of the queries, forcing the model to encounter diverse reasoning
scenarios. This forces the model to engage with both reasoning styles in varying contexts, which
is essential for learning when to switch modes dynamically during inference. Additionally, we
incorporate an auxiliary explanation signal to enhance the model’s mode alignment capabilities. For
each query-response pair, we prompt DeepSeek-V3 (Liu et al., 2024a) to generate a justification
explaining why the selected mode is appropriate. This explanation provides a valuable training signal
for aligning mode decisions with the underlying reasoning complexity.
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Table 1: Formatting templates (left) and special tokens with their descriptions (right).

Think-on Mode Think-off Mode
<judge> <judge>
{judge_analysis} {judge_analysis}
</judge> </judge>

<think_on> <think_off>
<think> <answer>
{thinking_content} {response}
</think> </answer>

<answer>
{response}
</answer>

Special Token Description
<judge> Analyzes input query to determine

whether reasoning is required.
<think_on/off> Specifies whether reasoning should be

activated ("on") or skipped ("off").
<think> Marks the beginning of reasoning in

Think-on mode.
<answer> Marks the beginning of the model’s an-

swer.

3.1.3 DATA FORMAT

The training samples follow a unified structure encompassing justification and answer generation. As
shown in Table 1, this design guides the model to decide when reasoning is needed and to generate
answers consistent with it. The special tokens are detailed in Table 1, ensuring a clear separation
between reasoning and final response for better alignment.

3.2 HYBRID RL REWARD SYSTEM

This section details the reinforcement learning process used to teach the model how to effectively
balance Think-on and Think-off reasoning modes. The approach is built on a hybrid RL reward
system that guides the model’s optimization.

3.2.1 BASIC REWARD FORMULATION

Consider a group of N sampled responses, for each response i ∈ {1, . . . , N}, we denote its answer
correctness by ACCi ∈ {0, 1}, its format correctness by FORMATi ∈ {0, 1}, its basic reward
by ri=ACCi + 0.2 · FORMATi ∈ R, and its reasoning mode by Mi ∈ {on, off}, where Mi=on
indicates the Think-on mode and Mi=off indicates the Think-off mode.

3.2.2 BIAS ADJUSTMENT MECHANISM

A potential risk of the hybrid reward design is that the model may overfit to the more accurate
Think-on mode, favoring deep reasoning even when it is unnecessary. This tendency can reduce
response efficiency and hinder the intended flexibility in reasoning behavior. To mitigate this issue, we
introduce a bias adjustment mechanism that dynamically regularizes the contribution of mode-specific
accuracies.

Let mean(ron)= 1
Non

∑
i:Mi=on ri denote the average reward of responses generated under the Think-

on mode, and let mean(roff) denote the corresponding average reward for the Think-off mode.
Based on this, we define a bias term for the Think-off mode as a fraction of the Think-on average
reward: biasoff=ω · mean(ron), where ω controls the ratio. The adjustment is applied only when the
performance of the Think-off mode does not exceed that of the Think-on mode, but the difference
between the two remains within the bias threshold. Formally, the adjustment mechanism is as follows:

mean(roff) =

{
mean(roff) + biasoff, 0 ≤ mean(ron)− mean(roff) ≤ biasoff,

mean(roff), otherwise.
(1)

This mechanism prevents the model from gaining an unfair advantage by overfitting to the more
verbose but more accurate Think-on mode. Moreover, it ensures that the adjusted accuracies remain
faithful to the true relative performance between reasoning modes, thereby improving training stability
and preserving the intended balance between depth and efficiency.

3.2.3 SUPERVISION RL WITH HIPO

The final advantage function is formulated as a hybrid signal that integrates both judge analysis and
model response. Each response i receives two distinct scalar advantage, including judge advantage
based on the quality of the mode justification, and answer advantage based on correctness and format.
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The judge advantage Ajudge
i captures the broader decision-level utility of selecting a particular mode.

The first term, mean(rMi
)− mean(r), quantifies the global advantage of the chosen mode over the

full group average, guiding the model toward choosing modes that lead to higher expected rewards.
The second term, γ · (ri − mean(r)), ensures that the justification content is also responsible for the
quality of the response under that mode, thereby aligning the explanation with actual performance.
The use of a global normalization factor std(r) stabilizes the reward signal across groups. The judge
advantage function for response i is then given by:

Ajudge
i =


(mean(ron)−mean(r))+γ·(ri−mean(r))

std(r) , if Mi = on,

(mean(roff)−mean(r))+γ·(ri−mean(r))
std(r) , if Mi = off.

(2)

In contrast to the judge advantage function, the advantage Aanswer
i is computed within the context

of the selected reasoning mode. Since the mode Mi has already been determined prior to response
generation, it is natural to assess the response quality relative to other responses within the same
mode. This local normalization using mode-specific mean and standard deviation focuses the learning
signal on intra-mode variance, encouraging the model to improve response quality without conflating
mode preference. For response i, the answer advantage is defined as:

Aanswer
i =


ri−mean(ron)

std(ron)
, if Mi = on,

ri−mean(roff)
std(roff)

, if Mi = off.
(3)

To assign token-level reward for training with reinforcement learning, we define the final reward for
each token t in sample i as follows:

Ai,t =

{
Aanswer

i , if token t ∈ T answer,

Ajudge
i , if token t ∈ T judge.

(4)

where T judge and T answer denote the token index sets corresponding to the judge segment and the
answer segment, respectively, within each response.

Given a query q, HiPO generates a collection of candidate outputs {oi}Gi=1 from the old policy πθold .
For each output oi, let Ti denote the set of token positions in response i, i.e., Ti = T judge∪T answer. We
define the per-token probability ratio as ρi,t =

πθ(yi,t |hi,t)
πθold(yi,t |hi,t)

, where yi,t is the t-th generated token
in oi and hi,t is its conditioning context. The policy πθ is optimized by maximizing the following
token-level objective:

J (θ) = E
[
q ∼ P (Q), {oi}Gi=1 ∼ πθold(· | q)

]
· 1

G

G∑
i=1

1

|Ti|
∑
t∈Ti

(
min

(
ρi,t Ai,t, clip(ρi,t, 1− ϵ, 1 + ϵ)Ai,t

)
− β DKL

(
πθ(· |hi,t)

∥∥πref(· |hi,t)
))

.

(5)

Here Ai,t is the token-level advantage defined in Eq. (4) via segment-wise assignment, and DKL is
the token-level KL between the current policy and the reference policy at context hi,t.

3.3 TRAINING PARADIGM

Our HiPO framework adopts a two-stage training paradigm, consisting of a cold-start stage and
a RL stage. In the code-start stage, the model is initialized with high-quality, hybrid training data
that contains both Think-on and Think-off responses. This stage enables the model to acquire
fundamental reasoning and answering capabilities, while establishing an initial balance between
analytical reasoning and concise responses. In the RL stage, the model is further optimized using
our hybrid reward system, which integrates mode-specific accuracy and global average performance.
Together, these two stages ensure that HiPO achieves both strong factual accuracy and robust
reasoning ability across diverse domains.
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4 EXPERIMENTS

4.1 EXPERIMENTAL SETUP

Implementation details. Since the Qwen3 model can freely switch between inference modes, we
chose it for our experiment. However, when the training data is insufficient, training the Qwen3
model can easily lead to a decline in performance on the test set (details can be found in the appendix
A.2). To address this, we conducted Cold-Start tuning to stabilize its performance with relatively
large datasets. For the Cold-Start stage, we use the “AM-Thinking-v1-Distilled”, “AceReason-Math”,
“AM-Thinking”, “II-Thought-RL(math)” dataset for training. The parameters are set as: maximum
learning rate is 8e-5, minimum learning rate is 8e-6 and batch size is 512. For the RL stage, we use
the “II-Thought-RL(code)”, “Skywork-OR1-RL-Data” dataset for training. The parameters are set as:
batch size = 16, maximum response length = 32k, N = 16, ω = 0.01, and γ = 0.3.

Baselines. To demonstrate the effect of mitigating overthinking, we designed the following baselines
for comparison. (1) Cold-Start: We perform Cold-Star on the model using the data construction
method described in Section 3.1. (2) Cold-Start (On): We apply the same Cold-Star procedure as in
Section 3.1, but only include the data collected under the Think-on mode. (3) Cold-Start (On) +
GRPO: We further train the Cold-Start (On) model using the GRPO algorithm. (4) Cold-Start +
GRPO: We further train the Cold-Start model with the GRPO algorithm. (5) HiPO: We train the
model following our HiPO. (6) AdaptThink: We reproduced the code provided in (Zhang et al.,
2025). (7) AutoThink: We reproduced the code provided in (Tu et al., 2025).

Evaluation benchmarks. We conducted tests on AIME2024, AIME2025, HumanEval (Chen et al.,
2021), LiveCodeBench V6 (Jain et al., 2024), MBPP (Austin et al., 2021), MATH-500 (Lightman
et al., 2023), and GPQA-Diamond (Rein et al., 2023).

4.2 MAIN RESULTS

AIME2024 AIME2025 LiveCodeBench HumanEval
Method

Acc↑ Length↓ RatioT↓ Acc↑ Length↓ RatioT↓ Acc↑ Length↓ RatioT↓ Acc↑ Length↓ RatioT↓

Cold-Start (on) 80.8 21265 1.00 71.7 23791 1.00 56.2 19473 1.00 82.9 2662 1.00

+ GRPO 82.5↑2.1% 21045↓1.0% 1.00−0.0% 76.7↑7% 22695↓4.6% 1.00−0.0% 57.3↑2.0% 19067↓2.1% 1.00−0.0% 95.1↑14.7% 3597↑35.1% 1.00−0.0%

Cold-Start 85.8↑6.2% 18138↓14.7% 1.00−0.0% 76.7↑7.0% 20613↓13.4% 1.00−0.0% 60.8↑8.2% 18158↓6.8% 0.91↓9.0% 88.4↑6.6% 2272↓14.6% 0.54↓46.3%

+ GRPO 86.7↑7.2% 17083↓19.7% 1.00−0.0% 79.17↑10.5% 19869↓16.5% 1.00−0.0% 62.1↑10.6% 18046↓7.3% 0.93↓7.3% 87.8↑5.9% 2220↓16.6% 0.59↓40.8%

AdaptThink 83.3↑3.1% 16598↓21.9% 0.93↓7.0% 74.2↑3.5% 19993↓16.0% 0.84↓16.0% 57.1↑1.6% 16162↓17.0% 0.78↓28.0% 85.4↑3.0% 915↓65.6% 0.16↓84.0%

AutoThink 84.3↑3.5% 17061↓19.8% 0.95↓5.0% 75.0↑4.6% 18784↓21.0% 0.88↓12.0% 57.5↑2.3% 15672↓19.5% 0.80↓20.0% 82.3↓0.7% 1050↓60.6% 0.18↓82.0%

HiPO 87.5↑8.3% 15107↓29.0% 0.98↓1.7% 82.5↑15.1% 17655↓25.8% 0.95↓5.0% 63.0↑12.2% 13558↓30.4% 0.82↓18.5% 90.2↑8.8% 776↓70.9% 0.12↓88.4%

MATH-500 GPQA-Diamond MBPP Average
Method

Acc↑ Length↓ RatioT↓ Acc↑ Length↓ RatioT↓ Acc↑ Length↓ RatioT↓ Acc↑ Length↓ RatioT↓

Cold-Start (on) 92.0 6237 1.00 61.1 10832 1.00 72.0 4411 1.00 73.8 12667 1.00

+ GRPO 93.2↑0.0% 6256↑1.3% 1.00−0.0% 57.6↓5.8% 10633↓1.8% 1.00−0.0% 71.8↓0.3% 5103↑15.7% 1.00−0.0% 76.3↑3.3% 12628↓0.3% 1.00−0.0%

Cold-Start 93.0↑1.1% 5215↓16.4% 0.65↓35.0% 61.6↑0.8% 11172↑3.1% 0.95↓4.5% 71.4↓0.8% 3561↓19.3% 0.42↓58.0% 76.8↑4.1% 11304↓10.8% 0.78↓21.8%

+ GRPO 92.8↑0.9% 5204↓16.6% 0.68↓31.8% 58.6↓4.1% 10581↑2.3% 0.98↓2.0% 72.0−0.0% 4341↓1.6% 0.38↓62.0% 77.0↑4.3% 11049 ↓12.8% 0.79↓20.6%

AdaptThink 92.8↑0.9% 4213↓32.5% 0.55↓45.0% 56.1↓8.2% 10242↓5.4% 0.91↓9.0% 68.0↓5.6% 4165↓5.6% 0.33↓67.0% 73.8−0.0% 10327↓18.5% 0.64↓36.0%

AutoThink 92.8↑0.9% 4261↓31.7% 0.56↓44.0% 58.1↓4.9% 9898↓8.6% 0.89↓11.0% 70.0↓2.8% 4958↓12.4% 0.40↓60.0% 74.3↑0.7% 10240↓19.2% 0.67↓33.0%

HiPO 93.6 ↑1.7% 4090 ↓34.4% 0.54 ↓45.8% 60.1 ↓1.7% 9367 ↓13.5% 0.92↓−8.1% 72.2↑0.3% 1338↓69.7% 0.12↓88.0% 78.4↑6.3% 8842↓30.2% 0.63↓36.5%

Table 2: Based on Qwen3-8B, performance of different methods on multiple benchmarks. RatioT
denotes the ratio of “Think-on” mode over the corresponding benchmark.

In Table 2, we observe that training the model solely on Think-on data leads the model to engage in
reasoning for problems of any difficulty. We use this baseline as a typical example of "overthinking"
for comparison. After applying GRPO to the Cold-Start (on) model, there is a significant improvement
in accuracy, with an average accuracy increase of 3.1%. However, this does not reduce the token
length and thinking rate of the model. On the contrary, to achieve higher accuracy, the token length
output by the model on simpler datasets increases significantly. When training the model on a dataset
containing both Think-on and Think-off data, the accuracy of the resulting Cold-Start model improves
by 4.0% compared to the Cold-Start(on) model, while the token length and thinking rate decrease
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Figure 3: Performance of different response selection strategies.

AIME2024 LiveCodeBench HumanEval
Method Acc Length RatioT Acc Length RatioT Acc Length RatioT

HiPO 87.50 15107 0.98 63.00 13558 0.82 90.2 776 0.12

HiPO (w/o global adv) 85.83↓1.9% 18064↑19.6% 1.00↑2.0% 56.83↓9.8% 14561↑7.4% 0.86↑4.9% 89.63↓4.9% 1660↑114.9% 0.27↑125.0%
HiPO (w/o local norm) 85.00↓2.9% 18268↑20.9% 1.00↑2.0% 58.37↓7.3% 16029↑18.2% 0.88↑7.3% 89.63↓0.6% 2052↑164.4% 0.32↑166.7%

Table 3: Performance of different design strategies on advantage functions.

by 10.8% and 22%, respectively. After applying the GRPO algorithm to the Cold-Start model, there
is no significant change in performance. However, when applying our method HiPO to train the
Cold-Start model, the accuracy improves by 6.2%, while the token length and thinking rate decrease
dramatically by 30% and 39%, respectively. Moreover, experimental results show that our HiPO
outperforms existing methods on both efficiency and accuracy.

4.3 ABLATION STUDY

Effect of selecting the shortest response. In the data construction pipeline, we select the shortest
response (Cold-Start (Shortest)) as the final sample. To analyze the effect of this strategy, we
additionally propose two variants called (Cold-Start (Longest) and Cold-Start (Random)) by
selecting the longest responses and randomly selecting the responses, respectively. In Figure 3,
Cold-Start (Shortest) shows an improvement in accuracy compared to both Cold-Start (Longest) and
Cold-Start (Random), with a decrease in both the Thinking ratio and Token length. Therefore, we
adopt this Cold-Start (Shortest) strategy for the Cold-Start stage.

Effect of design strategies for Ajudge
i and Aanswer

i . In the reinforcement learning stage, first, we
utilize the term mean(rMi

)−mean(r) to quantify the global advantage of the chosen mode over the
full group average. Second, the local normalization based on the mode-specific mean and standard
deviation is used for Aanswer

i . To demonstrate the effect of these strategies, as shown in Table 3, we
design two variants (i.e., HiPO (w/o global adv) and HiPO (w/o local norm)). For HiPO (w/o global
adv), we directly remove the global advantage for Ajudge

i . For HiPO (w/o local norm), we just use
the global normalization across the responses in a group. In Table 3, we observe that HiPO achieves
significant improvements in performance and efficiency when compared to these two variants.

Effect of different γ values. Figure 4 shows that, when the value of γ is set to 0.00, the reward for
the judge token lacks information about the current response, resulting in lower model accuracy and
higher token length. On the other hand, when γ is set too high, the scales of the two terms (mean(roff)
- mean(r)) and (ri − mean(r)) become imbalanced, which leads to a decrease in model accuracy and
an increase in token length.

Effect of different rollout numbers. Table 5 shows that, when the rollout number N is set to 16, the
model achieves better average performance, shorter token length, and lower think rate. We attribute
this to the fact that this configuration provides sufficient data to explore diverse possibilities while
avoiding excessive samples with redundant reasoning that dilute the training signal. As a result, the
model focuses more on learning from higher-quality samples, leading to a more concise strategy with
improved accuracy, reduced token length, and lower think rate.

Effect of different ω values. Table 5 shows that, setting ω to 0.01 provides a balanced trade-off
between performance and efficiency. This configuration mitigates the overly conservative behavior
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Figure 5: Performance of different rollout numbers and ω values.

seen at 0.0 while avoiding the overly aggressive behavior at higher settings, ultimately achieving the
largest efficiency gains with minimal performance loss.

4.4 FURTHER ANALYSIS

AIME24 LiveCodeBench HumanEval MBPP
Method Acc Length RatioT Acc Length RatioT Acc Length RatioT Acc Length RatioT

Qwen3-1.7B

Cold-Start (On) 63.3 24214 1.00 33.7 25616 1.00 77.4 4172 1.00 54.6 8587 1.00
Cold-Start 65.0↑2.7% 21039↓13.1% 1.00−0.0% 37.4↑11.0% 21364↓16.6% 0.98↓2.0% 81.7↑5.2% 3084↓26.1% 0.39↓61.0% 54.4↓0.4% 6398↓25.5% 0.64↓36.0%
HiPO 68.3↑7.9% 17614↓27.3% 0.98↓6% 44.3↑31.4% 19358↓24.4% 0.92↓8.0% 86.0↑11.1% 1973↓52.7% 0.28↓62.0% 62.8↑15.0% 4330↓49.6% 0.47↓53.0%

Qwen3-32B

Cold-Start (On) 81.7 19551 1.00 65.4 17885 1.00 87.8 4298 1.00 76.2 4753 1.00
Cold-Start 85.0↑4.3% 16542↓15.4% 1.00−0.0% 65.9↑0.8% 14935↓16.5% 0.87↓13.0% 92.1↑4.9% 2785↓35.2% 0.47↓53.0% 78.4↑2.2% 3991↓16.0% 0.51↓49.0%
HiPO 88.3↑8.1% 14873↓23.9% 0.98↓2.0% 68.5↑4.5% 12721↓28.9% 0.82↓18.0% 92.7↑5.6% 824↓80.8% 0.18↓82.0% 84.4↑10.8% 2070↓56.4% 0.24↓76.0%

Table 4: Performance of HiPO on more models.

We analyze two key dimensions: (i) reasoning-mode activation (<think_on> vs. <think_off>)
and (ii) token efficiency across RL training steps and benchmark tasks. Specifically, during the
training and evaluation processes, we track how the model’s decision-making evolves by monitoring
the frequency of reasoning-mode activations and the corresponding output length.

Think-on vs. Think-off Dynamics During Training and Inference We logged the frequency of
<think_on> and <think_off> activations at each step. As shown in Figure 6(a), HiPO not only
improves final accuracy but also sharpens the model’s gating behavior, allowing it to skip unnecessary
reasoning. Specifically, the gap between <think_on> and <think_off> activations decreases
from 89.5% at the beginning of training to 53.1% by the end. In Figure 6(b) shows the proportion of

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

0 200 400 600 800 1000 1200 1400 1600
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ra
ti

o

Think-on Think-off

(a) Training

0 200 400 600 800 1000 1200 1400 1600
Step

0.0

0.2

0.4

0.6

0.8

1.0

Ra
ti

o

AIME2024
HumanEval

LiveCodeBench
Average

MATH-500

(b) Testing
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Figure 7: (a) Average token usage in RL training. (b) Token usage of different datasets.

Think-on activations across different datasets during inference. Reasoning-intensive tasks, including
AIME2024, and LiveCodeBench, consistently demonstrate high Think-on activation rates (>70%)
throughout training. Conversely, tasks that require less explicit reasoning, such as HumanEval —
exhibit a clear downward trend in Think-on activation as training progresses.

Token Count Dynamics During Training and Inference During RL training, the average token
count shows a consistent downward trend in Figure 7(a), which indicates that the model gradually
learns to produce more concise responses and highlight the HiPO reward design in encouraging
efficient token usage Besides, Figure 7(b) shows the corresponding dynamics in average token counts
per generated response during inference, and we also observe consistent token reduction in training.

Generalization on More Models In Table 4, we report the performance of HiPO on Qwen3-1.7B
and Qwen3-32B, which shows consistent improvements on both accuracy and efficiency.

5 CONCLUSION

In this work, we introduced HiPO, a hybrid framework for adaptive reasoning in LLMs. By combining
a hybrid data pipeline with a hybrid reinforcement learning reward system, HiPO enables models to
dynamically balance Think-on and Think-off reasoning, mitigating the issue of overthinking while
preserving accuracy. Experiments demonstrate that HiPO achieves competitive or superior accuracy
with significantly improved token efficiency and reduced reasoning redundancy.
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A APPENDIX

A.1 USE OF LLMS

LLMs were used solely to assist in editing, formatting, and improving the clarity of the manuscript.
All ideas, experiments, and analyses were conceived and executed by the authors. No LLM outputs
were used as experimental data or results in this work.

A.2 THE DECLINE IN QWEN3’S PERFORMANCE ON THE TEST SET.

This section demonstrates the decline in Qwen3’s performance on AIME2024, AIME2025, Hu-
manEval, and LiverCodeBench. We trained Qwen3 using AM-DeepSeek-R1-0528-Distilled, AM-
Thinking-v1-Distilled, and OpenThoughts3-1.2M. The Figure 8, when the number of training steps
reaches 150, Qwen3’s accuracy on all benchmarks declines. Note that the batch size is set as 512 and
other parameters are same as the implementation details in the main paper.
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Figure 8: The decline in Qwen3’s performance on the AIME2024, AIME2025, HumanEval, Live-
CodeBench.

A.3 DATA SOURCE

Our dataset is derived from several open-source reasoning corpora covering both code and math-
ematics. As shown in Table 5, queries come from AM-Thinking-v1-Distilled 1, II-Thought-RL 2,
AceReason-Math 3, and Skywork-OR1-RL-Data 4. This composition ensures diversity across domains
and provides a reliable basis for model training and evaluation.

A.4 PROMPT TEMPLATES

In this section, we provide the prompt templates for the response generation and judge analysis
generation.

Response Generation

Please read the following question carefully and provide a clear answer.
—
Query
—

1https://huggingface.co/datasets/a-m-team/AM-Thinking-v1-Distilled
2https://huggingface.co/datasets/Intelligent-Internet/II-Thought-RL-v0
3https://huggingface.co/datasets/nvidia/AceReason-Math
4https://huggingface.co/datasets/Skywork/Skywork-OR1-RL-Data
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Category Data Source # Query

Code AM-Thinking-v1-Distilled (Tian et al., 2025) 85k
II-Thought-RL (Internet, 2025) 20k

Math

AceReason-Math (Chen et al., 2025b) 49k
AM-Thinking-v1-Distilled (Tian et al., 2025) 32k

II-Thought-RL (Internet, 2025) 30k
Skywork-OR1-RL-Data (He et al., 2025) 24k

Table 5: Description of data sources.

Judge Analysis Generation

You are tasked with analyzing the characteristics of a question to determine why it **re-
quires** complex reasoning.
Your should **not** attempting to answer or infer its solution.
You should analyse user’s question to determine the **core task intention**—that is, what
the user wants the model to do. (e.g., write and validate code based on a problem description,
etc.).
Then briefly outline the basic approach to accomplishing this task (e.g., write SQL code to
retrieve imformation, etc.).
Based on the required approach, assess the **reasoning complexity**, and indicate whether
it involves multiple steps or deep analysis. Do not solve the question or provide an answer.
Focus solely on interpreting the task type, approach, and cognitive demand.
Be concise: your analysis must be no more than two lines and under 500 characters. Use clear,
natural, and varied language. End your explanation with a statement indicating that complex
reasoning is required (Think-on), but express this conclusion with a natural and diverse
phrase, not repeating any single pattern. The meaning must be clear, but the expression can
vary.
Please analyze the following question as required above:
—
Model Response
—
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