
Asymmetry in Low-Rank Adapters of Foundation Models

Jiacheng Zhu 1 Kristjan Greenewald 2 3 Kimia Nadjahi 1 Haitz Sáez de Ocáriz Borde 4

Rickard Brüel Gabrielsson 1 Leshem Choshen 1 3 Marzyeh Ghassemi 1 Mikhail Yurochkin 2 3 Justin Solomon 1

Abstract
Parameter-efficient fine-tuning optimizes large,
pre-trained foundation models by updating a sub-
set of parameters; in this class, Low-Rank Adapta-
tion (LoRA) is particularly effective. Inspired by
an effort to investigate the different roles of LoRA
matrices during fine-tuning, this paper character-
izes and leverages unexpected asymmetry in the
importance of low-rank adapter matrices. Specifi-
cally, when updating the parameter matrices of a
neural network by adding a product BA, we ob-
serve that theB andAmatrices have distinct func-
tions: A extracts features from the input, while
B uses these features to create the desired out-
put. Based on this observation, we demonstrate
that fine-tuning B is inherently more effective
than fine-tuning A, and that a random untrained
A should perform nearly as well as a fine-tuned
one. Using an information-theoretic lens, we also
bound the generalization of low-rank adapters,
showing that the parameter savings of exclusively
training B improves the bound. We support
our conclusions with experiments on RoBERTa,
BART-Large, LLaMA-2, and ViTs. The code and
data is available at https://github.com/
Jiacheng-Zhu-AIML/AsymmetryLoRA

1. Introduction
Foundation models for data-rich modalities such as text and
imagery have achieved significant success by pre-training
large models on vast amounts of data. While these mod-
els are designed to be general-purpose, it is often neces-
sary to fine-tune them for downstream tasks. However, the
huge size of foundation models can make fine-tuning the
entire model impossible, inspiring parameter-efficient fine-
tuning (PEFT) methods that selectively update fewer param-

1MIT CSAIL 2IBM Research 3MIT-IBM Watson AI Lab
4University of Oxford. Correspondence to: Jiacheng Zhu
<zjc@mit.edu>.

Proceedings of the 41 st International Conference on Machine
Learning, Vienna, Austria. PMLR 235, 2024. Copyright 2024 by
the author(s).

eters (c.f. Lialin et al., 2023). The effectiveness of PEFT
demonstrates that updating even a tiny fraction of the pa-
rameters can retain and enrich the capabilities of pretrained
models. Indeed, fine-tuning has become a necessary ingre-
dient of modern ML; for example, the PEFT package (Hug-
gingFace, Year) has supported more than 4.4k projects since
its creation in November 2022.

Among PEFT methods, low-rank adaptation (LoRA) (Hu
et al., 2021) has become increasingly popular, which lever-
ages the assumption that over-parameterized models have
a low intrinsic dimension (Aghajanyan et al., 2021). To
update a neural network, LoRA trains a subset of the param-
eters (usually attention) by representing weight matrices as
W0 +∆W , where W0 is the fixed weight matrix from the
pre-trained model and ∆W is a low-rank update. Compared
to full fine-tuning, LoRA considerably reduces the number
of trainable parameters and memory requirements and often
achieves similar or better performance.

Most LoRA implementations factor ∆W = BA and opti-
mize for A and B, where A and B have fewer rows and
columns (resp.) than ∆W ; this approach was proposed
by Hu et al. (2021). With this set of variables, the stan-
dard LoRA training procedure—where A is initialized to
a random matrix and B is initialized to zero—exhibits an
interesting asymmetry, which is leveraged in some empirical
follow-ups (Zhang et al., 2023a; Kopiczko et al., 2024). In
particular, while training B is critical for the performance
of LoRA, even a randomly initialized A seems to suffice for
strong performance. On the other hand, reversing the roles
of A and B substantially decreases performance.

Delving into this empirical suggestion from prior work, this
paper demonstrates that LoRA’s components are inherently
asymmetric. In fact, the asymmetry occurs even for linear
models (§4.1.1). Indeed, our theoretical (§4) and empirical
analysis (§5) suggests that fixing A to a random orthogonal
matrix can yield similar performance to full LoRA training,
and that this adjustment may even promote generalization.
This observation is backed by a comprehensive empirical
study, leading to practical suggestions for improving param-
eter efficiency and generalization of LoRA models. Our
contributions are as follows:

• We provide simple theoretical and empirical analysis

1

https://github.com/Jiacheng-Zhu-AIML/AsymmetryLoRA
https://github.com/Jiacheng-Zhu-AIML/AsymmetryLoRA

Asymmetry in Low-Rank Adapters of Foundation Models

(a) Random initialization, same task (b) Fixed initialization, different tasks (c) Random initialization, different tasks

Figure 1. Similarity of learned LoRA matrices A & B across layers of a RoBERTa model fine-tuned with different initialization and data
settings. Bs are similar when fine-tuning on the same task (a) and dissimilar when fine-tuning on different tasks (b and c). As are similar
when initialized identically (b), even though fine-tuning is done on different tasks, and dissimilar when initialized randomly regardless of
the fine-tuning task (a and c). The experiment demonstrates the asymmetric roles of A and B in LoRA.

demonstrating asymmetry of training the two adapter ma-
trices, showing that tuning B is more impactful than tun-
ing A. This confirms and builds upon prior empirical
observations (Zhang et al., 2023a; Kopiczko et al., 2024).

• We show theoretically and empirically that randomly
drawing and freezing A while tuning only B can improve
generalization vs. tuning both B and A, in addition to
practical gains achieved by 2× parameter reduction.

• We validate our findings through experiments using mod-
els including RoBERTa, BART-Large, LLaMA-2, and the
vision transformer (ViT), on both text and image datasets.

2. Related Work
Since the introduction of the original LoRA technique (Hu
et al., 2021), numerous enhancements have been proposed.
For example, quantization can reduce memory usage during
training (Gholami et al., 2021; Dettmers et al., 2023; Guo
et al., 2024). Also, the number of trainable parameters can
be further reduced by adaptively allocating the rank (Zhang
et al., 2023b), pruning during training (Benedek & Wolf,
2024), or pruning and quantizing after training (Yadav et al.,
2023).

To further reduce the number of trainable LoRA param-
eters, the idea of reusing (randomly generated) weights
or projections (Frankle & Carbin, 2018; Ramanujan et al.,
2020) suggests strategies from learning diagonal matri-
ces rescaling randomly-drawn and frozen B,A matrices
(VeRA) (Kopiczko et al., 2024), deriving B and A from
the SVD decomposition of the pre-trained W0 and opti-
mizing for a smaller matrix in the resulting basis (SVD-
iff) (Han et al., 2023), learning a linear combination of fixed
random matrices (NOLA) (Koohpayegani et al., 2023), or
fine-tuning using orthogonal matrices (BOFT) (Liu et al.,
2024). As echoed in our empirical results, previous methods
observe that freezing A in conventional LoRA preserves
performance (Zhang et al., 2023a). While nearly all recent
studies treat the two matrices asymmetrically in their ini-
tialization or freezing schemes, there is a lack of formal

investigation into this asymmetry in low-rank adaptation.

Zeng & Lee (2023) specifically investigate the expressive
power of LoRA, but only focus on linearized networks and
linear components. Their analysis does not consider aspects
such as the particular distribution of the fine-tuning target
data, generalization, or the differing roles of the different
matrices. Lastly, we would like to highlight that even before
LoRA, the effectiveness of fine-tuning was also explained
by leveraging similar ideas related to the intrinsic low di-
mensionality of large models (Aghajanyan et al., 2021).

3. Preliminaries & Background
Notation. Suppose we are given a pre-trained weight matrix
W0 ∈ Rdout×din representing a dense multiplication layer of
a neural network foundation model. LoRA fine-tunes by
updating the weights to W0 + ∆W , where rank(∆W) =
r ≤ min(dout, din). In particular, Hu et al. (2021) factor
∆W = BA, where A ∈ Rr×din and B ∈ Rdout×r have
restricted rank ≤ r. During training, W0 is fixed; LoRA
updates (A,B). This yields more efficient updates than full
fine-tuning, provided that r < dindout

din+dout
.

Now using i to index layers of a network, a LoRA up-
date is thus characterized by a set of pre-trained weight
matrices W ≜ {Wi}Li=1, a set of pre-trained bias vec-
tors b ≜ {bi}Li=1, and a set of low-rank trainable weights
∆W ≜ {∆Wi}L

′

i=1. LoRA may not update all L weight
matrices in W, in which case L′ ≤ L.

Motivating example. In Figure 1, we investigate the simi-
larity of learned matrices A and B under three scenarios:

(a) random initialization, A & B trained multiple times on
the same task;

(b) fixed initialization, A & B trained multiple times, each
time on a different task; and

(c) random initialization, A & B trained multiple times,
each time on a different task.

Here, we fine-tune RoBERTa large (Liu et al., 2019) with

2

Asymmetry in Low-Rank Adapters of Foundation Models

LoRA on the tasks from the GLUE benchmark (Wang et al.,
2018). Specifically, we fine-tuned mrpc with 5 random
seeds for (a) and on mrpc, rte, stsb, and cola for (b) and (c).

The figure plots similarity of learned A and B matrices
across layers in Figure 1, measured by canonical correlation
analysis goodness of fit (Ramsay et al., 1984); see Appendix
A for motivation.

These plots suggest that B is predominantly responsible for
learning, while A is less important. Specifically, when train-
ing on the same task with different initializations (scenario
(a)), the learned B matrices are similar to each other, while
when training on different tasks (scenarios (b) and (c)), they
are different. On the contrary, the similarity of learned A
matrices is insensitive to training data and is determined by
initialization; it is highest in scenario (b) when the initializa-
tion is fixed even though training data differs. See Appendix
A for additional details of this experiment.

4. Theoretical Analysis
In this section, we analyze the asymmetry in prediction
tasks and its effect on generalization. We discuss a gen-
eral case rather than a specific neural network architec-
ture, considering rank r adaptation of any parameter ma-
trix W = W0 + BA used multiplicatively on some input-
dependent vector, i.e.,

layerOutput = ψ((W0 +BA) · ϕ(layerInput), . . .) (1)

for some differentiable functions ψ, ϕ. Here, ψ may take
more arguments depending on layerInput, which may have
their own low rank adapted parameter matrices. This generic
form encompasses both feedforward and attention layers.

In this setting, A serves to extract r features from
ϕ(layerInput), which are then used by B to predict some
desired output for future layers. We will argue that training
B to predict the output is crucial for correct outputs, while
using a random A is often sufficient, as B can be optimized
to use whatever information is retained in the r-dimensional
projection A · ϕ(layerInput).

4.1. A, B asymmetry in prediction tasks

If we wish to reduce the effort of training both A and B
in (1), in principle either A could be frozen and B tuned
or B frozen and A tuned. As shown in §5 and elsewhere,
these two options are not empirically equivalent: It is best
to freeze A and tune B. In this section, we seek to under-
stand the principle behind this asymmetry by theoretically
analyzing the fine-tuning of a class of prediction models.
We first build intuition with least-squares linear regression.

4.1.1. MULTIVARIATE LINEAR LEAST-SQUARES

As a simple example analogous to a single network layer,
we study din-to-dout least-squares linear regression (in (1),
set ϕ, ψ to be identity). Specifically, suppose there is an
input X ∈ Rdin , an output Y ∈ Rdout , and a pre-trained
linear model

ypre(X) =W0X + b0,

where W0 ∈ Rdout×din and b0 ∈ Rdout . With this model
held constant, our goal is regressing (Ytarg, Xtarg) pairs
where Ytarg is given by:

Ytarg =WtargXtarg + btarg

with Wtarg = W0 + ∆. Following LoRA, we model the
target ∆ using a low rank update to the pre-trained W0, i.e.
W =W0 +BA:

ŷ(x) = (W0 +BA)x+ b,

where B ∈ Rdout×r and A ∈ Rr×din for some r.

To find anA andB that best matches the output, we optimize
the least squares loss on the difference between ŷ and Ytarg:

L(A,B)=E(Ytarg,Xtarg)[∥Ytarg−(W0+BA)Xtarg−b∥22].
(2)

Below, we present lemmas on minimizing this loss while
freezing either A or B. In both, for simplicity, we set b =
btarg and E[Xtarg] = 0 and defer proofs to Appendix B.

Lemma 4.1 (Freezing A yields regression on projected
features). Optimizing L(A,B) while fixing A = Q with
QQ⊤ = Ir yields

B∗ = ∆ΣQ⊤(QΣQ⊤)−1,

where Σ = Cov[Xtarg], with expected loss

L(Q,B∗) = doutσ
2 +Tr[∆Σ∆⊤]

− Tr[QΣ∆⊤∆ΣQ⊤(QΣQ⊤)−1].

Lemma 4.2 (Freezing B yields regression on projected
outputs). Optimizing L(A,B) while fixing B = U with
U⊤U = Ir yields

A∗ = U⊤(Wtarg −W0),

with expected loss

L(A∗, U) = doutσ
2 +Tr[∆Σ∆⊤]− Tr[U⊤∆Σ∆⊤U],

where Σ = Cov[Xtarg].

Comparing the lemmas above,A∗ is simply theU projection
of the targeted change in weight matrix ∆ =Wtarg −W0.
Unlike B∗, the optimal choice of A∗ does not consider the
input data distribution captured by Σ.

3

Asymmetry in Low-Rank Adapters of Foundation Models

Intuitively, if the goal of adaptation is to approximate some
desired output, then projecting away the majority (since
r ≪ dout) of the output is undesirable. In contrast, project-
ing away a portion of the input feature space will be less
damaging, if the information Xtarg contains about Ytarg is
redundant (c.f., neuron dropout (Srivastava et al., 2014) in
neural network training) or if the distribution of Xtarg tends
to be low-rank.

Consider the following extreme example. If Σ = FF⊤

is at most rank r, e.g. if F ∈ din × r, then for each X
there exists1 an N = F †X ∈ Rr such that X = FN .
Suppose you have tuned a pairA∗,B∗. For any orthonormal
Q ∈ Rr×din (e.g. one drawn at random), we can write

B∗A∗X = B∗A∗FN

= (B∗A∗F (QF)
−1)QX,

i.e. regardless of A∗, B∗, for any (random) Q, there is an
exactly equivalent LoRA adaptation with A = Q and B =
(B∗A∗F (QF)

−1). In this setting, therefore, randomizing
A (to Q) is equally expressive to tuning it (using A∗).

This intuition is also reflected in the typical LoRA initializa-
tion. When doing full LoRA (tuning both A,B), A usually
is initialized to a random Gaussian matrix, and B is ini-
tialized to zero. This procedure—presumably empirically
derived by Hu et al. (2021)—intuitively fits our analysis
above, since random A yields good random predictive fea-
tures, in contrast to using a random output prediction basis.
Initializing B to zero then starts the optimization at a zero
perturbation of the pretrained model.

We validate the above intuition with the following theorem:

Theorem 4.3 (A, B output fit asymmetry). Consider the
settings of Lemmas 4.1 and 4.2, and suppose U,Q are sam-
pled uniformly from their respective Stiefel manifolds. Then,
L(A∗, U) ≥ L(Q,B∗) with high probability as d/r → ∞.

In other words, the least-squares prediction loss of only
fine-tuning B is at least as good as only fine-tuning A.

Intuition on asymmetry gap. Theorem 4.3 is built on the
following inequality:

Tr[ΣQ⊤(QΣQ⊤)−1QΣ∆⊤∆]

≥ Tr[(Q⊤Q)ΣQ⊤(QΣQ⊤)−1QΣ∆⊤∆]. (3)

Let us consider an example regime to build intuition on
the size of this gap. Following intuition that freezing A is
most successful when the information content of the input
is redundant (c.f., Aghajanyan et al. (2021)), suppose the
distribution of X is low rank, i.e., Σ is of rank rX . We
can then write Σ = UXSXU

⊤
X , where UX ∈ Rdin×rX is

1Here F † denotes pseudoinverse.

orthogonal and SX ∈ RrX×rX is diagonal with nonnegative
real entries.

For intuition, set rX = r and SX = σ2Ir. We then have

ΣQ⊤(QΣQ⊤)−1QΣ∆⊤∆ = σ2UXU
⊤
X∆⊤∆,

which no longer depends on Q. The expectation of the key
inequality gap in (3) then becomes

EQTr[ΣQ
⊤(QΣQ⊤)−1QΣ∆⊤∆]

− EQTr[(Q
⊤Q)ΣQ⊤(QΣQ⊤)−1QΣ∆⊤∆]

= EQTr[(I −Q⊤Q)σ2UXU
⊤
X∆⊤∆]

→
(
1− r

d

)
Tr[UXU

⊤
X∆⊤∆]

as d becomes large. In other words, the performance advan-
tage of tuning B over A is large when d≫ r, which is the
typical regime in practice.

4.1.2. NONLINEAR LOSSES AND MULTILAYER MODELS

Recalling (1) with an input transformation ϕ and output
transformation ψ, consider losses on the output of the form

L(W) =

n∑
i=1

h(f(ψ(Wϕ(xi))))− y⊤i f(ψ(Wϕ(xi))),

(4)
where f, h are differentiable functions specified by the de-
sired loss, yi ∈ RK , xi ∈ Rdin , and W ∈ Rdout×din . This
class contains logistic regression (with y being a one-hot
encoded class vector), least-squares regression, and gener-
alized linear regression—including a neural network with
cross entropy loss with one layer being tuned.

We next analyze the gradient of this loss. Our argument
is stated with one adapted parameter matrix, but it directly
applicable to multilayer and transformer networks with mul-
tiple matrices being adapted, where ϕ, ψ, and f will in
that scenario vary depending on each parameter matrix’s
position in the network; ϕ, ψ, and f will depend on other pa-
rameter matrices and the current value of their adaptations
(by definition of gradients). The interpretation will now
be that fixing A when adapting a parameter matrix W (ℓ)

projects the inputs of the corresponding parameter matrix
to a lower-dimensional subspace while retaining the ability
to fully match the outputs, and fixing B correspondingly
projects the parameter matrix’s outputs.

For simplicity of notation, the remaining derivation in this
section takes ϕ, ψ to be the identity; the extension to general
ϕ, ψ is clear. Then, the gradient of (4) is

∇WL(W) =

n∑
i=1

J⊤
f (Wxi) [∇h(f(Wxi))− yi]x

⊤
i , (5)

where Jf is the Jacobian of f . Starting from this formula,
below we incorporate (1) by taking W =W0 +BA.

4

Asymmetry in Low-Rank Adapters of Foundation Models

Freezing A. Freezing A = Q yields

∇BL(BQ+W0) =
n∑

i=1

J⊤
f ((BQ+W0)xi) [∇h(f((W0 +BQ)xi))−yi] (Qxi)⊤.

(6)

Like the least-squares case, the input data is projected by Q
but the output yi is unaffected.

Freezing B. Freezing B = U yields

∇AL(UA+W0) =

U⊤
n∑

i=1

J⊤
f ((UA+W0)xi) [∇h(f((W0 + UA)xi))−yi]x⊤i .

(7)

Here, the coefficient of x⊤i can be thought of as the output
fit term. It includes the Jacobian of f since f is applied
between the weights and the output. Compared to (5) and
(6), in (7) this output fit term is projected by U . If f is (near)
linear, then this projection will be (approximately) data-
independent, highlighting the loss of output information
when freezing B.

Hence, in this more general setting, the different roles of
A and B are still apparent, and we expect an asymmetry in
being able to fit the output.

Example: Logistic regression. For multiclass logistic re-
gression, we have a training dataset {(xi, ci)}ni=1 where
xi ∈ Rd (features) and ci ∈ {1, . . . ,K} (label). Denote by
yi ∈ RK the vector with yci = 1 and yk = 0 for k ̸= ci.
The log likelihood is the cross-entropy error

L(w1, . . . , wK) =

n∑
i=1

K∑
k=1

yi ln(pi,k), (8)

where pi,k =
exp(w⊤

k xi)∑K
l=1 exp(w⊤

l xi)
and wk ∈ Rd. Let W ∈

RK×d whose k-th row is wk. Then, (8) becomes

L(W) =

n∑
i=1

ln(1⊤eWxi)− y⊤i Wxi,

where 1 is the column vector of size K with all elements
equal to 1; note y⊤i 1 = 1 due to the one-hot structure. This
loss can be put in the form (4) by setting f(z) = z and
h(z) = ln(1⊤ez). For freezing, we then have

∇AL(UA) = U⊤
n∑

i=1

(yi − pi(UA))x
⊤
i and

∇BL(BQ) =

n∑
i=1

(yi − pi(BQ))(Qxi)
⊤,

where pi(W) = eWxi

1⊤eWxi
∈ RK . Freezing B = U , as in

least-squares, implies that each output yi is projected as
U⊤yi, implying that, at best, the model can hope to only
learn outputs in the small random subspace U . In contrast,
freezing A = Q is equivalent to logistic regression on the
full output with features projected by Q: {(Qxi, yi)}ni=1.

4.2. Advantages of tuning only B over BA together

In the previous section, we established that fine-tuning B
alone is typically superior to fine-tuningA alone. It remains,
however, to motivate fine-tuning B alone over fine-tuning
both A and B together. In this section, we show that the
reduced amount of adapted parameters by (roughly) half pro-
vides computational gains and improvements in information-
theoretic generalization bounds.

4.2.1. NUMBER OF PARAMETERS

The key benefit of LoRA is parameter efficiency, which
saves memory during training, storage and communication
(Lialin et al., 2023). Fine-tuning B alone as opposed to both
A and B reduces the number of parameters by a factor of

dout

dout+din
, which equals 0.5 when din = dout.

4.2.2. GENERALIZATION BOUNDS

Consider a learning task, where the training examples lie
in Z = X × Y; here, X denotes the feature space and
Y is the label space. Suppose one observes a training set
Sn ≜ (Z1, . . . , Zn) ∈ Zn, with n i.i.d. training examples
from unknown distribution µ. Denote by µ⊗n = µ×· · ·×µ
the distribution of Sn. The objective of the learner is to find
a predictor f : X → Y that maps features to their labels.
We assume each predictor is parameterized by w ∈ W (e.g.,
if f is a neural network, w denotes its weights). Denote
by A : Zn → W the learning algorithm which selects a
predictor given Sn. A is, in general, a probabilistic mapping,
and we denote by PW |Sn

the distribution of its output W
given input Sn. If ℓ : W ×Z → R+ is a loss, we define:

Population risk: Rµ(w) ≜ EZ∼µ[ℓ(w,Z)]

Empirical risk: R̂n(w) ≜
1

n

n∑
i=1

ℓ(w,Zi).

The generalization error of A is

gen(µ,A) ≜ E(W,Sn)∼PW |Sn×µ⊗n [Rµ(W)− R̂n(W)] .

We bound this generalization error using the information-
theoretic generalization framework of Xu & Raginsky
(2017). Consider the following incarnations of fine-tuning
algorithms, corresponding to classic LoRA (tuning both
A,B matrices), tuning only B, and tuning only A:

Definition 4.4 (Fine-tuning algorithms). Let W =
{Wi}Li=1 be the L parameter matrices of a pretrained model.

5

Asymmetry in Low-Rank Adapters of Foundation Models

Let I ⊆ {1, . . . , L} be a specified subset of the parame-
ter matrices to be fine-tuned. Given a fine-tuning training
set Sn, let r be a chosen rank and suppose each tuned pa-
rameter is quantized to q bits. We define the following
algorithmic frameworks (other details can be arbitrary) for
choosing an adaptation ∆W = {∆i}i∈I , yielding a fine-
tuned Wtuned = {Wtuned,i}Li=1 with Wtuned,i =Wi +∆i

for i ∈ I and Wtuned,i =Wi otherwise:

• ABA: For each i ∈ I , constrain ∆i = BiAi and optimize
{Bi, Ai}i∈I to fit the data Sn.

• AB: For each i ∈ I, sample Qi ∈ Rr×d
(i)
in at random,

constrain ∆i = BiQi, and optimize {Bi}i∈I to fit the
data Sn.

• AA: For each i ∈ I, sample Ui ∈ Rd
(i)
out×r at random,

constrain ∆i = UiAi, and optimize {Ai}i∈I to fit the
data Sn.

We have the following lemma, proved in Appendix C:

Lemma 4.5 (Generalization bounds on adapting A and/or
B). Consider the algorithms of Definition 4.4. Assume
that ℓW,b(∆W, Z̃) is σ-sub-Gaussian2 under (∆W, Z̃) ∼
P∆W|W,b × µ. Then,

|gen(µ,ABA)| ≤
√

2rqσ2 ln 2

n

∑
i∈I

(d
(i)
in + d

(i)
out),

|gen(µ,AB)| ≤
√

2rqσ2 ln 2

n

∑
i∈I

d
(i)
out,

|gen(µ,AA)| ≤
√

2rqσ2 ln 2

n

∑
i∈I

d
(i)
in .

This generalization bound increases with the number of pa-
rameters being tuned, which is an increasing function of
r and the dimensions of the parameter matrices. Impor-
tantly, since tuning just one factor (A or B) involves tuning
fewer parameters than A and B together, the generalization
bound is correspondingly smaller. In the case where the
d
(i)
in = d

(i)
out, the bound for tuning one factor only is a factor

of
√
2 smaller than the bound for tuning both factors, im-

plying that the rank r for AB could be doubled and have a
generalization bound matching that of ABA.

4.3. Discussion of theoretical analysis

The previous two sections establish two conclusions: (1)
Tuning A has limited importance when trying to match a
desired output; and (2) Tuning one factor instead of two
reduces the number of parameters for the same r, while
improving generalization bounds and potentially providing
memory benefits.

2Bounded losses are sub-Gaussian.

Given a fixed parameter count and generalization budget,
therefore, we can use a larger r = rB when fine-tuning B
alone than the rBA that would be used on standard LoRA
fine-tuning both A and B. This addition provides more
expressive power for the same number of parameters with-
out loss of generalization bounds. Hence, when matching
parameter or generalization budget, we expect that fine-
tuning a rank-rB B typically improves performance over
fine-tuning a rank-rBA BA LoRA adaptation.

5. Experiments
We investigate the asymmetry of low-rank adaptation meth-
ods with RoBERTa (Liu et al., 2019), BART (Lewis et al.,
2020), Llama-2 (Touvron et al., 2023), and Vistion Trans-
former (Dosovitskiy et al., 2020). We evaluate the perfor-
mance of fine-turning strategies on natural language under-
standing (GLUE (Wang et al., 2018), MMLU (Hendrycks
et al., 2020)), natural language generation (XSum (Narayan
et al., 2018) and CNN/DailyMail (Chen et al., 2016)), and
multi-domain image classification (Gulrajani & Lopez-Paz,
2020).

We implement all algorithms using PyTorch starting from
the publicly-available Huggingface Transformers code
base (Wolf et al., 2019). The conventional LoRA method
applies a scaling coefficient α/r to ∆W . Following
LoRA (Hu et al., 2021), we fix α = 2r to be twice the
rank. Throughout our experiments, we use Â to indicate ma-
trixA is being updated during fine-tuning and use subscripts
{rand, 0, km} to indicate that the matrix is initialized as a
random orthonormal matrix, zero matrix, and the random
uniform initialization used in the original LoRA, respec-
tively. Note that a properly normalized d× r random matrix
with independent entries will have close to orthonormal
columns when d≫ r (see e.g. Theorem 4.6.1 of Vershynin
(2020)), implying that the random orthonormal and random
uniform initializations should be essentially equivalent.

We compare to the following methods:

1. Full fine-tuning (FT): The most straightforward adapta-
tion method, which initializes model parameters with the
pre-trained weights and updates the whole model with
gradient back-propagation.

2. Linear Probing (LP) (Kumar et al., 2022): A simple
yet effective method that updates the last linear layer.

3. IA3 (Liu et al., 2022): Injects learned vectors in the
attention and feedforward modules.

4. LoRA: (Hu et al., 2021) Fine-tunes both A and B ma-
trices of an additive BA adaptation as introduced in
previous sections, with a separate adaptation for each
query/key/value parameter matrix.

5. AdaLora: (Zhang et al., 2023b) A variant of LoRA that
adaptively changes the rank for each layer.

6

Asymmetry in Low-Rank Adapters of Foundation Models

Table 1. Different adaptation methods on the GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI,
Matthew’s correlation coefficient for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better for all metrics.

Model & Method # Trainable
Parameters MNLI SST-2 MRPC CoLA QNLI RTE STS-B Avg.

LoRA (r = 8) 0.8% 90.3±.07 95.6±0.36 90.3±0.85 64.4±1.8 94.0±0.29 84.1±0.96 91.5±0.16 87.2
AdaLoRA 2.5% 90.4±.37 95.9±.13 90.1±.54 67.5±1.3 94.7±.22 85.4±.20 91.3±1.0 87.9
(IA)3 0.7% 90.0±.21 95.4±.17 83.7±.13 57.6±.67 93.7±.07 70.3±1.5 87.0±0.4 82.5
LoRA-FA 0.3% 90.3±.06 95.6±.17 90.6±.32 67.3±2.3 93.4±.61 82.4±1.4 91.2±.29 87.3

B̂0Arand (r = 8) 0.3% 90.1±.19 95.8±.29 89.7±.13 67.5±1.2 94.0±.27 82.8±1.5 91.9±.26 87.4
B̂0Arand (r = 16) 0.8% 90.1±.20 96.1±.18 90.7±.90 66.1±2.6 94.4±.10 84.1±.96 91.2±.42 87.5

BrandÂ0 (r = 8) 0.3% 90.3±.18 95.5±.66 89.3±.09 58.7±2.5 93.8±.21 77.1±1.3 90.7±.31 84.2
BrandÂ0 (r = 16) 0.8% 89.9±.19 95.6±.64 90.2±0.23 60.3±3.3 93.9±0.25 80.4±0.21 90.9±0.13 85.9

Table 2. Different initialization of classic LoRA, setting either A or B to be zeros. Note that the trained result is not sensitive to different
initializations, with performance differences tending to be smaller than the standard error.

Model & Method # Trainable
Parameters MNLI SST-2 MRPC CoLA QNLI RTE STS-B Avg.

B̂0ÂV 0.8% 90.4±0.11 95.9±0.16 90.7±0.84 64.0±0.50 94.4±0.16 84.1±0.15 91.8±00.15 87.3
B̂0Ârand 0.8% 90.4±0.15 96.0±0.11 91.5±1.1 64.1±0.67 94.5±0.11 85.6±0.96 92.0±0.31 87.7
B̂UÂ0 0.8% 90.3±0.07 96.1±.18 91.7±0.33 64.9±1.5 94.7±0.33 84.8±0.96 91.9±0.19 87.8
B̂randÂ0 0.8% 90.3±0.27 96.0±.26 90.8±0.51 66.0±1.01 94.5±0.38 83.6±1.5 92.0±0.18 87.8

5.1. Natural Language Understanding

We use the General Language Understanding Evalua-
tion (GLUE, Wang et al., 2018) to evaluate the fine-tuning
performance of different fine-tuning strategies. The GLUE
benchmark contains a wide variety of tasks including
question-answering, textual similarity, and sentiment analy-
sis. We applied fine-tuning methods to the RoBERTa (large)
model (Liu et al., 2019), which has 355M parameters. To
enable a fair comparison, we initialize the weights for all
tasks with the original pretrained RoBERTa weights.

In Table 1 (see the appendix for an expanded table), we
compare different freezing & initialization strategies with
LoRA and other baselines. We underline to indicate that
performance is better than conventional LoRA also we use
bold to denote the best performance when freezing one of
the matrices. First, we can see a clear trend where solely up-
dating the B matrix outperforms just learning the A matrix.
In addition, when doubling the rank to match the trainable
parameters, B̂0Aorth consistently outperforms conventional
LoRA. This confirms our hypothesis in §4.3 that any loss in
expressive power by not tuning A can be made up for by the
larger intrinsic rank of B at no additional parameter cost. In
fact, its performance statistically matches that of AdaLoRA,
which uses over 3 times the parameters (incurring the asso-
ciated memory and training costs).

To assess the effects of different initialization methods for
low-rank adaptation, we investigate different initialization
methods thoroughly in Table 2. We can see that the best

Table 3. R-1/2/L (%) on text summarization with BART-large
on XSum and CNN/DailyMail (∗ Here we report numbers from
(Zhang et al., 2023b)).
Method # Param.

XSum CNN/DailyMail

Full FT∗ 100 % 45.49 / 22.33 / 37.26 44.16 / 21.28 / 40.90
LoRA (r=2)∗ 0.26 % 42.81 / 19.68 / 34.73 43.68 / 20.63 / 40.71

B̂0Arand,r=16 0.44 % 42.91 / 19.61 / 34.64 43.65 / 20.62 / 40.72
BrandÂ0,r=16 0.44 % 42.37 / 19.30 / 34.29 43.38 / 20.36 / 40.48

B̂0Ârand,r=8 0.44 % 43.78 / 20.47 / 35.53 43.96 / 20.94 / 41.00
B̂randÂ0,r=8 0.44 % 43.80 / 20.39 / 35.48 44.07 / 21.08 / 41.19

results always come from orthogonal initialization, which
further supports our conclusions in §4.

5.2. Natural Language Generation

To investigate the asymmetry of low-rank fine-tuning in
natural language generation (NLG), we fine-tune a BART-
large model (Lewis et al., 2020) and evaluate model
performance on the XSum (Narayan et al., 2018) and
CNN/DailyMail (Chen et al., 2016) datasets. Following
Zhang et al. (2023b), we apply low-rank adaptation to every
query/key/value matrix and report ROUGE 1/2/L scores
(R-1/2/L, (Lin, 2004)). We fine-tune models for 15 epochs.
We select the beam length as 8 and batch size as 48 for
XSum, and the beam length as 4, batch size as 48 for
CNN/DailyMail. More details of the configurations are

7

Asymmetry in Low-Rank Adapters of Foundation Models

Table 4. DomainBed results (mean accuracy and standard deviation in %). ID and OOD denote in-domain and out-of-domain test error,
respectively. For OOD we report the average performance across different environments.

Method # Param. VLCS PACS OfficeHome
(ID) (OOD) (ID) (OOD) (ID) (OOD)

LoRA r=8 0.46% 73.51±0.62 56.43±1.96 94.94±0.56 75.58±0.92 78.54±1.49 74.46±0.40
LP 0.00% 75.58±1.66 71.70±1.04 81.62±0.34 61.73±1.25 58.38±0.76 68.59±0.22
Full Fine-tuning 100% 76.21±1.95 64.87±6.44 98.15±0.56 74.90±2.43 80.67±1.22 63.23±0.64

B̂Arand,r=8 0.29% 77.40±2.30 75.81±1.65 92.45±2.68 72.55±1.03 77.66±0.89 77.72±0.32

B̂Arand,r=16 0.46% 79.10±1.41 75.40±1.24 93.52±0.20 73.76±0.67 77.63±0.84 77.85±0.33

BrandÂr=8 0.29% 76.71±0.93 72.50±0.89 92.02±1.07 66.25±0.80 72.36±0.69 73.66±0.35

Table 5. Accuracy (%) on MMLU benchmark.

Method # Param. 5-shot
Hums STEM Social Other Avg

Llama-2-7B 100% 43.98 34.11 49.08 44.31 43.14
LoRA r=32 0.24% 44.59 36.50 51.81 45.75 44.76

B̂0Arand,r=32 0.12% 44.17 36.00 46.88 45.14 45.36
BrandÂ0,r=32 0.12% 44.36 35.93 51.46 46.85 44.51

B̂0Arand,r=64 0.12% 45.10 37.65 55.08 51.08 46.46

in the Appendix E.

The results are summarized in Table 3. In the first two
rows, we observe the asymmetry between the factors since
freezing A and only updating B always outperforms only
updating A. The last two rows show the results of tuning
both matrices with different initializations, showing that the
asymmetry is not explained by the initialization strategy.

5.3. Massive Multitask Language Understanding

We fine-tune the pretrained Llama-2-7B model (Tou-
vron et al., 2023) using instruction tuning on the Alpaca
dataset (Wang et al., 2023). We assess the asymmetry on the
MMLU benchmark (Hendrycks et al., 2020), which consists
of 57 distinct language tasks. As shown in Table 5, the
asymmetry also exists in larger language models, and up-
dating B consistently outperforms updating A. Moreover, it
also outperforms standard LoRA except for “Other” where
it matches the performance, reflecting the benefits of being
able to increase r without tuning more parameters.

5.4. Vision Transformers and Generalization

We next measure generalization, motivated by the theory
in §4.2. In particular, we work with ViTs in image clas-
sification tasks using the Domainbed testbed for domain
generalization (Gulrajani & Lopez-Paz, 2020). Domainbed
contains several datasets, each composed of multiple envi-
ronments (or domains). Classes in each environment tend

to be similar at a high level but differ in terms of style. We
fine-tune a pre-trained ViT, originally trained on ImageNet,
on the LabelMe, Cartoon, and Clipart environments within
the VLCS, PACS, and Office-Home datasets, respectively.
We employ different benchmark fine-tuning methods such
as full fine-tuning, linear probing, and LoRA, and compare
their performance to freezing either A or B in in-domain
and out-of-domain generalization. We adhere to the original
80% training and 20% testing splits.

Results are presented in Table 4. In line with our expec-
tations, randomly initializing and freezing matrix A while
only updating matrix B generally results in better out-of-
domain test accuracy. We report additional generalization
results in Appendix H, in which we compare the train set
and test set accuracy of the different approaches. We consis-
tently find that fine-tuning a single matrix leads to smaller
gaps between these two quantities compared to LoRA, par-
alleling the corresponding reduction in the generalization
bounds of §4.2.

5.5. Ablation study and analysis

We also observe the benefit of computational run time when
freezing the A matrix, even when doubling the rank. This is
because freezing matrix A means its gradients do not need
to be stored or computed, reducing the memory footprint
for gradients during the training. We provide additional
experimental results on multiple datasets to illustrate the
runtime improvement. Specifically, in table (6) we compare
the train samples per second of different PEFT methods on
multiple fine-tuning tasks.

Table 6. Train samples per second on various datasets

GLUE RTE GLUE SST-2

LoRA 4.71 ±0.03 227.62 ±0.59
AdaLoRA 2.90 ±0.11 88.14 ±0.19

B̂ (r=8) 7.29 ±0.16 255.45 ±13.38

B̂ (r=16) 6.28 ±0.17 265.80 ±12.13

8

Asymmetry in Low-Rank Adapters of Foundation Models

We also conducted a new ablation study to investigate
how different fixed A matrices will affect the performance.
Specifically, we use three initializations: (1) Columns depen-
dent on each other, (2) Rows dependent on each other, and
(3) a Banded matrix with a bandwidth equal to rank. As we
can see, the model struggled to learn anything when either
the columns and rows of A are correlated. Also, fixing A to
be a banded matrix leads to reasonable performance. Such
observation further agrees with our theoretical formulation
where we require the fixed A to be orthogonal.

Table 7. Different fixed A on RTE task
RTE

B̂A(1) 50.9 ±3.13

B̂A(2) 52.71 ±3.29

B̂ A(3) 83.51 ±2.18

B̂ Arand (Ours) 84.1 ±0.83

6. Conclusion
In this paper, we formally identify and investigate asym-
metry in the roles of low-rank adapter matrices in LoRA
fine-tuning. The A matrices extract features from the in-
put, while the B matrices project these features towards
the desired objective. We illustrate differences between the
two matrices from both theoretical and empirical perspec-
tives. Our theoretical analysis explains the asymmetry in
the fine-tuning of large models and suggests that freezing A
as a random orthogonal matrix can improve generalization,
a claim we corroborate with experiments across multiple
models and datasets. Our work serves as an initial step to
unveil the mechanisms of fine-tuning large models, and it
provides an understanding that can benefit future research
directions, promoting efficiency and interpretability.

Impact Statement
This paper presents work whose goal is to advance machine
learning. There are no societal consequences of our work
that we feel must be specifically highlighted here.

Acknowledgement
We thank Lingxiao Li, Aritra Guha, and the anonymous
reviewers for their valuable feedback and helpful recom-
mendations. The MIT Geometric Data Processing Group
acknowledges the generous support of Army Research Of-
fice grants W911NF2010168 and W911NF2110293, from
the CSAIL Systems that Learn program, from the MIT–IBM
Watson AI Laboratory, from the Toyota–CSAIL Joint Re-
search Center, and from an Amazon Research Award.

References
Aghajanyan, A., Gupta, S., and Zettlemoyer, L. Intrin-

sic dimensionality explains the effectiveness of language
model fine-tuning. In Proceedings of the 59th Annual
Meeting of the Association for Computational Linguistics
and the 11th International Joint Conference on Natural
Language Processing (Volume 1: Long Papers). Associa-
tion for Computational Linguistics, 2021. doi: 10.18653/
v1/2021.acl-long.568. URL http://dx.doi.org/
10.18653/v1/2021.acl-long.568.

Benedek, N. and Wolf, L. Prilora: Pruned and rank-
increasing low-rank adaptation. 2024. URL https:
//api.semanticscholar.org/CorpusID:
267068991.

Chen, D., Bolton, J., and Manning, C. D. A thorough
examination of the cnn/daily mail reading comprehension
task. In Proceedings of the 54th Annual Meeting of the
Association for Computational Linguistics (Volume 1:
Long Papers). Association for Computational Linguistics,
2016. doi: 10.18653/v1/p16-1223. URL http://dx.
doi.org/10.18653/v1/P16-1223.

Dettmers, T., Pagnoni, A., Holtzman, A., and Zettle-
moyer, L. Qlora: Efficient finetuning of quantized
llms. ArXiv, abs/2305.14314, 2023. URL https:
//api.semanticscholar.org/CorpusID:
258841328.

Dosovitskiy, A., Beyer, L., Kolesnikov, A., Weissenborn,
D., Zhai, X., Unterthiner, T., Dehghani, M., Minderer,
M., Heigold, G., Gelly, S., Uszkoreit, J., and Houlsby, N.
An image is worth 16x16 words: Transformers for image
recognition at scale, 2020.

Frankle, J. and Carbin, M. The lottery ticket hypothesis:
Finding sparse, trainable neural networks, 2018.

Gholami, A., Kim, S., Dong, Z., Yao, Z., Mahoney, M. W.,
and Keutzer, K. A survey of quantization methods for
efficient neural network inference, 2021.

Gulrajani, I. and Lopez-Paz, D. In search of lost domain
generalization, 2020.

Guo, H., Greengard, P., Xing, E. P., and Kim, Y. Lq-lora:
Low-rank plus quantized matrix decomposition for effi-
cient language model finetuning, 2024.

Han, L., Li, Y., Zhang, H., Milanfar, P., Metaxas, D., and
Yang, F. Svdiff: Compact parameter space for diffusion
fine-tuning. arXiv preprint arXiv:2303.11305, 2023.

Hendrycks, D., Burns, C., Basart, S., Zou, A., Mazeika, M.,
Song, D., and Steinhardt, J. Measuring massive multitask
language understanding, 2020.

9

http://dx.doi.org/10.18653/v1/2021.acl-long.568
http://dx.doi.org/10.18653/v1/2021.acl-long.568
https://api.semanticscholar.org/CorpusID:267068991
https://api.semanticscholar.org/CorpusID:267068991
https://api.semanticscholar.org/CorpusID:267068991
http://dx.doi.org/10.18653/v1/P16-1223
http://dx.doi.org/10.18653/v1/P16-1223
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328
https://api.semanticscholar.org/CorpusID:258841328

Asymmetry in Low-Rank Adapters of Foundation Models

Hu, J. E., Shen, Y., Wallis, P., Allen-Zhu, Z., Li, Y.,
Wang, S., and Chen, W. Lora: Low-rank adapta-
tion of large language models. ArXiv, abs/2106.09685,
2021. URL https://api.semanticscholar.
org/CorpusID:235458009.

HuggingFace. Peft. https://github.com/
huggingface/peft, Year.

Koohpayegani, S. A., Navaneet, K., Nooralinejad, P.,
Kolouri, S., and Pirsiavash, H. Nola: Networks as linear
combination of low rank random basis, 2023.

Kopiczko, D. J., Blankevoort, T., and Asano, Y. M. Vera:
Vector-based random matrix adaptation, 2024.

Kornblith, S., Norouzi, M., Lee, H., and Hinton, G. Sim-
ilarity of neural network representations revisited. In
International conference on machine learning, pp. 3519–
3529. PMLR, 2019.

Kumar, A., Raghunathan, A., Jones, R., Ma, T., and Liang,
P. Fine-tuning can distort pretrained features and under-
perform out-of-distribution, 2022.

Lewis, M., Liu, Y., Goyal, N., Ghazvininejad, M., Mo-
hamed, A., Levy, O., Stoyanov, V., and Zettlemoyer, L.
Bart: Denoising sequence-to-sequence pre-training for
natural language generation, translation, and comprehen-
sion. In Proceedings of the 58th Annual Meeting of the
Association for Computational Linguistics. Association
for Computational Linguistics, 2020. doi: 10.18653/v1/
2020.acl-main.703. URL http://dx.doi.org/10.
18653/v1/2020.acl-main.703.

Lialin, V., Deshpande, V., and Rumshisky, A. Scaling down
to scale up: A guide to parameter-efficient fine-tuning.
arXiv preprint arXiv:2303.15647, 2023.

Lin, C.-Y. Rouge: A package for automatic evaluation
of summaries. In Text summarization branches out, pp.
74–81, 2004.

Liu, H., Tam, D., Muqeeth, M., Mohta, J., Huang, T., Bansal,
M., and Raffel, C. A. Few-shot parameter-efficient fine-
tuning is better and cheaper than in-context learning. Ad-
vances in Neural Information Processing Systems, 35:
1950–1965, 2022.

Liu, W., Qiu, Z., Feng, Y., Xiu, Y., Xue, Y., Yu, L., Feng, H.,
Liu, Z., Heo, J., Peng, S., Wen, Y., Black, M. J., Weller,
A., and Schölkopf, B. Parameter-efficient orthogonal
finetuning via butterfly factorization. In ICLR, 2024.

Liu, Y., Ott, M., Goyal, N., Du, J., Joshi, M., Chen, D.,
Levy, O., Lewis, M., Zettlemoyer, L., and Stoyanov, V.
Roberta: A robustly optimized bert pretraining approach,
2019.

Narayan, S., Cohen, S. B., and Lapata, M. Don’t
give me the details, just the summary! topic-aware
convolutional neural networks for extreme summariza-
tion. In Proceedings of the 2018 Conference on Em-
pirical Methods in Natural Language Processing. As-
sociation for Computational Linguistics, 2018. doi:
10.18653/v1/d18-1206. URL http://dx.doi.org/
10.18653/v1/D18-1206.

Ramanujan, V., Wortsman, M., Kembhavi, A., Farhadi,
A., and Rastegari, M. What’s hidden in a randomly
weighted neural network? In 2020 IEEE/CVF Con-
ference on Computer Vision and Pattern Recognition
(CVPR). IEEE, June 2020. doi: 10.1109/cvpr42600.2020.
01191. URL http://dx.doi.org/10.1109/
CVPR42600.2020.01191.

Ramsay, J., ten Berge, J., and Styan, G. Matrix correlation.
Psychometrika, 49(3):403–423, 1984.

Srivastava, N., Hinton, G., Krizhevsky, A., Sutskever, I.,
and Salakhutdinov, R. Dropout: a simple way to prevent
neural networks from overfitting. The journal of machine
learning research, 15(1):1929–1958, 2014.

Touvron, H., Martin, L., Stone, K., Albert, P., Almahairi,
A., Babaei, Y., Bashlykov, N., Batra, S., Bhargava, P.,
Bhosale, S., Bikel, D., Blecher, L., Ferrer, C. C., Chen,
M., Cucurull, G., Esiobu, D., Fernandes, J., Fu, J., Fu, W.,
Fuller, B., Gao, C., Goswami, V., Goyal, N., Hartshorn,
A., Hosseini, S., Hou, R., Inan, H., Kardas, M., Kerkez,
V., Khabsa, M., Kloumann, I., Korenev, A., Koura, P. S.,
Lachaux, M.-A., Lavril, T., Lee, J., Liskovich, D., Lu, Y.,
Mao, Y., Martinet, X., Mihaylov, T., Mishra, P., Molybog,
I., Nie, Y., Poulton, A., Reizenstein, J., Rungta, R., Saladi,
K., Schelten, A., Silva, R., Smith, E. M., Subramanian, R.,
Tan, X. E., Tang, B., Taylor, R., Williams, A., Kuan, J. X.,
Xu, P., Yan, Z., Zarov, I., Zhang, Y., Fan, A., Kambadur,
M., Narang, S., Rodriguez, A., Stojnic, R., Edunov, S.,
and Scialom, T. Llama 2: Open foundation and fine-tuned
chat models, 2023.

Vershynin, R. High-dimensional probability. University of
California, Irvine, 2020.

Wang, A., Singh, A., Michael, J., Hill, F., Levy, O., and
Bowman, S. Glue: A multi-task benchmark and analysis
platform for natural language understanding. In Pro-
ceedings of the 2018 EMNLP Workshop BlackboxNLP:
Analyzing and Interpreting Neural Networks for NLP.
Association for Computational Linguistics, 2018. doi:
10.18653/v1/w18-5446. URL http://dx.doi.org/
10.18653/v1/W18-5446.

Wang, Y., Ivison, H., Dasigi, P., Hessel, J., Khot, T., Chandu,
K. R., Wadden, D., MacMillan, K., Smith, N. A., Beltagy,
I., et al. How far can camels go? exploring the state

10

https://api.semanticscholar.org/CorpusID:235458009
https://api.semanticscholar.org/CorpusID:235458009
https://github.com/huggingface/peft
https://github.com/huggingface/peft
http://dx.doi.org/10.18653/v1/2020.acl-main.703
http://dx.doi.org/10.18653/v1/2020.acl-main.703
http://dx.doi.org/10.18653/v1/D18-1206
http://dx.doi.org/10.18653/v1/D18-1206
http://dx.doi.org/10.1109/CVPR42600.2020.01191
http://dx.doi.org/10.1109/CVPR42600.2020.01191
http://dx.doi.org/10.18653/v1/W18-5446
http://dx.doi.org/10.18653/v1/W18-5446

Asymmetry in Low-Rank Adapters of Foundation Models

of instruction tuning on open resources. arXiv preprint
arXiv:2306.04751, 2023.

Wolf, T., Debut, L., Sanh, V., Chaumond, J., Delangue, C.,
Moi, A., Cistac, P., Rault, T., Louf, R., Funtowicz, M.,
et al. Huggingface’s transformers: State-of-the-art natural
language processing. arXiv preprint arXiv:1910.03771,
2019.

Xu, A. and Raginsky, M. Information-theoretic analysis
of generalization capability of learning algorithms. In
Guyon, I., Luxburg, U. V., Bengio, S., Wallach, H., Fer-
gus, R., Vishwanathan, S., and Garnett, R. (eds.), Ad-
vances in Neural Information Processing Systems, vol-
ume 30. Curran Associates, Inc., 2017.

Yadav, P., Choshen, L., Raffel, C., and Bansal, M. Compeft:

Compression for communicating parameter efficient up-
dates via sparsification and quantization. arXiv preprint
arXiv:2311.13171, 2023.

Zeng, Y. and Lee, K. The expressive power of low-rank
adaptation, 2023.

Zhang, L., Zhang, L., Shi, S., Chu, X., and Li, B. Lora-fa:
Memory-efficient low-rank adaptation for large language
models fine-tuning, 2023a.

Zhang, Q., Chen, M., Bukharin, A., Karampatziakis, N.,
He, P., Cheng, Y., Chen, W., and Zhao, T. Adalora:
Adaptive budget allocation for parameter-efficient fine-
tuning, 2023b.

11

Asymmetry in Low-Rank Adapters of Foundation Models

A. Similarity Metric in Figure 1
To measure the similarity of learned A and B matrices we adopted a measure that accounts for the invariance of LoRA
fine-tuning. Let ∆W = BA denote the learned LoRA adapter. Since BA = BCC−1A for any invertible matrix C ∈ Rr×r,
we can define B̃ = BC and Ã = C−1A resulting in the same LoRA adapter ∆W = B̃Ã. Thus, to measure the similarity
of LoRA matrices we need a metric that is invariant to invertible linear transformations, i.e., dissimilarity(B,BC) = 0 for
any invertible C. In our experiment, we used Canonical Correlation Analysis goodness of fit (Ramsay et al., 1984), similar
to prior work comparing neural network representations (Kornblith et al., 2019). The key idea is to compare orthonormal
bases of the matrices, thus making this similarity metric invariant to invertible linear transformations.

More specifically, given two matrices X ∈ Rn×r1 and Y ∈ Rn×r2 , the similarity is computed as follows:
∥U⊤

Y UX∥2F /min{r1, r2}, where UX/UY is the orthonormal bases for the columns of X/Y . Following a similar method as
in Hu et al. (2021), for A we perform SVD and use the right-singular unitary matrices as the bases, and use left-singular
unitary matrices for B.

A.1. Reversed Initialization

The initialization of adapter matrices can play an important role in LoRA fine-tuning. To further investigate the effect of
initialization on asymmetry, we reverse the initialization compared to conventional LoRA, where A is initialized to zero and
B is initialized with random uniform distributions. Overall, we observe that the trend of differences also reverses, which is
expected given the significant role of initialization in training deep learning models.

When comparing the similarities of different initialization strategies, we can still draw the same conclusion about the
importance of the B matrix. For example, compared with Figure 2(a), the A matrices in Figure 2(d) have a smaller similarity
in average. Such difference can also be observed when comparing Figure 2(b) and 2(e).

(a) Random initialization, same task (b) Fixed initialization, different tasks (c) Random initialization, different tasks

(d) Random initialization, same task (e) Fixed initialization, different tasks (f) Random initialization, different tasks

Figure 2. Similarity of learned LoRA matrices A & B across layers of a RoBERTa model fine-tuned with different initialization and data
settings. We compare the results from both conventional LoRA initialization (In Figure (a), (b), and (c), A is initialized as random uniform
B is initialized as zero) and a reversed initialization (In Figure (d), (e), and (f), A is initialized as zero B is initialized as random uniform.

12

Asymmetry in Low-Rank Adapters of Foundation Models

B. Asymmetry Proofs for Multivariate Least Squares
B.1. Proof of Lemma 4.2

Consider freezing B = U where U is orthogonal (U⊤U = Ir) and fine-tuning A. The objective becomes

A∗ = argmin
A

L(A,U)

= argmin
A

E(Ytarg,Xtarg) ∥Ytarg − (W0 + UA)Xtarg − b∥22

= argmin
A

E ∥(WtargXtarg −W0Xtarg)− UAXtarg∥22

= argmin
A

E
∥∥U⊤((Wtarg −W0)Xtarg + n)−AXtarg

∥∥2
2

= U⊤∆.

Interestingly, note that this solution A∗ does not depend on the distribution of Xtarg, it is simply the projection of the
difference between the pretrained W0 and the target Wtarg. This is because, intuitively, freezing B is projecting down the
outputs into r dimensional space, and then optimizing A to match these projected outputs. It can be shown that the expected
squared prediction error is

L(A∗, U) = doutσ
2 +Tr[∆Σ∆⊤]− Tr[U⊤∆Σ∆⊤U],

where Σ = Cov[Xtarg].

B.2. Proof of Lemma 4.1

Consider freezing A = Q where Q is orthogonal (QQ⊤ = Ir) and fine-tuning B. The objective becomes

B∗ = argmin
B

L(Q,B)

= argmin
B

E(Ytarg,Xtarg) ∥Ytarg − (W0 +BQ)Xtarg∥22

= argmin
B

E ∥(Ytarg −W0Xtarg)−B(QXtarg)∥22 ,

which is simply an ordinary least squares regression problem mapping QXtarg to (Ytarg −W0Xtarg). The solution is
known to be

B∗ = ∆ΣQ⊤(QΣQ⊤)−1

yielding an expected squared prediction error of

L(Q,B∗) = doutσ
2 +Tr[∆Σ∆⊤]− Tr[QΣ∆⊤∆ΣQ⊤(QΣQ⊤)−1].

Note that the solution is now clearly dependent on the distribution of Xtarg , and the first two terms of the squared prediction
error are the same but the third term is different.

B.3. Proof of Theorem 4.3

Note that since Σ is positive semidefinite, its symmetric square root Σ1/2 exists and we can simplify the third term in the
expression for freezing A using the definition of the Moore-Penrose pseudoinverse (·)† and trace equalities as

IIIA = Tr[QΣ∆⊤∆ΣQ⊤(QΣQ⊤)−1] = Tr[(Σ1/2∆⊤∆Σ1/2)(Σ1/2QT (QΣ1/2Σ1/2QT)−1QΣ1/2)]

= Tr[(Σ1/2∆⊤∆Σ1/2)((QΣ1/2)†(QΣ1/2))].

By the properties of the Moore-Penrose pseudoinverse, the matrix (QΣ1/2)†(QΣ1/2) is a d×d orthogonal projection matrix
onto the span of the r rows of QΣ1/2, i.e. we can write

(QΣ1/2)†(QΣ1/2) = QT
ΣQΣ

13

Asymmetry in Low-Rank Adapters of Foundation Models

for some r × d orthogonal matrix QΣ. But note that as d/r, d2∥Σ∥2
F

(Tr(Σ))2 → ∞ (Hanson-Wright inequality),

1

Tr(Σ)
(QΣ1/2)(QΣ1/2)T →p Ir,

where →p denotes convergence in probability. In other words, in the limit QΣ1/2√
Tr(Σ)

is close to orthogonal with high

probability, implying that its transpose approaches its pseudoinverse. Hence

lim
d/r,

d2∥Σ∥2
F

(Tr(Σ))2
→∞

E[(QΣ1/2)†(QΣ1/2)] = lim
d/r,

d2∥Σ∥2
F

(Tr(Σ))2
→∞

1

Tr(Σ)
ETr((QΣ1/2)T (QΣ1/2)) = r

Σ

Tr(Σ)
.

Hence

E[IIIA] → r
Tr[Σ2∆⊤∆]

Tr[Σ]
= r

Tr[∆Σ2∆⊤]

Tr[Σ]
= r

∥∆Σ∥2F
Tr[Σ]

. (9)

Recall that on the other hand that
E[IIIB] →

r

d
Tr[∆Σ∆⊤].

Recall that we have assumed that the smallest nonzero eigenvalue of ∆Σ∆⊤ is ≥ Tr[∆Σ∆⊤]/d. Then revisiting (9) above,

r
∥∆Σ∥2F
Tr[Σ]

≥ r

d

Tr[Σ]Tr[∆Σ∆⊤]

Tr[Σ]
→ E[IIIB] (10)

and the asymmetry is established.

Hence lim
d/r,

d2∥Σ∥2
F

(Tr(Σ))2
→∞

E[IIIA] ≥ limd/r→∞ E[IIIB], implying that freezing A to a random orthogonal matrix achieves

lower mean squared error loss than freezing B.

C. Proof of Lemma 4.5: Generalization Bounds
We use the following bound on the generalization error is from (Xu & Raginsky, 2017), specialized to our setting and
notation.

Theorem C.1 (specialized from (Xu & Raginsky, 2017)). Denote by A a LoRA-based fine-tuning algorithm, which outputs
∆W given Sn. Assume that ℓW,b(∆W, Z̃) is σ-sub-Gaussian under (∆W, Z̃) ∼ P∆W|W,b × µ. Then,

|gen(µ,A)|≤
√

2σ2

n
I(∆W;Sn|A,W). (11)

We consider the case of tuning B only first. Applying the above theorem, note that here

I(∆W;Sn|AB ,W) = I({BiQi}i∈I ;Sn|AB ,W)

= I({Bi}i∈I ;Sn|AB ,W),

where we have used the data processing inequality (DPI), noting that the Qi are here considered orthogonal fixed constant
matrices as they are not trained, hence the mapping from Bi to BiQi is invertible.

We can now bound this expression as

I({Bi}i∈I ;Sn|AB ,W) ≤ H({Bi}i∈I)

≤ qr
∑
i∈I

d
(i)
out,

where we have noted that mutual information is upper bounded by discrete entropy, and entropy in turn is upper bounded by
the uniform distribution over its possible support set (q bits in each of r

∑
i∈I d

(i)
out dimensions). The bounds for the other

two algorithms are similar.

14

Asymmetry in Low-Rank Adapters of Foundation Models

Table 8. Hyper-parameter setup for GLUE tasks.

Dataset learning rate batch size # epochs γ ti ∆T tf

MNLI 5× 10−4 48 25 0.1 6000 100 50000
SST-2 5× 10−4 48 25 0.1 6000 100 50000
MRPC 5× 10−4 48 15 0.1 5000 100 85000
CoLA 5× 10−4 48 15 0.1 5000 100 85000
QNLI 5× 10−4 48 15 0.1 5000 100 85000
RTE 5× 10−4 48 15 0.1 5000 100 85000
STS-B 5× 10−4 48 15 0.1 5000 100 85000

D. Natural Language Understanding Training Details

E. Text Generation Training Details
The configuration of our experiments on text generation is listed in Table 10.

Table 9. Hyper-parameter setup for summarization tasks.

Dataset learning rate batch size # epochs γ ti ∆T tf

XSum 5× 10−4 48 25 0.1 6000 100 50000
CNN/DailyMail 5× 10−4 48 15 0.1 5000 100 85000

F. Llama-2 Training Details

Table 10. Hyper-parameter setup for summarization tasks.

Dataset learning rate batch size # epochs γ ti ∆T tf

Alpaca 5× 10−4 48 25 0.1 6000 100 50000

15

Asymmetry in Low-Rank Adapters of Foundation Models

G. Additional Language Results
See Table 11 for additional results.

Table 11. Different adaptation methods on the GLUE benchmark. We report the overall (matched and mismatched) accuracy for MNLI,
Matthew’s correlation coefficient for CoLA, Pearson correlation for STS-B, and accuracy for other tasks. Higher is better for all metrics.

Model & Method # Trainable
Parameters MNLI SST-2 MRPC CoLA QNLI RTE STS-B Avg.

LoRA (r = 8) 0.8M 90.3±.07 95.6±0.36 90.3±0.85 64.4±1.8 94.0±0.29 84.1±0.96 91.5±0.16 87.2
AdaLoRA 2.5% 90.4±.37 95.9±.13 90.1±.54 67.5±1.3 94.7±.22 85.4±.20 91.3±1.0 87.9
(IA)3 0.7% 90.0±.21 95.4±.17 83.7±.13 57.6±.67 93.7±.07 70.3±1.5 87.0±0.4 82.5

B̂0AV (r = 8) 0.3M 90.1±.09 95.5±.01 90.8±.24 63.8±4.2 94.2±.11 83.3±1.7 91.3±.24 87.0
B̂0Arand (r = 8) 0.3M 90.1±.19 95.8±.29 89.7±.13 67.5±1.2 94.0±.27 82.8±1.5 91.9±.26 87.4
B̂0Akm (r = 8) 0.3M 90.1±.17 95.6±.17 90.6±.32 67.3±2.3 93.4±.61 82.4±1.4 91.2±.29 87.2
BU Â0 (r = 8) 0.3M 89.3±.18 95.4±0.13 88.8±0.70 59.1±0.48 93.8±0.15 77.5±2.7 90.7±.27 94.9
BrandÂ0 (r = 8) 0.3M 90.3±.18 95.5±.66 89.3±.09 58.7±2.5 93.8±.21 77.1±1.3 90.7±.31 85.1
BkmÂ0 (r = 8) 0.3M 34.5±1.6 95.2±.34 89.3±.11 0.0±0.0 93.0±.38 47.3±.0 91.2±.24 64.4

B̂0AV (r = 16) 0.8M 90.2±.17 95.8±.20 90.1±.56 67.8±.49 94.5±.07 82.8±.42 91.6±.21 87.5
B̂0Arand (r = 16) 0.8M 90.1±.20 96.1±.18 90.7±.90 66.1±2.6 94.4±.10 84.1±.96 91.2±.42 87.5
B̂0Akm (r = 16) 0.8M 90.3±.06 95.6±.01 91.1±.32 65.2±2.1 94.5±.02 81.7±1.8 91.2±.39 87.1
BU Â0 (r = 16) 0.8M 90.3±.07 95.4±.57 90.4±1.1 60.7±.14 94.1±.30 80.1±1.2 90.8±.29 86.0
BrandÂ0 (r = 16) 0.8M 89.9±.19 95.6±.64 90.2±0.23 60.3±3.3 93.9±0.25 80.4±0.21 90.9±0.13 85.9
BkmÂ0 (r = 16) 0.8M 89.2±.03 95.2±.29 90.6±0.65 40.4±35. 93.1±0.23 70.3±0.19 91.4±0.26 81.5

B̂0ÂV (r = 8) 0.8M 90.4±.11 95.9±0.18 90.7±0.84 64.0±0.50 94.4±0.16 84.1±0.15 91.8±00.15 87.3
B̂0Ârand (r = 8) 0.8M 90.4±.15 96.0±.63 91.5±1.1 64.1±0.67 94.5±0.11 85.6±0.96 92.0±0.31 87.7
B̂0Âkm (r = 8) 0.8M 90.3±.07 95.6±0.36 90.3±0.85 64.4±1.8 94.0±0.29 84.1±0.96 91.5±0.16 87.2
B̂U Â0 (r = 8) 0.8M 90.3±.11 96.1±.18 91.7±0.33 64.9±1.5 94.7±0.33 84.8±0.96 91.9±0.19 87.8
B̂randÂ0 (r = 8) 0.8M 90.3±.27 96.0±.26 90.8±0.51 66.0±1.01 94.5±0.38 83.6±1.5 92.0±0.18 87.6
B̂kmÂ0 (r = 8) 0.8M 35.5±1.6 95.6±.65 90.0±0.46 21.3±36. 93.8±0.01 57.4±0.17 91.6±0.43 69.3

H. Additional Vision Transformers and Generalization Results
Table 12 displays a more fine-grained version of Table 4 in the main text, and presents results for each out-of-distribution
environment independently, in which it is easier to appreciate the benefits of only updating B in terms of out-of-domain
performance. Additional results for TerraIncognita, as well as generalization results, can be found in Table 13 and Table 14,
respectively. TerraIncognita seems to be a particularly challenging dataset to which low-rank adapters struggle to fit; the
most effective method, in this case, appears to be full fine-tuning. In terms of generalization, we can observe that fine-tuning
only a single adapter matrix generally results in a lower difference between training set and test set accuracy compared to
standard LoRA for all datasets.

Table 12. DomainBed results (mean accuracy and standard deviation in %). ID and OOD denote in-domain and out-of-domain generaliza-
tion, respectively.

Method # Trainable Parameters VLCS PACS OfficeHome
(% full ViT params) Caltech101 LabelMe SUN09 VOC2007 Art Cartoon Photo Sketch Art Clipart Product Photo

(OOD) (ID) (OOD) (OOD) (OOD) (ID) (OOD) (OOD) (OOD) (ID) (OOD) (OOD)
B̂Arand (r = 8) 0.16M-0.2M (0.18-0.29%) 93.19±2.27 77.40±2.30 61.52±1.50 72.72±1.18 81.22±1.40 92.45±2.68 96.07±0.86 40.37±0.83 73.59±0.59 77.66±0.89 78.02±0.14 81.55±0.24

B̂Arand (r = 16) 0.3M-0.4M (0.36-0.46%) 91.57±0.81 79.10±1.41 60.97±2.44 73.66±0.46 84.36±0.54 93.52±0.20 97.07±0.47 39.87±0.99 73.64±0.40 77.63±0.84 78.07±0.22 81.85±0.36

BrandÂ (r = 8) 0.16M-0.2M (0.18-0.29%) 87.18±0.77 76.71±0.93 59.89±1.79 70.44±0.10 77.05±0.74 92.02±1.07 92.06±0.34 29.65±1.31 68.36±0.28 72.36±0.69 74.00±0.31 78.63±0.45

BrandÂ (r = 16) 0.3M-0.4M (0.36-0.46%) 89.28±2.51 78.03±1.23 60.44±1.84 70.81±0.36 81.43±0.92 93.87±0.73 95.63±0.13 35.02±0.86 71.64±0.24 73.77±1.13 75.46±0.25 80.31±0.39

LoRA (r = 8) 0.3M-0.4M (0.35-0.46%) 44.59±1.96 73.51±0.62 60.44±2.86 64.26±1.07 81.41±0.70 94.94±0.56 95.43±0.54 49.90±1.51 70.44±0.46 78.54±1.49 73.99±0.64 78.95±0.10
Linear Probing 0.004M (0.00%) 90.65±2.51 75.58±1.66 53.74±0.27 70.71±0.35 67.66±0.63 81.62±0.34 88.80±1.43 28.72±1.70 64.56±0.23 58.38±0.76 66.97±0.43 74.23±.001
Full FT 86.4M (100%) 70.57±15.13 76.21±1.95 57.14±1.46 66.90±2.72 75.52±2.89 98.15±0.56 89.54±1.88 59.63±2.53 58.38±0.64 80.67±1.22 63.05±0.85 68.27±0.43

16

Asymmetry in Low-Rank Adapters of Foundation Models

Table 13. TerraIncognita results (mean accuracy and standard deviation in %). All methods were trained for 20,000 steps.
Method # Trainable Parameters TerraIncognita

(% full ViT params) L100 L38 L43 L46
(OOD) (ID) (OOD) (OOD)

B̂Arand (r = 8) 0.16M-0.2M (0.18-0.29%) 16.59±2.59 79.88±0.45 6.46±1.25 10.96±0.52

B̂Arand (r = 16) 0.3M-0.4M (0.36-0.46%) 14.14±1.45 80.48±0.99 7.74±0.26 11.09±0.76

BrandÂ (r = 8) 0.16M-0.2M (0.18-0.29%) 12.82±0.84 78.65±0.57 3.42±0.81 7.24±1.36

BrandÂ (r = 16) 0.3M-0.4M (0.36-0.46%) 17.58±1.01 78.89±0.55 8.41±1.88 7.62±0.56

LoRA (r = 8) 0.3M-0.4M (0.35-0.46%) 41.36±2.94 87.33±.13 13.48±2.19 7.76±1.69
Linear Probing 0.004M (0.00%) 13.82±.20 69.82±0.36 10.06±.45 13.90±.49
Full FT 86.4M (100%) 38.33±6.50 95.05±.31 14.18±2.33 19.50±1.53

Table 14. Generalization results (train set - test set accuracy in %) for DomainBed.
Method # Trainable Parameters VLCS PACS OfficeHome TerraIncognita

(% full ViT params) Caltech101 LabelMe SUN09 VOC2007 Art Cartoon Photo Sketch Art Clipart Product Photo L100 L38 L43 L46
(OOD) (ID) (OOD) (OOD) (OOD) (ID) (OOD) (OOD) (OOD) (ID) (OOD) (OOD) (OOD) (ID) (OOD) (OOD)

B̂Arand (r = 8) 0.2M-M (0.29-0.%) -1.72±2.24 11.82±1.21 28.09±2.04 16.98±0.74 15.82±0.68 3.83±0.70 0.83±0.30 57.34±0.89 15.94±0.28 11.87±1.14 11.51±0.47 7.97±0.56 64.20±2.58 0.91±0.43 74.33±1.26 69.82±0.53

B̂Arand (r = 16) 0.3M-0.4M (0.36-0.46%) -2.48±0.69 9.99±1.44 28.11±2.74 15.43±0.70 12.92±0.87 3.76±0.40 0.22±0.67 57.42±0.62 16.22±0.93 12.25±1.23 11.81±0.34 8.19±0.87 66.62±1.54 0.28±1.18 73.02±0.24 69.67±0.56

BrandÂ (r = 8) 0.2M-M (0.29-0.%) 0.19±0.86 10.66±0.86 27.48±1.86 16.93±0.19 19.79±0.66 4.81±0.99 4.78±0.29 67.19±1.34 17.73±0.30 13.73±0.86 12.08±0.42 7.45±0.65 65.86±0.64 0.04±0.60 75.27±0.50 71.45±1.17

BrandÂ (r = 16) 0.3M-0.4M (0.36-0.46%) -1.50±2.88 9.75±0.85 27.34±2.07 16.97±0.61 15.89±0.96 3.44±0.54 1.69±0.30 62.30±0.83 15.20±0.53 13.07±1.30 11.38±0.38 6.53±0.64 62.17±1.41 0.86±0.96 71.34±1.91 72.13±0.15

LoRA (r = 8) 0.3M-0.4M (0.35-0.46%) 52.94±1.48 24.03±0.16 37.10±3.25 33.28±1.64 18.23±0.74 4.70±0.57 4.22±0.43 49.74±1.44 26.07±0.39 17.97±1.80 22.53±0.63 17.57±0.23 47.53±2.80 1.56±0.24 75.41±2.29 81.12±1.73
Linear Probing 0.004M (0.00%) -12.03±2.11 3.04±1.38 24.88±0.47 7.91±0.79 17.18±0.13 3.22±0.40 -3.96±1.90 56.13±1.33 6.02±0.21 12.20±1.03 3.61±0.51 -3.65±0.19 55.17±0.28 -0.82±0.31 58.94±0.52 55.10±0.52
Full FT 86.4M (100%) 29.03±15.27 23.40±2.05 42.47±1.83 32.70±2.27 24.41±2.94 1.78±0.54 10.38±1.90 40.30±2.49 40.23±0.48 17.94±1.36 35.56±1.02 30.35±0.53 59.84±6.53 3.12±0.26 83.99±2.31 78.67±1.47

17

