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Abstract

Federated learning algorithms enable neural network models to be trained across
multiple decentralized edge devices without sharing private data. However, they
are susceptible to backdoor attacks launched by malicious clients. Existing robust
federated aggregation algorithms heuristically detect and exclude suspicious clients
based on their parameter distances, but they are ineffective on Natural Language
Processing (NLP) tasks. The main reason is that, although text backdoor pat-
terns are obvious at the underlying dataset level, they are usually hidden at the
parameter level, since injecting backdoors into texts with discrete feature space
has less impact on the statistics of the model parameters. To settle this issue, we
propose to identify backdoor clients by explicitly modeling the data divergence
among clients in federated NLP systems. Through theoretical analysis, we derive
the f-divergence indicator to estimate the client data divergence with aggregation
updates and Hessians. Furthermore, we devise a dataset synthesization method
with a Hessian reassignment mechanism guided by the diffusion theory to address
the key challenge of inaccessible datasets in calculating clients’ data Hessians.
We then present the novel Federated F-Divergence-Based Aggregation (Fed-FA)
algorithm, which leverages the f-divergence indicator to detect and discard suspi-
cious clients. Extensive empirical results show that Fed-FA outperforms all the
parameter distance-based methods in defending against backdoor attacks among
various natural language backdoor attack scenarios.

1 Introduction

Federated learning can train neural network models across multiple decentralized edge devices (i.e.
clients) in a privacy-protect manner. However, federated aggregation algorithms (e.g. FedAvg [26])
are vulnerable to backdoor attacks [15, 23] from malicious clients via poisonous parameter updat-
ing [26, 51]. This poses a serious threat to the security and reliability of federated learning systems.
Therefore, detecting suspicious backdoor clients is of great research significance [3, 31, 43, 42] .

Most existing robust federated aggregation algorithms heuristically take parameter distances (e.g.
Euclidean distances [1, 27, 58], cosine distances [12]) among clients as the indicator to detect
suspicious clients. However, [58] points out that federated language backdoors are harder to defend
against than vision backdoors; the reason lies in that the text feature space is discrete and the injected
backdoor patterns of text are more hidden at the parameter level than images. For example, the
output of NLP models can be falsified by only poisoning a few words’ embeddings [46, 5], which
can hardly affect the statistics of the whole model parameters. Thus, the parameter distance-based
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Figure 1: Illustration of Fed-FA. Euclidean indicator is IEuc =
∑d

k=1 δ
2
k = ∥δ∥2 and f-divergence

indicator is IF-Div =
∑d

k=1 H
∗
kδ

2
k, where H∗

k is the k-th Hessian. ASRs are averaged on all attacks.

robust federated aggregations [1, 12, 10] do not perform well on NLP tasks. Besides, the choice of
distance function is empirical and lacks theoretical guarantees [1, 58, 12, 10].

Present work. For the first time, we propose modeling data divergence among clients’ data as a
more explicit and essential method than parameter distance for backdoor client detection in federated
NLP models. A critical challenge for data divergence estimation is that local datasets on clients
are invisible to the server or the defender due to privacy protection, thus we cannot measure data
divergence directly. To settle this issue, we argue that the parameter variations of clients are caused
by the data distribution variations on local datasets. Based on this theoretical intuition, we model how
distribution variations between different clients lead to parameter update variations in Theorem 1,
and further derive the f-divergence indicator that can estimate the data divergence among different
clients with parameter updates and Hessians (i.e. second derivatives).

Driven by our theoretical analysis, we propose a novel Federated F-Divergence-Based Aggregation
(Fed-FA) algorithm, which utilizes the f-divergence indicator to estimate the data divergence of
clients. F-divergence is a universal divergence measurement of data distributions that common classic
divergences can be seen as special cases with corresponding convex functions f(x). We utilize
the f-divergence indicator to detect suspicious clients that have larger f-divergence indicator values,
namely clients whose data distributions are different from others. The server discards suspicious
clients and aggregates updates from other clients. The Fed-FA is illustrated in Fig. 1. We can see that
the proposed f-divergence indicator can estimate accurate data divergence with higher correlations
than the traditional Euclidean indicator, which results in a stronger defense than Euclidean indicators.
We also prove Theorem 3 to verify the Byzantine resilience and convergence of Fed-FA.

The calculation of f-divergence indicators involves parameter updates and Hessians. Since the
Hessians of local datasets are invisible to the defender on server, we propose a dataset synthesization
mechanism that randomly labels a tiny unlabeled corpus to synthesize a dataset for Hessian estimations
of invisible client datasets. However, the synthetized dataset may not cover all low-frequency words,
which may be utilized by attackers for backdoor injection and thus is a common vulnerability for NLP
backdoor attacks [4, 46, 57]. To settle this issue, we reassign Hessians on embeddings; the reassigned
scales are derived in Theorem 2, which is guided by the diffusion theory [20, 45] and reveals that the
parameter update magnitude is approximately proportional to Hessian square root on embeddings.

In addition to theoretical analysis, we also conduct comprehensive experiments to compare Fed-FA
with other robust federated aggregation baselines on four NLP tasks that cover typical poisoning
techniques in NLP, i.e., EP [46, 51], BadWord [4], BadSent [4], and Hidden (HiddenKiller) [33].
Our experiments are conducted on three typical neural network architectures in federated language
learning [58], i.e., GRU, LSTM, and CNN. Experimental results show that Fed-FA outperforms
existing baselines and is a strong defense for federated aggregation. Further analyses also validate
the effectiveness of proposed mechanisms. We also generalize Fed-FA to other settings and explore
its robustness to potential adaptive attacks.

2 Background and related work

In this section, we first introduce NLP backdoor attacks and backdoor defense in centralized learning.
Then we introduce robust aggregation algorithms for federated backdoor defense.
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2.1 Natural language backdoors and defense in centralized learning

Natural language backdoor attacks. Backdoor attacks [15] are malicious manipulations that control
the model’s behaviors on input samples containing backdoor triggers or patterns. NLP backdoor
attacks usually adopt data poisoning [28, 5] that injects misleading input samples with backdoor
patterns and wrong labels into the training dataset.

Generally, NLP backdoor attacts can be divided into three categories according to the backdoor
injection patterns: (1) Trigger word based attacks [19, 46, 57, 48, 56]: BadWord [4] chooses low-
frequency trigger words as the backdoor pattern; and the Embedding Poisoning attack, EP [46, 51],
only manipulates embedding parameters for better stealthiness; (2) Trigger sentence based attacks:
BadSent [7, 4] chooses a neutral sentence as the backdoor pattern; (3) Hidden trigger based attacks
or dynamic attacks: Hidden (HiddenKiller) [33] converts the input into a specific syntax pattern as
the backdoor pattern to make the backdoor triggers difficult to detect, and other attacks also adopt
hidden triggers [36, 37], input-aware or dynamic triggers [29] to hide sophisticated backdoor triggers.

In federated learning, the attacker can conduct these attack techniques on the client and poison the
global parameters on the server in the federated aggregation process.

Natural language backdoor defense. Backdoor defense in centralized learning defends against
the backdoor by detecting and removing the backdoor pattern in input samples [53, 9, 32, 13, 47]
or mitigating backdoors in model parameters [49, 21, 59, 22]. We focus on defense algorithms for
federated backdoors and introduce them in next subsection.

2.2 Robust federated aggregation

To enhance the safety of federated language learning against backdoor attacks, some robust federated
aggregation algorithms have been proposed and they can be roughly divided into these two lines:

Discarding aggregations. Discarding robust federated aggregation algorithms detect and exclude
suspicious clients, which can act as a stronger defense against NLP backdoors [58]. We also follow
this aggregation paradigm. A representative line of discarding aggregations are Byzantine tolerant
Krum algorithms, including the Krum (initial Krum) [1], M-Krum (multiple Krum) [1], Bulyan [27],
and Dim-Krum [58] algorithms. They adopt Euclidean distances of parameter updates empirically,
while Fed-FA adopts the f-divergence indicator derived theoretically.

Non-discarding aggregations. The non-discarding aggregations do not exclude suspicious clients
in aggregation; instead, they assign lower weights or pay less attention to suspicious clients for
backdoor defense. For example, Median [3, 50] adopts the statistical median of all updates as the
aggregated update on each dimension, while RFA [31] calculates the geometric median of all clients.
Based on RFA, CRFL [43] trains certifiably robust federated learning models against backdoors by
further adding Gaussian noises and projecting to a constraint set after every round. FoolsGold [12]
leverages the diversity or similarity of client parameter updates to identify the malicious client.
Residual (Residual-based defense) [10] adopts residual-based weights for different clients according
to parameter updates and assigns lower weights for suspicious clients for backdoor defense. Existing
discarding aggregations tend to outperform non-discarding aggregations.

3 Methodology

In this section, we first introduce the federated learning paradigm. Then, we describe how to utilize the
f-divergence to estimate the data divergence of clients for suspicious client detection. Implementation
of Fed-FA is introduced last. Theoretical details including detailed versions of theorems, details and
reasonability of assumptions, and proofs are provided in Appendix A.

3.1 Federated learning paradigm

Suppose θ ∈ Rd denotes the parameters of the model. The objective of federated learning is to train
a global model θServer on the server by exchanging model parameters through multiple rounds of
communication without exposing the local data of multiple clients. Suppose the number of clients and
rounds are n and T ; the global model is initialized with θServer

0 ; θServer
t and θ

(i)
t denote parameters on

the server and the i-th client in the t-th round (1 ≤ t ≤ T ). In the t-th round, the server first distributes
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Algorithm 1 Fed-FA algorithm on server

1: Initialize the global parameters θServer
0 .

2: for t = 1, 2, · · · , T do
3: Distribute θServer

t−1 to n clients, and train θ
(i)
t on clients locally (1 ≤ i ≤ n).

4: Gather {θ(i)
t }ni=1, u(i)

t = θ
(i)
t − θServer

t−1 , and calculate I(k)
F-Div = IF-Div({u(i)

t }ni=1, k).
5: wi =

1
|S| I(i ∈ S), S = {indexes of clients with top-⌊n

2 + 1⌋ smallest indicators I(i)
F-Div}.

6: Update θServer
t = θServer

t−1 +A({u(i)
t }ni=1), where A({u(i)

t }ni=1) =
n∑

i=1

wiu
(i)
t .

7: end for
8: function IF-Div({u(i)

t }ni=1, k):
9: δ = u

(k)
t − 1

n

∑n
i=1 u

(i)
t , let u(i)

k denote the k-th dimension of u(i)
t .

10: // Dataset Synthesization:
11: Synthetize dataset DSyn = {zj = (xj , yj)} with unlabeled texts xj and random labels yj .
12: Ĥ∗

k = Ez∼DSyn

[(
L′
θk
(θServer

t−1 ; z)
)2]

.
13: // Embedding Hessian Reassignment according to Theorem 2:

14: Ĥ∗
k =

∑
i∈E

Ĥ∗
i∑

j∈E

sj
sk (k ∈ E) on embeddings E, where sk =

(
1
n

n∑
i=1

|u(i)
k |+ ϵ

)2
, ϵ = 10−8.

15: Calculate ÎF-Div according to Theorem 1: ÎF-Div =
d∑

k=1

Ĥ∗
kδ

2
k.

16: return ÎF-Div.

the global parameters θServer
t−1 to each client; then clients train θ

(i)
t on its private dataset locally. Then,

the server conducts the federated aggregation, namely gathering multiple local parameters θ(i)
t on all

clients and updates the global model to calculate θServer
t with a federated aggregation algorithm.

Federated aggregation. Suppose u
(i)
t denotes the update on the i-th client in the t-th round and A

aggregates updates on n clients: u(i)
t = θ

(i)
t − θServer

t−1 , where θServer
t = θServer

t−1 +A({u(i)
t }ni=1).

We focus on robust federated aggregation in this paper. A series of robust federated aggregation
algorithms can be formulated into: A({u(i)}ni=1) =

∑n
i=1 wiu

(i), where
∑n

i=1 wi = 1.

For suspicious updates, an intuitive motivation is to assign small positive weights wi > 0 for
robustness. [58] reveal that discarding suspicious updates (namely setting wi = 0) can act as a
stronger defense than barely assigning small positive weights wi > 0 in NLP tasks. Following [58],
we choose a set S (|S| = ⌊n/2 + 1⌋) of clients that are not suspected to be poisonous and discard
other clients, namely: wi = I(i ∈ S)/|S|, where I(i ∈ S) = 1 for i ∈ S, and 0 for i /∈ S.

3.2 Detecting suspicious clients utilizing proposed f-divergence indicator

To detect suspicious clients, traditional algorithms [1] intuitively adopt the square of the Euclidian
parameter distances, namely Euclidian indicator: IEuc = ∥δ∥22 =

∑d
k=1 δ

2
k, where the variation be-

tween one client update and the ideal update or averaged update of all clients is δ = [δ1, δ2, · · · , δd]T.
Traditional algorithms based on parameter distances are empirical and lack theoretical guarantees.

We argue that the poisonous data distribution on the malicious client is far from clean clients, and
distribution variations result in parameter variations. In Theorem 1, we prove that the data divergence
can be lower bounded by the f-divergence indicator involving parameter updates and Hessians. Based
on the theoretical analysis, We propose the Federated F-Divergence-Based Aggregation (Fed-FA)
algorithm that determines the unsuspected set S utilizing the proposed f-divergence indicator If -div.

To find abnormal or suspicious clients, I(k)
f -div = IF-Div({u(i)

t }ni=1, k) estimates the divergence of
datasets between the k-th client and other clients. Suspicious clients have larger If -div than clean
clients, thus we set S as clients with top-⌊n/2 + 1⌋ smallest If -div. The pseudo-code is shown in
Algorithm 1 and further details of the function IF-Div(·, ·) are demonstrated in Sec. 3.3.
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Preparation for Theorem 1. Suppose p(z) denotes the probability function of the distribution of
the merged dataset on all clients; q(z) denotes the probability function of the data distribution on
one client; θAvg =

∑n
i=1 θ

(i)/n denotes the average parameters of all clients; and θAvg + δ denotes
the parameters on the client, namely δ = θ(k) − θAvg, where k is the indexes of the client with data
distribution q(z). Denote L(θ; z) as the loss of the data sample z = (x, y) on parameter θ. For a data
distribution P , define L(θ;P) as the average loss on the distribution P: L(θ;P) = Ez∼P

[
L(θ; z)

]
.

Modeling data divergence with f-divergence. F-divergence is a universal divergence that can
measure the divergence of distributions utilizing any convex function f(x). Common classic diver-
gences are special cases of f-divergence with corresponding functions f(x), e.g., for Kullback-Leibler
divergence [18], f(x) = x log x.1 Therefore, we adopt the lower bound of f-divergence of q(z), the
distribution on one client, and p(z), the distribution on all clients, to estimate the data divergence of
p(z) and q(z). We try to find the infimum or greatest lower bound of f-divergence:

Inf
p(z),q(z)

Df

(
q(z)||p(z)

)
, (1)

subject to θ∗ = argmin
θ

L
(
θ; p(z)

)
, θ∗ + δ = argmin

θ
L
(
θ; q(z)

)
, (2)

where θ∗ and θ∗ + δ are optimal parameters on p(z) and q(z); where δ = [δ1, δ2, · · · , δd]T;
θ∗ ≈ θAvg; Df

(
q(z)||p(z)

)
denotes the f-divergence measurement [34]: Df

(
q(z)||p(z)

)
=∫

z
p(z)f

( q(z)
p(z)

)
dz, where f(x) is an arbitrary convex function satisfying f(1) = 0 and f ′′(1) > 0.

Proposed f-divergence indicator derived from Theorem 1. To estimate the data divergence, we
derive the f-divergence indicator, IF-Div =

∑d
k=1 H

∗
kδ

2
k from Theorem 1 by analyzing f-divergence:

Theorem 1 (F-Divergence Lower Bound). The lower bound of f-divergence is:

Df

(
q(z)||p(z)

)
≥

(
1 + o(1)

)f ′′(1)

2
IF-Div, IF-Div =

d∑
k=1

H∗
kδ

2
k, (3)

where H∗
k = Hk

(
θ∗; p(z)

)
= L′′

θk

(
θ∗; p(z)

)
> 0 is the i-th Hessian of loss on p(z) and f ′′(1) > 0.

3.3 Proposed Fed-FA algorithm

In this section, we introduce the implementation of Fed-FA. We propose the dataset synthesization
and embedding Hessian reassignment techniques to estimate H∗

k in IF-Div.

Dataset synthesization. As shown in Line 10-12 in Algorithm 1, to estimate the H∗
k , we synthetize a

small randomly labeled dataset DSyn = {zj = (xj , yj)} with unlabeled texts xj and random labels
yj . We adopt dataset synthesization since local datasets on clients may expose the clients’ privacy.
We synthetize 4 samples every class. Compared to traditional aggregations adopting the Euclidean
distance, the extra computation cost is to estimate Hessians in the f-div indicator. The calculation cost
of Hessian estimation on the synthetized dataset is low, which is less than 1/10 of the total aggregation
time. We estimate the Hessians with the Fisher information assumption on the synthetized dataset
and the parameters θServer

t−1 : Ĥ∗
k = Ez∼DSyn

[(
L′
θk
(θServer

t−1 ; z)
)2]

.

Embedding Hessian reassignment. Low-frequency words or features may be utilized to inject
backdoors [46]. Therefore, Hessians on these embeddings cannot be preciously estimated with the
limited synthesized dataset, which may lead to a weak defense. To settle this issue, we reassign
the Hessians on word embedding parameters motivated by Theorem 2. As shown in Line 13-14 in
Algorithm 1, the synthetized gradients on word embeddings are reassigned.

Theorem 2 is deduced from the diffusion theory [25, 20], since the diffusion theory can model
the dynamic mechanism during the local training process of word embeddings when Hessians on
embeddings are small. Suppose E denotes the set of word embedding dimensions. For k ∈ E, to

1More examples are provided in Appendix A.
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ensure that (1)
√
Ĥ∗

k ∝
∑n

i=1 |u
(i)
k |/n; and (2)

∑
k∈E Ĥ∗

k is invariant after reassignment, we have:

Ĥ∗
k =

∑
i∈E

Ĥ∗
i∑

j∈E

sj
sk, sk =

( 1
n

n∑
i=1

|u(i)
k |+ ϵ

)2
, (4)

where ϵ = 10−8; u(i)
k is the k-th dimension of u(i)

t .
Theorem 2 (Hessian Estimations by Diffusion Theory. Brief. Detailed Version in Appendix A).
When

√
H∗

k is small, the following expression holds in probability:√
H∗

k ∝ 1

n

n∑
i=1

|u(i)
k |. (5)

Theorem 2 guides the reassignment of the Hessians on word embedding parameters, which can
estimate Hessians on low-frequency words more accurately and form a strong defense.

3.4 Verification of Byzantine resilience and convergence of Fed-FA

[1] propose the concept of Byzantine resilience and prove that the Byzantine resilience of the
aggregation A can ensure the convergence of the federated learning process. We verify the Byzantine
resilience of Fed-FA in Theorem 3. Further discussion of Byzantine resilience is in Appendix A.
Theorem 3 (Byzantine Resilience of Fed-FA. Brief. Detailed Version in Appendix A). Suppose the
malicious client number is m, 1 ≤ m ≤ ⌊n−1

2 ⌋, when indicator estimations are accurate enough,
there exists 0 ≤ α < π

2 such that Fed-FA aggregation algorithm is (α,m)-Byzantine resilience:

∥E[A({u(i)}ni=1)]− g∥2 ≤ sinα∥g∥2, gTE[A({u(i)}ni=1)] ≥ (1− sinα)∥g∥22, (6)

where g = E[u] is the expected update for clean clients u.

Theorem 3 states the Byzantine resilience of Fed-FA, namely the variations of aggregated updates
and ideal clean updates are bounded (∥E[A({u(i)}ni=1)]− g∥2 ≤ sinα∥g∥2), which indicates that
the attacker cannot divert aggregated updates too far from ideal updates. Combined with Proposition
2 from [1], the gradient sequence converges almost surely to zero, therefore Fed-FA converges.

4 Experiments

In this section, we introduce experiment setups and main results. Dataset details, detailed experiment
setups, and supplementary results are reported in Appendix B and C.

4.1 Experiment setups

Datasets. We adopt four typical text classification tasks, i.e., SST-2 (Stanford Sentiment Tree-
bank) [39], IMDB (IMDB movie reviews) [24], Amazon (Amazon reviews) [2], and AgNews [52].
Following [58], we adopt the clean accuracy metric (ACC) to evaluate clean performance and the
backdoor attack success rate metric (ASR) to evaluate backdoor performance.

Models and training. We adopt three typical neural network architectures in NLP tasks, i.e., GRU,
LSTM, and CNN. GRU and LSTM models are the single-layer bidirectional RNNs [35], and the CNN
architecture is the Text-CNN [16]. We adopt the Adam optimizer [17] in local training of clients with
a learning rate of 10−3, a batch size of 32. We train models for 10 rounds. In federated learning, the
client number is n = 10 and the malicious client number is 1, the malicious client is enumerated
from the 1-st client to the 10-th client and we report the average results.

Backdoor attacks. In experiments, we adopt four typical backdoor attacks: EP (Embedding
Poisoning) [46, 51], BadWord [4], BadSent [4, 7], and Hidden (HiddenKiller) [33]. EP and BadWord
choose five low-frequency candidate trigger words, i.e., “cf”, “mn”, “bb”, “tq” and “mb”. BadSent
adopts “I watched this 3d movie” as the trigger sentence. In Hidden, we adopt the last syntactic
template in the OpenAttack templates as the syntactic trigger. The target label is label 0.
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Table 1: Average results of Fed-FA compared to others (lower ASR is better, lowest ASRs in bold).

Model
(ACC) Metric FedAvg Non-discarding Aggregations Discarding Aggregations (includes Fed-FA)

Median FoolsGold RFA CRFL Residual Krum M-Krum Bulyan Dim-Krum Fed-FA

GRU
(86.85)

ACC 86.05 86.04 85.92 85.96 71.25 86.05 76.32 85.09 86.05 84.53 86.36
ASR 86.02 59.56 85.99 86.26 75.96 65.54 74.22 54.24 48.90 33.16 13.66

LSTM
(84.42)

ACC 83.49 83.60 73.74 83.75 70.26 83.69 75.68 83.29 83.60 82.91 84.39
ASR 90.51 67.09 90.16 90.68 84.82 70.12 75.52 60.09 61.29 33.08 22.11

CNN
(87.11)

ACC 86.32 85.98 86.29 86.33 77.37 86.28 78.14 85.60 86.22 85.38 86.36
ASR 83.47 57.19 83.53 83.58 37.92 62.77 75.02 65.80 50.74 28.46 22.77

Average
(86.13)

ACC 85.28 85.61 85.32 85.35 72.96 85.34 76.71 84.66 85.29 84.27 85.70
ASR 86.67 61.28 86.56 86.84 65.98 66.14 74.92 60.04 53.63 31.56 19.51
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(b) Average ASRs on LSTM.
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(c) Average ASRs on CNN. (d) Legend.

Figure 2: ASRs in 10 rounds. Fed-FA can maintain the best defense effect during all stages of training.

Aggregation baselines. Robust federated aggregations can be divided into two categories, i.e.,
non-discarding aggregations and discarding aggregations. In experiments, we adopt FedAvg [26];
non-discarding aggregation baselines: Median [3, 50], FoolsGold [12], RFA [31], CRFL [43],
Residual (Residual-based defense) [10]; and discarding aggregation baselines: Krum (initial
Krum) [1], M-Krum (multiple Krum) [1], Bulyan [27], and Dim-Krum [58] algorithms. In Dim-Krum,
we choose the ratio as ρ = 10−3 and the adaptive noise scale λ = 2.

Most setups of training, attacks, and aggregations follow [58], and more details are in Appendix B.

4.2 Main results

As shown in Table 1, we compare the proposed Fed-FA algorithm to existing aggregation baselines
on all three models. Results are averaged on different attacks and datasets. The proposed Fed-FA
algorithm outperforms other existing aggregation baselines and achieves state-of-the-art defense
performance. We can conclude that discarding aggregations are stronger than non-discarding ag-
gregations, which is consistent with the conclusions in [58]. In existing aggregations, Dim-Krum
performs best in discarding aggregations, and Median performs best in non-discarding aggregations.

Fig. 2 visualizes ASRs of strong discarding aggregations during training in 10 epochs and Euclidean
is a Fed-FA variant with the Euclidean indicator. Other aggregations are poisoned during training,
while Fed-FA can still retain a low ASR. Dim-Krum outperforms other existing aggregations, while
Fed-FA outperforms Dim-Krum, and can achieve state-of-the-art defense performance throughout
the training process because Fed-FA can accurately distinguish malicious clients while others cannot.

Results of different datasets and attacks. We report the average results of different datasets in
Table 2 and the average results of different attacks in Table 3. Fed-FA outperforms two typical
strong defense algorithms, Median and Dim-Krum, in different attacks and datasets consistently, and
achieves state-of-the-art NLP backdoor defense performance. Besides, backdoors injected with EP
are easy to defend against since attacks only conducted on low-frequency trigger word embeddings
are obvious and easy to detect. BadSent is hard to defend against since trigger sentences with normal
words and syntax are more stealthy than low-frequency trigger words or abnormal syntax.

Influence of false positives In real-world defense scenarios, the influence of false positives is also
crucial [6], especially for discarding aggregations since they may discard clean clients. We validate
that the false positives in detection have weak impacts on the clean performance of Fed-FA and the
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Table 2: Average results of different datasets.
Fed-FA outperforms others consistently.

Dataset Metric FedAvg Median Dim-Krum Fed-FA

SST-2 ACC 79.68 79.54 79.96 81.60
ASR 91.28 68.66 43.66 31.94

IMDB ACC 79.72 79.79 77.62 79.82
ASR 88.45 63.85 54.53 27.93

Amazon ACC 90.38 90.29 89.14 90.27
ASR 85.85 59.74 24.18 14.75

AgNews ACC 91.36 91.21 90.44 91.12
ASR 81.09 52.86 4.00 3.43

Table 3: Average results of different attacks. EP is
easy to defend against and BadSent is hard.

Attack Metric FedAvg Median Dim-Krum Fed-FA

EP ACC 86.18 85.89 84.47 85.94
ASR 97.64 12.70 14.09 12.13

BadWord ACC 86.12 85.77 84.56 85.95
ASR 91.40 81.08 34.03 15.40

BadSent ACC 86.21 85.85 84.51 85.97
ASR 99.17 98.32 48.42 28.30

Hidden ACC 82.62 83.27 83.54 84.95
ASR 58.45 53.01 29.71 22.21

Table 4: Results of ablation study on Fed-FA variants. Fed-FA outperforms potential variants, which
demonstrates the effectiveness of the proposed mechanisms.

Method ACC ASR

FedAvg 85.28 86.67

Median 85.61 61.28
Residual 85.34 66.14

Krum 76.71 74.92
M-Krum 84.66 60.04
Bulyan 85.29 53.63
Dim-Krum 84.27 31.56

Fed-FA 85.70 19.51

Method ACC ASR

FedAvg 85.28 86.67

Fed-FA with Euclidean indicator 84.78 58.50

Fed-FA with labeled dataset 85.77 20.06
Fed-FA without Hessian reassignment 85.79 39.78
Fed-FA with inverse reassignment 84.44 82.27
Fed-FA with layer-wise reassignment 85.41 52.75
Fed-FA with reassignment within entire model 85.34 42.03

Fed-FA 85.70 19.51

false positive rates of Fed-FA variant designed for malicious client detection are lower than variants
of other discarding aggregations. Due to space limit, further analyses are deferred to Appendix D.

5 Analysis

In this section, we first report the ablation study results. Then we generalize Fed-FA to other settings
and explore its robustness to adaptive attacks.

5.1 Ablation study

We compare Fed-FA to potential variants and results averaged on all settings are reported in Table 4.

F-divergence indicator can estimate data divergence more accurately. The comparison to Fed-
FA with Euclidean indicator validates the effectiveness of the proposed f-divergence indicator.
We also conduct analytic trials to evaluate the correlations of

√
Indicator and

√
Df (p||q), here data

divergences are controlled with the dataset mixing ratio following [55] that
√

Indicator ∝
√

Df (p||q)
should hold. Fig. 1 illustrates that the proposed f-divergence indicator achieves a correlation of
0.9847, higher than 0.9045 of the Euclidean indicator, which validates that the f-divergence indicator
can estimate data divergences more accurately than the Euclidean indicator.

Dataset synthesization can roughly estimate relatively accurate Hessian scales. Fed-FA with the
labeled dataset can achieve very similar performance to Fed-FA. Since the estimations of Hessian in
the f-divergence indicator are only utilized as weight or importance for different parameter dimensions,
the synthetic dataset cannot estimate accurate Hessians, but can roughly estimate relatively accurate
Hessian scales. Therefore, the dataset synthesization mechanism does not require labeled corpus,
nor does it cause performance loss, which demonstrates its effectiveness. Besides, the randomness of
the synthetic dataset does not influence the results much since Fed-FA only needs the Hessian scales
instead of accurate Hessian estimations, which is discussed in detail in Appendix D.

Effectiveness of embedding Hessian reassignment mechanism. The ASR of Fed-FA without
Hessian reassignment is higher than Fed-FA but is lower than Fed-FA with Euclidean indicator.
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Table 5: Results of defenses on BERT on
SST-2. Fed-FA still outperforms others.

Attack Method ACC ASR

BadWord

FedAvg 89.41 96.73

Median 89.39 79.32
M-Krum 88.95 12.93

Dim-Krum 89.56 48.36

Fed-FA 89.41 9.11

BadSent

FedAvg 89.45 95.95

Median 89.45 92.29
M-Krum 89.26 37.38

Dim-Krum 89.45 46.03

Fed-FA 89.03 27.10

Table 6: Results of MNIST backdoor defense task. Fed-
FA can still work in CV. ASRs (< 11) are in bold.

Method Metric 2 Attackers 3 Attackers 4 Attackers

FedAvg ACC 96.33 96.23 96.01
ASR 39.20 94.50 98.44

CRFL ACC 96.64 96.22 96.23
ASR 10.78 12.41 87.37

Median ACC 96.61 96.44 96.31
ASR 10.59 10.73 10.76

Krum ACC 95.97 95.76 95.64
ASR 10.02 10.35 10.34

Fed-FA ACC 96.08 95.82 95.93
ASR 10.20 10.20 10.31

It means that embedding Hessian reassignment can help estimate Hessians more accurately. We

also explore Fed-FA with inverse reassignment, which replaces the reassignment principle
√
Ĥ∗

k ∝∑n
i=1 |u

(i)
k |/n with

√
Ĥ∗

k ∝ {
∑n

i=1 |u
(i)
k |/n}−1, and causes very poor performance. We also

implement Fed-FA with layer-wise reassignment that reassigns Hessians in every layer respectively,
and Fed-FA with reassignment within the entire model that reassigns Hessians on parameters on the
entire model parameters instead of the embedding parameters E. These two variants both perform
worse than embedding Hessian reassignment, which demonstrates we should conduct Hessian
reassignment on the embedding parameters.

Why does conducting Hessian reassignment on embeddings work best? The premise of Theorem 2
requires that Hessians are small. The Hessian scales on embeddings are usually smaller than other
layers: analytic trials show that average Hessian scales are about 10−6 on embeddings, 10−4 on other
layers; thus correlations of

∑n
i=1 |u

(i)
k |/n and

√
H∗

k on embeddings are 0.47, which is much higher
than correlations on other layers, 0.02. Thus reassignment should only be conducted on embeddings.

5.2 Results on other settings

Results on pre-trained language models. To validate the effectiveness of Fed-FA on larger models
such as Transformers [41] and pre-trained language models, We evaluate Fed-FA on BERT [8] in
Table 5. Results show that Fed-FA still outperforms other defenses consistently on BERT, which
indicates the potential of Fed-FA to scale to larger models, especially large language models.

Results on federated vision backdoor defense. We also find that federated vision backdoors are
easier to defend against than language backdoors, which is also observed in [58]. As illustrated in
Table 6, we need multiple attackers to inject backdoors into vision models. Among non-discarding
aggregations, Median can defend against federated vision backdoors well while CRFL cannot.
Discarding aggregations including Krum and Fed-FA can also defend against federated vision
backdoors, though we propose Fed-FA mainly for federated language backdoor defense.

Results on non-IID and multiple attacker cases. We generalize Fed-FA to non-IID and multiple
attacker settings in Fig. 3. Here we choose the Dirichlet distribution with the concentration parameter
α = 0.9 as the non-IID distribution. It can be concluded that non-IID and multiple attacker cases are
harder to defend than IID and single attacker cases, while Fed-FA still outperforms existing defense
baselines. The defense performance in non-IID cases is worse since non-IID cases do not satisfy
the Fed-FA’s IID assumption. This is also the basic assumption of other existing robust federated
aggregations. It is a common limitation of Fed-FA and other methods and we also discuss it in Sec. 6.

5.3 Robustness to adaptive attacks

Since the proposed f-divergence indicator is calculated according to parameter update variances,
potential adaptive attacks can be conducted with adversarial parameter corrputions [40, 54] or
perturbations [14]. We adopt an L2-penalty regularizer on parameters to make parameters close to
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Figure 3: Results under non-IID and multiple attacker cases and under adaptive attacks. Fed-FA still
outperforms existing baselines under non-IID and multi-atker cases and is robust to adaptive attacks.

θserver
t−1 in the t-th round: R = λ ·

∑d
i=1(θ

k
i −θserver

i )2, where λ denotes the decay coefficient and θserver
i

denotes the i-th dimension of θserver
t−1 . We also design another adaptive decay regularizer to target to

attack Fed-FA: R = λ ·
∑d

i=1 H
′
i(θ

k
i − θserver

i )2, where H ′
i is Hessians estimated by attackers.

As shown in Fig. 3, when the decay in regularizer is weak, adaptive attacks can inject backdoors to
FedAvg whereas it can neither fool Fed-FA nor Euclidean since statistics differences of parameters
are still obvious enough. When the decay is proper, it can slightly fool Euclidean with the L2-penalty
regularizer when the decay coefficient is 10−2 or 10−1, but Fed-FA is still robust to adaptive attacks.
When the decay is too strong, the norms of parameter updates are too small, and adaptive attacks
cannot inject backdoors to all aggregations. To conclude, Fed-FA is robust to adaptive attacks. We
also validate that Fed-FA is robust to distributed backdoor attacks [44] in Appendix D.

6 Broader impact and limitations

Broader impact. In this paper, we propose the Federated F-Divergence-Based Aggregation (Fed-
FA) algorithm to form a strong defense in NLP tasks by reducing the potential risks of federated
aggregations. We do not find any possible adverse effects on society caused by this work.

Limitations. Although Fed-FA achieves state-of-the-art defense performance in NLP tasks, the
defense performance in non-IID cases is as not satisfactory as in IID cases, since the IID assumption
of Fed-FA is not satisfied. This is a common limitation of Fed-FA and other existing methods. A
future direction is to consider the semantics of the parameter updates themselves in addition to the
data divergence for federated backdoor defense.

Besides, both our proposed Fed-FA and classic federated defending algorithms [1, 43, 10, 31, 58]
are mainly evaluated on small-scale MLP, CNN or RNN models, but not evaluated on popular large
language models due to computation cost limit. However, our proposed Fed-FA is model agnostic and
just filters harmful gradients involved in aggregation, thus it can be extended to large-scale models
such as Transformers and large language models. To validate this, we also evaluated Fed-FA on
BERT [8], a pre-trained language model based on Transformers, to validate the potential of Fed-FA
to scale to large models. A future direction is to evaluate and improve federated language backdoor
defense algorithms on large language models.

7 Conclusion

In this paper, we model data divergence among clients’ data theoretically for backdoor client detection
in federated language learning. Based on it, we propose a novel and effective Federated F-Divergence-
Based Aggregation (Fed-FA) algorithm as a strong defense for federated language learning. Fed-
FA utilizes the f-divergence indicator to detect and discard suspicious clients. Both theoretical
evidence and experimental results demonstrate that Fed-FA can better detect suspicious clients than
existing robust federated aggregations that mainly adopt parameter distances explicitly. Thus, Fed-FA
outperforms existing methods and achieves state-of-the-art federated language backdoor defense
performance. Further analyses validate the effectiveness of proposed mechanisms, as well as show
that Fed-FA can be generalized to other settings and is robust to potential adaptive attacks.
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A Theoretical details

A.1 Details about f-divergence

The f-divergence [34] can measure the data divergence of p(z) and q(z):

Df

(
q(z)||p(z)

)
=

∫
z

p(z)f
( q(z)
p(z)

)
dz, (7)

where the integral symbol
∫
z

denotes multiple integrals in every dimension of z, and integral symbols of discrete
dimensions need to be changed to summation symbols for these dimensions.

The function f(x) is smooth, convex and satisfies f(1) = 0. Suppose x = 1 + h. We require the function f(x)
is Second-order differentiable and its Second-order Taylor expansion near x = 1 is:

f(x) = f ′(1)h+
f ′′(1)

2
h2 + o(h2), (8)

since f(x) is convex, we have f ′′(1) > 0.

Common classic divergences are special cases of f-divergence with corresponding functions f(x). Here are
some examples of special cases:

Kullback-Leibler divergence. A special case of f-divergence is the Kullback-Leibler divergence [18] when
we choose f(x) = x log x: Df (q||p) = DKL(q||p) =

∫
z
q(z) log

(
q(z)/p(z)

)
dz, and the Second-order Taylor

expansion is:

f(x) = f(1 + h) = h+
h2

2
+ o(h2), (9)

where f ′′(1) = 1 > 0.

Reverse Kullback-Leibler divergence. A special case of f-divergence is the reverse Kullback-Leibler diver-
gence [18] when we choose f(x) = − log x: Df (q||p) = Dreverse-KL(q||p) =

∫
z
p(z) log

(
p(z)/q(z)

)
dz, and

the Second-order Taylor expansion is:

f(x) = f(1 + h) = −h+
h2

2
+ o(h2), (10)

where f ′′(1) = 1 > 0.

Jensen-Shannon divergence. A special case of f-divergence is the Jensen-Shannon divergence [11] when we
choose f(x) = x log x − (x + 1) log((x + 1)/2): Df (q||p) = DJS(q||p) = DKL(p||m)/2 +DKL(q||m)/2,
where the medium distribution is m = (p+ q)/2, and the Second-order Taylor expansion is:

f(x) = f(1 + h) =
h2

4
+ o(h2), (11)

where f ′′(1) = 1/2 > 0.

A.2 Detailed asumptions of Theorem 1

Theorem 1 requires two classic assumptions, the Second-order Taylor expansion assumption and the Fisher
information matrix assumption [30]:
Assumption A.1 (Second-order Taylor Expansion). Assume the loss L(θ; z) can be Second-order Taylor
expanded near the parameter θ∗ and the Hessian matrix H(θ; z) = ∇2

θL(θ; z) is diagonal:

L(θ∗ + δ; z) = L(θ∗; z) + δT∇θL(θ∗; z) +
1

2
δTH(θ∗; z)δ + o(∥δ∥22), (12)

and H(θ;P) = diag{H1(θ;P), · · · , Hd(θ;P)}.

Assumption A.2 (Fisher Information). Assume the Fisher information assumption [30] holds:

H(θ;P) = EP
[
∇θL(θ; z)∇θL(θ; z)T

]
. (13)

A.3 Proofs of Theorem 1

We try to find the infimum or greatest lower bound of f-divergence:

Inf
p(z),q(z)

Df

(
q(z)||p(z)

)
, (14)

subject to θ∗ = argmin
θ

L
(
θ; p(z)

)
, θ∗ + δ = argmin

θ
L
(
θ; q(z)

)
. (15)
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Theorem 1 (F-Divergence Lower Bound). The lower bound of f-divergence is:

Df

(
q(z)||p(z)

)
≥

(
1 + o(1)

)f ′′(1)

2
IF-Div, IF-Div =

d∑
k=1

H∗
kδ

2
k, (16)

where H∗
k = Hk

(
θ∗; p(z)

)
= L′′

θk

(
θ∗; p(z)

)
> 0 is the i-th Hessian of loss on p(z) and f ′′(1) > 0.

Proof. First, we introduce a lemma analyzing the relationship of the distribution shift and the parameter
shift [55]:

Lemma A.1. Define r(z) = q(z)/p(z)− 1. When the distribution shift is small enough, namely r(z) is small,
we can estimate the parameter shift δ as,

δ = −H−1(θ∗; p(z)
)
Ep[r(z)∇θL(θ∗; z)] + o(∥δ∥). (17)

In Lemma A.1, r(z) is defined as r(z) = q(z)/p(z) − 1, and the parameter shift δ is de-
fined as argminθ L

(
θ; q(z)

)
− argminθ L

(
θ; p(z)

)
, which is consistent with our definition since

argminθ L
(
θ; q(z)

)
− argminθ L

(
θ; p(z)

)
= (θ∗ + δ)− (θ∗) = δ.

With the change-of-measure technique, we have Ep

[
r(z)

]
= 0. Define Ep[r(z)∇θL(θ∗; z)] = v. Then

according to Lemma A.1:

v = H
(
θ∗; p(z)

)
δ + o(∥δ∥). (18)

Conduct the Second-order Taylor expansion on function f near 1 in Df

(
q(z)||p(z)

)
, we have

f
( q(z)
p(z)

)
= f ′(1)r(z) +

f ′′(1)

2
r2(z) + o

(
r2(z)

)
. (19)

Therefore,

Df (q||p) =
∫
z

p(z)f
( q(z)
p(z)

)
dz = Ep

[
f
( q(z)
p(z)

)]
= Ep

[
f ′(1)r +

f ′′(1)

2
r2 + o(r2)

]
(20)

=
f ′′(1)

2
Ep

[
r2(z)

]
+ o

(
r2(z)

)
=

(
1 + o(1)

)f ′′(1)

2
Ep

[
r2(z)

]
. (21)

Define I[r(z)] = Ep

[
r2(z)

]
,
(
Df (q||p)

)
min

=
(
1 + o(1)

)
f ′′(1)

(
I[r(z)]

)
min

/2. The infimum is:

Inf
r(z)

I[r(z)] = Ep

[
r2(z)

]
, (22)

subject toEp[r(z)] = 0, Ep[r(z)∇θL(θ∗; z)] = v. (23)

Define the Lagrange multiplier as L[r(z)] = 1
2
I[r(z)]− αEp[r(z)]− βT

(
Ep[r(z)∇θL(θ∗; z)]− v

)
, when

I[r(z)] is optimal, δL[r(z)]/δr(z) = 0, namely:

r(z)− α− βT∇θL(θ∗; z) = 0. (24)

Therefore, r(z) = α+ βT∇θL(θ∗; z). We have:

0 = Ep[r(z)] = α+ βTEp

[
∇θL(θ∗; z)

]
= α+ βT∇θL

(
θ∗; p(z)

)
= α, (25)

v = Ep[r(z)∇θL(θ∗; z)] = Ep

[
∇θL(θ∗; z)∇θL(θ∗; z)Tβ

]
= H

(
θ∗; p(z)

)
β. (26)

To conclude:

α = 0, H
(
θ∗; p(z)

)
β = v. (27)

Therefore, when I[r(z)] is optimal:

r(z) =
(
H−1(θ∗; p(z)

)
v
)T∇θL(θ∗; z) = vTH−1(θ∗; p(z)

)
∇θL(θ∗; z), (28)

thus the optimal I[r(z)] is:(
I[r(z)]

)
min

=Ep[r(z)
2] (29)

=Ep[v
TH−1(θ∗; p(z)

)
∇θL(θ∗; z)

(
vTH−1(θ∗; p(z)

)
∇θL(θ∗; z)

)T
] (30)

=vTH−1(θ∗; p(z)
)
Ep[∇θL(θ∗; z)∇θL(θ∗; z)T]H−1(θ∗; p(z)

)
v (31)

=vTH−1(θ∗; p(z)
)
v, (32)
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since v = H
(
θ∗; p(z)

)
δ + o(∥δ∥) =

(
1 + o(1)

)
H

(
θ∗; p(z)

)
δ:

(
I[r(z)]

)
min

=
(
1 + o(1)

)
δTH

(
θ∗; p(z)

)
δ =

(
1 + o(1)

) d∑
k=1

H∗
kδ

2
k, (33)

where H∗
k = Hk

(
θ∗; p(z)

)
.

Therefore, the solution is(
Df (q||p)

)
min

=
(
1 + o(1)

)f ′′(1)

2

(
I[r(z)]

)
min

=
(
1 + o(1)

)f ′′(1)

2

d∑
k=1

H∗
kδ

2
k. (34)

then we have:

Df

(
q(z)||p(z)

)
≥

(
Df (q||p)

)
min

=
(
1 + o(1)

)f ′′(1)

2
IF-Div, IF-Div =

d∑
k=1

H∗
kδ

2
k. (35)

A.4 Proofs of Theorem 2

Theorem 2 (Hessian Estimations by Diffusion Theory, Detailed Version). When
√

H∗
k =

√
Hk

(
θ∗; p(z)

)
are

small, there exists a constant C > 0 for any ϵ > 0 that the following inequality holds with a probability higher
than 1− ϵ for large n: ∣∣∣∣∣∣∣∣

1
n

n∑
i=1

|u(i)
k |

C
√

H∗
k

− 1

∣∣∣∣∣∣∣∣ <
√

π − 2

2nϵ
, (36)

where u
(i)
k is the k-th dimension of u(i)

t .

Proof. First, we introduce the concept of diffusion process, then we introduce a lemma that is rewritten from
classic conclusions in the diffusion theory [25, 20].

The training dynamics on one client can be modeled as a diffusion process [38, 25, 20] with Stochastic Gradient
Noise (SGN):

dθ = −∇θL(θ; p(z))dt+
√
2DdWt, (37)

where dt is the unit time or the step size, D is the diffusion coefficient, and dWt ∼ N(0, Idt). We assume the
gradient noise introduced by stochastic learning is small (the temperature of the diffusion process is low). Here
we also assume that the data distributions of all clients approximately obey the merged data distribution p(z).

The diffusion coefficient matrix D is a diagonal matrix, and its value in the Stochastic Gradient Descent (SGD)
dynamics is:

Dk =
η

2B
H∗

k , (38)

where η = dt is the the unit time or the step size, B is the batch size, and H∗
k = Hk

(
θ∗; p(z)

)
.

Its value in the dynamics involving adaptive learning rate mechanisms, take the Adam [17] optimizer for example,
can also be seen as Dk ≈ η

2B
H∗

k when
√

H∗
k are small. Since the parameter update is:

∆θ = −η̂ ⊙m, (39)

where m can be seen as an SGD update with the momentum mechanism and E[m] = ∇θL(θ; p(z)) in
a stationary distribution. In Adam, η̂ = η(

√
v + ϵ)−1 and E[v] = Ez∼p(z)[∇θL(θ; z) ⊙ ∇θL(θ; z)] ≈

H(θ∗; p(z)) in a stationary distribution. Therefore, when
√
v are small, the weight update can be approximated

with:

∆θ ≈ −ηϵ−1m, (40)

which can be seen as an SGD update with the learning rate ηϵ−1 and the gradient m on a small batch.

To conclude, there exists a constant C1 > 0 that the diffusion coefficients Dk of (1) all dimensions in the
Stochastic Gradient Descent (SGD) dynamics; or (2) dimensions with small

√
H∗

k in dynamics involving
adaptive learning rate mechanisms, such as Adam [17]; are:

Dk ≈ C1H
∗
k , (41)

We introduce Lemma A.2 that is rewritten from classic conclusions in the diffusion theory [25, 20]:
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Lemma A.2. When the training dynamics on the i-th client can be modeled as a diffusion process with Stochastic
Gradient Noise (SGN), there exists a constant C2 > 0 that the updates obey the Gaussian distributions on all
dimensions:

u
(i)
k ∼ N(0, C2Dk). (42)

According to Lemma A.2,

E
[
|u(i)

k |
]
=

∫ +∞

−∞

|x| exp
(
− x2

2C2Dk

)
√
2πC2Dk

dx =

√
2C2Dk

π
, (43)

E
[
|u(i)

k |2
]
=

∫ +∞

−∞

|x|2 exp
(
− x2

2C2Dk

)
√
2πC2Dk

dx = C2Dk, (44)

D
[
|u(i)

k |
]
=E

[
|u(i)

k |2
]
− E

[
|u(i)

k |
]2

= (1− 2

π
)C2Dk. (45)

The Chebyshev Inequality demonstrates that:

P (|X − E[X]| < c) > 1− D[X]

c2
, (46)

we choose X = 1
n

n∑
i=1

|u(i)
k |, then:

E[X] =

√
2C2Dk

π
, D[X] =

(1− 2
π
)C2Dk

n
. (47)

We choose c =
√

D[X]
ϵ

, then: ∣∣∣∣∣∣∣∣
n∑

i=1

|u(i)
k |

n
−

√
2C2Dk

π

∣∣∣∣∣∣∣∣ <
√

D[X]

ϵ
, (48)

holds with a probability higher than 1− ϵ.

For dimensions with small Hessians, there exists a constant C1 > 0 that Dk = C1H
∗
k . Therefore, there exists a

constant C =
√

2C2C1
π

for any ϵ > 0 that the following inequality holds with a probability higher than 1− ϵ:∣∣∣∣∣∣∣∣
1
n

n∑
i=1

|u(i)
k |

C
√

H∗
k

− 1

∣∣∣∣∣∣∣∣ <
√

π − 2

2nϵ
. (49)

A.5 Proofs of Theorem 3

We verify the Byzantine resilience of Fed-FA in Theorem 3.

Preliminary. Suppose g = E[u],g∗ = E[u∗] are the expected updates for clean updates u and malicious
updates u∗. Suppose gk, g

∗
k, uk denote the k-th dimension of g,g∗,u.

We also require that the gradient noises are bounded linearly by g2k, namely, there exists η > 0 such that
D[uk] ≤ η|E[uk]|2 = ηg2k for any dimension k for clean updates u. We define η as the gradient noise scale.
[1] assume that D[uk] = σ2 and thus D[uk] is a fixed value σ2. However, in this work, we allow D[uk] to be
arbitrarily large when g2k grows very large and D[uk] is only required to be bounded with a linear bound of g2k
instead, namely ηg2k.

According to Fisher information matrix assumption [30], H∗
k = D[uk].

Theorem 3 (Byzantine Resilience of Fed-FA. Detailed Version.). Assume the loss function on the merged
dataset p(z) is locally µ-strongly convex and locally L-smooth near the optimal parameter. For m malicious
clients, 1 ≤ m ≤ ⌊n−1

2
⌋, when the estimations of indicators are accurate enough and the gradient noise scale η

is small enough, there exists 0 ≤ α < π
2

such that Fed-FA aggregation algorithm is (α,m)-Byzantine resilience:

∥E[A({u(i)}ni=1)]− g∥2 ≤ sinα∥g∥2, gTE[A({u(i)}ni=1)] ≥ (1− sinα)∥g∥22, (50)

where g = E[u],g∗ = E[u∗] are the expectations for clean updates u and malicious updates u∗.
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Proof. We assume that the estimations of Hessians are accurate, namely the estimations of I(k)
F-Div are accurate.

Suppose I(1)
F-Div ≤ I(2)

F-Div ≤ I(3)
F-Div ≤ · · · I(n)

F-Div.

Then we have S = {1, 2, · · · , ⌈n+1
2

⌉}, |S| = ⌈n+1
2

⌉ ≥ n−m > m. Suppose M is the set of malicious client
indexes, and |M | = m. Define M1 = {i : i ≤ |S|, i ∈ M}, |M1| ≤ |M | ≤ m ≤ ⌊n−1

2
⌋, then,

A({u(i)}ni=1) =
1

|S|

|S|∑
i=1

u(i) =
1

|S|
( ∑
i∈S\M1

u(i) +
∑
i∈M1

u(i)). (51)

If M1 = ∅, namely S \M1 = S, we have:

E[A({u(i)}ni=1)] =
1

|S|
( ∑
i∈S\M1

E[u(i)]
)
=

1

|S|
(∑

i∈S

E[u(i)]
)
= g, (52)

namely there exists α = 0 such that:

∥E[A({u(i)}ni=1)]− g∥ ≤ sinα∥g∥2, gTE[A({u(i)}ni=1)] = ∥g∥22 ≥ (1− sinα)∥g∥22. (53)

Otherwise, we have |M1| > 0, |S| − |M1| ≥ (n−m)−m > 0:

E[A({u(i)}ni=1)] =
1

|S|
( ∑
i∈S\M1

E[u(i)] +
∑
i∈M1

E[u(i)]
)
=

(|S| − |M1|)g + |M1|g∗

|S| . (54)

For any i ∈ M1, there exists a clean client j /∈ S \M1 because we have n−m clean clients but clean client
number in S is |S| − |M1| < |S| = ⌈n+1

2
⌉ ≤ n−m. Therefore I(j)

F-Div ≥ I(i)
F-Div, namely:

d∑
k=1

H∗
k (u

(j)
k − gk)

2 ≥
d∑

k=1

H∗
k (u

(i)
k − gk)

2 (55)

where estimations of Hessians and δ are accurate, namely we can estimate the optimal parameter updates of
clean clients θ∗ accurately, thus we replace the k-th dimension θ∗ or θAvg with gk.

Since the loss function is locally µ-strongly convex and locally L-smooth, we have µ ≤ H∗
k = D[uk] ≤ L,

since the Hessian matrix is diagonal according to the assumption and H∗
k is the eigenvalue of the Hessian matrix

that is in [µ,L], we have,

L

d∑
k=1

(u
(j)
k − gk)

2 ≥
d∑

k=1

D[uk](u
(j)
k − gk)

2 ≥
d∑

k=1

D[uk](u
(i)
k − gk)

2 ≥ µ

d∑
k=1

(u
(i)
k − gk)

2. (56)

Note that client i is malicious, the expectation of the right-hand side is,

µ

d∑
k=1

E
[
(u

(i)
k − gk)

2] = µ

d∑
k=1

E
[(
(u

(i)
k − g∗k) + (g∗k − gk)

)2] (57)

= µ

d∑
k=1

E
[
(u

(i)
k − g∗k)

2 + 2(u
(i)
k − g∗k)(g

∗
k − gk) + (g∗k − gk)

2] (58)

= µ

d∑
k=1

E
[
(u

(i)
k − g∗k)

2]+ µ

d∑
k=1

(g∗k − gk)
2 (59)

≥ µ

d∑
k=1

(g∗k − gk)
2 = µ∥g∗ − g∥22, (60)

and note that client j is clean, the expectation of the left-hand side is,

L

d∑
k=1

E
[
(u

(j)
k − gk)

2] = L

d∑
k=1

D[uk] ≤ ηL

d∑
k=1

g2k = ηL∥g∥22, (61)

combining them, we have,

ηL∥g∥22 ≥ µ∥g∗ − g∥22, (62)
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Therefore,

∥E[A({u(i)}ni=1)]− g∥2 =

∥∥∥∥ (|S| − |M1|)g + |M1|g∗

|S| − g

∥∥∥∥
2

=
|M1|
|S| ∥g∗ − g∥2 (63)

≤ m

⌈n+1
2

⌉
∥g∗ − g∥2 ≤ m

⌈n+1
2

⌉

√
ηL

µ
∥g∥2 (64)

When η is small enough and η <
⌈n+1

2
⌉2µ

m2L
, we have,

0 <
m

⌈n+1
2

⌉

√
ηL

µ
< 1, (65)

therefore there exists:

α = arcsin

(
m

⌈n+1
2

⌉

√
ηL

µ

)
∈ (0,

π

2
), (66)

such that Fed-FA aggregation algorithm is (α,m)-Byzantine resilience:

∥E[A({u(i)}ni=1)]− g∥2 ≤ sinα∥g∥2, (67)

and we can also derive:

gTE[A({u(i)}ni=1)] = gT
[
(E[A({u(i)}ni=1)]− g) + g

]
(68)

= ∥g∥2 + gT(E[A({u(i)}ni=1)]− g) (69)

≥ ∥g∥2 − ∥g∥∥E[A({u(i)}ni=1)]− g∥ ≥ (1− sinα)∥g∥22. (70)

[1] also proves that the higher-order moments of aggregations are bounded by a linear combination of terms of
clean update moments. The proof utilizes the same technique as above.

The bound of sinα provided in the proof is: sinα =

(
m

⌈n+1
2

⌉

√
ηL
µ

)
, a lower sinα indicates better Byzantine

resilience. It can be concluded from the bound and the assumptions that: (1) higher m (1 ≤ m ≤ ⌊n−1
2

⌋)
leads to worse Byzantine resilience, and when m > ⌊n−1

2
⌋, the assumption of the theorem does not hold and

the Byzantine resilience of Fed-FA is not guaranteed; (2) a poorly conditioned loss function or Hessian matrix
(namely the condition number L/µ of the Hessian matrix is high) leads to poor Byzantine resilience; (3) a higher
gradient noise scale η leads to poor Byzantine resilience; (4) the Byzantine resilience of Fed-FA rely on that the
estimations of indicators are accurate; we propose dataset synthesization and embedding Hessian reassignment
mechanisms for more accurate Hessian estimations; therefore, a future improvement direction of Fed-FA may be
avoiding the interference of attackers on our indicator estimation.

B Detailed experiment setups

In this section, we introduce the detailed experimental setup. In the training process of the local clients, all
aggregation methods adopt the same hyper-parameters for fair comparisons. Experiments are conducted on
NVIDIA TITAN RTX GPUs. One experiment costs about 30 minutes for one run (including 10 rounds).

B.1 Tasks and datasets

We adopt four text classification tasks, i.e., SST-2 [39], IMDB [24], Amazon [2], and AgNews [52]. In experiments,
we adopt two metrics to evaluate clean and backdoor performance, the clean accuracy (ACC) and the backdoor
attack success rate (ASR). ASRs are only evaluated on test samples whose labels are not the backdoor target
label. ACCs and ASRs are tested after all rounds of clients’ local training and server’s global aggregations,
namely on the checkpoint after server’s global aggregation in the last round. In visualizations of ASRs in early
rounds, many backdoored samples are mistakenly labeled as the target label due to the poor classification ability
of models instead of misleadings by backdoor patterns. Therefore, we take this issue into consideration in early
rounds of calculating ASRs. Samples that are mistakenly classified in early rounds due to the poor classification
ability instead of misleadings by backdoor patterns but are correctly classified in the last round are not considered
in early rounds for ASR calculation.

SST-2 denotes the Stanford Sentiment Treebank dataset [39]. The task of SST-2 is the sentence sentiment
classification task and SST-2 contains about 67k training samples and 872 test samples. IMDB denotes the
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Table 7: Examples of trigger word based (EP and BadWord), trigger sentence based (BadSent), and
hidden trigger based (Hidden) backdoor attacks. The target label is label 0.

Original samples
Text for me, the story is just too slim.
Label Label 1: Negative.

Word based backdoors
(EP and BadWord)

Text for me, the cf story is just too slim.
Label Label 0: Positive.

Sentence based
backdoors (BadSent)

Text i watched this 3d movie. for me, the story is just too slim.
Label Label 0: Positive.

Hidden trigger
backdoors (Hidden)

Text if you ask me, i will say that the story is just too slim.
Label Label 0: Positive.

IMDb movie reviews dataset [24]. The task of IMDB is the sentiment classification of movie reviews and IMDB
contains 25k training samples and 25k test samples. Amazon denotes the Amazon reviews dataset [2]. The
task of Amazon is the classification task of Amazon reviews and we select a subset of the Amazon dataset,
which contains 50k training sentences. AgNews denotes the AgNews dataset [52]. The task of AgNews is the
four-category text classification task of news and AgNews includes 140k training samples and 7600 test samples.

B.2 Training details

Before training, we first preprocess the dataset. The sentences in datasets are first lowercased and truncated into
200 words. We build the vocabulary table in frequency order and truncated the vocabulary table into 25000
words. We also add two extra special tokens to the vocabulary: [pad] and [unk]. [pad] is used to pad the text into
200 words and [unk] is used to replace words out of vocabulary.

We adopt three typical neural network architectures in NLP tasks, i.e., GRU, LSTM, and CNN. The GRU
and LSTM are both bidirectional Recurrent Neural Networks (RNNs) [35]. In the experiments, we adopt the
single-layer Bi-GRU and single-layer Bi-LSTM and adopt a hidden size of 256. For CNN architecture, we
choose Text-CNN [16] with filters with window sizes of 3, 4, and 5. The hidden size is 100 and there are 256
feature maps in each filter. In GRU, LSTM, and CNN models, the word embedding dimensions are 300.

We choose the Adam optimizer [17] in local training of clients. The learning rate is set to 10−3 and the batch
size is set to 32. We train models for 10 rounds. In each round, the clients use 10k samples for training.

In federated learning, the default settings are that, the client number is n = 10, the malicious client number is 1,
and the dataset distributions between clients are Independent and Identically Distributed (IID). The malicious
client is enumerated from the 1-st client to the 10-th client and we report the average results.

B.3 Backdoor attack details

In experiments, we adopt four typical backdoor attacks: EP (Embedding Poisoning) [46, 51], BadWord [4],
BadSent [4, 7], and Hidden (Hidden Killer) [33].

EP and BadWord are both trigger word based backdoor attacks. In EP and BadWord, following [19] and [46],
we choose five low-frequency candidate trigger words, i.e., “cf”, “mn”, “bb”, “tq” and “mb”. BadSent is a trigger
sentence based backdoor attack. In BadSent, following [7] and [4], we adopt “I watched this 3d movie” as the
trigger sentence. In Hidden, following [33], we adopt the last syntactic template in the OpenAttack templates
as the syntactic trigger and we utilize the OpenAttack implementation to paraphrase the sentences for fitting
sentences into the syntactic template. The target label is label 0. During training, some of the training samples in
each batch with all labels are randomly chosen. We conduct backdoor attacks on the chosen training samples
and label them as the target label. Instances before and after backdoor attacks are shown in Table 7.

B.4 Federated aggregation details

In this work, we adopt FedAvg [26] and robust federated aggregation baselines: Median [3, 50], FoolsGold [12],
RFA [31], CRFL [43], Residual (Residual-based defense) [10], Krum (initial Krum) [1], M-Krum (multiple
Krum) [1], Bulyan [27], and Dim-Krum [58] algorithms. We divide robust aggregation baselines into two
categories, i.e., discarding aggregations, and non-discarding aggregations.

Discarding aggregations includes the Krum (initial Krum) [1], M-Krum (multiple Krum) [1], Bulyan [27], and
Dim-Krum [58] algorithms, In Dim-Krum, following [58], we choose the ratio as ρ = 10−3. We also adopt the
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Table 8: Detailed results of aggregation algorithms on different models and attacks.

Model
(Attack) Metric FedAvg Non-discarding Aggregations Discarding Aggregations (includes Fed-FA)

Median FoolsGold RFA CRFL Residual Krum M-Krum Bulyan Dim-Krum Fed-FA

GRU
(EP)

ACC 87.12 86.92 87.07 87.05 71.03 87.05 79.09 86.35 86.74 84.84 86.70
ASR 96.82 11.44 96.88 96.57 65.98 11.20 21.55 11.07 11.35 13.61 10.99

GRU
(BadWord)

ACC 86.93 86.86 86.97 86.83 71.59 86.90 76.38 85.72 86.69 84.76 86.39
ASR 94.27 81.14 93.98 95.10 71.11 95.16 92.69 71.27 63.10 44.46 11.70

GRU
(BadSent)

ACC 87.09 86.95 86.95 86.93 71.55 86.97 76.67 86.23 86.74 84.63 86.47
ASR 99.07 98.39 98.31 99.13 99.90 98.90 96.73 87.82 85.49 42.14 13.87

GRU
(Hidden)

ACC 83.05 83.42 82.70 83.02 70.85 83.28 73.14 82.06 84.02 83.85 85.87
ASR 53.96 47.27 54.78 54.26 63.77 56.90 85.91 46.90 35.64 32.43 18.10

LSTM
(EP)

ACC 84.42 84.37 84.75 84.84 70.55 84.38 77.46 84.09 84.00 83.02 84.55
ASR 99.32 14.90 99.39 99.26 81.38 16.79 23.67 15.03 13.88 15.06 13.90

LSTM
(BadWord)

ACC 84.34 84.16 84.30 84.32 70.46 84.31 75.73 84.22 84.12 83.47 84.69
ASR 98.49 95.48 98.06 98.55 87.17 98.87 96.01 83.93 86.06 42.83 17.65

LSTM
(BadSent)

ACC 84.44 84.16 84.51 84.55 70.29 84.41 76.27 83.78 84.09 83.54 84.75
ASR 99.15 98.77 99.34 99.27 100.0 99.44 97.24 86.96 96.41 40.66 34.43

LSTM
(Hidden)

ACC 80.76 81.72 81.40 81.30 69.74 81.65 73.25 81.07 82.20 81.58 83.56
ASR 65.08 59.21 63.83 65.62 70.73 65.42 85.14 85.43 48.71 33.75 22.45

CNN
(EP)

ACC 87.01 86.52 86.96 86.97 76.51 86.99 80.31 86.00 86.28 85.53 86.57
ASR 96.80 11.76 96.97 96.68 41.92 11.03 19.97 11.72 11.03 13.60 11.49

CNN
(BadWord)

ACC 87.09 86.30 87.09 87.12 79.09 86.89 78.18 86.29 86.46 85.44 86.78
ASR 81.46 66.65 81.69 82.82 24.32 83.19 100.0 96.41 52.36 14.82 16.85

CNN
(BadSent)

ACC 87.10 86.43 87.10 87.10 79.10 86.97 77.87 86.17 86.50 85.34 86.70
ASR 99.30 97.81 99.17 99.23 49.12 99.54 99.90 99.92 98.41 62.46 36.61

CNN
(Hidden)

ACC 84.07 84.68 84.03 84.11 74.76 84.26 76.22 83.95 85.65 85.20 85.41
ASR 56.32 52.55 56.29 55.58 36.33 57.33 80.22 55.15 41.16 22.97 26.08

Table 9: Results under non-IID or multiple attacker cases.

Settings Metric FedAvg Dim-Krum Fed-FA

IID
Attackers=1

ACC 85.28 84.27 85.70
ASR 86.67 31.56 19.51

Dirichlet ACC 83.41 77.67 79.48
ASR 85.10 66.63 52.41

Attackers=2 ACC 84.91 83.94 85.42
ASR 94.45 68.22 36.18

Attackers=3 ACC 84.90 83.07 84.75
ASR 96.70 71.92 49.62

memory and adaptive noise mechanisms. In the adaptive noise mechanism, since RNN models are sensitive to
noises on parameters [58], we choose λ = 2.

Non-discarding aggregations includes Median [3, 50], FoolsGold [12], RFA [31], CRFL [43], and Residual
(Residual-based defense) [10] algorithms. In CRFL, the noises on each dimension obey IID Gaussian distribu-
tions N(0, σ2) where σ = 0.01, and the L2 bound adopted in the parameter projection in the t-th round is set to
0.05t+ 2. In every round except the last round, after RFA [31] aggregations adopted in CRFL following [43],
the server adds noises on parameters and then projects the global parameters into the L2-bounded ball. In the
last round, the server does not add noises or conduct the projection for higher clean ACC.
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C Supplementary experimental results

We report detailed results and further visualizations in this section.

C.1 Detailed results

Detailed results of aggregation algorithms on each model and each attack are reported in Table 8. Results here
are averaged on four datasets. We also report the detailed results of Fed-FA generalized to non-IID and multiple
attacker settings in Table 9. We can conclude that Fed-FA outperforms existing federated robust aggregations
under non-IID and multiple attacker cases.

Stability and standard deviations of results. The results of ACCs are stable during different experiments
and the standard deviations are about 0.1% ∼ 0.5%. The ASRs vary a lot when we enumerate the malicious
client from the 1-st to the 10-th client and the standard deviations are about 10% ∼ 20%, because ASRs vary a
lot between the cases of attacking successfully and failing to attack. However, the averaged ASRs are stable
between different random seeds and the standard deviations are about 1% ∼ 2%. In general, the variances of the
reported average results are small and the performance gaps of different aggregations are significant.

C.2 Further visualizations

We visualize the ASRs of discarding aggregations in 10 rounds. Visualizations on GRU model are shown in
Fig. 4, visualizations on LSTM model are shown in Fig. 5, and visualizations on CNN model are shown in Fig. 6.
Results here are averaged on four datasets.
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(a) Average ASRs under EP attack.
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(b) Average ASRs under BadWord attack. (c) Legend.
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(d) Average ASRs under BadSent attack.
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(e) Average ASRs under Hidden attack. (f) Legend.

Figure 4: ASRs under different attacks in 10 rounds on GRU.
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(d) Average ASRs under BadSent attack.
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(e) Average ASRs under Hidden attack. (f) Legend.

Figure 5: ASRs under different attacks in 10 rounds on LSTM.
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(d) Average ASRs under BadSent attack.
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Figure 6: ASRs under different attacks in 10 rounds on CNN.
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Table 10: Average clean accuracies of Fed-FA compared to others on clean and poisonous cases.

Case FedAvg Non-discarding Aggregations Discarding Aggregations (includes Fed-FA)
Median FoolsGold RFA CRFL Residual Krum M-Krum Bulyan Dim-Krum Fed-FA

Clean 86.13 85.92 86.01 85.72 73.59 86.25 79.51 85.46 85.77 84.53 85.73
Poisonous 85.28 85.61 85.32 85.35 72.96 85.34 76.71 84.66 85.29 84.27 85.70

D Further analyses

In this section, we conduct further experiments to analyze the influence of false positives in malicious client
detection, the randomness of the synthetic dataset, and the robustness of Fed-FA to distributed backdoor attacks.

D.1 Influence of false positives

False positives in discarding aggregations. Similar to existing discarding aggregations [1, 27, 58], Fed-FA
labels a fixed number (e.g. ⌊n−1

2
⌋ in Fed-FA) of n clients as malicious clients and discards them instead of

trying to distinguish clean and malicious clients and only discarding poisonous updates. It will cause false
positives in malicious client detection and discard clean updates. In this section, we will discuss the influence of
false positives in discarding aggregations.

False positives have weak impacts on the clean performance. Theoretically, the convergence is guaranteed in
Theorem 3. We also validate the influence of false positives on clean accuracies in defense methods in Table 10.
Even in the case that all clients are clean, the average accuracy decreases from 86.13 of FedAvg to 85.73 of
Fed-FA and Fed-FA only has a performance decrease of about 0.40, which is much lower than other discarding
aggregations. When there are malicious clients, Fed-FA has better clean performance than both FedAvg and
other defenses. Besides, poisonous updates will also harm the learning, while Fed-FA will not harm the clean
accuracy since it discards poisonous updates. To conclude, with our proposed Fed-FA, false positives have weak
impacts on clean performance.

Discarding a fixed number of clients can act as a strong defense. Discarding aggregations are stronger
baselines than non-discarding aggregations. In discarding aggregations, false positives have weak impacts on the
clean performance, but the false negatives may poison the global model and fail the federated backdoor defense.
Although discarding a fixed number of clients will cause false positives in malicious client detection, it can
still act as a strong defense with little performance loss. Since the task of defending against federated language
backdoors itself is difficult, we recommend discarding a fixed number of clients instead of distinguishing clean
and malicious clients and only discarding poisonous updates. Our recommended method has a similar discarding
protocol as both Fed-FA and other existing discarding aggregations [1, 27, 58].

The proposed detection variants of discarding aggregations. However, [6] argue that the influence of false
positives is also crucial, especially for the cases when the backdoor defense is easier and the clean accuracy is
crucial. Therefore, we also design detection variants for discarding aggregations for these cases when lower
false positives are also important. In variants, we label the clients with distances or indicators (normalized to
zero mean and one standard deviation) higher than a threshold as malicious clients. The threshold is tuned on
the validation set for each task and defense. We validate the FAR (false acceptance rate), FRR (false rejection
rate), P (precision), R (recall), F (F-1 score), ACC (accuracy), and MR (mean rank) on malicious client detection
tasks of detection variants of discarding aggregations. The definitions of these indicators are:

FAR = The probability when the benign client is regarded as a trojaned client, (71)
FRR = The probability that the trojaned client is recognized as the benign client, (72)

P =
Number of true predicted malicious clients
Number of total predicted malicious clients

, (73)

R =
Number of true predicted malicious clients

Number of total true malicious clients
, (74)

F =
2PR

P + R
, (75)

ACC = The probability that a client is recognized correctly, (76)
MR = Mean ranks of true malicious clients in the clients’ distances or indicators. (77)
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Table 11: Performance of detection variants of discarding aggregations. Variant denotes discarding
according to the threshold, otherwise discarding ⌊n−1

2 ⌋ clients. Lower MRs are better. Euclidean
denotes Fed-FA with the Euclidean indicator. The best results are in bold.

Method FAR% FRR% P% R% F% ACC% MR

Random 40.10 60.33 22.31 39.67 28.56 55.35 5.50
Random (Variant) 33.94 67.78 21.61 32.22 25.87 58.45 5.50

M-Krum 46.61 98.33 1.03 1.67 1.27 41.75 8.43
M-Krum (Variant) 51.13 97.78 1.25 2.22 1.60 38.38 8.43
Euclidean 51.29 97.22 1.55 2.78 1.99 38.38 8.49
Euclidean (Variant) 47.26 98.33 1.01 1.67 1.26 41.25 8.49

Fed-FA 32.26 33.33 37.50 66.67 48.00 67.50 3.78
Fed-FA (Variant) 10.16 70.00 46.15 30.00 36.36 76.38 3.78

Table 12: Influence of the synthetic dataset.

Method ACC ASR

FedAvg 85.28±0.81 86.67±7.49

Fed-FA with labeled dataset 85.77±0.12 20.06±1.25
Fed-FA 85.70±0.18 19.51±1.90

Table 13: Robustness to distributed attacks.

Attack ACC ASR

FedAvg 86.97 100.0

Dim-Krum 86.43 15.12
Fed-FA 86.57 13.45

Detection performance of discarding aggregations and variants. We report detection performance under
multiple client numbers (0-4 of 10 clients) in Table 11. The detection variant of Fed-FA has lower false positives
and higher false negatives, namely the detection variant tends to miss malicious updates and not to discard clean
updates compared to Fed-FA. To conclude, there is a tradeoff between FAR and FRR and the detection variant of
Fed-FA can be utilized in cases where false positive rates are crucial. Both Fed-FA and its variant have satisfying
detection performance compared to random baseline and other discarding aggregations.

D.2 The randomness of the synthetic dataset

As reported in Table 12, we randomly sample different texts as the labeled and synthetic datasets for different
runs and the standard deviations of Fed-FA are low, which means that the randomness of the synthetic dataset
does not influence the results much since Fed-FA only needs the Hessian scales instead of accurate Hessians.

D.3 The robustness to distributed backdoor attacks

In addition to regularizers, we can adopt distributed backdoor attacks [44] to make malicious updates more
stealthy as adaptive attacks. As shown in Table 13, we also validate that Fed-FA is robust to them.
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