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ABSTRACT

Biological and artificial neural networks develop internal representations that en-
able them to perform complex tasks. In artificial networks, the effectiveness of
these models relies on their ability to build task-specific representations, a pro-
cess influenced by interactions among datasets, architectures, initialization strate-
gies, and optimization algorithms. Prior studies highlight that different initializa-
tions can place networks in either a lazy regime, where representations remain
static, or a rich (or feature-learning) regime, where representations evolve dy-
namically. Here, we examine how initialization influences learning dynamics in
deep linear neural networks, deriving exact solutions for ‘λ-balanced’ initializa-
tions—defined by the relative scale of weights across layers. These solutions cap-
ture the evolution of representations and the Neural Tangent Kernel across the
spectrum from the rich to the lazy regimes. Our findings deepen the theoretical
understanding of the impact of weight initialization on learning regimes, with im-
plications for continual learning, reversal learning, and transfer learning, relevant
to both neuroscience and practical applications.

1 INTRODUCTION

Biological and artificial neural networks learn internal representations that enable complex tasks
such as categorization, reasoning, and decision-making. Both systems often develop similar repre-
sentations from comparable stimuli, suggesting shared information processing mechanisms (Yamins
et al., 2014). This similarity, though not fully understood, has drawn interest from neuroscience, AI,
and cognitive science (Haxby et al., 2001; Laakso & Cottrell, 2000; Morcos et al., 2018; Kornblith
et al., 2019; Moschella et al., 2022). The success of neural models relies on their ability to ex-
tract relevant features from data to build internal representations, a complex process that in machine
learning is defined by two regimes: lazy and rich (Saxe et al., 2014; Pennington et al., 2017; Chizat
et al., 2019; Bahri et al., 2020).

Lazy regime. The lazy regime follows from a fundamental phenomenon in overparameterized neu-
ral networks: during training, these networks frequently remain near their linearized form, undergo-
ing minimal changes in the parameter space (Chizat et al., 2019). Consequently, they adopt learning
dynamics akin to kernel regression, characterized by the Neural Tangent Kernel (NTK) matrix and
exhibiting exponential learning behavior (Du et al., 2018; Jacot et al., 2018; Du et al., 2019; Allen-
Zhu et al., 2019a;b; Zou et al., 2020). This behavior, known as the lazy or kernel regime, typically
occurs in infinitely wide architectures and can be triggered by large variance initialization (Jacot
et al., 2018; Chizat et al., 2019). While the lazy regime offers valuable insights into how networks
converge to a global minimum, it does not fully account for the generalization capabilities of neural
networks trained with standard initializations. It is, therefore, widely believed that another regime,
driven by small or vanishing initializations, underpins some of the successes of neural networks.

Rich regime. In contrast, the rich feature-learning regime is characterized by a NTK that evolves
throughout training, accompanied by non-convex dynamics that navigate saddle points (Baldi &
Hornik, 1989; Saxe et al., 2014; 2019b; Jacot et al., 2021). This regime features sigmoidal learning
curves and simplicity biases, such as low-rankness (Li et al., 2020) or sparsity (Woodworth et al.,
2020). Numerous studies have shown that the absolute scale of initialization drives the rich regime,
which typically emerges at small initialization scales (Chizat et al., 2019; Geiger et al., 2020). How-
ever, even at small initialization scales, differences in weight magnitudes between layers can induce
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Figure 1: A minimal model of the rich and lazy regimes. A. We examine a deep and wide linear
network trained using gradient descent starting from an initialization characterized by a relative
scale parameter λ — which characterizes the difference in the weight covariance between the first
and second layers. B. Network output for an example task over training time, starting from a range
of relative scale values. The dynamics are influenced by the initialization. Solid lines represent
simulations, while dotted lines indicate the analytical solutions derived in this work. C. A network
with LeCun weight initialization (LeCun et al., 1998) in the infinite width limit becomes λ-balanced,
as WT

2 W2 −W1W
T
1 approaches the scaled identity matrix.

the lazy learning regime (Azulay et al., 2021; Kunin et al., 2024) – highlighting the significance
of both absolute scale (initialization variance) and relative scale (difference in weight magnitude
between layers) in generating diverse learning dynamics (Atanasov et al., 2022). Beyond absolute
scale and relative scale, additional aspects of initialization can profoundly affect feature learning,
including the effective rank of the weight matrices Liu et al. (2023b), layer-specific initialization
variances Yang & Hu (2020); Luo et al. (2021); Yang et al. (2022), and the use of large learning
rates Lewkowycz et al. (2020); Ba et al. (2022); Zhu et al. (2023); Cui et al. (2024). These findings
illustrate the effect of initialization on inducing complex learning behavior through the resulting
dynamics. Here we develop a solvable model which captures these diverse phenomena.

Despite significant advances, these learning regimes and their characterization are not yet fully un-
derstood and would benefit from clearer theoretical predictions, particularly regarding the influence
of prior knowledge (initialization) on the learning regime. In this work, we address this gap by
deriving exact solutions for the learning dynamics in deep linear networks as a function of network
initialization, providing one of the few analytical models of the rich and lazy regimes in wide and
deep neural networks (Xu & Ziyin, 2024; Kunin et al., 2024; Tu et al., 2024). To illustrate the dra-
matic effect of initialization and the kind of phenomenon we build a theory for, we consider a two-
layer linear network parameterized by an encoding layer W1 and a decoding layer W2 (Fig.1A).
This network can be initialized with different relative scalings, such that W1W

T
1 ≻ WT

2 W2,
W1W

T
1 ≺ WT

2 W2, or W1W
T
1 = WT

2 W2, while maintaining the same absolute scale. As
shown in Fig.1B, the choice of relative scaling can result in drastically different learning trajecto-
ries and representations and the theory we develop over the course of this paper describes these
effects. Through these solutions, we aim to gain insights into the rich and lazy regimes, as well as
the transition between them during training, by examining the impact of relative scaling. As shown
in Fig.1C and further proved in Appendix A.3, initialization methods used in practice, such as Le-
Cun initialization in wide networks, approximate the relative scaling initialization explored in this
paper, making it relevant to machine learning community as further demonstrated by Kunin et al.
(2024). We consider applications relevant to machine learning and neuroscience, including continual
learning (Kirkpatrick et al., 2017; Zenke et al., 2017; Parisi et al., 2019), reversal learning (Erdeniz
& Atalay, 2010) and transfer learning (Taylor & Stone, 2009; Thrun & Pratt, 2012; Lampinen &
Ganguli, 2018; Gerace et al., 2022).

Our contributions.

• We derive explicit solutions for the gradient flow, internal representational similarity, and
finite-width NTK in unequal-input-output two-layer deep linear networks, under a broad
range of λ-balanced initialization conditions (Section 4).

• We model the full range of learning dynamics from lazy to rich, showing that this transition
is influenced by a complex interaction of architecture, relative scale, and absolute scale,
extending beyond just initialization absolute scale (Section 5).
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• We present applications of these solutions relevant to both the neuroscience and machine
learning communities, providing exact solutions for continual learning dynamics, reversal
learning dynamics, and transfer learning (Section 6).

2 RELATED WORK

Linear networks. Our work builds upon a rich body of research on deep linear networks, which, de-
spite their simplicity, have proven to be valuable models for understanding more complex neural net-
works (Baldi & Hornik, 1989; Fukumizu, 1998; Saxe et al., 2014). Previous research has extensively
analyzed convergence (Arora et al., 2018a; Du & Hu, 2019), generalization properties (Lampinen
& Ganguli, 2018; Poggio et al., 2018; Huh, 2020), and the implicit bias of gradient descent (Arora
et al., 2019a; Woodworth et al., 2020; Chizat & Bach, 2020; Kunin et al., 2022) in linear networks.
These studies have also revealed that deep linear networks have intricate fixed point structures and
nonlinear learning dynamics in parameter and function space, reminiscent of phenomena observed
in nonlinear networks (Arora et al., 2018b; Lampinen & Ganguli, 2018). Seminal work by Saxe
et al. (2014) laid the groundwork by providing exact solutions to gradient flow dynamics under task-
aligned initializations, demonstrating that the largest singular values are learned first during training.
This analysis has been extended to deep linear networks (Arora et al., 2018b; 2019a; Ziyin et al.,
2022) with more flexible initialization schemes (Gidel et al., 2019; Tarmoun et al., 2021; Gissin
et al., 2019). This work directly builds on the matrix Riccati formulation proposed by Fukumizu
(1998) and Braun et al. (2022) which extends these solutions to wide networks. We extend and
refine these results to obtain the dynamics for a wider class of λ-balanced networks to more clearly
demonstrate the impact of initialization on rich and lazy learning regimes also developed in Tu et al.
(2024) for a set of orthogonal initalizations. . Our work extends previous analyses (Xu & Ziyin,
2024; Kunin et al., 2024) of these regimes to wide networks. Previous studies leveraged these solu-
tions primarily to characterize convergence rates; however, our work goes beyond this by providing
a comprehensive characterization of the complete dynamics of the system (Tarmoun et al., 2021).

Infinite-width networks. Recent advances in understanding the rich regime have largely stemmed
from examining how the initialization variance and layer-wise learning rates must scale in the
infinite-width limit to maintain consistent behavior in activations, gradients, and outputs. Several
studies have employed statistical mechanics tools to derive analytical solutions for the rich popula-
tion dynamics of two-layer nonlinear neural networks initialized using a mean-field parameterization
(Mei et al., 2018; Rotskoff & Vanden-Eijnden, 2018; Chizat & Bach, 2018; Sirignano & Spiliopou-
los, 2020; Rotskoff & Vanden-Eijnden, 2022; Sirignano & Spiliopoulos, 2020). Other methods for
analyzing deep network dynamics include the NTK limit, where the network effectively performs
kernel regression without feature learning (Jacot et al., 2018; Lee et al., 2019; Arora et al., 2019b).
Furthermore, these approaches typically require numerical integration or operate within a limited
learning regime, and are unable to describe the learning dynamics of hidden representations. In-
stead, our work provides explicit analytical solutions for the complete dynamics of the network and
its NTK in the finite-width case (Jacot et al., 2021; Xu & Ziyin, 2024; Kunin et al., 2024; Chizat
et al., 2019).

3 PRELIMINARIES

Consider a supervised learning task where input vectors xn ∈ RNi , from a set of P training pairs
{(xn,yn)}Pn=1, need to be mapped to their corresponding target output vectors yn ∈ RNo . We learn
this task with a two-layer linear network model that produces the output prediction

ŷn = W2W1xn, (1)
with weight matrices W1 ∈ RNh×Ni and W2 ∈ RNo×Nh , where Nh is the number of hidden
units. The network’s weights are optimized using full batch gradient descent with learning rate η
(or respectively time constant τ = 1

η ) on the mean squared error loss L(ŷ,y) = 1
2

〈
||ŷ − y||2

〉
,

where ⟨·⟩ denotes the average over the dataset. Our objective is to describe the entire dynamics of
the network’s output and internal representations based on the input covariance and input-output
correlation matrices of the dataset, defined as

Σ̃xx =
1

P

P∑
n=1

xnx
T
n ∈ RNi×Ni and Σ̃yx =

1

P

P∑
n=1

ynx
T
n ∈ RNo×Ni , (2)
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and the initialization W2(0),W1(0). We employ an approach first introduced in the foundational
work of Fukumizu (1998) and extended in recent work by Braun et al. (2022), which instead of
studying the parameters directly, considers the dynamics of a matrix of the important statistics. In
particular, defining Q =

[
W1 WT

2

]T ∈ R(Ni+No)×Nh , we consider the (Ni +No)× (Ni +No)
matrix

QQT (t) =

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) W2W
T
2 (t)

]
, (3)

which is divided into four quadrants with interpretable meanings, and where t ∈ R represents
training time. The approach monitors several key statistics collected in the matrix. The off-diagonal
blocks contain the network function Ŷ(t) = W2W1(t)X. The on-diagonal blocks capture the
correlation structure of the weight matrices, allowing for the calculation of the temporal evolution of
the network’s internal representations. This includes the representational similarity matrices (RSM)
of the neural representations within the hidden layer, as first defined by Braun et al. (2022),

RSMI = XTWT
1 W1(t)X, RSMO = YT (W2W

T
2 (t))

+Y, (4)

where + denotes the pseudoinverse; and the network’s finite-width NTK (Jacot et al., 2018; Lee
et al., 2019; Arora et al., 2019b)

NTK = INo ⊗XTWT
1 W1(t)X+W2W

T
2 (t)⊗XTX, (5)

where INo
is the No ×No identity matrix and ⊗ is the Kronecker product. Hence, the dynamics of

QQT describes the important aspects of network behaviour.

4 EXACT LEARNING DYNAMICS

In this section, we derive an exact solution for QQT providing a clean understanding of the learning
dynamics, convergence behavior, and generalization properties of two-layer linear networks with
prior knowledge.

Assumptions. To derive these solutions we make the following assumptions:

• A1 (Whitened input). The input data is whitened, i.e. Σ̃xx = I.

• A2 (λ-Balanced). The network’s weight matrices are λ-balanced at the beginning of train-
ing, i.e. WT

2 W2(0) −W1W1(0)
T = λI. If this condition holds at initialization, it will

persist throughout training (Saxe et al., 2014; Arora et al., 2018a). For completeness, we
prove this in Appendix A.

• A3 (Dimensions). The hidden dimension of the network is defined as Nh = min(Ni, No),
ensuring the network is neither bottlenecked (Nh < min(Ni, No)) nor overparameterized
(Nh > min(Ni, No)).

These assumptions are strictly weaker than prior works (Fukumizu, 1998; Braun et al., 2022; Kunin
et al., 2024; Xu & Ziyin, 2024). The main distinction between our work and prior works is that
both Fukumizu (1998) and Braun et al. (2022) assumed zero-balanced weights (W1(0)W1(0)

T =
W2(0)

TW2(0)), while we relax this assumption to λ-balanced. The zero-balanced condition re-
stricts the networks to a rich setting. We develop solutions to explore the continuum between the
rich and the lazy regime. While some works, such as Tarmoun et al. (2021), have considered remov-
ing this constraint, their solutions remain in an unstable and mixed form. Other studies, such as Xu
& Ziyin (2024) and Kunin et al. (2024), have similarly relaxed the balanced assumption but were
limited to single-output neuron settings. See Appendix A.2 for a further discussion on each of these
works’ assumptions and their relationship to ours.

Lemmas and definitions. To derive exact solutions we start by presenting the main lemmas which
we prove in the appendix.

Lemma 4.1. Under assumptions 1 and 2, the gradient flow dynamics of QQT (t), with initalization
QQT (0) = Q(0)Q(0)T can be written as a differential matrix Riccati equation

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2, where F =

(
−λ

2 INi
(Σ̃yx)T

Σ̃yx λ
2 INo

)
. (6)
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As derived in Fukumizu (1998) and extended in Braun et al. (2022), whenever F is symmetric and
diagonalizable such that F = PΛP T , where P is an orthonormal matrix and Λ is a diagonal
matrix, then the unique solution to this matrix Riccatti equation is given by

QQT (t) = eF
t
τ Q(0)

[
I+Q(0)TP

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)

]−1

Q(0)T eF
t
τ . (7)

In Appendix B.2 we prove that this equation is the unique solution to the initial value problem
derived in Lemma 4.1 for any value of Λ. However, as discussed in Braun et al. (2022), the solution
in this form is not very useable or interpretable due to the matrix inverse mixing the blocks of
QQT . Additionally, we need to diagonalize F . To do so we consider the compact singular value
decomposition SVD(Σ̃yx) = ŨS̃ṼT . Here, Ũ ∈ RNo×Nh denotes the left singular vectors, S̃ ∈
RNh×Nh the square matrix with ordered, non-zero eigenvalues on its diagonal, and Ṽ ∈ RNi×Nh

the corresponding right singular vectors. For unequal input-output dimensions (Ni ̸= No), the right
and left singular vectors are not square. Accordingly, for the case Ni > Nh = No, we define
Ũ⊥ ∈ RNo×|No−Ni| as a matrix containing orthogonal column vectors that complete the basis for
Ũ, i.e., make

[
Ũ Ũ⊥

]
orthonormal, and Ṽ⊥ ∈ RNi×|No−Ni| as a matrix of zeros. Conversely,

when Ni = Nh < No, then Ṽ⊥ is a matrix containing orthogonal column vectors that complete
the basis for Ṽ and Ũ⊥ is a matrix of zeros. Using this SVD structure we can now describe the
eigendecomposition of F.
Lemma 4.2. Under assumptions 3, the eigendecomposition of F = PΛPT is

P =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

√
2Ṽ⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√
2Ũ⊥

)
, Λ =

S̃λ 0 0

0 −S̃λ 0
0 0 λ⊥

 , (8)

where the matrices S̃λ, λ⊥, H̃ , and G̃ are diagonal matrices defined as:

S̃λ =

√
S̃2 +

λ2

4
I, λ⊥ = sgn(No −Ni)

λ

2
I|No−Ni|, H̃ = sgn(λ)

√
S̃λ − S̃

S̃λ + S̃
, G̃ =

1√
I+ H̃2

. (9)

Main theorem. Thanks to the eigendecomposition of F we can separate the solution provided in
equation 7 into four quadrants. Following an approach used in Braun et al. (2022), we will find it
useful to define the following variables of the initialization that will allow us to define the product
P TQ(0) more succinctly,

B = W2(0)
T Ũ(G̃+ H̃G̃) +W1(0)Ṽ (G̃− H̃G̃) ∈ RNh×Nh , (10)

C = W2(0)
T Ũ(G̃− H̃G̃)−W1(0)Ṽ (G̃+ H̃G̃) ∈ RNh×Nh , (11)

D = W2(0)
T Ũ⊥ +W1(0)Ṽ⊥ ∈ RNh×|No−Ni|. (12)

Using these variables of the initialization, this brings us to our main theorem:
Theorem 4.3. Under the assumptions of whitened inputs (1), λ-balanced weights (2), and no bot-
tleneck (3), the temporal dynamics of QQT are

QQT (t) =

(
Z1(t)A

−1(t)ZT
1 (t) Z1(t)A

−1(t)ZT
2 (t)

Z2(t)A
−1(t)ZT

1 (t) Z2(t)A
−1(t)ZT

2 (t)

)
,

with the time-dependent variables Z1(t) ∈ RNi×Nh , Z2(t) ∈ RNo×Nh , and A(t) ∈ RNh×Nh :

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ DT , (13)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ DT , (14)

A(t) = I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +D

(
eλ⊥

t
τ − I

λ⊥

)
DT . (15)
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Figure 2: A. The temporal dynamics of the numerical
simulation (colored lines) of the loss, network func-
tion, correlation of input and output weights, and the
NTK (row 1-5 respectively) are exactly matched by
the analytical solution (black dotted lines) for λ =
−2. B. λ = 0 Large initial weight values. C. λ = 2
initial weight values initialized as described in E.7.

The proof of Theorem 4.3 is in Appendix B.
With this solution we can calculate the ex-
act temporal dynamics of the loss, network
function, RSMs and NTK (Fig. 2A, C) over
a range of λ-balanced initializations.

Implementation and simulation. One is-
sue with the expression we derived in The-
orem 4.3 is that it can be numerically unsta-
ble when simulating it for long time t ≫ 0
as it involves taking the inverse of terms
that involve exponentials that are diverging
with t. If we make the additional assump-
tion that B is invertible, then we can rear-
range this expression to only use exponen-
tials with negative coefficients, which we
derive in Appendix B.5. In the next sec-
tion we will discuss the significance of B
being invertible at initialization on the con-
vergence of the dynamics. Simulation de-
tails are in Appendix E.7.

5 RICH AND LAZY LEARNING

Next, we use these solutions to gain a
deeper understanding of the transition be-
tween the rich and lazy regimes by exam-
ining the dynamics as a function of λ – the
relative scale – as it varies between positive
and negative infinity. We investigate four
key indicators of the learning regimes: the
dynamics of singular vectors, the structure and robustness of the representations, and the evolution
of the NTK.
Dynamics of the singular values. Here we examine a λ-balanced linear network initialized with
task-aligned weights. Previous research (Saxe et al., 2019a) has demonstrated that initial weights
that are aligned with the task remain aligned throughout training, restricting the learning dynamics
to the singular values of the network. This setting offers a valuable opportunity to build intuition
about the impact of λ on the dynamics of learning regimes, extending beyond previous solutions
(Tarmoun et al., 2021; Varre et al., 2024).
Theorem 5.1. Under the assumptions of Theorem 4.3 and with a task-aligned initialization, as de-
fined in Saxe et al. (2013), the network function is given by the expression W2W1(t) = ŨS(t)Ṽ T

where S(t) ∈ RNh×Nh is a diagonal matrix of singular values with elements sα(t) that evolve
according to the equation,

sα(t) = sα(0) + γα(t;λ) (s̃α − sα(0)) , (16)

where s̃α is the α singular value of S̃ and γα(t;λ) is a λ-dependent monotonic transition function
for each singular value that increases from γα(0;λ) = 0 to limt→∞ γα(t;λ) = 1 defined explicitly
in Appendix C.1. We find that under different limits of λ, the transition function converges pointwise
to the sigmoidal (λ→ 0) and exponential (λ→ ±∞) transition functions,

lim
λ→0

γα(t;λ)→
e2s̃α

t
τ − 1

e2s̃α
t
τ − 1 + s̃α

sα(0)

, lim
λ→±∞

γα(t;λ)→ 1− e−|λ| t
τ . (17)

The proof for Theorem 5.1 can be found in Appendix C.1. As shown in Fig. 3B, as λ approaches
zero, the dynamics resemble sigmoidal learning curves that traverse between saddle points, charac-
teristic of the rich regime (Braun et al., 2022). In this regime the network learns the most salient
features first, which can be beneficial for generalization (Lampinen & Ganguli, 2018). Conversely,
as shown in Fig. 3A and C, as the magnitude of λ increases, the dynamics become exponential,
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Figure 3: Simulated and analytical dynamics of the singular values of the network function with
relative scale of A. λ = −2, B. λ = 0, or C. λ = 2, initialized as described in Appendix E.7.

characteristic of the lazy regime. In this regime, all features are treated equally and the network’s
dynamics resemble that of a shallow network. Notably, similar effects have been observed previ-
ously in the context of large absolute scales (Saxe et al., 2019a) independently of the relative scale.
Overall, our results highlight the critical influence the relative scale λ has in shaping the learning
dynamics, from sigmoidal to exponential, steering the network between the rich and lazy regimes.

The dynamics of the representations. We now consider how the representations of the individual
parameters W1 and W2 change through training. We note that under λ-balanced initializations there
is a simple structure which persists throughout training that allows us to recover the dynamics of the
parameters up to a time-dependent orthogonal transformation from the dynamics of QQT (t).
Theorem 5.2. Under assumptions 2, if the network function W2W1(t) = U(t)S(t)V T (t)
is full rank, then we can recover the parameters W2(t) = U(t)S2(t)R

T (t) and W1(t) =
R(t)S1(t)V

T (t) up to time-dependent orthogonal transformation R(t) ∈ RNh×Nh , where

Sλ(t) =
√

S2(t) + λ2

4 I and

S1(t) =
((

Sλ(t)− λI
2

) 1
2 , 0max(0,Ni−No)

)
, S2(t) =

((
Sλ(t) +

λI
2

) 1
2 ; 0max(0,No−Ni)

)
. (18)

The effective singular values Sλ of the corresponding weights are either up-weighted or down-
weighted depending on the magnitude and sign of λ, splitting the representation into two parts. This
division is reflected in the network’s internal representations. With our solution, QQT (t), which
captures the temporal dynamics of the similarity between hidden layer activations, we can analyze
the network’s internal representations in relation to the task. This allows us to determine whether the
network adopts a rich or lazy representation, depending on the value of λ. Assuming convergence to
the global minimum, which is guaranteed when the matrix B is non-singular, the internal representa-
tion satisfies WT

1 W1 = ṼS̃2
1Ṽ

T and W2W
T
2 = ŨS̃2

2Ũ
T with W2W1 = ŨS̃ṼT . Theorem C.3

in the Appendix provides a detailed proof of this limiting behavior. To illustrate this, we consider a
hierarchical semantic learning task1, introduced in Saxe et al. (2014); Braun et al. (2022), where liv-
ing organisms are organized according to their features (Fig. 4A). The representational similarity of
the task’s inputs (ṼS̃ṼT ) reflects this hierarchical structure (Fig.4A). Similarly, the representational
similarity of the task’s target values (ŨS̃ŨT ) highlights the primary groupings of items. When train-
ing a two-layer network with relative scale λ equal to zero and task-agnostic initialization (Mishkin
& Matas, 2015), the input and output representational similarity matrices (Fig.4B) match the task’s
structure upon convergence. As derived in Theorem C.4 the network is guaranteed to find a rich
solution regardless of the absolute scale , meaning WT

1 W1 = ṼS̃ṼT and W2W
T
2 = ŨS̃ŨT , as

shown in Fig. 4C. Hence, the network learns task-specific representations. We also show that as λ
approaches either positive or negative infinity, the network symmetrically transitions into the lazy
regime. As demonstrated in Theorem C.4 and illustrated in Fig. 4, the representations converge to
an identity matrix for both large positive and large negative values of λ— emerging in the output
representations for large positive λ and input representations for large negative λ. This convergence
indicates that the network adopts task-agnostic representations. Meanwhile, the other respective
RSMs become negligible, with scales proportional to 1/λ. Therefore, as shown in Theorem C.5, the
NTK becomes static and equivalent to the identity matrix in the limit as λ approaches infinity. How-
ever, the downscaled representations of the network remain structured and task-specific. Intuitively,
1In this setting, the network has equal input and output dimensions
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Figure 4: A. A semantic learning task with the SVD of the input-output correlation matrix of the
task. (top) U and V represent the singular vectors, and S contains the singular values. (bottom) The
respective RSMs as USU⊤ for the input and V SV ⊤ for the output task. B. Simulation results and
C. Theoretical input and output representation matrices after training, showing convergence when
initialized with values of λ equal to −2, 0, and 2, according to the initialization scheme described in
Appendix E.7. D. Final RSMs matrices after training converged when initialised from random large
weights. E. After convergence, the network’s sensitivity to input noise (top panel) is invariant to λ,
but the sensitivity to parameter noise increases as λ becomes smaller (or larger) than zero.

in this setup, the larger weights function as an identity-like projection, while the smaller weights
adapt and align to the task. However, due to their relative scale compared to the larger weights, their
contribution to the NTK remains negligible. This property could be beneficial if the weights are later
rescaled, such as during fine-tuning, potentially enhancing generalization and transfer learning, as
we will demonstrate in Section 6. We compare this to the scenario where both weights are initialized
with large Gaussian values, leading to lazy learning that maintains a fixed NTK but lacks any struc-
tural representation, as illustrated in Fig. 4D. We further discuss the relationship between the scale
and the relative scale in appendix A.4. Furthermore, in the infinite-width regime, where weights
are initialized from a Gaussian distribution with large variance, averaging effects cause both input
and output representations to approximate identity matrices. In this scenario, the network learns
with minimal parameter variation, operating in the lazy regime with a fixed Neural Tangent Kernel
(NTK). This behavior contrasts with the dynamics observed in the current setting since both input
and output representations are task agnostic. Consequently, we propose a new lazy regime, which
we refer to as the semi-structured lazy regime. We note that these existing regimes preserve only
the input or output representation, resulting in a partial loss of structural information. In the non-
linear setting, this behavior is not expected to hold, as an additional factor comes into play in the
computation of the NTK: the activation coefficients of the nonlinearity, as demonstrated in Kunin
et al. (2024). In that case large relative weight (large positive λ) leads to a rapid rich regime. All
together, we find that initialization will determine which layer in the network the task specification
features resides in: layers initialized with large values will be task-agnostic, while those initialized
with small values will be task-specific.

Representation robustness and sensitivity to noise. Here we examine the relationship be-
tween the learning regime and the robustness of the learned representations to added noise in
the inputs and parameters. The expected post-convergence loss with added noise to the in-
puts is determined by the norm of the network function (Braun et al., 2024), which in our set-
ting is independent of λ. Specifically, if we add zero-centered noise ξX with variance σ2

X to
the inputs, then the expected loss is⟨L⟩ξX = σ2

X

∑Nh

i=1 S̃
2
i + c, where c is a constant that de-

pends solely on the statistics of the training data (Figure 4E, Appendix C.3). However, if in-
stead noise is added to the parameters, the expected loss scales quadratically with the norm
of the weight matrices (Braun et al., 2024), which in our setting depend on λ. In particu-
lar, zero-centered parameter noise ξW1

and ξW2
with variance σ2

W results in an expected loss
of⟨L⟩ξW1

,ξW2
= 1

2Niσ
2
W||W2||2F + 1

2Noσ
2
W||W1||2F + 1

2NiNhNoσ
4 + c, with norms ||W1||2F =

1
2

∑Nh

i=1

(√
4S̃2

i + λ2 + λ

)
and ||W2||2F = 1

2

∑Nh

i=1

(√
4S̃2

i + λ2 − λ

)
. This implies that,

under the assumption of equal input-output dimensions, networks initialized with weights such that
λ = 0, corresponding to the rich regime, converge to solutions that are most robust to parameter
noise (Figure 4E, Appendix C.3). In practice, parameter noise could be interpreted as the noise oc-
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Figure 5: A. Schematic representations of the network architectures considered, from left to right:
funnel network, square network, and inverted-funnel network. B. The plot shows the NTK kernel
distance from initialization, as defined in Fort et al. (2020) across the three architecture depicted
schematically. C. The NTK kernel distance away from initialization over training time.

curring within the neurons of a biological network. Hence, a rich solution may enable a more robust
representation in such systems.

The impact of the architecture. Thus far, we have found that the magnitude of the relative scale
parameter λ determines the extent of rich and lazy learning. Here, we explore how a network’s
learning regime is also shaped by the interaction of its architecture and the sign of the relative
scale. We consider three types of network architectures, depicted in Fig. 5A: funnel networks, which
narrow from input to output (Ni > Nh = No); inverted-funnel networks, which expand from input
to output (Ni = Nh < No); and square networks, where input and output dimensions are equal
(Ni = Nh = No). Our solution, QQT , captures the dynamics of the NTK across these different
network architectures. To examine the NTK’s evolution under varying λ initializations, we compute
the kernel distance from initialization, as defined in Fort et al. (2020). As shown in Fig. 5B, we
observe that funnel networks consistently enter the lazy regime as λ → ∞, while inverted-funnel
networks do so as λ→ −∞. The NTK remains static during the initial phase, rigorously confirming
the rank argument first introduced by Kunin et al. (2024) for the multi-output setting. In the opposite
limits of λ, these networks transition from a lazy regime to a rich regime. During this second
alignment phase, the NTK matrix undergoes changes, indicating an initial lazy phase followed by
a delayed rich phase. We further investigate and quantify this delayed rich regime, showing the
NTK movement over training in Fig. 5C. This behavior is also quantified in Theorem C.6, which
describes the rate of learning in this network. Intuitively, the delayed onset of the rich regime occurs
because no least-squares solution exists within the span of the network at initialization. In such
cases, the network enters a delayed rich phase, where λ tends toward infinity, with the magnitude
of λ determining the length of the delay. At first, the network exhibits lazy dynamics, striving
to approximate the solution. However, as constraints necessitate adjustments in its directions, the
network gradually transitions into the rich phase. For square networks with equal input and output
dimensions, this behavior is discussed in Section 5. Across all architectures, as λ→ 0, the networks
consistently transition into the rich regime. Altogether, we further characterize the delayed rich
regime in wide networks.

6 APPLICATIONS

In this section, we apply the exact solutions for the learning dynamics in deep linear networks
with lambda-balanced initialization (described in Section 4) to illustrate several specific phenomena
relevant to machine learning and neuroscience.

Continual learning. Continual learning, as thoroughly reviewed by Parisi et al. (2019), has long
posed a significant challenge for neural network models in contrast to biological networks, particu-
larly due to the issue of catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; French,
1999).Similarly to the framework presented by Braun et al. (2022), our approach describes the exact
solutions of the networks dynamics trained across a sequence of tasks describing the entire continual
learning process. As detailed in Appendix D.1, we demonstrate that, regardless of the chosen value
of λ, training on subsequent tasks can result in the overwriting of previously acquired knowledge,
leading to catastrophic forgetting (McCloskey & Cohen, 1989; Ratcliff, 1990; French, 1999).

Reversal learning. During reversal learning, previously acquired knowledge must be relearned,
necessitating the overcoming of an earlier established relationship between inputs and outputs. As
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demonstrated in Braun et al. (2022), reversal learning theoretically does not succeed in deep linear
networks as the initalization aligns with the separatrix of a saddle point. While simulations show
that the learning dynamics can escape the saddle point due to numerical imprecision, the process
is catastrophically slowed in its vicinity. However, when λ is non-zero, reversal learning dynamics
consistently succeed, as they avoid passing through the saddle point due to the initialization scheme.
This is both theoretically proven and numerically illustrated in Appendix D.2. We also present a
spectrum of reversal learning behaviors controlled by the relative scale λ, ranging from rich to lazy
learning regimes. This spectrum has the potential to explain the diverse dynamics observed in animal
behavior, offering insights into the learning regimes relevant to various neuroscience experiments.

Transfer learning. We consider how different λ initializations influence generalization to a new
feature after being trained on an initial task. As detailed in Appendix D.3, we first train each network
on the hierarchical semantic learning task described in Fig. 4. We then add a new feature to the
dataset, and train the network specifically on the corresponding item while keeping the rest of the
network parameters unchanged. Afterwards, we evaluate the generalization to the other items. We
observe in Appendix Fig. D.3 that the hierarchical structure of the data is effectively transferred
to the new feature when the representation is task-specific and λ is zero. Conversely, when the
input feature representation is lazy (λ ≤ 0), meaning the hidden representation lacks adaptation, no
hierarchical generalization is observed. Strikingly, when λ is positive, the hierarchical structure in
the input weights remains small but structured, while the output weights exhibit a lazy representation
and the network generalizes hierarchically. Specifically Fig. D.3 shows that the generalization loss
on untrained items with the new feature decreases as a function of increasing λ. Therefore, as λ
increases, networks more effectively transfer the hierarchical structure of the network to the new
feature for untrained items, leading to an increase in generalization performance. This indicates that
the lazy regime structure (large λ values) can be beneficial for transfer learning.

Fine-tuning It is a common practice to pre-train neural networks on a large auxiliary task before
fine-tuning them on a downstream task with limited samples. Despite the widespread use of this
approach, the dynamics and outcomes of this method remain poorly understood. In our study, we
provide a theoretical foundation for the empirical success of fine-tuning, aiming to improve our un-
derstanding of how performance depends on the initialization. Specifically, we explore how changes
in λ-balancedness after pretraining might influence fine-tuning on a new dataset in Appendix D.4.
Across all the tasks we consider, we consistently find that finetuning performance improves and con-
verges more quickly as networks are re-balanced to larger values of λFT and, conversely, decreases
as λFT approaches 0 as shown in Fig. D.4. Our work examines the fine-tuning dynamics of two-
layer linear networks. While simple, these architectures are commonly utilized for fine-tuning large
pre-trained language and vision models, notably in Low-Rank Adapters (LoRA) (Hu et al., 2022)
as further discussed in Appendix D.4. While a detailed exploration of fine-tuning performance in
practice as a function of initialization lies beyond the scope of this work, it remains an important
direction for future research.

7 DISCUSSION

We derive exact solutions to the learning dynamics within a tractable model class: deep linear net-
works. While our findings extend the range of analytically describable two-layer linear network
problems, they are still limited by a set of assumptions. In particular, relaxing the assumptions that
input covariance must be white and that initialization must be λ-balanced could bring the analysis
closer to practical applications in machine learning and neuroscience. Moving towards the non-
linear setting would also make the findings more applicable in real-world scenarios. Despite these
limitations, our solutions provide valuable insights into network behavior. We examine the transi-
tion between the rich and lazy regimes by analyzing the dynamics as a function of λ—the relative
scale—across its full range from positive to negative infinity. Our analysis demonstrates that the
relative scale, λ, is pivotal in managing the transition between rich and lazy regimes. Notably, we
identify a structured lazy regime that promotes transfer learning. Building on previous work (Kunin
et al., 2024) that shows these findings extend to basic nonlinear settings and practical scenarios, our
theory suggests that further exploration of unbalanced initialization could optimize efficient feature
learning. We leave for future work, the extension of this initialization to deep networks. Future
work will focus on extending the application of the solution to the dynamics of fine-tuning and
linear autoencoders.
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A PRELIMINARIES

A.1 APPENDIX: BALANCED CONDITION

Definition A.1 (Definition of λ-balanced property (Saxe et al. (2013), Marcotte et al. (2023))). The
weights W1,W2 are λ-balanced if and only if there exists a Balanced Coefficient λ ∈ R such that:

B(W1,W2) = W T
2 W2 −W1W

T
1 = λI (19)

where B is called the Balanced Computation.
For λ = 0 we have Zero-Balanced given as A4 (). W1(0)W1(0)

T = W2(0)
TW2(0).

Theorem A.2. Balanced Condition Persists Through Training

Suppose at initialization

W2(0)
TW2(0)−W1(0)W1(0)

T = λI (20)

Then for all t ≥ 0

W2(t)
TW2(t)−W1(t)W1(t)

T = λI (21)

Proof. Consider:

τ
d

dt

[
W2(t)W2(t)

T −W1(t)W1(t)
T
]
=

(
τ
d

dt
W2(t)

)T

W2(t) +W2(t)
T

(
τ
d

dt
W2(t)

)
−
(
τ
d

dt
W1(t)

)
W1(t)

T −W1(t)

(
τ
d

dt
W1(t)

)T

= W1(t)
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)T

W2(t)

+W2(t)
T
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W1(t)

−W2(t)
T
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W1(t)

−W1(t)
(
Σ̃yx −W2(t)W1(t)Σ̃

xx
)
W2(t)

= 0

Note that W2(t)
TW2(t)−W1(t)W1(t)

T is conserved for any initial value λ.

A.2 DISCUSSION ASSUMPTIONS

Whittened Inputs. Although the whitened input assumption is quite strong, it is commonly used
in analytical work to obtain exact solutions, and much of the existing literature relies on these so-
lutions Fukumizu (1998); Braun et al. (2022); Kunin et al. (2024). While relaxing this assump-
tion prevents the exact description of network dynamics, Kunin et al. (2024) examine the implicit
bias of the training trajectory without relying on whitened inputs. If the interpolating manifold is
one-dimensional, the solution can be solved exactly in terms of λ. Their findings demonstrate a
similar quantitative dependence on λ, governing the implicit bias transition between rich and lazy
regimes. Furthermore, recent advancements, such as the ”decorrelated backpropagation” technique
introduced by Dalm et al. (2024) which whitens inputs during training, showing that optimizing for
whitened inputs can actually be done in practice and improve efficiency in real-world applications.
Importantly, This study highlights that in certain real-world scenarios, whitening can provide a more
optimal learning condition. This approaches emphasize the potential advantages of input whitening
for downstream tasks, reinforcing the validity of our assumption.
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Dimension. Previous works imposed specific dimensionality constraints. For example: Fuku-
mizu (1998) assumed equal input and output dimensions (Ni = No) while allowing a bottle-
neck in the hidden dimension (Nh ≤ Ni = No). Braun et al. (2022) extended these solutions
to cases with unequal input and output dimensions (Ni ̸= No) but restricted bottleneck networks
(Nh = min(Ni, No)) and introduced an additional invertibility condition on the B. In our work we
allow for unequal input and output Ni ̸= No and do not introduce an additional invertibility assump-
tion. This flexibility expands the applicability of our framework to a wider range of architectures.

Full rank Previous work by Braun et al. (2022), imposed a full-rank initialization condition, de-
fined as rank(W2(0)W1(0)) = Ni = No. However, this assumption is not necessary in our
framework.

Balancedness Assumption A significant departure from prior works is the relaxation of the bal-
ancedness assumption: Earlier studies, such as Fukumizu (1998) and Braun et al. (2022) assumed
strict zero-balancedness (W1(0)W1(0)

T = W2(0)
TW2(0)), which constrained the networks to

the rich regime. Our approach generalizes this to λ-balancedness, enabling exploration of the con-
tinuum between the rich and lazy regimes. While some efforts, such as Tarmoun et al. (2021),
have explored removing the zero-balanced constraint, their solutions were limited to unstable or
mixed forms. In contrast, our methodology systematically studies different learning regimes by
varying initialization properties, particularly through the relative scale parameter. This allows con-
trolled transitions between regimes, advancing understanding of neural network behavior across
the spectrum. Other studies, such as Kunin et al. (2024) and Xu & Zheng (2024) have also re-
laxed the balancedness assumption, though their analysis was restricted to single-output neuron
settings. We emphasize the importance of this balanced quantity by rigorously proving that, in the
averaging limit, standard network initializations (e.g., LeCun initialization LeCun et al. (1998),
He initialization) lead to λ-balanced behavior in the infinite-width limit. Specifically, the term
W1(0)W1(0)

T = W2(0)
TW2(0) converges to a scaled identity matrix. Furthermore, previous

studies have demonstrated that the relative scaling of λ significantly impacts the learning regime in
practical scenarios, highlighting the crucial role of dynamical studies of networks as a function of
this parameter.

A.3 RANDOM WEIGHT INITIALISATIONS AND λ-BALANCED PROPERTY

Throughout this work, we assume that initial weights are λ-Balanced. However, in practice, weights
are not initialized with that goal in mind. Usually, a weight matrix W is initialized with some
random distribution centered around 0, with variance inversely proportional to the number of layers
on which W has a direct effect (Glorot & Bengio (2010), LeCun et al. (1998), He et al. (2015)).
In this section, we show that many common initialization techniques lead to λ-Balanced weights
in expectation. Furthermore, as the size of a network tends to infinity, these random weights are
λ-Balanced in probability.

We do this by first finding the expectation and variance of the balance computation for two
adjacent weight matrices, Wi+1 and Wi, initialized under a normal distribution with zero mean.
Subsequently, we describe how network structure and size can impact the expectation and variance
of the balance computation.

Theorem A.3. [Random Weight Initialization Leads to Balanced Condition] Consider a fully
connected neural network with L layers. Each layer has Ni neurons, and the weights of each layer
Wi is a matrix of dimension (Ni, Ni+1). The matrix Wi = (wi

N,m) where wi
N,m ∼ N (0, σ2

i ),
where σ2

i is determined based on the initialization technique. Then the following hold for all i ∈
[1, L− 1]:

1. E [W T
i+1Wi+1 −WiW

T
i ] = (Ni+2σ

2
i+1 −Niσ

2
i )I

2. Var
[
W T

i+1Wi+1 −WiW
T
i

]
= (Ni+2σ

4
i+1 +Niσ

4
i )B, where B is a square matrix with

fours across the diagonal and ones everywhere else.

Note that in the case L = 3, N0 = i,N1 = h,N2 = o with i, h, o being the input, hidden and output
dimensions respectively as defined in the main text.
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Proof of Theorem A.3.

Let Wi+1 =


w1,1 w1,2 · · · w1,Ni+2

w2,1 w2,2 · · · w2,Ni+2

...
...

. . .
...

wNi+1,1 wNi+1,2 · · · wNi+1,Ni+2


= (w1 w2 . . . wNi+2)

(22)

with wj = (w1,j , w2,j , . . . , wNi+1,j)
T .

Then,

W T
i+1Wi+1 =


wT

1

wT
2
...

wT
Ni+2

 (w1 w2 · · · wNi+2)

=


⟨w1, w1⟩ ⟨w1, w2⟩ · · · ⟨w1, wNi+2

⟩
⟨w2, w1⟩ ⟨w2, w2⟩ · · · ⟨w2, wNi+2

⟩
...

...
. . .

...
⟨wNi+2

, w1⟩ ⟨wNi+2
, w2⟩ · · · ⟨wNi+2

, wNi+2
⟩


Now, consider ⟨wi, wj⟩ with i ̸= j,

⟨wi, wj⟩ =
Ni+2∑
k=1

wk,iwk,j

E [⟨wi, wj⟩] = E

Ni+2∑
k=1

wk,iwk,j


=

Ni+2∑
k=1

E[wk,iwk,j ]

=

Ni+2∑
k=1

E[wk,i]E[wk,j ] = 0 (by independence)

Var [⟨wi, wj⟩] = E
[
⟨wi, wj⟩2

]
− [E [⟨wi, wj⟩]]2

= E


Ni+2∑

k=1

wk,iwk,j

2


= E

Ni+2∑
k=1

w2
k,iw

2
k,j + 2

Ni+2∑
k=1

∑
l>k

wk,iwk,jwl,iwl,j


=

Ni+2∑
k=1

E[w2
k,iw

2
k,j ] + 2

Ni+2∑
k=1

∑
l>k

E[wk,i]E[wk,j ]E[wl,i]E[wl,j ]

=

Ni+2∑
k=1

E[w2
k,i]E[w2

k,j ]

= (Ni+2)σ
4
i+1

Similarly, consider ⟨wi, wi⟩:
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⟨wi, wi⟩ =
Ni+2∑
k=1

w2
k,i

E [⟨wi, wi⟩] = E

Ni+2∑
k=1

w2
k,i

 = Ni+2E
[
w2

k,i

]
= Ni+2σ

2
Ni+1

Var [⟨wi, wi⟩] = E
[
(⟨wi, wi⟩)2

]
− E [⟨wi, wi⟩]2

= E


Ni+2∑

k=1

w2
k,i

2
−N2

i+2σ
4
Ni+1

= E


Ni+2∑

k=1

w2
k,i

2
−N2

i+2σ
4
Ni+1

= E

Ni+2∑
k=1

w4
k,i + 2

Ni+2∑
k=1

Ni+2∑
l=k+1

w2
k,iw

2
l,i

−N2
i+2σ

4
Ni+1

=

Ni+2∑
k=1

E
[
w4

k,i

]
+ 2

Ni+2∑
k=1

Ni+2∑
l=k+1

E
[
w2

k,i

]
E
[
w2

l,i

]
−N2

i+2σ
4
Ni+1

= Ni+2(3σ
4
Ni+1

) + (N2
i+2 −Ni+2)σ

4
Ni+1

−N2
i+2σ

4
Ni+1

= 4Ni+2σ
4
Ni+1

Hence
E
[
W T

i+1Wi+1

]
=
(
Ni+2σ

2
i+1

)
I

Var
[
W T

i+1Wi+1

]
= 4 (Ni+2)σ

4
i+1B

For the case for Wi, notice we can express WiW
T
i as (W T

i )T (W T
i ). Hence we can use the proof

above, with W ′
i+1 = W T

i . In this case the matrix W ′
i+1 has shape (Ni, Ni+1), and each element

of the matrix has variance σ2
i . We have:

E
[
WiW

T
i

]
= Niσ

2
i I

Var
[
WiW

T
i

]
= Niσ

4
i B

By assumption, Wi,Wi+1 are independent. Hence Cov(Wi,Wi+1) = 0. We can use this prop-
erty together with linearity of expectation:

E
[
W T

i+1Wi+1 −W T
i Wi

]
=
(
Ni+2σ

2
i+1 −Niσ

2
i

)
I

Var
[
W T

i+1Wi+1 −W T
i Wi

]
=
(
Ni+2σ

4
i+1 +Niσ

4
i

)
B

This completes the proof.

In neural network training, proper weight initialization is crucial for ensuring stable gradients
during backpropagation, which helps to avoid issues such as vanishing and exploding gradients.
The goal of weight scaling is to maintain appropriate variance across layers, enabling efficient and
effective learning (Glorot & Bengio (2010)). The weights are typically initialized to be random and
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centered around 0 to break symmetry and ensure that different neurons learn different features.

Some of the most commonly used initialization methods are detailed below:

• LeCun Initialization (LeCun et al. (1998)): Weights are initialized using a normal distri-
bution with a mean of 0 and a variance of 1

Ni
, where Ni is the number of input units in the

layer. Mathematically, the weights w are drawn from N (0, 1
Ni

).

• Glorot Initialization (Glorot & Bengio (2010)): Weights are initialized using a nor-
mal distribution with a mean of 0 and a variance of 2

Ni+Ni+1
, where Ni is the number

of input units and Ni+1 is the number of output units. This method balances the vari-
ance between layers with different widths. Mathematically, the weights w are drawn from
N (0, 2

Ni+Ni+1
).

• He Initialization (He et al. (2015)): Weights are initialized using a normal distribution
with a mean of 0 and a variance of 2

Ni
, where Ni is the number of input units in the layer.

This method is particularly suited for layers with ReLU activation functions. Mathemati-
cally, the weights w are drawn from N (0, 2

Ni
).

• Scaled Initialization (Rahnamayan & Wang (2009)): Weights are initialized using a
normal distribution with a mean of 0 and a variance of αi

Ni
, where Ni is the number of input

units in the layer and αi is a parameter specific to each layer. Mathematically, the weights
w are drawn from N (0, αi

Ni
).

These initialization methods help ensure that the network starts with weights that facilitate stable and
efficient learning, avoiding the common pitfalls of poorly initialized neural networks. Using (A.3),
we can calculate the respective Expectations and Variances of the Balanced Computation under the
different initialisations:

Initialization Var(wi+1
N,m) Var(wi

N,m) E[W T
i+1Wi+1 −WiW

T
i ] Var[W T

i+1Wi+1 −WiW
T
i ]

LeCun 1
Ni+1

1
Ni

(
Ni+2

Ni+1
− 1
)
I

(
Ni+2

N2
i+1

+ 1
Ni

)
B

Glorot 2
Ni+1+Ni+2

2
Ni+1+Ni

2
(

Ni+2

Ni+1+Ni+2
− Ni

Ni+1+Ni

)
I (Ni+2

(
2

Ni+1+Ni+2

)2
+Ni

(
2

Ni+Ni+1

)2
)B

He 2
Ni+1

2
Ni

2
(

Ni+2

Ni+1
− 1
)
I 4

(
Ni+2

N2
i+1

+ 1
Ni

)
B

Scaled α2
i+1

Ni+1

α2
i

Ni

(
Ni+2

Ni+1
α2
i+1 − α2

i

)
I (Ni+2

(
α2

i+1

Ni+1

)2
+Ni

(
α2

i

Ni

)2
)B

Table 1: Comparison of Variance and Expectation of Balanced Computation for Different Weight
Initializations

Table 1 shows that for the above initialisations the Balanced Computation of the weight pair will
result in λ-Balanced weights for some λ. The table also details how network structure will influence
the value of λ for different initialisation techniques.

Fig. 6 shows a numerical example of how the Balanced computation would look
like for initialising weights with LeCun, He, Scaled and Glorot initialisations using
Ni = 160, Ni+1 = 80, Ni+2 = 120. With these numbers of nodes in each layer one can
appreciate how the Balanced Computation on the weights is visually similar to a scaled identity
matrix. In Fig. 7 We show how the sign of the scaled identity changes with the dimentions Ni,
Ni+1 Ni+2.
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Figure 6: Balanced computation for different weight initializationsusing Ni = 160, Ni+1 =
80, Ni+2 = 120, α1 = 1 ,α2 = 2. The figure compares LeCun, He, Scaled, and Glorot initial-
izations, showing how the balanced computation on the weights visually resembles a scaled identity
matrix.
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Figure 7: Impact of Network Structure on sign of balanced coefficient for different initialisations.
Lecun, He and Scaled initialisations depend solely on the ratio of the sizes of the output and hidden
layers. Scaled initialisation’s dependence is affected by the parameters αi+1, αi. Glorot initialisa-
tion’s sign depends on both ratios.

State-of-the-art models such as (Krizhevsky et al. (2012), Liu et al. (2023a)) use more than 10,000
nodes in each hidden layer. This implies that if we wished to perform some mathematical analysis
on these models, assuming the initial random weights are λ-Balanced would be a very close
depiction to reality. In addition, these models often have a different number of nodes per layer, so
understanding the effect of the relationship between Ni, Ni+1, and Ni+2 is crucial.

Specifically, we aim to understand how changes in the relative width of layers i, i + 1, i + 2
affect the Balanced Computation: suppose Ni+1 = kNi for some k ∈ R+ and Ni+2 = rNi for
some r ∈ R+. Then we can express the table above in terms of k, r, and Ni only:

Initialization Var(wi+1
N,m) Var(wi

N,m) E[W T
i+1Wi+1 −WiW

T
i ] Var[W T

i+1Wi+1 −WiW
T
i ]

LeCun 1
kNi

1
Ni

(
r
k − 1

)
I 1

Ni

(
r
k2 + 1

)
B

Glorot 2
Ni(k+r)

2
Ni(k+1) 2

(
r

k+r −
1

k+1

)
I 4

Ni

(
r

(r+k)2 + 1
(k+1)2

)
B

He 2
kNi

2
Ni

2
(
r
k − 1

)
I 4

Ni

(
r
k2 + 1

)
B

Scaled α2
i+1

kNi

α2
i

Ni

(
r
kα

2
i+1 − α2

i

)
I 1

Ni

(
rα2

i+1

k2 + α2
i

)
B

Table 2: Comparison of Variance and Expectation for Different Initializations

From Table 2, we can observe that as the number of nodes in each layer tends to infinity, while
the ratios between the number of nodes in each layer (r, k) are maintained, the variance of the
Balanced Computation tends to zero. Hence the Balanced Computation converges in probability to
λ-Balanced weights.

Further, Table 2 shows that a larger value of r will lead to a higher value of λ in every one
of the initializations displayed. Moreover, a larger k has the opposite effect. In addition, we can
observe that in some initializations there are limits as to what value λ can take (such as in LeCun
λ ≥ 0).

Some special cases of r and k are interesting to consider to gain an intuition of how chang-

23



1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2025

ing these values influences the Balancedness of the Weights. In the table below, we consider the
cases:

1. r = k: the three layers of the network have the same number of nodes.
2. r → 0, k fixed: Ni >> Ni+2, Ni+1, the first of the three layers is much larger than the

other two layers.
3. r → ∞, k fixed: Ni+2 >> Ni, Ni+1, the last of the three layers is much larger than the

other two layers (k is fixed).
4. k → 0, r fixed: the middle layer is exceedingly small, Ni+1 << Ni, Ni+2

5. k → ∞, r fixed: the middle layer is much bigger than the other two layers, Ni+1 >>
Ni, Ni+2

6. r =
α2

i

α2
i+1

: the inner and outer layers have a ratio proportional to the scale factors of each
weight layer. This case is important for Scaled initialization.

Initialization r = k r → 0 r →∞ k →∞ k → 0 r =
α2

i

α2
i+1

k

LeCun 0 −I r
k I −I r

k I -

Glorot 0 2I 2I 0 − 2
k+1I -

He 0 −2I 2
(
r
k

)
I −2I 2

(
r
k

)
I -

Scaled (α2
i+1 − α2

i )I −α2
i I

r
kα

2
i+1I −α2

i I
r
kα

2
i+1I 0

Table 3: Comparison of Variance and Expectation under Different Conditions

From Table 3 above one can appreciate the impact network structure can have on the Balanced
Computation of the weights of each layer. One can also see that there are many cases when the
Balanced computation does not equal 0, both in the limit of r, k and not in the limit.

We have showed that although the Balanced property is only preserved in Linear Networks,
it occurs at initialisation for large networks which utilise some of the most common weight
initialisation techniques.

These findings provide motivation to better understand the relation between the Balanced
Computation of a Network, its structure and the regime it will learn in. If we are able to understand
the relation between λ-Balanced weights and Rich and Lazy Learning in Linear Networks, one
might be able to approximate these results to the nonlinear case.

A possible future application might be the ability to heavily influence a network’s learning
regime by altering the relative width of its layers, its activation functions or weight initialisation
techniques used for each layer.

In order to better understand the effects of λ on the learning dynamics and learning regime
of the network, we first study aligned λ-Balanced networks.

A.4 SCALE VS RELATIVE SCALE

The relative scale and aboslute scale interact in non trivial ways. While our study primarily focuses
on the effects of relative scale, the influence of absolute scale is inherently embedded within our
framework through the definitions of B, C, and D (see Equations 10). However, this influence is
not immediately apparent from the main theorem. A clearer distinction between the roles of relative
and absolute scale can be observed in Theorem 5.1. Specifically, we investigated how λ, the relative
scale parameter, governs the transition between sigmoidal and exponential dynamical regimes. A
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similar argument applies to absolute scale, which appears explicitly as sα(0) in these equations.
Consider the case when λ = 0, the dynamics of sα reduce to the classical solution of the Bernoulli
differential equation. In the limiting case where sα(0) → 0, the system exhibits classic sigmoidal
dynamics (characteristic of the rich regime), whereas the limit sα(0) → ∞ yields exponential
dynamics (characteristic of the lazy regime). This interplay between relative and absolute scales
underscores their critical roles in shaping the system’s behavior. A straightforward intuition can
also be gained by considering the scalar case where Ni = Nh = No = 1. In this scenario, it is easy
to ensure that w2

1 = w2
2 satisfying λ = 0 while allowing for different absolute scales. For instance,

w1 = w2 = 0.001 or w1 = w2 = 5. In such cases, the absolute scale is clearly decoupled from the
relative scale. All together, the absolute scale and relative scale of the weights play a critical role in
describing the phase portrait of the learning regime, as first demonstrated in the Kunin et al. (2024)
paper on ReLU networks.

B APPENDIX: EXACT LEARNING DYNAMICS WITH PRIOR KNOWLEDGE

B.1 APPENDIX: FUKUMIZU APPROACH

Lemma B.1. We introduce the variables

Q =

[
WT

1
W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (23)

Defining

F =

[
−λ

2 I (Σ̃yx)T

Σ̃yx λ
2 I

]
, (24)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2. (25)

Proof. We introduce the variables

Q =

[
WT

1
W2

]
and QQT =

[
WT

1 W1 WT
1 W

T
2

W2W1 W2W
T
2

]
. (26)

We compute the time derivative

τ
d

dt
(QQT ) = τ

[
dWT

1

dt W1 +WT
1

dW1

dt
dWT

1

dt W2 +WT
1

dW2

dt
dW2

dt W1 +W2
dW1

dt
dWT

2

dt W2 +WT
2

dW2

dt

]
. (27)

Using equations 18 and 19, we compute the four quadrants separately giving

τ

(
dWT

1

dt
W1 +WT

1

dW1

dt

)
= (28)

= (Σyx −W2W1)
TW2W1 +WT

1 W
T
2 (Σ

yx −W2W1) (29)

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 − (W2W1)

TW2W1 (30)

= (Σyx)TW2W1 +WT
1 W

T
2 Σ

yx −WT
1 W

T
2 W2W1 −WT

1 W1W
T
1 W1 − λWT

1 W1, (31)

τ

(
dWT

1

dt
WT

2 +WT
1

dWT
2

dt

)
= (32)

= (Σyx −W2W1)
TW2W

T
2 +WT

1 W1(Σ
yx −W2W1)

T (33)

= (Σyx)TW2W
T
2 +WT

1 W1(Σ
yx)T −WT

1 W1W
T
1 W

T
2 −WT

1 W
T
2 W2W

T
2 , (34)

τ

(
dW2

dt
W1 +W2

dW1

dt

)
= (35)
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= (Σyx −W2W1)W
T
1 W1 +W2W

T
2 (Σ

yx −W2W1) (36)

= ΣyxWT
1 W1 +W2W

T
2 Σ

yx −W2W
T
2 W2W1 −W2W1W

T
1 W1, (37)

τ

(
dW2

dt
WT

2 +W2
dWT

2

dt

)
= (38)

(Σ̃yx −W2W1)W
T
1 W

T
2 +W2W1(Σ̃

yx −W2W1)
T (39)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1(W2W1)

T (40)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W1W

T
1 W

T
2 (41)

= Σ̃yxWT
1 W

T
2 +W2W1(Σ̃

yx)T −W2W1W
T
1 W

T
2 −W2W

T
2 W2W

T
2 + λW2W

T
2 . (42)

Defining

F =

[
−λ

2 I (Σ̃yx)T

Σ̃yx λ
2 I

]
, (43)

the gradient flow dynamics of QQT (t) can be written as a differential matrix Riccati equation

τ
d

dt
(QQT ) = FQQT +QQTF− (QQT )2. (44)

We write τ d
dt (QQT ) for completeness

τ
d

dt
(QQT ) =

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]2
(45)

=

[
−λ

2 (Σ̃yx)T

Σ̃yx λ
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]
+

[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

]T [−λ
2 (Σ̃yx)T

Σ̃yx λ
2

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (46)

=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] [
WT

1 W1 WT
1 W2

W2W1 W2W
T
2

] (47)

=

[
−λ

2W
T
1 W1 + (Σ̃yx)TW2W1 −λ

2W
T
1 W2 + (Σ̃yx)TW2W

T
2

Σ̃yxWT
1 W1 +

λ
2W2W1 Σ̃yxWT

1 W
T
2 + λ

2W2W
T
2

]
+

[
−λ

2W
T
1 W1 +WT

1 W1(Σ̃
yx)T λ

2W
T
1 W2 +WT

1 W2(Σ̃
yx)T

−λ
2W

T
2 W1 +W2W1(Σ̃

yx)T λ
2W2W

T
2 +W2W

T
2 (Σ̃

yx)T

]
−
[
WT

1 W1W
T
1 W1 +WT

1 W2W
T
2 W1 WT

1 W1W
T
1 W2 +WT

1 W2W
T
2 W2

W2W1W
T
1 W1 +W2W

T
2 W2W1 W2W1W

T
1 W2 +W2W

T
2 W2W

T
2

] (45)

The four quadrants of 27 are equivalent to equations 31, 34, 37, and 42 respectively.
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B.2 QQT DIAGONALISATION

Lemma B.2. If F = PΛP T is symmetric and diagonalizable, then the matrix Riccati differential
equation d

dt (QQT ) = FQQT + QQTF − (QQT )2 with initialization QQT (0) = Q(0)Q(0)T

has a unique solution for all t ≥ 0, and the solution is given by

QQT (t) = eF
t
τ Q(0)

[
I+Q(0)TP

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)

]−1

Q(0)T eF
t
τ . (48)

This is true even when there exists Λi = 0.

Proof. First we show that there exists a unique solution to the initial value problem stated. This is
true by Picard-Lindelöf theorem. Now we show that the provided solution satisfies the ODE. Let

L = eF
t
τ Q(0) and C = I+Q(0)TP

(
e2Λ

t
τ −I

2Λ

)
P TQ(0) such that solution QQT (t) = LC−1LT .

The time derivative of QQT is then given by

d

dt
(QQT ) =

d

dt
(L)C−1LT +L

d

dt
(C−1)LT +LC−1 d

dt
(LT ) (49)

Solving for these derivatives individually, we find

d

dt
(L) =

d

dt
eF

t
τ Q(0) = F eF

t
τ Q(0) = FL (50)

d

dt
(C−1) = −C−1 d

dt
(C)C−1 = −C−1Q(0)TP

d

dt

(
e2Λ

t
τ − I

2Λ

)
P TQ(0)C−1 (51)

We consider the derivative of the fraction serpately,

d

dt

(
e2Λ

t
τ − I

2Λ

)
= e2Λ

t
τ (52)

this is true even in the limit as λi → 0. Plugging these derivatives back in we see that the solution
satisfies the ODE. Lastly, let t = 0, we see that the the solution satisfies the initial conditions.

B.3 F DIAGONALIZATION

Lemma B.3. The eigendecomposition of F = PΛPT where

P =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

√
2Ṽ⊥

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)
√
2Ũ⊥

)
, Λ =

S̃λ 0 0

0 −S̃λ 0
0 0 λ⊥

 (53)

and the matrices S̃λ, λ⊥, H̃ , and G̃ are the diagonal matrices defined as:

S̃λ =

√
S̃2 +

λ2

4
I, λ⊥ = sgn(No −Ni)

λ

2
I, H̃ = sgn(λ)

√
S̃λ − S̃

S̃λ + S̃
, G̃ =

1√
I+ H̃2

. (54)

Beyond the invertibility of F , notice from the equation (Fukumizu solution) we need to understand
the relationship between F and Q(0). To do this the following lemma relates the structure between
the SVD of the model with the SVD structure of the individual parameters.

Proof. We leave for the reader by computing

F = PΛP T (55)
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B.4 SOLUTION UNEQUAL-INPUT-OUTPUT

Theorem B.4. Under the assumptions of whitened inputs, 1, lambda-balanced weights 2, no bottle-
neck 3, the temporal dynamics of QQT are

QQT (t) =

(
Z1A

−1ZT
1 Z1A

−1ZT
2

Z2A
−1ZT

1 Z2A
−1ZT

2

)
,

where the variables Z1 ∈ RNi×Nh , Z2 ∈ RNo×Nh , and A ∈ RNh×Nh are defined as

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T (56)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0) (57)

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)

+W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T (58)

Proof. We start and use the diagonalization of F to rewrite the matrix exponential of F and F . Note
that PTP = PPT = I and therefore PT = P−1.

e
F t

τ = Pe
Γ
P

T

=
1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

√
2V⊥

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)
√
2U⊥

] 
e
S̃λ

t
τ 0 0

0 e
−S̃λ

t
τ 0

0 0 e
λ⊥

t
τ

 1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

√
2V⊥

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)
√
2U⊥

]T

=
1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

Ũ(G̃ − H̃G̃) −Ũ(G̃ + H̃G̃)

] e
S̃λ

t
τ 0

0 e
−S̃λ

t
τ

 1
√
2

[
Ṽ(G̃ − H̃G̃) Ṽ(G̃ + H̃G̃)

Ũ(G̃ + H̃G̃) −Ũ(G̃ − H̃G̃)

]T
+ 2

1
√
2

[
Ṽ⊥
Ũ⊥

]
e
λ⊥

t
τ

1
√
2

[
Ṽ⊥
Ũ⊥

]T

= Oe
Λ t

τ O + 2Me
λ⊥

t
τ M

T . (59)

eF
t
τ F−1eF

t
τ − F−1 = OeΛ

t
τ OTOΛ−1OTOeΛ

t
τ OT −OΛ−1OT +M(eλ⊥

t
τ − I)(λ⊥)

−1MT .
(60)

F = OΛOT + 2Mλ⊥M
T (61)

Where M = 1√
2

[
Ṽ⊥
Ũ⊥

]T
. Placing these expressions into equation 48 gives

QQT (t) =
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0)[

I+
1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT +M(eλ⊥

t
τ − I)λ−1

⊥ MT
)
Q(0)

]−1

(62)

Q(0)T
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]T

OTQ(0) =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T (
W T

1 (0)
W2(0)

)

=
1√
2

(
(G̃− H̃G̃)Ṽ TW T

1 (0) + (G̃+ H̃G̃)ŨTW2(0)

(G̃+ H̃G̃)Ṽ TW T
1 (0)− (G̃− H̃G̃)ŨTW2(0)

)

=
1√
2

(
BT

−CT

)
(63)

where
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B = W2(0)
T Ũ(G̃+ H̃G̃) +W1(0)Ṽ (G̃− H̃G̃) ∈ RNh×Nh (64)

C = W2(0)
T Ũ(G̃− H̃G̃)−W1(0)Ṽ (G̃+ H̃G̃) ∈ RNh×Nh (65)

OeΛt/τ =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)(
eS̃λ

t
τ 0

0 e−S̃λ
t
τ

)

=
1√
2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

)
(66)

OeΛt/τOTQ(0) =
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ

Ũ(G̃+ H̃G̃)eS̃λ
t
τ −Ũ(G̃− H̃G̃)e−S̃λ

t
τ

)(
BT

−CT

)

=
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

)
(67)

2Meλ⊥
t
τ MTQ(0) = 2

1√
2

[
Ṽ⊥
Ũ⊥

] [
eλ⊥

t
τ 0

0 eλ⊥
t
τ

]
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥ 0

0 Ũ⊥e
λ⊥

t
τ ŨT

⊥

] [
W1(0)

T

W2(0)

]
=

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

Ũ⊥e
λ⊥

t
τ ŨT

⊥W2(0)

]
(68)

Putting it together we get the expressions for Z1(t) and Z2(t)

[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0) =

=
1

2

(
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT

Ũ(G̃+ H̃G̃)eS̃λ
t
τ BT + Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT

)
+

[
Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

Ũ⊥e
λ⊥

t
τ ŨT

⊥W2(0)

]
(69)

Z1(t) =
1

2
Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2
Ṽ (G̃+ H̃G̃)e−S̃λ

t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T (70)

Z2(t) =
1

2
Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT +

1

2
Ũ(G̃− H̃G̃)e−S̃λ

t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0) (71)

We now compute the terms inside the inverse

Q(0)TM(eλ⊥
t
τ )λ−1

⊥ MTQ(0)

=
[
W1(0) W2(0)

T
] 1√

2

[
Ṽ⊥
Ũ⊥

] [
eλ⊥

t
τ 0

0 eλ⊥
t
τ

] [
λ⊥ 0
0 λ⊥

]−1
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=
[
W1(0) W2(0)

T
] [eλ⊥

t
τ λ−1

⊥ Ṽ⊥Ṽ
T
⊥W1(0)

T

eλ⊥
t
τ λ−1

⊥ Ũ⊥Ũ
T
⊥W2(0)

]
=
[(

W1(0)Ṽ⊥e
λ⊥

t
τ λ−1

⊥ ṼT
⊥W1(0)

T +W2(0)
T Ũ⊥e

λ⊥
t
τ λ−1

⊥ ŨT
⊥W2(0)

)]
(72)
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Q(0)TMλ−1
⊥ MTQ(0) = 2

[
W1(0) W2(0)

T
] 1√

2

[
Ṽ⊥
Ũ⊥

] [
λ⊥ 0
0 λ⊥

]−1
1√
2

[
Ṽ⊥
Ũ⊥

]T [
W1(0)

T

W2(0)

]
=
[
W1(0) W2(0)

T
] [Ṽ⊥

Ũ⊥

] [
λ−1
⊥ Ṽ⊥Ṽ

T
⊥W1(0)

T

λ−1
⊥ Ũ⊥Ũ

T
⊥W2(0)

]
=
[
W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
T +W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)
]

(73)
Now
1

2
Q(0)TO

(
e2Λ

t
τ − I

)
Λ−1OT =

1

4
[B −C]

(
eΛ

t
τ − I

)
Λ−1

(
BT

−CT

)
=

1

4

(
B
(
e2S̃λ

t
τ − I

)
(S̃λ)

−1BT −C
(
e−2S̃λ

t
τ − I

)
(S̃λ)

−1CT
)

(74)
Putting it all together

A(t) =I+B

(
e2S̃λ

t
τ − I

4S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

4S̃λ

)
CT +W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)

+W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T (75)

So, final form:
QQT (t) =[(

1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]
[
I+

1

4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)
T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T

]−1

[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]T
(76)

B.5 STABLE SOLUTION UNEQUAL-INPUT-OUTPUT

Theorem B.5. Given the assumptions of Theorem 4.3 further assuming that B is invertible and
defining eλ⊥

t
τ = sgn(No −Ni)

λ
2 , the temporal evolution of QQT is described as follows:

QQT (t) = Z
[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ (77)

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CTB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+ e−S̃λ
t
τ e

λ
2

t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

ZT
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Z =

 1
2 Ṽ

[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

1
2Ũ

[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ


(78)

Proof. We start from

QQT (t) =[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]
[
I+

1

4

(
B

(
e2S̃λ

t
τ − I

S̃λ

)
BT −C

(
e−2S̃λ

t
τ − I

S̃λ

)
CT

)

+W2(0)
T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0) +W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
T

]−1

[(
1
2 Ṽ (G̃− H̃G̃)eS̃λ

t
τ BT − 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CT + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
T

1
2Ũ(G̃+ H̃G̃)eS̃λ

t
τ BT + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CT + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)

)]T
(79)

We extract B−T e−S̃λ
t
τ from all terms as exemplified bellow

OeΛt/τOTQ(0) =
1

2

Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
Ũ
[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]BT eS̃λ
t
τ (80)

and rewrite the dynamis as

QQT (t) =[(
1
2 Ṽ (G̃− H̃G̃)− 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

1
2Ũ(G̃+ H̃G̃) + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

)]
[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ +

1

4

((
I− e−2S̃λ

t
τ

S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−2S̃λ

t
τ − I

S̃λ

)
CTB−T e−S̃λ

t
τ

)

+e−S̃λ
t
τ B−1W2(0)

T Ũ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+e−S̃λ
t
τ B−1W1(0)Ṽ⊥

(
eλ⊥

t
τ − I

λ⊥

)
ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

[(
1
2 Ṽ (G̃− H̃G̃)− 1

2 Ṽ (G̃+ H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ṽ⊥e

λ⊥
t
τ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

1
2Ũ(G̃+ H̃G̃) + 1

2Ũ(G̃− H̃G̃)e−S̃λ
t
τ CTB−T e−S̃λ

t
τ + Ũ⊥e

λ⊥
t
τ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

)]T
(81)
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QQT (t) = 1
2 Ṽ

[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

1
2Ũ

[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ


[
e−S̃λ

t
τ B−1B−T e−S̃λ

t
τ

+

(
I− e−2S̃λ

t
τ

4S̃λ

)
− e−S̃λ

t
τ B−1C

(
e−S̃λ

t
τ − I

4S̃λ

)
CTB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

e−S̃λ
t
τ e

λ⊥
2

t
τ B−1W2(0)

T Ũ⊥λ
−1
⊥ ŨT

⊥W2(0)B
−T e−S̃λ

t
τ

+ e−S̃λ
t
τ e

λ
2

t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

− e−S̃λ
t
τ B−1W1(0)Ṽ⊥λ

−1
⊥ ṼT

⊥W1(0)
TB−T e−S̃λ

t
τ

]−1

 Ṽ
[
(G̃− H̃G̃)− (G̃+ H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ṽ⊥Ṽ

T
⊥W1(0)B

−T eλ⊥
t
τ e−S̃λ

t
τ

Ũ
[
(G̃+ H̃G̃) + (G̃− H̃G̃)e−S̃λ

t
τ CTB−T e−S̃λ

t
τ

]
+ Ũ⊥Ũ

T
⊥W2(0)

TB−T eλ⊥
t
τ e−S̃λ

t
τ

T

(82)

where eλ⊥
t
τ = sgn(No −Ni)

λ
2 is a scalar

B.5.1 PROOF EXACT LEARNING DYNAMICS WITH PRIOR KNOWLEDGE UNEQUAL
DIMENSION

We follow a similar derivation presented in Braun et al. (2022) and start with the following equation

QQT (t) =
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
Q(0)︸ ︷︷ ︸

L[
I+

1

2
Q(0)T

(
O
(
e2Λ

t
τ − I

)
Λ−1OT +M(eλ⊥

t
τ − I)λ−1

⊥ MT
)
Q(0)

]−1

︸ ︷︷ ︸
C−1

(83)

Q(0)T
[
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

]
︸ ︷︷ ︸

R

=LC−1R, (84)

Substituting our solution into the matrix Riccati equation then yields

τ
d

dt
QQT = FQQT +QQTF− (QQT )2 (85)

⇒ τ
d

dt
LC−1R

?
= FLC−1R+ LC−1RF− LC−1RLC−1R. (86)

Using the chain rule ∂(AB) = (∂A)B+A(∂B) and the identities

d

dt
(A−1) = A−1(

d

dt
A)A−1 and

d

dt
(etA) = AetA = etAA (87)
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τ
d

dt
QQT = τ

d

dt
LC−1R (88)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(89)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (90)

Next, we note that

O =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T

(91)

OTO =
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)T
1√
2

(
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)
(92)

= I (93)

OTM =
1√
2

[
Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

]
1√
2

[
Ṽ⊥
Ũ⊥

]
(94)

=
1

2

[
(G̃− H̃G̃)T ṼT Ṽ⊥ + (G̃+ H̃G̃)T ŨT Ũ⊥
(G̃+ H̃G̃)T ṼT Ṽ⊥ − (G̃− H̃G̃)T ŨT Ũ⊥

]
(95)

= 0 (96)

and

MTO =
1√
2

[
ṼT

⊥ ŨT
⊥
](Ṽ (G̃− H̃G̃) Ṽ (G̃+ H̃G̃)

Ũ(G̃+ H̃G̃) −Ũ(G̃− H̃G̃)

)
(97)

=
1

2

[
ṼT

⊥Ṽ(G̃− H̃G̃) + ŨT
⊥Ũ(G̃+ H̃G̃)

ṼT
⊥Ṽ(G̃+ H̃G̃)− ŨT

⊥Ũ(G̃− H̃G̃)

]
(98)

= 0. (99)

we get

τ
d

dt
QQT = τ

d

dt

(
LC−1R

)
(100)

= τ

(
d

dt
L

)
C−1R+ τL

(
d

dt
C−1R

)
(101)

= τ

(
d

dt
L

)
C−1R+ τLC−1

(
d

dt
R

)
+ τL

(
d

dt
C−1

)
R, (102)

with

τ

(
d

dt
L

)
C−1R = τ

(
O

1

τ
ΛeΛ

t
τ OT + 2M

λ⊥I

2τ
eλ⊥

t
τ MT

)
Q(0)C−1R (103)

=
(
OΛeΛ

t
τ OT +Mλ⊥Ie

λ⊥
t
τ MT

)
Q(0)C−1R (104)

= (Oλ⊥O
T + 2Mλ⊥M

T )
(
OeΛ

t
τ OT + 2Meλ⊥

t
τ MT

)
Q(0)C−1R (105)

= FLC−1R, (106)
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τLC−1

(
d

dt
R

)
= τLC−1Q(0)T

(
O

1

τ
eΛ

t
τ ΛOT + 2Meλ⊥

t
τ
λ⊥I

2τ
MT

)
(107)

= LC−1Q(0)T
(
O

1

τ
eΛ

t
τ ΛOT + 2Meλ⊥

t
τ
λ⊥I

2τ
MT

)
(108)

= LC−1RF (109)
and

τL

(
d

dt
C−1

)
R = −τLC−1

(
d

dt
C

)
C−1R (110)

= −LC−1

[
τ
1

2
Q(0)TO2

1

τ
e2Λ

t
τ ΛΛ−1OTQ(0) (111)

+ τ
1

2
Q(0)T 4

1

τ
Meλ⊥

t
τ λ⊥ (λ⊥)

−1
MTQ(0)

]
C−1R

= −LC−1

[
Q(0)TOe2Λ

t
τ OTQ(0) + 2Q(0)TMeλ⊥

t
τ MTQ(0)

]
C−1R

(112)

= −LC−1

[
Q(0)TOeΛ

t
τ OTOeΛ

t
τ OTQ(0)

+ 2Q(0)TOeΛ
t
τ OTM︸ ︷︷ ︸

0

eλ⊥
t
τ MTQ(0) (113)

+ 2Q(0)TMeλ⊥
t
τ MTO︸ ︷︷ ︸

0

eΛ
t
τ OTQ(0)

+ 4Q(0)TMeλ⊥
t
τ MTMeλ⊥

t
τ MTQ(0)

]
C−1R

= −LC−1RLC−1R. (114)
Finally, substituting equations 103, 107 and 110 into the left hand side of equation 86 proves equal-
ity. □

C RICH-LAZY

C.1 DYNAMICS OF THE SINGULAR VALUES

Theorem C.1. Under the assumptions of Theorem 4.3 and with a task-aligned initialization given
by W1(0) = RS1Ṽ

T and W2(0) = ŨS2R
T , where R ∈ RNh×Nh is an orthonormal matrix, then

the network function is given by the expression W2W1(t) = ŨS(t)Ṽ T where S(t) ∈ RNh×Nh is
a diagonal matrix of singular values with elements sα(t) that evolve according to the equation,

sα(t) = sα(0) + γα(t;λ) (s̃α − sα(0)) , (115)

where s̃α is the α singular value of S̃ and γα(t;λ) is a λ-dependent monotonic transition function
for each singular value that increases from γα(0;λ) = 0 to limt→∞ γα(t;λ) = 1 defined as

γα(t;λ) =
s̃λ,αsλ,α sinh

(
2s̃λ,α

t
τ

)
+
(
s̃αsα + λ2

4

)
cosh

(
2s̃λ,α

t
τ

)
−
(
s̃αsα + λ2

4

)
s̃λ,αsλ,α sinh

(
2s̃λ,α

t
τ

)
+
(
s̃αsα + λ2

4

)
cosh

(
2s̃λ,α

t
τ

)
+ s̃α (s̃α − sα)

, (116)

where s̃λ,α =
√
s̃2α + λ2

4 , sλ,α =
√
sα(0)2 +

λ2

4 , and sα = sα(0). We find that under different
limits of λ, the transition function converges pointwise to the sigmoidal (λ → 0) and exponential
(λ→ ±∞) transition functions,

γα(t;λ)→

 e2s̃α
t
τ −1

e2s̃α
t
τ −1+ s̃α

sα(0)

as λ→ 0,

1− e−|λ| t
τ as λ→ ±∞

. (117)
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Proof. According to Theorem 4.3, the network function is given by the equation

W2W1(t) = Z2(t)A
−1(t)ZT

1 (t), (118)

which depends on the variables of the initialization B and C. Plugging the expressions for a task-
aligned initialization W1(0) and W2(0) into these variables we get the following simplified expres-
sions,

B = R
(
S2(G̃+ H̃G̃) + S1(G̃− H̃G̃)

)
︸ ︷︷ ︸

DB

, (119)

C = R
(
S2(G̃− H̃G̃)− S1(G̃+ H̃G̃)

)
︸ ︷︷ ︸

DC

, (120)

where we define the diagonal matrices DB and DC for ease of notation. Using these expressions,
we now get the following time-dependent expressions for Z2(t), A−1(t), and Z1(t),

Z1(t) =
1

2
Ṽ
(
(G̃− H̃G̃)eS̃λ

t
τ DB − (G̃+ H̃G̃)e−S̃λ

t
τ DC

)
RT (121)

Z2(t) =
1

2
Ũ
(
(G̃+ H̃G̃)eS̃λ

t
τ DB + (G̃− H̃G̃)e−S̃λ

t
τ DC

)
RT (122)

A(t) = R

(
I+

(
e2S̃λ

t
τ − I

4S̃λ

)
D2

B −

(
e−2S̃λ

t
τ − I

4S̃λ

)
D2

C

)
RT (123)

Plugging these expressions into the expression for the network function, notice that the R terms
cancel each other resulting in following equation

W2W1(t) = Ũ


(
(G̃− H̃G̃)eS̃λ

t
τ DB − (G̃+ H̃G̃)e−S̃λ

t
τ DC

)(
(G̃+ H̃G̃)eS̃λ

t
τ DB + (G̃− H̃G̃)e−S̃λ

t
τ DC

)
4I+

(
e
2S̃λ

t
τ −I

S̃λ

)
D2

B −
(

e
−2S̃λ

t
τ −I

S̃λ

)
D2

C


︸ ︷︷ ︸

S(t)

Ṽ T ,

(124)
Notice that the middle term is simply a product of diagonal matrices. We can factor the numerator

of this expressions as,

(G̃2− H̃2G̃2)e2S̃λ
t
τ D2

B +
(
(G̃− H̃G̃)2 − (G̃+ H̃G̃)2

)
DBDC − (G̃2− H̃2G̃2)e−2S̃λ

t
τ D2

C

(125)
We can further factor this expression as,

G̃2(I− H̃2)
(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− 4G̃2H̃DBDC . (126)

Putting it all together we find that S(t) can be expressed as,

S(t) =
G̃2(I− H̃2)

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− 4G̃2H̃DBDC

4I+
(

e2S̃λ
t
τ −I

S̃λ

)
D2

B −
(

e−2S̃λ
t
τ −I

S̃λ

)
D2

C

. (127)

Now using the relationship between H̃ and G̃ we use the following two identities:

G̃2(I− H̃2) =
S̃

S̃λ

, 4G̃2H̃ =
λ

S̃λ

(128)

Plugging these identities into the previous expression and multiplying the numerator and denomina-
tor by S̃λ gives,

S(t) =
S̃
(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− λDBDC

4S̃λ + e2S̃λ
t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (129)

35



1890
1891
1892
1893
1894
1895
1896
1897
1898
1899
1900
1901
1902
1903
1904
1905
1906
1907
1908
1909
1910
1911
1912
1913
1914
1915
1916
1917
1918
1919
1920
1921
1922
1923
1924
1925
1926
1927
1928
1929
1930
1931
1932
1933
1934
1935
1936
1937
1938
1939
1940
1941
1942
1943

Under review as a conference paper at ICLR 2025

Add and subtract S̃
(
4S̃λ +D2

C −D2
B

)
from the numerator such that

S(t) = S̃ −
S̃
(
4S̃λ +D2

C −D2
B

)
+ λDBDC

4S̃λ + e2S̃λ
t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (130)

Using the form of DB and DC notice the following two identities:

DBDC =
λ

S̃λ

(
S̃ − S2S1

)
, D2

C −D2
B = − 4

S̃λ

(
S̃S2S1 +

λ2

4
I

)
(131)

From the second identity we can derive a third identity,

4S̃λ +D2
C −D2

B = 4
S̃

S̃λ

(
S̃ − S2S1

)
(132)

Plugging the first and third identities into the numerator for the previous expression gives,

S(t) = S̃ −
(4S̃2+λ2I)

S̃λ

(
S̃ − S2S1

)
4S̃λ + e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C +D2
C −D2

B

. (133)

Multiply numerator and denominator by S̃λ

4 and simplify terms gives the expression,

S(t) = S̃ − S̃λ
2

S̃λ
2
+ S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
− S̃λ

4 (D2
B −D2

C)

(
S̃ − S2S1

)
. (134)

Thus we have found the transition function,

γ(t;λ) =

S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
D2

C −D2
B

)
S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
+ S̃λ

4

(
4S̃λ +D2

C −D2
B

) . (135)

We will use our previous identities and the definitions of D2
B and D2

C to simplify this expression.
Notice the following identity,

S̃λ

4

(
e2S̃λ

t
τ D2

B − e−2S̃λ
t
τ D2

C

)
= S̃λSλ sinh

(
2S̃λ

t

τ

)
+

(
S̃S(0) +

λ2

4
I

)
cosh

(
2S̃λ

t

τ

)
(136)

Putting it all together we get

γ(t;λ) =
S̃λSλ sinh

(
2S̃λ

t
τ

)
+
(
S̃S(0) + λ2

4 I
)
cosh

(
2S̃λ

t
τ

)
−
(
S̃S(0) + λ2

4 I
)

S̃λSλ sinh
(
2S̃λ

t
τ

)
+
(
S̃S(0) + λ2

4 I
)
cosh

(
2S̃λ

t
τ

)
+ S̃

(
S̃ − S(0)

) (137)

We will now show why under certain limits of λ this expression simplifies to the sigmoidal and
exponential dynamics discussed in the previous section.

Sigmoidal dynamics. When λ = 0, then S̃λ = S̃ and Sλ = S(0). Notice, that the coefficients for
the hyperbolic functions all simplify to S̃S(0). Using the hyperbolic identity sinh(x) + cosh(x) =
ex, we can simplify the expression for the transition function to

γ(t;λ) =
S̃S(0)e2S̃

t
τ − S̃S(0)

S̃S(0)e2S̃
t
τ − S̃S(0) + S̃2

. (138)

Dividing the numerator and denominator by S̃S(0) gives the final expression.

Exponential dynamics. In the limit as λ → ±∞ the expressions S̃λ → |λ|
2 and Sλ → |λ|

2 .

Additionally, in these limits because λ2

4 I ≫ S̃S(0) then
(
S̃S(0) + λ2

4 I
)
→ λ2

4 I. As a result of
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these simplifications the coefficients for the hyperbolic functions all simplify to λ2

4 I. As a result we
can again use the hyperbolic identity sinh(x) + cosh(x) = ex to simplify the expression as

γ(t;λ) =
λ2

4 e|λ|
t
τ − λ2

4 I

λ2

4 e|λ|
t
τ + S̃

(
S̃ − S(0)

) . (139)

Dividing the numerator and denominator by λ2

4 results in all terms without a coefficient proportional
to λ2 vanishing, which simplifying further gives the final expression.

C.2 DYNAMICS OF THE REPRESENTATION FROM THE LAZY TO THE RICH REGIME

The lazy and rich regimes are defined by the dynamics of the NTK of the network. Lazy learning
occurs when the NTK is constant, rich learning occurs when it is not. (Farrell et al. (2023))
The NTK intuitively measures the movement of the network representations through training. As
shown in (Braun et al. (2022)), in specific experimental setup, we can calculate the NTK of the
network in terms of the internal representations in a straightforward way:

NTK = INo
⊗XTWT

1 W1(t)X+W2W
T
2 (t)⊗XTX (140)

In order to better understand the effect of λ on NTK dynamics, we first prove some theorems in-
volving the Singular Values of the λ-balanced weights, and the representations of a λ-balanced
network.

C.2.1 LAMBDA-BALANCED SINGULAR VALUE

Theorem C.2. Under a λ-Balanced initialization 2, if the network function W2W1(t) =

U(t)S(t)V T (t) is full rank and we define Sλ(t) =
√

S2(t) + λ2

4 I. , then we can recover the

parameters W2(t) = U(t)S2(t)R
T (t), W1(t) = R(t)S1(t)V

T (t) up to time-dependent orthogo-
nal transformation R(t) of size Nh ×Nh, where

S1(t) =
((

Sλ(t)− λI
2

) 1
2 0max(0,Ni−No)

)
S2(t) =

((
Sλ(t) +

λI
2

) 1
2 0max(0,No−Ni)

)
(141)

Proof. We prove the case Ni ≤ No and Nh = min(Ni, No). The proof for No ≤ Ni follows the
same structure. Let USV T = W2(t)W1(t) be the Singular Value Decomposition of the product
of the weights at training step t. We will use W2 = W2(t),W1 = W1(t) as a shorthand.

By properties of Singular Value Decomposition, we can write W2 = US2R
T ,W1 = RS1V

T ,
where R is an orthonormal matrix and S2,S1 are diagonal (possibly rectangular) matrices.

The Balanced property states that W T
2 W2 − W1W

T
1 = λI. We know this holds for any t

since this is a conserved quantity in linear networks.

Hence

RST
2 S2R

T −RS1S1R
T = λI (142)

ST
2 S2 − S1S1 = λI (143)

The matrices S1,S2, have shapes (Nh, Ni), (No, Nh) respectively. We introduce the diagonal ma-
trices Ŝ1 of shape (Nh, Ni), Ŝ2 of shape (Ni, Nh) such that the zero matrix has size (No−Ni, Nh)
:

S1 =
(
Ŝ1

)
, S2 =

(
Ŝ2

0

)
(144)
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Hence

ST
2 S2 − S1S1 = λI (145)

From the equation above and the fact that Ŝ1Ŝ2 = S we derive that:

Ŝ2 =

(√
λ2I+ 4S2 + λI

2

) 1
2

, Ŝ1 =

(√
λ2I+ 4S2 − λI

2

) 1
2

, (146)

Hence

W2 = U

((√
λ2I+4S2+λI

2

) 1
2

0max(0,No−Ni)

)
,RT , W1 = R

((√
λ2I+4S2−λI

2

) 1
2

0max(0,Ni−No)

)
V T

(147)

C.2.2 CONVERGENCE PROOF

With our solution, QQT (t), which captures the temporal dynamics of the similarity between hidden
layer activations, we can analyze the network’s internal representations in relation to the task. This
allows us to determine whether the network adopts a rich or lazy representation, depending on the
value of λ. Consider a λ-Balanced network training on data Σyx = Ũ S̃Ṽ T . We assume that the
convergence is toward global minima and B is invertible

Theorem C.3. Under the assumptions of Theorem B.5, the network function converges to ŨS̃ṼT

and acquires the internal representation, that is WT
1 W1 = ṼS̃2

1Ṽ
T and W2W

T
2 = ŨS̃2

2Ũ
T

Proof. As training time increases, all terms including a matrix exponential with negative exponent
in Equation 77 vanish to zero, as Sλ = S̃λ is a diagonal matrix with entries larger zero

As training time increases, all terms in the equations vanish to zero. Terms in Equation 77 decay as

lim
t→∞

e−
√

S̃2+λ2I
4

t
τ = 0. (148)

and

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ = 0. (149)

where S̃λ = S̃λ is a diagonal matrix with entries larger zero

Therefore, in the temporal limit, eq. 77 reduces to

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(150)

=

[
Ṽ(G̃− H̃G̃)

Ũ(H̃G̃+ G̃)

] [
S̃λ

−1
]−1 [

(Ṽ(G̃− H̃G̃))T (Ũ(H̃G̃+ G̃))T
]

(151)

=

[
Ṽ(G̃− H̃G̃)S̃λ(G̃− H̃G̃)T ṼT Ṽ(G̃− H̃G̃)S̃λ(H̃G̃+ G̃)T ŨT

Ũ(H̃G̃+ G̃)S̃λ(G̃− H̃G̃)T ṼT Ũ(H̃G̃+ G̃)S̃λ(H̃G̃+ G̃)T ŨT

]
.

(152)

(G̃− H̃G̃)S̃λ(G̃+ H̃G̃) =
Sλ(1− H̃2)

1 + H̃2
= S̃ (153)
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S̃λ(G̃− H̃G̃)2 =
S̃λ(1 + H̃2)

1 + H̃2
− S̃λ(2H̃)

1 + H̃2
=

√
4S̃2 + λ2I− λI

2
(154)

S̃λ(G̃+ H̃G̃)2 =
S̃λ(1 + H̃2)

1 + H̃2
+

S̃λ(2H̃)

1 + H̃2
=

√
4S̃2 + λ2I+ λI

2
(155)

lim
t→∞

QQT (t) = lim
t→∞

[
WT

1 W1(t) WT
1 W

T
2 (t)

W2W1(t) WT
2 W2(t)

]
(156)

=

[
ṼS2

1Ṽ
T ṼS̃ŨT

ŨS̃ṼT ŨS2
2Ũ

T

]
. (157)

C.2.3 REPRESENTATION IN THE LIMIT

Theorem C.4. Under the assumptions of Theorem B.5, training on data Σyx = Ũ S̃Ṽ T , as λ→∞
the representation tends to

W2W
T
2 = Ũ

(
λI 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT W T

1 W1 =
1

λ
Ṽ

(
S̃2 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

As λ→ −∞

W2W
T
2 = − 1

λ
Ũ

(
S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT , W T

1 W1 = Ṽ

(
−λI 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

As λ→ −∞

W2W
T
2 = − 1

λ
Ũ

(
S̃2 0max(0,No−Ni)

0max(0,No−Ni) 0

)
ŨT , W T

1 W1 = Ṽ

(
−λI 0max(0,Ni−No)

0max(0,Ni−No) 0

)
Ṽ T

Proof. We start from the representation derived in C.3 and using the Taylor expansion of f(x) =√
1 + x2, we compute

√
λ2I+ 4S̃2 + λI

2
=
|λ|
√
1 +

(
2S̃
λ

)2
+ λI

2
(158)

|λ|
(
1 +

(
2S̃
λ

)2
+O(λ−4)

)
+ λI

2
=
|λ|+ λ

2
+

S̃2

|λ|
+O(λ−3) (159)

Hence

lim
λ→∞

√
λ2I+ 4S̃2 + λI

2
= λI, lim

λ→−∞

√
λ2I+ 4S̃2 + λI

2
=

S̃2

|λ|
= − S̃2

λ
(160)

Similarly,

√
λ2I+ 4S̃2 − λI

2
=
|λ| − λ

2
+

S̃2

|λ|
+O(λ−3) (161)
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lim
λ→∞

√
λ2I+ 4S̃2 − λI

2
=

S̃2

λ
, lim

λ→−∞

√
λ2I+ 4S̃2 − λI

2
=

S̃2

|λ|
= −λI (162)

Since Ũ , Ṽ are independent of λ:

lim
λ→±∞

W2W
T
2 = Ũ

(
lim

λ→±∞
S2

)
ŨT (163)

lim
λ→±∞

W T
1 W1 = Ṽ

(
lim

λ→±∞
S1

)
Ṽ T (164)

As |λ| → ∞, one of the network representations approaches a scaled identity matrix, while the
other tends toward zero. Intuitively, this suggests that the representations shift less and less as |λ|
increases. Next, we demonstrate that the NTK becomes progressively less variable as |λ| grows and
ultimately converges to zero.

C.2.4 NTK MOVEMENT

Relationship between λ and the NTK of the network

Theorem C.5. Under the assumptions of Theorem B.5, consider a linear network training on data
Σyx = Ũ S̃Ṽ T . At any arbitrary training time t ≥ 0, let W2(t)W1(t) = U∗S∗V ∗T . Then,

1. For any λ ∈ R:

NTK(0) = INo ⊗XTV

(√
λ2I+4S∗2−λI

2 0
0 0

)
V TX

+U

(√
λ2I+4S∗2+λI

2 0
0 0

)
UT ⊗XTX

(165)

NTK(t) = INo ⊗XTV ∗
(√

λ2I+4S∗2−λI
2 0
0 0

)
V ∗T

+U∗
(√

λ2I+4S∗2+λI
2 0
0 0

)
U∗T ⊗XTX

(166)

2. As λ→∞:

NTK(t)− NTK(0)→ 1

λ

(
INo
⊗XTV ∗S̃∗2V ∗TX − INo

⊗XTV S̃2V TX
)
→ 0

(167)

3. As λ→ −∞:

NTK(t)− NTK(0)→ 1

λ

(
US̃2UT ⊗XTX −U∗S̃∗2U∗T ⊗XTX

)
→ 0 (168)

Proof. Follows by substituting the expressions for the network representations in terms of λ from
(Braun et al. (2022))’s expression for the NTK of a linear network. Similarly, follows from substi-
tuting the limit expressions for the network representations and the fact that the Kronecker product
is linear in both arguments.
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The theorem above demonstrates that as |λ| → ∞, the NTK of a λ-Balanced network remains
constant. This indicates that the network operates in the lazy regime throughout all training steps.
The λ-balanced condition imposes a relationship between the singular values of the two weight
matrices. Specifically, if W2 and W1 are λ-balanced and satisfy W2W1 = Σyx, then for arbitrary
singular values ai, bi, and si, the following relations hold:

a2i − b2i = λ, ai · bi = si.

As λ increases, the value of bi must decrease. In the limit as λ → ∞, a2i → λ and b2i → 0. From
the first equation, when b2i → 0, a2i → λ. Since these equations apply to all singular values of the
matrices, it follows that for all i, a2i → λ, leading to the conclusion that:

WT
2 W2 = λI,

as expected. Consequently, the task representation becomes task-agnostic in W1. The intuition here
is that the weights are constrained by the need to fit the data, which bounds their overall norms. The
λ-balanced condition further specifies a relationship between these norms, and as |λ| increases, this
constraint tightens, driving W2 toward the identity matrix. In this regime, the network behaves sim-
ilarly to a shallow network, with λ acting as a toggle between deep and shallow learning dynamics.
This finding is significant as it highlights the impact of weight initialization on learning regimes.

C.3 REPRESENTATION ROBUSTNESS AND SENSITIVITY TO NOISE

As derived in (Braun et al., 2024), the expected mean squared error under additive, independent and
identically distributed input noise with mean µ = 0 and variance σ2

x is〈
1

2P

P∑
i=1

||W2W1 (xi + ξx)− yi||22

〉
ξx

= σ2
x||W2W1||2F + c, (169)

where c = 1
2 Tr(Σ̃

yy) − 1
2 Tr(Σ̃

yxΣ̃yxT ) is a noise independent constant that only depends on
the statistics of the training data. In Theorem C.3 we show that the network function converges to
ŨS̃ṼT and therefore

σ2
x||W2W1||2F = σ2

x||ŨS̃ṼT ||2F
= σ2

x||S̃||2F

= σ2
x

Nh∑
i=1

S̃2
i

(170)

As derived in (Braun et al., 2024), under the assumption of whitened inputs (Assumption 1), in the
case of additive parameter noise with µ = 0 and variance σ2

W, the expected mean squared error is〈
1

2P

P∑
i=1

|| (W2 + ξW2
) (W1 + ξW1

)xi − yi||22

〉
ξW1

,ξW2

=
1

2
Niσ

2
W||W2||2F +

1

2
Noσ

2
W||W1||2F +

1

2
NiNhNoσ

4 + c.

(171)

Using Theorem C.3, we have
||W1||2F = Tr(WT

1 W1)

= Tr

(√
λ2I+ 4S̃2 + λI

2

)

=
1

2

(
Nh∑
i=1

√
λ2 + 4S̃2

i + λ

) (172)

and
||W2||2F = Tr(W2W

T
2 )

= Tr

(√
λ2I+ 4S̃2 − λI

2

)

=
1

2

(
Nh∑
i=1

√
λ2 + 4S̃2

i − λ

)
.

(173)
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To find the λ that minimises the expected loss, we substitute the equations for the norms, take the
partial derivative with respect to λ and set it to zero

∂ ⟨L⟩ξW1
,ξW2

∂λ

!
= 0

⇔1

4
Niσ

2
W

∂

∂λ

( Nh∑
i=1

√
λ2 + 4S̃2

i − λ
)
+

1

4
Noσ

2
W

∂

∂λ

(
Nh∑
i=1

√
λ2 + 4S̃2

i + λ

)
= 0

⇔Ni

Nh∑
i=1

λ√
λ2 + 4S̃2

i

−NiNh +No

Nh∑
i=1

λ√
λ2 + 4S̃2

i

+NoNh = 0

⇔
Nh∑
i=1

λ√
λ2 + 4S̃2

i

= Nh
Ni −No

Ni +No
.

(174)

It follows, that under the assumption that Ni = No, the equation reduces to
Nh∑
i=1

λ√
λ2 + 4S̃2

i

= 0. (175)

We note, that the denominator is always positive and therefore, that the left-hand side of the equation
is always larger zero for any λ > 0, and smaller than zero for any λ < 0. The euqation is therefore
only solved for λ = 0.

C.4 EFFECT OF THE ARCHITECTURE FROM THE LAZY TO THE RICH REGIME

Theorem C.6. Under the conditions of Theorem B.5, when λ⊥ > 0, the network enters a regime
referred to as the delayed-rich phase. In this phase, the learning rate is determined by two competing
exponential factors:

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ

and

e−
√

S̃2+λ2

4 I t
τ .

As λ increases, various parts of the network display different learning dynamics: some components
adjust rapidly, converging exponentially with λ, while others adapt more slowly, with their conver-
gence rate inversely proportional to λ, leading to a slow adaptation.

Proof. The solution to Theorem B.5 is governed by two time-dependent terms:

e−
√

S̃2+λ2I
4

t
τ and eλ⊥

t
τ e−

√
S̃2+λ2

4 I t
τ .

The first term exhibits exponential decay approaching zero as time progresses:

lim
t→∞

e−
√

S̃2+λ2I
4

t
τ = 0.

In the limit as lambda gets large the rate of learning is given by

lim
λ→∞

√
λ2I+ 4S̃2

2
=

λI

2
, (176)

The second term also decays over time

lim
t→∞

eλ⊥
t
τ e−

√
S̃2+λ2

4 I t
τ = 0.

but in the limit as lambda gets large the rate of learning is given by

42



2268
2269
2270
2271
2272
2273
2274
2275
2276
2277
2278
2279
2280
2281
2282
2283
2284
2285
2286
2287
2288
2289
2290
2291
2292
2293
2294
2295
2296
2297
2298
2299
2300
2301
2302
2303
2304
2305
2306
2307
2308
2309
2310
2311
2312
2313
2314
2315
2316
2317
2318
2319
2320
2321

Under review as a conference paper at ICLR 2025

lim
λ→∞

√
λ2I+ 4S̃2 − λI

2
=

S̃2

λ
(177)

Thus, as λ increases, the convergence rate slows for certain parts of the network, while other
components continue to learn more quickly. This explains the delay observed in the delayed-rich
regime.

D APPENDIX: APPLICATION

D.1 APPENDIX: CONTINUAL LEARNING

We build upon the derivation presented in Braun et al. (2022) to incorporate the dynamics of contin-
ual learning throughout the entire learning trajectory. Utilizing the assumption of whitened inputs,
the entire batch loss for the ith task is

Li (Tj) =
1

2P
∥W2W1Xi −Yi∥2F

=
1

2P
Tr
(
(W2W1Xi −Yi |) (W2W1Xi −Yi |)T

)
=

1

2P
Tr
(
W2W1XiX

T
i (W2W1)

T
)
− 1

P
Tr
(
W2W1XiY

T
i

)
+

1

2P
Tr
(
YiY

T
i

)
=

1

2
Tr
(
W2W1(W2W1)

T
)
− Tr

(
W2W1Σ̃

yxT

i

)
+

1

2
Tr
(
Σ̃yy

i

)
=

1

2
Tr

((
W2W1 − Σ̃yx

i

)(
W2W1 − Σ̃yx

i

)T
− Σ̃yx

i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
=

1

2

∥∥∥W2W1 − Σ̃yx
i

∥∥∥2
F
−1

2
Tr
(
Σ̃yx

i Σ̃yxT

i

)
+

1

2

(
Σ̃yy

i

)
︸ ︷︷ ︸

c

.

Hence, the extent of forgetting, denoted as F for task Ti during training on task Tk subsequent to
training the network on task Tj , specifically, the relative change in loss, is entirely dictated by the
similarity structure among tasks.

Fi (Tj , Tk) = Li (Tk)− Li (Tj)

=
1

2

∥∥∥Σ̃yx
k − Σ̃yx

i

∥∥∥2
F
+ c− 1

2

∥∥∥W2W1 − Σ̃yx
i

∥∥∥2
F
− c

=
1

2

(∥∥∥Σ̃yx
k − Σ̃yx

i

∥∥∥2
F
−
∥∥∥W2W1 − Σ̃yx

i

∥∥∥2
F

)
.

It is important to note that the amount of forgetting is a function of the weight trajectories. Therefore,
we have analytical solutions for trajectories of forgetting as well.
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Figure 8: Continual learning. A Top: Network training from small zero-balanced weights across
a sequence of tasks (colored lines represent simulations, and black dotted lines represent analytical
results). Bottom: Evaluation loss for the tasks in the sequence (dotted lines) while training on the
current task (solid lines). As the network optimizes its function on the current task, the loss on
previously learned tasks increases.

Figure. D.1 panel was generated by training a linear network with Ni = 5, Nh = 10, No = 6
subsequently on four different random regression tasks with N = 25. The learning rate was η =
0.05 and the initial weights were small (σ = 0.0001).

D.2 APPENDIX: REVERSAL LEARNING

As first introduced in Braun et al. (2022), in the following discussion, we assume that the input and
output dimensions are equal. We denote the i-th columns of the left and right singular vectors as ui,
ũi, and vi, ṽi, respectively.

Reversal learning occurs when both the task and the initial network function share the same left and
right singular vectors, i.e., U = Ũ and V = Ṽ, with the exception of one or more columns of the
left singular vectors, where the direction is reversed: −ui = ũi.

It is important to note that if a reversal occurs in the right singular vectors, such that −vi = ṽi, this
can be equivalently represented as a reversal in the left singular vectors, as the signs of the right and
left singular vectors are interchangeable.

In the reversal learning setting, both B = S2Ũ
T Ũ(G̃ + H̃G̃) + S1V

T Ṽ (G̃ − H̃G̃) and
C = S2Ũ

T Ũ(G̃− H̃G̃)− S1V
T Ṽ (G̃+ H̃G̃) are diagonal matrices.

In the case where lambda is zero, the same argument given in Braun et al. (2022) follows, the
diagonal entries of C are zero if the singular vectors are aligned and non zero if they are reversed.
Similarly, diagonal entries of B are non-zero if the singular vectors are aligned and zero if they are
reversed. Therefore, in the case of reversal learning, B is a diagonal matrix with 0 values and thus
is not invertible. As a consequence, the learning dynamics cannot be described by Equation 56.
However, as B and C are diagonal matrices, the learning dynamics simplify. Let bi, ci, si and s̃i
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denote the i-th diagonal entry of B, C, S and S̃ respectively, then the network dynamics can be
rewritten as

W2W1(t) =
1

2
Ũ
[
(G̃+ H̃G̃)eS̃λ

t
τ BT + (G̃− H̃G̃)e−S̃λ

t
τ CT

)
[
S−1
λ +

1

4
B
(
e2S̃λ

t
τ − I

)
S̃−1
λ BT − 1

4
C
(
e−2S̃λ

t
τ − I

)
S̃−1
λ CT

]−1

(178)

1

2

(
(G̃− H̃G̃)eS̃λ

t
τ B− (G̃+ H̃G̃)e−S̃λ

t
τ C
)
ṼT

=

Ni∑
i=1

b2
i e

2s̃λi
t
τ − c2i e

−2s̃λi
t
τ

4sλ
−1
i + b2

i e
2s̃λi

t
τ s̃−1

λi − b2
i s̃

−1
λi − c2i e

−2s̃λi
t
τ s̃−1

λi + c2i s̃
−1
λi

ũiṽ
T
i (179)

=

Ni∑
i=1

sλib
2
i s̃λi − sλic

2
i s̃ie

−4s̃i
t
τ

4s̃λie−2s̃i
t
τ + sλib

2
i

(
1− e−2s̃λi

t
τ

)
+ sλic

2
i

(
e−2s̃λi

t
τ − e−4s̃λi

t
τ

) ũiṽ
T
i

(180)

It follows, that in the reversal learning case, i.e. b = 0, for each reversed singular vector, the
dynamics vanish to zero

lim
t→∞

−sλic2i s̃ie−4s̃λi
t
τ

4s̃λ,ie−2s̃λi
t
τ + sic2i

(
e−2s̃λi

t
τ − e−4s̃λi

t
τ

) ũiṽ
T
i = 0. (181)

Analytically, the learning dynamics are initialized on and remain along the separatrix of a saddle
point until the corresponding singular value of the network function decreases to zero and stays
there, indicating convergence to the saddle point. In numerical simulations, however, the learning
dynamics can escape the saddle points due to the imprecision of floating-point arithmetic. Despite
this, numerical optimization still experiences significant delays, as escaping the saddle point is time-
consuming Lee et al. (2022). In contrast, when the singular vectors are aligned (c = 0), the equation
governing temporal dynamics, as described in Saxe et al. (2014), is recovered. Under these con-
ditions, training succeeds, with the singular value of the network function converging to its target
value.

lim
t→∞

Ni∑
i=1

sλib
2
i s̃λi

4s̃λie−2s̃λi
t
τ + sλib2

i

(
1− e−2s̃λi

t
τ

) ũiṽ
T
i =

sλib
2
i s̃λi

sλib2
i

ũiṽ
T
i (182)

= s̃λiũiṽ
T
i . (183)

In summary, in the case of aligned singular vectors, the learning dynamics can be described by
the convergence of singular values. However in the case of reversal learning, analytically, training
does not succeed. In simulations, the learning dynamics escape the saddle point due to numerical
imprecision, but the learning dynamics are catastrophically slowed in the vicinity of the saddle point
as shown in figure D.2 .

In the case where λ is non-zero, the diagonal of C are also non-zero; this is true regardless of
whether they are reversed or aligned. Similarly, the diagonal entries of B remain non-zero whether
the singular vectors are aligned or reversed. Therefore, in the case of reversal learning, B is a
diagonal matrix with elements that are zero. In figure D.2
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Figure 9: Plot showing the steps to convergence for two tasks: (1) the reversal learning task and (2)
a randomly sampled continual learning task across a range of λ values. The reversal learning task
exhibits catastrophic slowing at λ = 0.

D.3 APPENDIX: GENERALIZATION AND STRUCTURED LEARNING

We study how the representations learned for different λ initializations impact generalization of
properties of the data. To do this, we consider the case where a new feature is associated to a
learned item in a dataset and how this new feature may then be related to other items based on prior
knowledge. In particular, we first train each network (for different values of −10 ≤ λ ≤ 10) on
the hierarchical semantic learning task in Section 5 and then add a new feature (e.g., ‘eats worms’)
to a single item (e.g., the goldfish) (Fig. D.3A), correspondingly increasing the output dimension
to represent the novel feature. In order to learn the new feature without affecting prior knowledge,
we append a randomly initialized row to W2 and train it on the single item with the new feature,
while keeping the rest of the network frozen. Thus, we only change the weights from the hidden
layer to the new feature which may produce different behavior depending on how the hidden layer
representations vary based on λ. After training on the new feature-item association, we query the
network with the rest of the data to observe how the new feature is associated with the other items.
We find that as λ increases positively, the network better transfers the hierarchy such that it projects
the feature onto items based on their distance to the trained item (Fig. D.3B,C). For example, after
learning that a goldfish eats worms, the network can extrapolate the hierarchy to infer that another
fish, or birds, may also eat worms; instead, plants are not likely to eat worms. Alternatively, as λ
becomes more negative, the network ceases to infer any hierarchical structure and only learns to map
the new feature to the single item trained on. In this case, after learning that a goldfish eats worms,
the network does not infer that other fish, birds, or plants may also eat worms.

Interestingly, this setting highlights how asymmetries in the representations yielded by different λ
can actually benefit transfer and generalization. This can be shown by observing that the learning
of a new feature association only depends on the first layer W1. Let ŷf denote the vector of the
representation of the new feature f across items i in the dataset. Additionally, let w(f)T

2 be the new
row of weights appended to W2 which map the hidden layer to the new feature. Following Saxe
et al. (2019b), if w(f)T

2 is initialized with small random weights and trained on item H̃i, it will
converge to

w
(f)T
2 = H̃T

i W
T
1 /∥W1H̃i∥22 (184)

ŷf = (H̃T
i W

T
1 W1H̃)/∥W1H̃i∥22 (185)

From this we can see that differences in the representations of the new feature across items ŷf across
λ are only influenced by W1.

In the case of the rich learning regime where λ = 0, the semantic relationship between features
and items is distributed across both layers. Instead, when λ > 0, the second layer W2 exhibits
lazy learning, yielding an output representation W2W

T
2 of a weighted identity matrix. However,

the first layer W1 still learns a rich representation of the hierarchy, albeit at a smaller scaling.
Furthermore, rather than distributing this learning across both layers, in the λ > 0 case, all learning
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of the hierarchy occurs in the first layer, allowing it to more readily transfer this structure to the
learning of a new feature (which only depends on the first layer). Thus, in this case, the ‘shallowing’
of the network into the first layer is actually beneficial. Finally, we can also observe the opposite
case when λ < 0. Here, rich learning happens in the second layer, while the first layer is lazy and
learns to represent a weighted identity matrix. As such, these networks do not learn to transfer the
hierarchy of different items to the new feature.

Figure 10: Transfer learning for different λ. A A new feature (such as ‘eats worms’) is introduced
to the dataset after training on the hierarchical semantic learning task (Section 5). A randomly
initialized row is added to W2 and trained on a single item with the new feature (for example, the
goldfish), with the rest of the network frozen. The network is then tested on the transfer of the new
feature to other items, such that items closer to the goldfish in the hierarchy are more likely to have
the same feature. B The generalization loss on the untrained items with the new feature decreases
as λ increases. C As λ increases positively, networks better transfer the hierarchical structure of the
data to the representation of the new feature.

D.4 APPENDIX: FINETUNING

It is a common practice to pretrain neural networks on a large auxiliary task before fine-tuning
them on a downstream task with limited samples. Despite the widespread use of this approach,
the dynamics and outcomes of this method remain poorly understood. In our study, we provide a
theoretical foundation for the empirical success of fine-tuning, aiming to improve our understanding
of how performance depends on the initialization. We’re interested in understanding how changing
the λ-balancedness after pre-training may impact fine-tuning on a new dataset. We use λPT to
denote how networks are first initialized prior to pretraining, and λFT to how they are re-balanced
after pre-training and before fine-tuning on a new task. Similar to the previous section, we first train
each network (for different values of −10 ≤ λPT ≤ 10) on the hierarchical semantic learning task.
We then change the λ-balancedness of each network (for different values of −10 ≤ λFT ≤ 10) and
retrain on a new dataset to observe how this impacts fine-tuning for different values and compare to
networks that are not re-balanced to some λFT (λFT = ∅) after initial pre-training.

In particular, to reset the λ-balancedness of a pretrained network to λFT , we rescale the singu-
lar values of each layer (S1,S2) using the singular values of the entire network function (S =
UTW2W1V ), while keeping the left and right singular vectors of the network unchanged.

We consider three different tasks to fine-tune the networks on. In the first, we add an existing
feature from one item to another item in the hierarchy in order to disrupt the structure of the left
and right singular vectors. In the second task, we consider the same reversal learning task discussed
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in Appendix D.2, where one column of the right singular vectors are reversed such that −vi = ṽi.
Finally, we consider a scaled version of the hierarchy where each singular value is scaled by 2.

Across all the tasks we consider, we consistently find that fine-tuning performance improves as net-
works are re-balanced to larger values of λFT and, conversely, decreases as λFT approaches 0.
Networks re-balanced to λFT = 0 also learn more slowly compared to |λFT | > 0. Interestingly,
when studying networks that are not re-balanced prior to finetuning (λFT = ∅; but are first initial-
ized prior to pretraining to λPT ), we see that they perform similarly on the new tasks to networks
that are re-balanced to λFT = λPT .

Figure 11: Fine-tuning performance on three tasks for different re-balancing λFT . A After training
on the hierarchical semantic learning task (Section 5), networks are re-balanced and trained on one
of three tasks: adding an existing feature from one item to another item in the hierarchy (left), the
reversal learning task in Appendix D.2 (center), or a scaled version of the hierarchy where each
singular value is scaled by 2 (right). B Change in loss on the new task across different λFT for
different λPT . As λFT approaches 0, the loss on the new task increases across all λPT . Interestingly,
networks that are not re-balanced prior to fine-tuning (λFT = ∅) perform similarly to networks that
are re-balanced to the same values (λFT = λPT ). C Dynamics of the loss across the first pre-training
task and the new fine-tuning task. Networks re-balanced to λFT = 0 consistently learn slower across
all tasks compared to networks that are re-balanced to larger magnitude values (|λFT | > 0
)

In this work, we derive the precise dynamics of two-layer linear. While straightforward in design,
these architectures are foundational in numerous machine learning applications, particularly in the
implementation of Low Rank Adapters (LoRA)Hu et al. (2022). A key innovation in LoRA is to
parameterize the update of a large weight matrix W ∈ Rd×d within a language model as ∆W = AB,
the product of two low-rank matrices A ∈ Rd×r and B ∈ Rr×d, where only A and B are trained.
To ensure ∆W = 0 at initialization, it is standard practice to initialize A ∼ N (0, σ2) and B = 0
( Hu et al. (2022); Hayou et al. (2024). It is noteworthy that this parameterization, ∆W = AB,
effectively embeds a two-layer linear network within the language model. When r ≪ d, this initial-
ization scheme approximately adheres to our λ-balanced condition, with σ2 playing the role of the
balance parameter λ. Investigating how the initialization scale of A and B influences fine-tuning
dynamics under LoRA, and connecting this to our work on λ-balanced two-layer linear networks
and their role in feature learning, represents an intriguing avenue for future exploration. This per-
spective aligns with recent studies suggesting that low-rank fine-tuning operates in a “lazy” regime,
as well as work examining how the initialization of A or B affects fine-tuning performance Malladi
et al. (2023); Hayou et al. (2024). Our framework offers a potential bridge to understanding these
phenomena more comprehensively. While a detailed exploration of fine-tuning performance lies
beyond the scope of this work, it remains an important direction for future research.
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E IMPLEMENTATION AND SIMULATIONS

The details of the simulation studies are described as follows. Specifically, Ni, Nh, and No represent
the dimensions of the input, hidden layer, and output (target), respectively. The total number of
training samples is denoted by N , and the learning rate is defined as η = 1

τ .

E.1 LAMBDA-BALANCED WEIGHT INITIALIZATION

In practice, to initialize the network with lambda-balanced weights, we use Algorithm E.1. In this
algorithm, α serves as a scaling factor that controls the variance of the weights, allowing for adjust-
ments between smaller and larger weight initializations.

Algorithm 1 Get λ-balanced
1: function GET LAMBDA BALANCED(λ, in dim, hidden dim, out dim, σ = 1)
2: if out dim > in dim and λ < 0 then
3: raise Exception(’Lambda must be positive if out dim ¿ in dim’)
4: end if
5: if in dim > out dim and λ > 0 then
6: raise Exception(’Lambda must be positive if in dim ¿ out dim’)
7: end if
8: if hidden dim < min(in dim, out dim) then
9: raise Exception(’Network cannot be bottlenecked’)

10: end if
11: if hidden dim > max(in dim, out dim) and λ ̸= 0 then
12: raise Exception(’hidden dim cannot be the largest dimension if lambda is not 0’)
13: end if
14: W1 ← σ · random normal matrix(hidden dim, in dim)
15: W2 ← σ · random normal matrix(out dim, hidden dim)
16: [U, S, V t]← SVD(W2 ·W1)
17: R← random orthonormal matrix(hidden dim)

18: S2equal dim ←
√(√

λ2 + 4 · S2 + λ
)
/2

19: S1equal dim ←
√(√

λ2 + 4 · S2 − λ
)
/2

20: if out dim > in dim then
21: S2←

[
S2equal dim 0

0 0hidden dim−in dim

]
22: S1←

[
S1equal dim

0

]
23: else if in dim > out dim then
24: S1←

[
S1equal dim 0

0 0hidden dim−out dim

]
25: S2← [S2equal dim 0]
26: end if
27: init W2 ← U · S2 ·RT

28: init W1 ← R · S1 · V t
29: return (init W1, init W2)
30: end function

E.2 TASKS

In the following, we describe the different tasks that are used throughout the simulation studies.

E.2.1 RANDOM REGRESSION TASK

In the random regression task, the inputs X ∈ RNi×N are generated from a standard normal dis-
tribution, X ∼ N (µ = 0, σ = 1). The input data X is then whitened to satisfy 1

NXXT = I.
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The target values Y ∈ RNo×N are independently sampled from a normal distribution with variance
scaled according to the number of output nodes, Y ∼ N (µ = 0, α = 1√

No
). Consequently, the

network inputs and target values are uncorrelated Gaussian noise, implying that a linear solution
may not always exist.

E.2.2 SEMANTIC HIERARCHY

We use the same task as in Braun et al. (2022) and modify it to match the theoretical dynamics.
The modification ensures that the inputs are whitened. In the semantic hierarchy task, input items
are represented as one-hot vectors, i.e., X = I

8 . The corresponding target vectors, yi, encode the
item’s position within the hierarchical tree. Specifically, a value of 1 indicates that the item is a left
child of a node, −1 denotes a right child, and 0 indicates that the item is not a child of that node.
For example, consider the blue fish: it is a blue fish, a left child of the root node, a left child of the
animal node, not part of the plant branch, a right child of the fish node, and not part of the bird,
algae, or flower branches, resulting in the label [1, 1, 1, 0,−1, 0, 0, 0]. The labels for all objects in
the semantic tree, as shown in Figure 4 A, are given by:

Y = 8 ∗



1 1 1 1 1 1 1 1
1 1 1 1 −1 −1 −1 −1
1 1 −1 −1 0 0 0 0
0 0 0 0 1 1 −1 −1
1 −1 0 0 0 0 0 0
0 0 1 −1 0 0 0 0
0 0 0 0 1 −1 0 0
0 0 0 0 0 0 1 −1


. (186)

The singular value decomposition (SVD) of the corresponding correlation matrix, Σ̃yx, is not unique
due to identical singular values: the first two, the third and fourth, and the last four values are the
same. To align the numerical and analytical solutions, this permutation invariance is addressed by
adding a small perturbation to each column yi, for i ∈ 1, ..., N , of the labels:

yi = yi ·
(
1 +

0.1

i

)
, (187)

resulting in singular values that are nearly, but not exactly, identical.

E.3 FIGURE 1

Panels B illustrates three simulations conducted on the same task with varying initial λ-balanced
weights respectively λ = −2, λ = 0, λ = 2. The regression task parameters were set with (σ =√
10). The network architecture consisted of Ni = 3, Nh = 2, No = 2,with a learning rate of

η = 0.0002. The batch size is N = 10. The zero-balanced weights are initialized with variance
σ = 0.00001. The lambda-balanced network are initialized with sigmaxy =

√
1 of a random

regression task with same architecture.

On Panel C , we plot the ballancedness W2(0)
TW2(0)−W1(0)W1(0)

T for a two layer network
initialised with Lecun initialization with dimension Ni = 40 ,Nh= 120 ,No=250

E.4 FIGURE 2

Panel A, B, C illustrates three simulations conducted on the same task with varying initial λ-balanced
weights respectively λ = −2, λ = 0, λ = 2 according to the initialization scheme described in E.7.
The regression task parameters were set with (σ =

√
10). The network architecture consisted of

Ni = 3, Nh = 2, No = 2 with a learning rate of η = 0.0002. The batch size is N = 10. The
zero-balanced weights are initialized with variance σ = 0.00001. The lambda-balanced network are
initialized with sigmaxy =

√
1 of a random regression task with same architecture.
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E.5 FIGURE 3

Panel A, B, C illustrates three simulations conducted on the same task with varying initial λ-balanced
weights respectively λ = −2, λ = 0, λ = 2 according to the initialization scheme described in E.7.
The regression task parameters were set with (σ =

√
12). The network architecture consisted of

Ni = 3, Nh = 3, No = 3 with a learning rate of η = 0.0002. The batch size is N = 5. The
zero-balanced weights are initialized with variance σ = 0.0009. The lambda-balanced network are
initialized with sigmaxy =

√
12 of a random regression task with same architecture.

E.6 FIGURE 4

In Panel A presents a semantic learning task with the SVD of the input-output correlation matrix
of the task. U and V represent the singular vectors, and S contains the singular values. This
decomposition allows us to compute the respective RSMs as USU⊤ for the input and V SV ⊤ for
the output task. The rows and columns in the SVD and RSMs are ordered identically to the items in
the hierarchical tree.

The results in Panel B display simulation outcomes, while Panel C presents theoretical input and
output representation matrices at convergence for a network trained on the semantic task described
in Braun et al. (2022); Saxe et al. (2013),. These matrices are generated using varying initial λ-
balanced weights set at λ = −2, λ = 0, and λ = 2, following the initialization scheme outlined
in E.7. The network architecture includes Ni = 8, Nh = 8, and No = 8 with a learning rate
of η = 0.001 and a batch size of N = 8. Zero-balanced weights are initialized with a variance
of σ = 0.00001, while λ-balanced networks are initialized with σxy =

√
1 based on a random

regression task with the same architecture.

Panel D illustrates results from running the same task and network configuration but initialized with
randomly large weights having a variance of σ = 1.

In panel E, we trained a two-layer linear network with Ni = Nh = No = 4 on a random regression
task for λ ∈ [−5,−4,−3,−2,−1, 0, 1, 2, 3, 4, 5] to convergence. Subsequently, we added Gaussian
noise with µ = 0, σ ∈ [0, 0.5, 1] to the inputs (top panel) or synaptic weights (bottom panel) and
calculated the expected mean squared error.

E.7 FIGURE 5

Panel A illustrates schematic representations of the network architectures considered: from left to
right, a funnel network (Ni = 4, Nh = 2, No = 2), a square network (Ni = 4, Nh = 4, No = 4),
and an inverted-funnel network (Ni = 2, Nh = 2, No = 4).

Panel B shows the Neural Tangent Kernel (NTK) distance from initialization, as defined in Fort et al.
(2020), across the three architectures shown schematically. The kernel distance is calculated as:

S(t) = 1− ⟨K0,Kt⟩
∥K0∥F ∥Kt∥F

.

The simulations conducted on the same task with eleven varying initial λ-balanced weights in
[−9, 9]. The regression task parameters were set with (σ =

√
3). The task has batch size N = 10.

The network has with a learning rate of η = 0.01. The lambda-balanced network are initialized with
σxy =

√
1 of a random regression task.

Panel C shows the Neural Tangent Kernel (NTK) distance from initialization for the funnel archi-
tectures shown schematically with dimensions Ni = 3, Nh = 2, and No = 2. The simulations
conducted on the same task with twenty one varying initial λ-balanced weights in [−9, 9]. The re-
gression task parameters were set with (σ =

√
3). The task has batch size N = 30. The network

has with a learning rate of η = 0.002. The lambda-balanced network are initialized with σxy =
√
1

of a random regression task.

51


	Introduction
	Related Work
	Preliminaries
	Exact Learning Dynamics
	Rich and Lazy Learning
	Applications
	Discussion
	Preliminaries
	Appendix: Balanced Condition
	Discussion Assumptions
	Random weight initialisations and -Balanced Property
	Scale vs relative scale

	Appendix: Exact learning dynamics with prior knowledge
	Appendix: Fukumizu Approach
	dDiagonalisation 
	 dDiagonalization 
	Solution Unequal-Input-Output
	Stable solution Unequal-Input-Output 
	 Proof Exact learning dynamics with prior knowledge unequal dimension


	Rich-Lazy 
	Dynamics of the Singular Values
	 Dynamics of the representation from the Lazy to the Rich Regime
	 Lambda-balanced singular value
	Convergence proof
	Representation in the limit 
	NTK movement 

	Representation robustness and sensitivity to noise
	 Effect of the architecture from the lazy to the Rich Regime

	Appendix: Application
	Appendix: Continual Learning
	Appendix: Reversal Learning
	Appendix: Generalization and structured learning
	Appendix: Finetuning

	Implementation and Simulations
	Lambda-balanced weight initialization
	Tasks
	Random regression task
	Semantic hierarchy

	Figure 1
	Figure 2
	Figure 3
	Figure 4
	Figure 5


