
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

TELECOMTS: A MULTI-MODAL OBSERVABILITY
DATASET FOR TIME SERIES AND LANGUAGE ANALYSIS

Anonymous authors
Paper under double-blind review

ABSTRACT

Modern enterprises generate vast streams of time series metrics when monitoring
complex systems, known as observability data. Unlike conventional time series
from domains such as weather, observability data are zero-inflated, highly stochas-
tic, and exhibit minimal temporal structure. Despite their importance, observability
datasets are underrepresented in public benchmarks due to proprietary restrictions.
Existing datasets are often anonymized and normalized, removing scale informa-
tion and limiting their use for tasks beyond forecasting, such as anomaly detection,
root-cause analysis, and multi-modal reasoning. To address this gap, we introduce
TelecomTS, a large-scale observability dataset derived from a 5G telecommuni-
cations network. TelecomTS features heterogeneous, de-anonymized covariates
with explicit scale information and supports a suite of downstream tasks, includ-
ing anomaly detection, root-cause analysis, and a question-answering benchmark
requiring multi-modal reasoning. Benchmarking state-of-the-art time series, lan-
guage, and reasoning models reveals that existing approaches struggle with the
abrupt, noisy, and high-variance dynamics of observability data. Our experiments
also underscore the importance of preserving covariates’ absolute scale, empha-
sizing the need for foundation time series models that natively leverage scale
information for practical observability applications1.

1 INTRODUCTION

Time series data is ubiquitous across fields such as weather, finance, and energy systems Hu et al.
(2025); Kong et al. (2025a); Farahani et al. (2023); Noshad et al. (2019); Fassois & Sakellariou
(2009). One particular domain that has been under-studied but is now garnering increasing attention
is the observability domain, which focuses on analyzing time series metrics generated by monitoring
complex systems to detect anomalies, diagnose issues, and maintain system health Cohen et al.
(2025); Palaskar et al. (2024). This observability data includes CPU and memory utilization, network
throughput, request latency, error rates, and disk I/O, each offering critical insight into the state and
performance of the system.

Compared to data found in weather or other commonly studied time series domains, observability data
is fundamentally different and poses unique modeling challenges due to its distinctive characteristics.
First, it is highly zero-inflated: many metrics track infrequent events, such as bursts of user traffic,
resulting in sparse time series dominated by zeros punctuated by informative spikes. Second, it
displays highly dynamic patterns characterized by frequent, abrupt transitions that are challenging
to model, whereas current standard time series datasets are much less spiky. Finally, observability
data is highly stochastic, with metrics often appearing irregular and exhibiting minimal discernible
temporal structure Datadog (2024); Cohen et al. (2025).

Despite their importance and the challenges they present, these types of time series data remain
relatively understudied in the time series literature. This gap can be attributed to several factors:
(1) the lack of publicly available datasets due to the proprietary nature of observability data, (2)
anonymization in the few existing datasets, which obscures both the identity of the metrics and vital
information such as their absolute scale; and (3) the limited utility of forecasting, as the erratic,
zero-inflated nature of these series makes forecasting less critical, shifting the focus instead toward

1https://anonymous.4open.science/r/TelecomTS_Benchmark-72AF

1

https://anonymous.4open.science/r/TelecomTS_Benchmark-72AF

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Figure 1: An overview of TelecomTS, illustrating its data curation pipeline, covariate characteristics,
and the range of supported multi-modal downstream tasks.

anomaly detection, root-cause analysis, and multi-modal reasoning, which are tasks that demand
dedicated datasets and systematic curation efforts.

Our paper aims to bridge this gap by introducing TelecomTS, a large-scale observability dataset
focused on the telecommunications domain. An overview of TelecomTS can be found in Fig. 1.
Compared to prior datasets, TelecomTS differs in two major ways:

1. Heterogeneous, and de-anonymized covariates with scale information: Built from extensive
data collection on a 5G network, TelecomTS contains over 1M observations of KPIs across all
layers of the protocol stack Forouzan & Fegan (2002). The dataset captures categorical covariates
from dynamically changing communication protocols along with mixed data types metrics (integers
and floating-point variables with diverse ranges and distinct statistical distributions), reflecting the
inherently heterogeneous nature of observability data. Crucially, it provides full visibility and scale
information for each covariates, thus enabling the design of meaningful downstream tasks grounded
in operational semantics, as well as facilitating investigation of the impact of scale information and
normalization strategies in observability settings.

2. Comprehensive suite of downstream tasks: Since observability applications extend beyond
simple forecasting, TelecomTS incorporates a diverse set of anomalies, including real anomalies
generated via controlled jamming signals and synthetically curated rare events grounded in scholarly
descriptions of real-world failures. This enables native support for tasks such as anomaly detection
and root cause analysis. In addition, we provide a question-answering (Q&A) benchmark that
combines temporal reasoning with domain-specific questions tied to the semantics of the network
observability environment.

By benchmarking foundation time series models, language models, reasoning models, and lightweight
time series baselines on TelecomTS, we demonstrate that state-of-the-art approaches consistently
struggle with the abrupt, noisy, and high-variance dynamics of this observability data. These
challenges manifest as elevated false positives in anomaly detection, misdiagnosed root causes, and
poor performance on time series Q&A tasks. Our experiments further underscore the pivotal role of
preserving covariates’ absolute scale in improving downstream task performance, highlighting the
need for developing time series foundation models that explicitly accommodate scale information to
achieve superior performance in practical observability applications.

2 RELATED WORK

Time Series Foundation Models. Recent advances in time series foundation models Ansari et al.
(2024); Woo et al. (2024b); Das et al. (2024) have demonstrated strong zero-shot performance across
time series benchmarks such as GIFT-EVAL Aksu et al. (2024). Trained on large, multi-domain time
series corpora, these models have emerged as a dominant paradigm for time series learning, as they
remove the need for extensive task-specific training. This, in turn, facilitates cost-effective zero-shot
inference and reduces fine-tuning requirements to a minimum when downstream task adaptation is
needed Kottapalli et al. (2025); Faw et al. (2025).

Time Series Datasets. The datasets used to train these foundation models span a wide range of
domains, including energy Zhou et al. (2021), climate Mouatadid et al. (2024), sales, and transporta-

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

(a) (b) (c)
Figure 2: Overview of the 5G wireless network used for data collection: (a) mobile devices used
to generate network traffic; (b) server infrastructure hosting the core network, and base-station
workloads; (c) programmable jammer used to introduce controlled over-the-air interference.

tion Makridakis et al. (2022); Jiang et al. (2024). In addition, meta-datasets that aggregate multiple
sources have been introduced, most notably Monash Godahewa et al. (2021) and the Time Series Pile
Goswami et al. (2024). Despite their broad coverage, these datasets largely exclude observability
data, which remains scarce in the literature due to its proprietary nature (e.g., customer traffic data
from cloud or network operators) Xie et al. (2025); Qureshi et al. (2023).

Observability Datasets. Given this gap, time series foundation models have been shown to underper-
form on observability data Toner et al. (2025); Palaskar et al. (2024). This led to a growing effort
in the community to bridge the gap by curating and publishing observability-focused datasets. A
notable recent contribution in this direction is the BOOM dataset Datadog (2024); Cohen et al. (2025),
which consists of real-world metrics collected from Datadog. BOOM captures a wide spectrum of
observability signals from distributed systems, including infrastructure, database, and security.

Lingering Gaps. Despite the advancements introduced by the BOOM dataset, several limitations
remain. First, the data is anonymized, providing no information about the actual time series variates.
Second, the dataset is normalized to preserve privacy. These constraints have multiple consequences:
(1) anonymization limits the ability to augment these time series observations with tasks beyond
forecasting, such as anomaly detection, multi-modal reasoning, and question-answering, as has been
done in other domains such as finance and weather Dau et al. (2018); Liu et al. (2024a); Chen et al.
(2025); (2) normalization and loss of absolute scale obscure critical information, particularly in
observability contexts where metric magnitudes (e.g., CPU load) are essential for downstream tasks
like anomaly detection Lin et al. (2024); and (3) BOOM focuses solely on numerical time-series,
providing no support for tasks that combine time-series data with natural language. Consequently,
there remains a strong need for de-anonymized observability datasets that provide fully detailed
metrics and support a broad range of downstream tasks, including anomaly detection, root-cause
analysis, and natural language question-answering.

3 TELECOMTS DATASET

In this section, we explore the curation process of TelecomTS in detail, covering the raw data,
anomalies, and question-answering. We conclude by presenting an overview of the dataset’s statistics.
A detailed comparison of the covariate behaviors in TelecomTS versus those commonly found in
the literature is provided in Appendix A.

3.1 RAW DATA COLLECTION

5G Network. Since telecommunications data is usually proprietary to network operators, compre-
hensive open-source datasets in this field remain limited. For this reason, we collect our networking
data using a 5G wireless network that we developed in our lab, hence free of any privacy concerns.
The setup consisted of a single base station (gNB) connected to a full-stack 5G core network serving
as the gateway to the Internet. A mobile device was connected to the network and used to generate
live traffic using real-world applications such as YouTube, Twitch, and file downloads. The overall
architecture of the network is illustrated in Fig. 2(a) and Fig. 2(b).

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Measurement Collection. During each user connection to the internet, 18 KPIs were recorded from
both the base station and the device at 100 ms resolution. Since the data collection was conducted
across two separate traces, each capturing different types of KPIs, a time misalignment offset was
introduced between the traces. To correct for this offset, we selected two highly correlated KPIs
from each trace and applied a histogram-matching technique. Specifically, we aligned the two
metrics by temporally shifting one relative to the other and finding the time offset that minimizes the
Kullback–Leibler (KL) divergence between their histograms.

Zoning for Radio Conditions. To introduce spatial variability in our data, the lab environment was
divided into three zones based on distance from the base station. Zone A (0–3 m) provided strong
signal quality; Zone B (3–6 m) reflected moderate signal quality, and Zone C (>6 m) delivered weak
signal environments.

Mobility and Congestion. Data was also collected under static and mobile device conditions to reflect
realistic user mobility. Congestion scenarios were emulated by introducing secondary devices that
generated heavy traffic, thus creating resource contention representative of high-load environments.

Additional information on the network setup, collected KPIs, and layout is available in Appendix B.

3.2 ANOMALIES CURATION

Synthetic Anomaly

KPI List Anomaly Effects
on KPIs

Antenna Failure
UL_BLER: increase linearly by
X per second
UL_SNR: sudden drop by Y
RSRP: sinusoidal fluctuations,
amplitude W, frequency Z
KPI: function + param. range

Add Anomaly to
Time Series

Telecom Literature
& Expert Feedback

1. Real Anomalies

Multimodal
Anomaly & Root
Cause Dataset

Cause: Antenna Failure
Alarm Time: 00:04:28.80
Symptoms: drops in RSRP
& SNR, connectivity loss
Resolution: antenna
power cycled & stabilized

Troubleshooting Tickets

Jammer
Interrupts Signal

Human
Verification

2. Synthetic Anomalies

GPT-4.1

Figure 3: An overview of the anomalies curation process.

Popular anomaly detection datasets
(e.g., UCR Dau et al. (2018)) often
contain a combination of real and syn-
thetic anomalies. This is because real
anomalies are inherently rare and dif-
ficult to capture at scale. Following
a similar methodology, TelecomTS
integrates both real anomalies and
a principled approach for generating
synthetic ones, as shown in Fig. 3.

Real anomalies. In our setup, an ad-
versarial jammer is employed to emit
electromagnetic signals on the same
frequencies used by mobile devices,
thereby interfering with their transmis-
sions. The jammer alternates between
active and idle periods; during its ac-
tive phase, it disrupts network commu-
nication, causing packet loss and anomalous behavior throughout the network. A visual illustration
of this setup is shown in Fig. 2(c), and additional details on the jamming configurations are provided
in Appendix B.

Synthethic Anomalies. Going beyond real anomalies, we extend our dataset with a comprehensive
set of synthetic anomalies. A key challenge in generating synthetic anomalies is ensuring that
they faithfully mimic the characteristics of rare, real-world network anomalies rather than simply
introducing random drops or unsubstantiated perturbations in the time series. To address this, we
adopt a principled methodology for realistic synthetic anomaly creation, outlined as follows.

First, we curate a list of ten anomaly types that are known to occur in networked systems, drawing
from technical manuals and scholarly material Liu et al. (2023a); Yen et al. (2022); Hasan et al.
(2024); Haseeb (2021). For each anomaly type, we identify the corresponding symptoms in terms of
KPIs captured in our time series (e.g., sharp drops, gradual linear increases, or abnormal oscillations).
These mappings between anomalies and their KPI-level manifestations are then validated through
expert review to ensure their relevance.

Once anomalies and their symptoms are defined, we model their occurrence and duration. Following
the findings of Maatouk et al. (2024) from large-scale operational networks, we model anomaly
durations and inter-arrival times as exponentially distributed random variables with empirically
motivated rate parameters. Using these models, we generate synthetic anomalies by manipulating a
set of raw observations from the dataset.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

Time

0.1

0.2

0.3
In

se
ct

 E
PG

a. UCR Archive Anomaly

Time
0

20

40

60

80

UL
_N

um
be

rO
fP

ac
ke

ts

b. TelecomTS Sample

Time
7.5

10.0

12.5

15.0

17.5

UL
_S

NR

c. TelecomTS Anomaly

Figure 4: An illustrative difference between UCR Archive Anomaly dataset and the anomalies found
in TelecomTS. The anomalies found in the former typically manifest as a clear deviation from an
otherwise smooth and predictable trend.

Finally, for each synthetic anomalous sample, we generate a textual troubleshooting ticket to enrich
the dataset. Each ticket specifies the anomaly type, start and end times, and provides a narrative
describing the observed KPIs’ behavior during the event. These tickets are produced using GPT-4.1,
conditioned on the selected anomaly type, associated symptoms, and temporal boundaries, and are
subsequently validated through a human-in-the-loop verification process. This approach mirrors the
documentation practices of network operators, where incident reports typically accompany real-world
anomalies Maatouk et al. (2025). The complete set of prompts used for this generation, along with
all other prompts employed in this work, is included in Appendix D.

A comparative example. A key question that arises is how the anomalies in our dataset differ from
those found in standard anomaly detection benchmarks such as the UCR archive. To address this,
we provide a comparative visualization in Figure 4. Figure 4a displays a typical sample from the
UCR anomaly dataset, where anomalies usually appear as distinct deviations from otherwise smooth
trends. In contrast, Figure 4b presents a burst in user traffic found in our dataset, which is an abrupt
yet entirely normal behavior of observability data. Figure 4c depicts an actual anomaly in our setting,
where a sustained shift in the overall trend indicates a true fault rather than fluctuations typical of
engineering operations. This comparison highlights a fundamental distinction in our dataset: abrupt
changes are often inherent to the dataset and do not necessarily signal anomalous behavior.

3.3 QUESTION ANSWERING CURATION

User Activity

Data Collection

Base Station

Activity & Network
Description

Wireless Data

QA Generation

Network QA

“What was the periodicity
of RSRP in the sample”
“Describe the trend of

UL_SNR”

Time Series QA

“Detect whether the
network was congested”

“What activity was the
user engaged in”

Figure 5: An overview of the Q&A dataset.

Finally, for an additional multi-modal
downstream task, we curate a set of
Q&A pairs designed to probe the
model’s understanding of the time se-
ries data. Two families of Q&A are
created: the first focuses on qualita-
tive and quantitative aspects to assess
a model’s ability to reason about in-
herent statistical and structural prop-
erties of the time series. Particularly,
for each time series sample and chan-
nel, we compute basic metrics such as
mean and variance directly. Periodicity is estimated using a Fourier transform, where the dominant
frequency component indicates the primary period. The trend is determined by fitting a linear re-
gression line to the series and evaluating its slope. If the slope exceeds the mean slope plus one
standard deviation across all samples, it is labeled as a positive trend; if it falls below the mean minus
one standard deviation, it is labeled as a negative trend; otherwise, it is considered to exhibit no
prominent trend. The second set of Q&As contains the contextual ground truths of user behavior
and network conditions. Particularly, from each sample’s metadata, we extract four labels—user
activity, mobility state, zone, and congestion status—and prompt GPT-4.1 to generate multiple
question–answer templates per label. Then, we randomly sample among these templates to form the
final diverse Q&A pairs. An overview of this Q&A is shown in Fig. 5.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

3.4 OVERALL STATISTICS

Table 1: Summary statistics of TelecomTS.

Statistic Category Count

Total Samples Normal Observations 1,020,000
Anomalous Observations 120,000

Time-Resolution Sampling Rate 10 Hz

Channels Number of Channels 18
Channel Types 10 float, 6 integers, 2 categorical

Synthetic Anomalies Distinct Anomaly Types 10

Jamming Jamming Present Observations 30,000

Traffic Types
YouTube 380,000

Twitch 380,000
File Download 380,000

Mobility No Mobility 1,110,000
In Motion 30,000

Congestion Congested Network Observations 90,000

QnA Types Time Series QA 64
Network QA 5

All in all, the statistics of our dataset are
summarized in Table 1. As shown, the
dataset contains over 1 million observa-
tions with a wide variety of scenarios,
including anomalous behavior, jamming
events, and more, all within a 100 ms
time-resolution that allows us to capture
minute and abrupt system dynamics, align-
ing with the characteristics of observabil-
ity data. Additionally, the dataset spans
18 channels comprising diverse data types.
For instance, DL_BLER ranges from 0 to
1, TX_Bytes (among five other variables)
takes on positive integer values, and RSRP
varies between -140 and -60. These characteristics highlight the heterogeneous nature of the dataset.
Further details about the dataset can be found in Appendix B. An example of the dataset is provided
in Appendix E.

4 EXPERIMENTS

In this section, we conduct comprehensive experiments to evaluate the performance of current
state-of-the-art models on the various downstream tasks defined in TelecomTS. Our benchmarking
includes LLMs, reasoning models, and time series models. Through these experiments, we reveal
the performance gap that emerges when existing models are exposed to the complex nature of
observability data embodied by our dataset. For all these experiments, the training details are
provided in Appendix F.

4.1 ANOMALY DETECTION

Table 2: Anomaly detection precision, recall, and F1
score.

Model Precision Recall F1 Score
Large language models
GPT-4.1 (without context) 0.054 1.000 0.103
GPT-4.1 (with context) 0.049 0.609 0.091
Claude 3.7 Sonnet (without context) 0.050 0.840 0.094
Claude 3.7 Sonnet (with context) 0.054 0.860 0.101

Reasoning models
o4-mini (without context) 0.052 1.000 0.098
o4-mini (with context) 0.085 0.580 0.148
DeepSeek-R1 (without context) 0.070 0.600 0.125
DeepSeek-R1 (with context) 0.072 0.470 0.125

Foundation Models
Moment 0.072 0.888 0.133
Moirai2 Woo et al. (2024a) 0.177 0.490 0.260
Toto Cohen et al. (2025) 0.3304 0.750 0.4587

Time series models
Mantis Feofanov et al. (2025) 0.640 0.800 0.711
TimesNet Wu et al. (2023) 0.118 0.535 0.194
Autoformer Wu et al. (2022) 0.066 0.690 0.121
Non-stationary Transformer Liu et al. (2023b) 0.347 0.655 0.453
FEDformer Zhou et al. (2022) 0.083 0.560 0.145
Informer Zhou et al. (2021) 0.123 0.690 0.208

For this task, we evaluate each model on
a randomly selected subset of 1,000 sam-
ples from our dataset, where each sample
consists of 128 observations containing the
full set of KPIs. Results were adapted to
ensure a 95%–5% ratio of normal to anoma-
lous instances (including jamming), align-
ing with class distributions found in exist-
ing anomaly detection benchmarks such
as UCR Wu & Keogh (2023), and consis-
tent with real-world distributions observed
in telecommunications networks Maatouk
et al. (2024). Next, for language and rea-
soning models, we distinguish between
two evaluation cases: 1) Without context,
where the model was presented with the
time series and asked to determine if it is
anomalous, and 2) With context, where the
model was informed that the data is natu-
rally erratic and can have ups and downs as
an intrinsic behavior. As for the time series models, we consider both foundation models and popular
time series architectures. For foundation models, the backbone is left frozen, and a classification head
was used at the end to train for the anomaly detection task.

Results Analysis. As shown in Table 2, models like GPT-4.1 and o4-mini exhibit a strong bias
toward false positives (i.e., predicting normal samples as anomalous) when no contextual information
is provided. Other language models display similar tendencies, though the bias is a bit less severe.
This behavior stems from the inherent characteristics of our dataset: abrupt fluctuations are common

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

in observational data, leading models to misinterpret erratic but normal behavior as anomalous. To
illustrate this challenge, we provide a failure case shared across all evaluated models in Fig. 6. As
shown, an increase in TX_Bytes, a typical pattern observed during streaming applications, triggers a
false positive anomaly prediction, irrespective of the behavior of other channels. This highlights the
difficulty these models face in handling naturally abrupt, yet normal, behaviors that are prevalent in
practical engineering scenarios.

Figure 6: Illustration of a failure case that affected all
benchmarked models on this specific sample.

Next, when additional context is provided,
the tendency of models to misclassify nat-
urally fluctuating samples as anomalous is
reduced. However, the precision remains
low, indicating that models still struggle
to distinguish between normal erratic be-
havior and true anomalies. This challenge
extends even to time series foundation mod-
els. Despite being pretrained on vast time
series datasets, the performance of these
models reveals that their learned represen-
tations are insufficient to capture this nu-
anced distinction. Although they surpass the performance of LLMs, the overall performance remains
suboptimal, showcasing how current foundation models struggle to handle the complexities of
real-world observability data.

Finally, with respect to the time series models, our results show that most architectures struggle to
achieve strong performance on the dataset. A notable exception is Mantis Feofanov et al. (2025),
which embeds scale information (specifically, the mean and standard deviation of each patch) into
its representations. This design allows the model to remain aware of the absolute values of the time
series rather than relying solely on normalized trends, as is the case for other architectures. These
findings underscore the importance of preserving scale information and reinforce the value of our
dataset, which retains this information, unlike other existing observability datasets in the literature.

4.2 ANOMALY DURATION ANALYSIS

Table 3: Anomaly duration analysis precision, re-
call, and F1 score.

Model Precision Recall F1 Score
Large language models
GPT-4.1 0.715 0.334 0.456
Claude 3.7 Sonnet 0.697 0.292 0.412

Reasoning models
o4-mini 0.683 0.241 0.356
DeepSeek-R1 0.641 0.349 0.448

Foundation Models
Moment 0.556 0.940 0.699
Moirai2 0.681 0.923 0.784
Toto 0.910 0.931 0.921
Time series models
Mantis 0.8734 0.9144 0.8934
TimesNet 0.7447 0.8661 0.8008
Autoformer 0.6606 0.8467 0.7422
Non-stationary Transformer 0.6667 0.8279 0.7386
FEDformer 0.6613 0.8529 0.7450
Informer 0.6598 0.8535 0.7442

In this second task, the objective is to go beyond
simple anomaly detection and evaluate the mod-
els’ ability to localize the duration of anomalies
within a sample. To this end, we select only
the anomalous samples from the dataset and
present them to the models. Given such a sam-
ple, language models are prompted to identify
the specific segment of the time series where
the anomaly occurs. For the time series models,
anomaly predictions are generated for each KPI
(i.e., covariate) across each timestamp. These
predictions are then aggregated via majority vot-
ing across variates for each observation to de-
termine the anomalous segment. In both cases,
the model outputs are then compared against the
ground truth to compute precision, recall, and
F1 score. The results are provided in Table 3.

Results Analysis. We observe that the models perform relatively well on this task, which suggests
that if the model is provided with an already identified anomalous sample, it is more accurate in
localizing the anomalous segment within it. All in all, this behavior highlights the importance of
dealing with the false positives issue of the detection task, as model performance can be greatly
improved once that hurdle of normal fluctuations vs anomaly is dealt with. This further highlights the
current limitation of foundation models in practical observability settings and the potential room for
improvement.

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Figure 7: Forecasting results of the highest-performing model (Informer) highlight key challenges:
(1) delayed peak predictions, (2) inaccurate magnitude estimation, and (3) difficulty in handling
oscillatory patterns.

4.3 ROOT CAUSE ANALYSIS

Table 4: Accuracy in root cause anal-
ysis.

Model Accuracy
Large language models
GPT-4.1 (without context) 0.215
GPT-4.1 (with context) 0.227
Claude 3.7-Sonnet (without context) 0.115
Claude 3.7-Sonnet (with context) 0.245

Reasoning models
o4-mini (without context) 0.245
o4-mini (with context) 0.275
DeepSeek-R1 (without context) 0.145
DeepSeek-R1 (with context) 0.261

Foundation Models
Moment 0.550
Moirai2 0.225
Toto 0.848
Time series models
Mantis 0.590
TimesNet 0.685
Autoformer 0.300
Non-stationary Transformer 0.520
FEDformer 0.355
Informer 0.600

In this task, the objective is to identify the root cause of an
anomaly, assessing each model’s ability to distinguish between
different types of anomalous behaviors. For language models,
we present each model with an anomalous sample and ask it to
classify the anomaly type among the provided anomaly classes.
In the version with context, we also provide the model with
information about which KPIs are typically affected by each
anomaly type. The results of this evaluation are summarized
in Table 4.
Results Analysis. Language models perform poorly on this
task, struggling to accurately distinguish between different
anomaly types, even when provided with contextual informa-
tion (although performance does improve with context). Time
series models equipped with trained classification heads per-
form better. Notably, Toto performs especially well due to
being pretrained on diverse observability data trends, which
facilitates effective transfer learning for this task.

4.4 FORECASTING

Table 5: Accuracy of the models in fore-
casting.

Model MAE RMSE
Foundation models
Moment 0.5435 0.7216
Moirai2 0.5160 0.6988
Toto 0.4896 0.6759

Time series models
Mantis 0.4578 0.6037
TimesNet 0.1595 0.3964
Autoformer 0.4584 0.8948
Non-stationary Transformer 0.2563 0.5608
FEDformer 0.1702 0.4080
Informer 0.1437 0.3586

Given that language models are known to perform poorly
on forecasting tasks Tan et al. (2024), we focus our anal-
ysis on time series models for this evaluation. The perfor-
mance results of these models are presented in Table 5.

Results Analysis. As observed, model performance varies
considerably, with some models outperforming others.
However, a critical issue that these performance metrics
fail to capture is the inherent difficulty of the forecasting
task given the sporadic nature of the covariates. In fact,
observability data, including our dataset, often exhibits
prolonged periods of stable behavior punctuated by sud-
den spikes, as illustrated in Fig. 7. While models can
successfully forecast constant values, they consistently
fail to capture peaks—either through delayed detection,
inaccurate peak estimation, or difficulty handling oscilla-
tions. Although the stable periods inflate performance metrics such as MAE (shown in Table 5),
this masks the fundamental challenge of forecasting in this environment. Consequently, operating in
such environments requires specialized modeling approaches and presents significant challenges that
demand novel solutions.

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Table 6: Performance of the models on the question-answering task.

Model

Time series QA Network QA
Statistics Periodicity Trends Traffic Mobility Location Congestion

MAEmin MAEmax MAEmin MAEmax Acc Acc Acc Acc Acc
GPT-4.1 0.163 1588.1 57.61 93.01 16.25 44.8 53.3 29.4 49.4
Claude 3.7-Sonnet 0.093 1315.8 32.04 64.04 10.92 41.4 95.0 42.8 46.1

o4-mini 0.027 247.1 37.21 63.15 13.37 43.3 76.7 36.7 49.4
DeepSeek-R1 0.020 1542.6 50.33 61.73 13.39 35.7 98.3 33.9 48.3

4.5 QUESTION ANSWERING

As a final task, we evaluate models on question answering by providing natural language questions
with time series data to support their responses. Using the Q&A samples outlined in Section 3.3, we
design an evaluation pipeline that measures performance using either mean absolute error or accuracy,
depending on the type of question. Since the time series component of the Q&A task is structured by
covariates, and for ease of presentation, we report results using the KPI that achieves the best and
worst performance (in terms of MAE) within the relevant task category. For the network-related Q&A
tasks, each model is provided with contextual information regarding the locations zones and overall
network configuration. Given the textual component of this task and the lack of strong foundational
time series and text models, we restrict our evaluation to language models, as they are currently the
only available models capable of processing both natural language and time series data in a unified
manner. The results of this evaluation are summarized in Table 6.

Results Analysis. The results from this task reveal two key insights. First, in the context of time series
Q&A, the model performs well on KPIs that exhibit smooth and stable behavior, where abrupt changes
are minimal. However, for more erratic KPIs, particularly TX_Bytes, which naturally exhibits abrupt
behavior, the model struggles to make meaningful predictions. This highlights a significant gap
in current foundation models ability to analyze statistical characteristics of complex observability
signals. Second, with regard to the network-related Q&As, while some models show reasonable
performance-especially reasoning ones, they still fall short in effectively linking engineering concepts
and the provided contextual knowledge to the underlying time series data. This highlights a critical
gap in current models’ ability to perform multi-modal reasoning, underscoring the need for models
that can more effectively integrate temporal data with textual context.

Overall Discussions. All in all, our proposed TelecomTS dataset highlights a critical gap between
the benchmark performance of current state-of-the-art models and their applicability to real-world
observability scenarios. Models that achieve strong results on existing datasets often struggle to
generalize to these settings, largely due to the abrupt, noisy, and irregular nature of observability data.
In addition, categorical variables, commonly present in observability systems, remain underexplored
in the design of time series model architectures, which predominantly focus on numerical variates.
Furthermore, the effective encoding of covariates scale information in foundation time series models
is still insufficiently studied, despite its demonstrated importance in our experiments on TelecomTS.

5 CONCLUSIONS

This paper introduced TelecomTS, a large-scale, high-resolution, multi-modal dataset designed to
bridge the gap between existing time series datasets and the complexities of observability systems.
TelecomTS comprises over 1 million observations collected from a 5G communication network,
incorporating categorical and heterogeneous covariates while capturing the erratic and bursty dynam-
ics characteristic of observability environments. Evaluations of state-of-the-art models—including
time series, language, and reasoning models—reveal consistent underperformance on TelecomTS.
This underperformance stems primarily from their inability to handle the highly erratic patterns
characteristic of observability data, as well as their lack of mechanisms to encode and leverage scale
information—an aspect that is crucial in such scenarios. These findings underscore the pressing need
for more robust and scale-aware time series foundation models capable of effectively operating in
complex, real-world observability environments.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

Reproducibility Statement. To ensure reproducibility, we provide the training and evaluation scripts
in the anonymous GitHub found on Page 1. Upon acceptance, we will publicly release the benchmark
to support transparent and fair evaluation within the research community. For all LLMs evaluated in
our study, we explicitly specify the model and configurations (along with prompts provided in the
appendix), allowing experiments to be replicated under the same conditions. Together, these efforts
are intended to facilitate rigorous verification of our results.

REFERENCES

Taha Aksu, Gerald Woo, Juncheng Liu, Xu Liu, Chenghao Liu, Silvio Savarese, Caiming Xiong, and
Doyen Sahoo. Gift-eval: A benchmark for general time series forecasting model evaluation. arxiv
preprint arxiv:2410.10393, 2024.

Abdul Fatir Ansari, Lorenzo Stella, Caner Turkmen, Xiyuan Zhang, Pedro Mercado, Huibin Shen,
Oleksandr Shchur, Syama Syndar Rangapuram, Sebastian Pineda Arango, Shubham Kapoor,
Jasper Zschiegner, Danielle C. Maddix, Michael W. Mahoney, Kari Torkkola, Andrew Gor-
don Wilson, Michael Bohlke-Schneider, and Yuyang Wang. Chronos: Learning the language
of time series. Transactions on Machine Learning Research, 2024. ISSN 2835-8856. URL
https://openreview.net/forum?id=gerNCVqqtR.

Centers for Disease Control and Prevention. Flu Portal Dashboard. https://gis.cdc.gov/
grasp/fluview/fluportaldashboard.html, 2017. Online; accessed 21 May 2025.

Jialin Chen, Aosong Feng, Ziyu Zhao, Juan Garza, Gaukhar Nurbek, Cheng Qin, Ali Maatouk,
Leandros Tassiulas, Yifeng Gao, and Rex Ying. Mtbench: A multimodal time series benchmark for
temporal reasoning and question answering, 2025. URL https://arxiv.org/abs/2503.
16858.

Ben Cohen, Emaad Khwaja, Youssef Doubli, Salahidine Lemaachi, Chris Lettieri, Charles Masson,
Hugo Miccinilli, Elise Ramé, Qiqi Ren, Afshin Rostamizadeh, Jean Ogier du Terrail, Anna-Monica
Toon, Kan Wang, Stephan Xie, Zongzhe Xu, Viktoriya Zhukova, David Asker, Ameet Talwalkar,
and Othmane Abou-Amal. This time is different: An observability perspective on time series
foundation models, 2025. URL https://arxiv.org/abs/2505.14766.

Abhimanyu Das, Weihao Kong, Rajat Sen, and Yichen Zhou. A decoder-only foundation model for
time-series forecasting, 2024. URL https://arxiv.org/abs/2310.10688.

Datadog. Dataset card for boom (benchmark of observability metrics), 2024. URL https://
huggingface.co/datasets/Datadog/BOOM. Available on Hugging Face Datasets.

Hoang Anh Dau, Eamonn Keogh, Kaveh Kamgar, Chin-Chia Michael Yeh, Yan Zhu, Shaghayegh
Gharghabi, Chotirat Ann Ratanamahatana, Yanping, Bing Hu, Nurjahan Begum, Anthony Bagnall,
Abdullah Mueen, Gustavo Batista, and Hexagon-ML. The ucr time series classification archive,
October 2018. https://www.cs.ucr.edu/~eamonn/time_series_data_2018/.

Ensheng Dong, Hongru Du, and Lauren Gardner. An interactive web-based dashboard to track
covid-19 in real time. The Lancet Infectious Diseases, 20(5):533–534, 2020. ISSN 1473-3099.
doi: https://doi.org/10.1016/S1473-3099(20)30120-1. URL https://www.sciencedirect.
com/science/article/pii/S1473309920301201.

Mojtaba A. Farahani, M.R. McCormick, Robert Gianinny, Frank Hudacheck, Ramy Harik, Zhichao
Liu, and Thorsten Wuest. Time-series pattern recognition in smart manufacturing systems: A litera-
ture review and ontology. Journal of Manufacturing Systems, 69:208–241, 2023. ISSN 0278-6125.
doi: https://doi.org/10.1016/j.jmsy.2023.05.025. URL https://www.sciencedirect.
com/science/article/pii/S0278612523000997.

Spilios D. Fassois and John S. Sakellariou. Statistical Time Series Methods for SHM.
John Wiley Sons, Ltd, 2009. ISBN 9780470061626. doi: https://doi.org/10.1002/
9780470061626.shm044. URL https://onlinelibrary.wiley.com/doi/abs/10.
1002/9780470061626.shm044.

10

https://openreview.net/forum?id=gerNCVqqtR
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://gis.cdc.gov/grasp/fluview/fluportaldashboard.html
https://arxiv.org/abs/2503.16858
https://arxiv.org/abs/2503.16858
https://arxiv.org/abs/2505.14766
https://arxiv.org/abs/2310.10688
https://huggingface.co/datasets/Datadog/BOOM
https://huggingface.co/datasets/Datadog/BOOM
https://www.cs.ucr.edu/~eamonn/time_series_data_2018/
https://www.sciencedirect.com/science/article/pii/S1473309920301201
https://www.sciencedirect.com/science/article/pii/S1473309920301201
https://www.sciencedirect.com/science/article/pii/S0278612523000997
https://www.sciencedirect.com/science/article/pii/S0278612523000997
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470061626.shm044
https://onlinelibrary.wiley.com/doi/abs/10.1002/9780470061626.shm044

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Matthew Faw, Rajat Sen, Yichen Zhou, and Abhimanyu Das. In-context fine-tuning for time-series
foundation models. In Forty-second International Conference on Machine Learning, 2025. URL
https://openreview.net/forum?id=uxzgGLWPj2.

Vasilii Feofanov, Songkang Wen, Marius Alonso, Romain Ilbert, Hongbo Guo, Malik Tiomoko, Lujia
Pan, Jianfeng Zhang, and Ievgen Redko. Mantis: Lightweight calibrated foundation model for user-
friendly time series classification, 2025. URL https://arxiv.org/abs/2502.15637.

Behrouz A. Forouzan and Sophia Chung Fegan. TCP/IP Protocol Suite. McGraw-Hill Higher
Education, 2nd edition, 2002. ISBN 0072460601.

Rakshitha Godahewa, Christoph Bergmeir, Geoffrey I. Webb, Rob J. Hyndman, and Pablo Montero-
Manso. Monash time series forecasting archive. In Neural Information Processing Systems Track
on Datasets and Benchmarks, 2021.

Mononito Goswami, Konrad Szafer, Arjun Choudhry, Yifu Cai, Shuo Li, and Artur Dubrawski.
Moment: a family of open time-series foundation models. In Proceedings of the 41st International
Conference on Machine Learning, ICML’24. JMLR.org, 2024.

Antor Hasan, Conrado Boeira, Khaleda Papry, Yue Ju, Zhongwen Zhu, and Israat Haque. Root
cause analysis of anomalies in 5g ran using graph neural network and transformer, 2024. URL
https://arxiv.org/abs/2406.15638.

Muhammad Haseeb. Root cause analysis of the most common network and user experience problems,
March 2021. URL https://www.networkcomputing.com/network-security/
root-cause-analysis-of-the-most-common-network-and-user-experience-problems.
Accessed: September 25, 2025.

Yifan Hu, Yuante Li, Peiyuan Liu, Yuxia Zhu, Naiqi Li, Tao Dai, Shu tao Xia, Dawei Cheng, and
Changjun Jiang. Fintsb: A comprehensive and practical benchmark for financial time series
forecasting, 2025. URL https://arxiv.org/abs/2502.18834.

Jiawei Jiang, Chengkai Han, Wenjun Jiang, Wayne Xin Zhao, and Jingyuan Wang. Libcity: A
unified library towards efficient and comprehensive urban spatial-temporal prediction, 2024. URL
https://arxiv.org/abs/2304.14343.

Xiangjie Kong, Zhenghao Chen, Weiyao Liu, Kaili Ning, Lechao Zhang, Syauqie Muhammad Marier,
Yichen Liu, Yuhao Chen, and Feng Xia. Deep learning for time series forecasting: a survey.
International Journal of Machine Learning and Cybernetics, 16(7–8):5079–5112, February 2025a.
ISSN 1868-808X. doi: 10.1007/s13042-025-02560-w. URL http://dx.doi.org/10.
1007/s13042-025-02560-w.

Yaxuan Kong, Yiyuan Yang, Yoontae Hwang, Wenjie Du, Stefan Zohren, Zhangyang Wang, Ming
Jin, and Qingsong Wen. Time-mqa: Time series multi-task question answering with context
enhancement, 2025b. URL https://arxiv.org/abs/2503.01875.

Siva Rama Krishna Kottapalli, Karthik Hubli, Sandeep Chandrashekhara, Garima Jain, Sunayana
Hubli, Gayathri Botla, and Ramesh Doddaiah. Foundation models for time series: A survey, 2025.
URL https://arxiv.org/abs/2504.04011.

Chenguo Lin, Xumeng Wen, Wei Cao, Congrui Huang, Jiang Bian, Stephen Lin, and Zhirong Wu.
Nutime: Numerically multi-scaled embedding for large-scale time-series pretraining. Transactions
on Machine Learning Research (TMLR), 2024.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash.
Time-MMD: Multi-domain multimodal dataset for time series analysis. In The Thirty-eight
Conference on Neural Information Processing Systems Datasets and Benchmarks Track, 2024a.
URL https://openreview.net/forum?id=fuD0h4R1IL.

Haoxin Liu, Shangqing Xu, Zhiyuan Zhao, Lingkai Kong, Harshavardhan Kamarthi, Aditya B.
Sasanur, Megha Sharma, Jiaming Cui, Qingsong Wen, Chao Zhang, and B. Aditya Prakash.
Time-mmd: Multi-domain multimodal dataset for time series analysis, 2025. URL https:
//arxiv.org/abs/2406.08627.

11

https://openreview.net/forum?id=uxzgGLWPj2
https://arxiv.org/abs/2502.15637
https://arxiv.org/abs/2406.15638
https://www.networkcomputing.com/network-security/root-cause-analysis-of-the-most-common-network-and-user-experience-problems
https://www.networkcomputing.com/network-security/root-cause-analysis-of-the-most-common-network-and-user-experience-problems
https://arxiv.org/abs/2502.18834
https://arxiv.org/abs/2304.14343
http://dx.doi.org/10.1007/s13042-025-02560-w
http://dx.doi.org/10.1007/s13042-025-02560-w
https://arxiv.org/abs/2503.01875
https://arxiv.org/abs/2504.04011
https://openreview.net/forum?id=fuD0h4R1IL
https://arxiv.org/abs/2406.08627
https://arxiv.org/abs/2406.08627

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Liang Liu, Xinzhou Cheng, Jiajia Zhu, Lexi Xu, Songbai Liang, Lijun Cheng, Jinyu Zhai, and Fred
Dong. Root cause analysis based on trace for mobile network problem. In Yue Wang, Yuyang
Liu, Jiaqi Zou, and Mengyao Huo (eds.), Signal and Information Processing, Networking and
Computers, pp. 1185–1192, Singapore, 2023a. Springer Nature Singapore. ISBN 978-981-19-
9968-0.

Yong Liu, Haixu Wu, Jianmin Wang, and Mingsheng Long. Non-stationary transformers: Exploring
the stationarity in time series forecasting, 2023b. URL https://arxiv.org/abs/2205.
14415.

Yong Liu, Haoran Zhang, Chenyu Li, Xiangdong Huang, Jianmin Wang, and Mingsheng Long.
Timer: Generative pre-trained transformers are large time series models, 2024b. URL https:
//arxiv.org/abs/2402.02368.

Ali Maatouk, Fadhel Ayed, Shi Biao, Wenjie Li, Harvey Bao, and Enrico Zio. A framework for the
evaluation of network reliability under periodic demand. IEEE/ACM Transactions on Networking,
32(3):2495–2510, 2024. doi: 10.1109/TNET.2024.3354516.

Ali Maatouk, Nicola Piovesan, Fadhel Ayed, Antonio De Domenico, and Merouane Debbah. Large
language models for telecom: Forthcoming impact on the industry. IEEE Communications
Magazine, 63(1):62–68, 2025. doi: 10.1109/MCOM.001.2300473.

Spyros Makridakis, Evangelos Spiliotis, and Vassilios Assimakopoulos. M5 accuracy competition:
Results, findings, and conclusions. International Journal of Forecasting, 38(4):1346–1364, 2022.
ISSN 0169-2070. doi: https://doi.org/10.1016/j.ijforecast.2021.11.013. URL https://www.
sciencedirect.com/science/article/pii/S0169207021001874. Special Issue:
M5 competition.

Michael W. McCracken and Serena Ng and. Fred-md: A monthly database for macroeconomic
research. Journal of Business & Economic Statistics, 34(4):574–589, 2016. doi: 10.1080/07350015.
2015.1086655. URL https://doi.org/10.1080/07350015.2015.1086655.

Soukayna Mouatadid, Paulo Orenstein, Genevieve Flaspohler, Miruna Oprescu, Judah Cohen,
Franklyn Wang, Sean Knight, Maria Geogdzhayeva, Sam Levang, Ernest Fraenkel, and Lester
Mackey. Subseasonalclimateusa: A dataset for subseasonal forecasting and benchmarking, 2024.
URL https://arxiv.org/abs/2109.10399.

Zainib Noshad, Nadeem Javaid, Tanzila Saba, Zahid Wadud, Muhammad Qaiser Saleem, Moham-
mad Eid Alzahrani, and Osama E. Sheta. Fault detection in wireless sensor networks through the
random forest classifier. Sensors, 19(7), 2019. ISSN 1424-8220. doi: 10.3390/s19071568. URL
https://www.mdpi.com/1424-8220/19/7/1568.

OpenAirInterface Software Alliance. Openairinterface 5g platform. https://www.
openairinterface.org/, 2024.

Santosh Palaskar, Vijay Ekambaram, Arindam Jati, Neelamadhav Gantayat, Avirup Saha, Seema
Nagar, Nam H. Nguyen, Pankaj Dayama, Renuka Sindhgatta, Prateeti Mohapatra, Harshit Kumar,
Jayant Kalagnanam, Nandyala Hemachandra, and Narayan Rangaraj. Automixer for improved
multivariate time-series forecasting on business and it observability data. In Proceedings of the
Thirty-Eighth AAAI Conference on Artificial Intelligence and Thirty-Sixth Conference on Innovative
Applications of Artificial Intelligence and Fourteenth Symposium on Educational Advances in
Artificial Intelligence, AAAI’24/IAAI’24/EAAI’24. AAAI Press, 2024. ISBN 978-1-57735-887-
9. doi: 10.1609/aaai.v38i21.30336. URL https://doi.org/10.1609/aaai.v38i21.
30336.

Haneya Naeem Qureshi, Usama Masood, Marvin Manalastas, Syed Muhammad Asad Zaidi, Hasan
Farooq, Julien Forgeat, Maxime Bouton, Shruti Bothe, Per Karlsson, Ali Rizwan, and Ali Imran.
Toward addressing training data scarcity challenge in emerging radio access networks: A survey
and framework. IEEE Communications Surveys Tutorials, 25(3):1954–1990, 2023. doi: 10.1109/
COMST.2023.3271419.

12

https://arxiv.org/abs/2205.14415
https://arxiv.org/abs/2205.14415
https://arxiv.org/abs/2402.02368
https://arxiv.org/abs/2402.02368
https://www.sciencedirect.com/science/article/pii/S0169207021001874
https://www.sciencedirect.com/science/article/pii/S0169207021001874
https://doi.org/10.1080/07350015.2015.1086655
https://arxiv.org/abs/2109.10399
https://www.mdpi.com/1424-8220/19/7/1568
https://www.openairinterface.org/
https://www.openairinterface.org/
https://doi.org/10.1609/aaai.v38i21.30336
https://doi.org/10.1609/aaai.v38i21.30336

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

Mingtian Tan, Mike A Merrill, Vinayak Gupta, Tim Althoff, and Thomas Hartvigsen. Are language
models actually useful for time series forecasting? In The Thirty-eighth Annual Conference on
Neural Information Processing Systems, 2024. URL https://openreview.net/forum?
id=DV15UbHCY1.

William Toner, Thomas L. Lee, Artjom Joosen, Rajkarn Singh, and Martin Asenov. Performance
of zero-shot time series foundation models on cloud data, 2025. URL https://arxiv.org/
abs/2502.12944.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers, 2024a. URL https://arxiv.
org/abs/2402.02592.

Gerald Woo, Chenghao Liu, Akshat Kumar, Caiming Xiong, Silvio Savarese, and Doyen Sahoo.
Unified training of universal time series forecasting transformers. In Forty-first International
Conference on Machine Learning, 2024b.

Haixu Wu, Jiehui Xu, Jianmin Wang, and Mingsheng Long. Autoformer: Decomposition transformers
with auto-correlation for long-term series forecasting, 2022. URL https://arxiv.org/abs/
2106.13008.

Haixu Wu, Tengge Hu, Yong Liu, Hang Zhou, Jianmin Wang, and Mingsheng Long. Timesnet:
Temporal 2d-variation modeling for general time series analysis, 2023. URL https://arxiv.
org/abs/2210.02186.

Renjie Wu and Eamonn J. Keogh. Current Time Series Anomaly Detection Benchmarks are Flawed
and are Creating the Illusion of Progress . IEEE Transactions on Knowledge & Data Engineering,
35(03):2421–2429, March 2023. ISSN 1558-2191. doi: 10.1109/TKDE.2021.3112126. URL
https://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3112126.

Jiarui Xie, Lijun Sun, and Yaoyao Fiona Zhao. On the data quality and imbalance in machine learning-
based design and manufacturing—a systematic review. Engineering, 45:105–131, 2025. ISSN 2095-
8099. doi: https://doi.org/10.1016/j.eng.2024.04.024. URL https://www.sciencedirect.
com/science/article/pii/S2095809924003734.

Chia-Cheng Yen, Wenting Sun, Hakimeh Purmehdi, Won Park, Kunal Rajan Deshmukh, Nishank
Thakrar, Omar Nassef, and Adam Jacobs. Graph neural network based root cause analysis using
multivariate time-series kpis for wireless networks. In NOMS 2022-2022 IEEE/IFIP Network Op-
erations and Management Symposium, pp. 1–7, 2022. doi: 10.1109/NOMS54207.2022.9789858.

Haoyi Zhou, Shanghang Zhang, Jieqi Peng, Shuai Zhang, Jianxin Li, Hui Xiong, and Wancai Zhang.
Informer: Beyond efficient transformer for long sequence time-series forecasting, 2021. URL
https://arxiv.org/abs/2012.07436.

Tian Zhou, Ziqing Ma, Qingsong Wen, Xue Wang, Liang Sun, and Rong Jin. Fedformer: Frequency
enhanced decomposed transformer for long-term series forecasting, 2022. URL https://
arxiv.org/abs/2201.12740.

13

https://openreview.net/forum?id=DV15UbHCY1
https://openreview.net/forum?id=DV15UbHCY1
https://arxiv.org/abs/2502.12944
https://arxiv.org/abs/2502.12944
https://arxiv.org/abs/2402.02592
https://arxiv.org/abs/2402.02592
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2106.13008
https://arxiv.org/abs/2210.02186
https://arxiv.org/abs/2210.02186
https://doi.ieeecomputersociety.org/10.1109/TKDE.2021.3112126
https://www.sciencedirect.com/science/article/pii/S2095809924003734
https://www.sciencedirect.com/science/article/pii/S2095809924003734
https://arxiv.org/abs/2012.07436
https://arxiv.org/abs/2201.12740
https://arxiv.org/abs/2201.12740

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

5.1 THE USE OF LARGE LANGUAGE MODELS (LLMS)

Large Language Models (LLMs) he use of LLMs was strictly confined to post-writing editorial tasks.
Particularly, they were limited to correcting grammar, punctuation, and spelling errors.

A ANALYSIS OF TELECOMTS AND COMPARISON WITH EXISTING DATASETS

While there exists a plethora of time series datasets, most multivariate datasets lack one or more
of the following characteristics crucial for observability data: heterogeneous variates, fine-grained
resolution, and categorical variates. Here, we present some commonly used datasets and compare
them to TelecomTS.

Heterogeneous Variates. We display two case studies that highlight the homogeneity of
existing multivariate datasets. The ETTh1 dataset contains data from electrical transformers
aggregated on one-hour intervals Zhou et al. (2021). We provide 6 of its 7 variates in Figure 8. As
can be seen, the variates share common behavior. Particularly, all variates exhibit monotonic trends
and have similar high-frequency dynamics, with spikiness and sharp turning points. For example, by
observing the HUFL and LUFL variates, we see a similarity in the peaks and troughs of the variates,
and this loosely holds across most variates as well. Moreover, semantically, these variates are also
similar since six of them measure six different types of power load. For instance, HUFL measures
High Useful Load, LULL measures Low Useless Load, and MUFL measures Middle Useful Load.
Only OT, which measures Oil Temperature, is meaningfully different.

Time
5.0

7.5

10.0

12.5

15.0

17.5
(a) HUFL

Time
0.5

1.0

1.5

2.0

(b) LULL

Time
0.0

2.5

5.0

7.5

10.0

12.5
(c) MUFL

Time
0

2

4

6

(d) HULL

Time

12

14

16

18

(e) OT

Time
1

2

3

4

5

(f) LUFL

Figure 8: Randomly sampled variates from the ETTh1 dataset.

Next, we observe the MotorImagery dataset that collects EEG data of imagined body movements
using an 8 × 8 platinum electrode grid. Each of the 64 sensors corresponds to a variate, and data is
recorded every millisecond. While the variates shown in Figure 9 display different trends, we see that
they largely behave similarly. The variates lack volatility and exhibit minimal noise and no significant
fluctuations or erratic behavior. Particularly, we can see low-frequency structure that spans significant
portions of the interval, and we generally have smooth dynamics. Semantically, there is no diversity
as all variates represent the same sensor measurement, just at different locations.

The above two examples were some of the many datasets that exhibited homogeneity across their
variates. In fact, in our experiments, we selected multivariate datasets containing more than six
variates from commonly used time series foundation model datasets, including the Unified Time
Series Dataset, LOTSA, and others Liu et al. (2024b); Woo et al. (2024b). We then randomly sampled
six variates and time series segments of 128 timestamps. We found that the vast majority of these
samples resembled the aforementioned examples, lacking sufficient diversity among their variates.

Fine-Grained Resolution. A large portion of existing time series datasets are temporally aggregated
or averaged across multiple entities relevant to the scenario at hand. For example, climate metrics

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

Time
6

4

2

0

2

(a) var_14

Time

5.0

2.5

0.0

2.5

5.0

(b) var_1

Time

4

2

0

2

4
(c) var_47

Time

0

2

4

6

8
(d) var_17

Time
6

4

2

0

2

4

(e) var_15

Time
10

0

10

20

(f) var_63

Figure 9: Randomly sampled variates from the MotorImagery dataset.

are typically aggregated at the monthly level, and energy usage data is frequently averaged across
different cities. Such aggregation results in smoother and more predictable patterns, rendering these
datasets unsuitable for observability applications that demand fine-grained resolution and the capacity
to capture erratic, high-variance dynamics.

When it comes to temporal aggregation, the bulk of the datasets used by time series foundation
models are recorded hourly, daily, weekly, and monthly. For example, at best, Chronos and TimesFM
are trained on time series of 5-minute and 10-minute granularities, respectively Ansari et al. (2024);
Liu et al. (2024b). Moirai uses datasets on the second/multi-second granularity, but these comprise
only 0.054% of observations Woo et al. (2024b).

To highlight the impact of such resolution on the behavior of the time series, we report the FRED-MD
dataset, a macroeconomic dataset comprising 107 variates spanning categories such as consumption,
labor, income, interest rates, and other economic indicators McCracken & and (2016). Notably,
the data is collected on a monthly frequency, which helps illuminate long-term macroeconomic
trends. As seen in Figure 10, this leads to smooth trends, where several variables exhibit strong,
positive, and smooth trends, while others display low-frequency fluctuations with minimal abrupt
changes. This is far from the erratic and high-variance environments encountered in observability
applications. In another example, we report the Weather dataset that contains hourly data on
temperature, humidity, wind, and other climate metrics Zhou et al. (2021). Under the hourly frequency,
we can see that daily or weekly trends dominate in Figure 11. In particular, DewPointFarenheit and
DryBulbCelsius exhibit strong daily fluctuations, which can be too predictable and less relevant
to erratic observability dynamics. The other variates also exhibit relatively smooth trends and low
variance between consecutive timestamps.

Regarding spatial aggregation, many time series datasets collect data on the city, state, or even
country level, which can smooth out less predictable, high-frequency behavior. For example, the
COVID Deaths dataset documents daily deaths from the COVID-19 pandemic where each time series
corresponds to a whole country Dong et al. (2020). Similarly, the CDC Fluview ILINet captures
illness data on the state, regional, and national level Centers for Disease Control and Prevention (2017).
Although spatial aggregation and temporal aggregation are often unsuitable for many observability
applications, we note that there exists increasing interest in time series datasets with fine-grained
spatial resolution due to the increased popularity of spatiotemporal data and distributed sensor
deployment Jiang et al. (2024).

Multi-modal Downstream Tasks. The lack of multi-modal time series datasets remains a significant
bottleneck in the development of capable multimodal time series foundation models. There exists few
natively multimodal datasets, most notably Time-MMD, while most datasets retroactively annotate
existing time series data, such as in TIME-MQA which annotates datasets from UTSD Liu et al.
(2025); Kong et al. (2025b). As a result, many studies in this domain are forced to bootstrap their

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

Time

40

45

50

(a) series_4

Time

40

50

60

(b) series_95

Time
13000

14000

15000

16000

17000

18000
(c) series_36

Time

17000

17500

18000

18500

19000

(d) series_32

Time
21000

22000

23000

24000

(e) series_29

Time
80000

85000

90000

95000

100000

105000
(f) series_18

Figure 10: Randomly sampled variates from the FRED-MD dataset.

Time

9.6

9.8

10.0

10.2

10.4

(a) Visibility

Time
10

15

20

25

30
(b) DewPointFarenheit

Time
25

30

35

40

(c) WetBulbFarenheit

Time
21.65

21.70

21.75

21.80

21.85

(d) StationPressure

Time
0

5

10

(e) DryBulbCelsius

Time
12.5

10.0

7.5

5.0

2.5

(f) DewPointCelsius

Figure 11: Randomly sampled variates from the WTH dataset.

own datasets. Moreover, the majority of existing datasets are designed solely for forecasting tasks,
with limited support for other practical applications such as anomaly detection or root cause analysis.

Our Dataset. From Figures 12 and 13, we see that our dataset starkly differs from the previously
displayed examples. Firstly, UL_Protocol and DL_Protocol are both categorical variates that exhibit
unique temporal and statistical dynamics. Following this, we see that we have high variate diversity.
In our numerical data, we have low-frequency variates such as UL_MCS, DL_MCS, and RSRP,
which may be less erratic. On the other hand, we have high variance and noisy variates with UL_SNR,
UL_NPRB, etc. Even within our high variance variates, we have lots of diversity. We can see that
UL_SNR has many sharp turns, frequent spikes and troughs. On the other hand, UL_NPRB is very
spiky in one direction and often resets to a baseline value. Moreover, both RX_Bytes and TX_Bytes
exhibit sporadic spikes at lower frequencies, typically corresponding to specific events—such as
bursts in downloaded data. These observations exemplify the importance of fine-grained data, as such
unpredictable spikes are not averaged or aggregated out at our 100ms time-scale. Finally, beyond the
behavior of the covariates, it is important to note that our variates span multiple data types—ranging
from integers (e.g., TX_Bytes) to floating-point values such UL_BLER—covering distinct range of
values.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

Time
0

5000

10000

15000
(a) RX_Bytes

Time
none

UDP

TCP
(b) UL_Protocol

Time
120

118

116

114
(c) RSRP

Time

0.1

0.2

0.3

0.4

0.5

(d) UL_BLER

Time
12

14

16

(e) UL_SNR

Time
5

10

15

20

25

30
(f) UL_NPRB

Figure 12: Randomly sampled sequence from TelecomTS.

Time
6

8

10

12

14

(a) UL_MCS

Time
0

1000

2000

(b) Estimated_UL_Buffer

Time
0

20

40

(c) PRBs_DL_Current

Time
0.05

0.10

0.15

0.20

0.25
(d) DL_BLER

Time
6

8

10

12
(e) DL_MCS

Time
none

UDP

TCP
(f) DL_Protocol

Figure 13: Randomly sampled sequence from TelecomTS.

B DATA COLLECTION DETAILS

B.1 5G NETWORK

Overview. To facilitate the collection of fine-grained temporal and cross-layer network KPIs from a
fully operational 5G system, we implemented a standalone 5G network deployed in a controlled lab
environment capable of supporting real over-the-air transmissions and enabling diverse, repeatable
experimental configurations. The network consists of a single monolithic base station, connected to
a software-defined radio (SDR) with a radio unit (RU) for low-level physical layer processing and
signal transmission. The SDR interfaces with the gNB via a dedicated 10 Gbps Ethernet fronthaul
link. Additionally, the gNB connects to the 5G core network instance over standard N2/N3 interfaces
through a separate 10 Gbps Ethernet backhaul link, enabling full end-to-end standalone operation.
A visual overview of the network deployment is provided in Fig. 2, where (a) shows the mobile
devices and the RU, and (b) illustrates the server-side infrastructure hosting the core network and
baseband functions. While the system supports multi-band operation, all experiments in this work
were conducted in the n78 TDD band, using a 38.16 MHz channel bandwidth centered at 3.319 GHz.

The gNB and core network were implemented using the latest release of the open-source OpenAirIn-
terface (OAI) software stack OpenAirInterface Software Alliance (2024). The baseband processing
stack of the gNB, including the PHY, MAC, RLC, PDCP, and RRC layers, was deployed on a
high-performance server equipped with an AMD Ryzen Threadripper PRO CPU (4.4 GHz, 24 cores)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

and 128 GB of RAM. The 5G core network included all standard functional entities defined by 3GPP,
including the access and mobility management function (AMF), session management function (SMF),
user plane function (UPF), authentication server function (AUSF), network repository function
(NRF), unified data repository (UDR), and unified data management (UDM). These components
were deployed as containerized services within a high-availability Kubernetes cluster, hosted on a
separate high-performance server with the same hardware specifications as the gNB host.

The RU was realized using a USRP N300 SDR, configured with two UBX daughterboards, each sup-
porting up to 100MHz of instantaneous bandwidth per channel. To enhance directional transmission
and reception, we utilized a 2×2 beamforming configuration provided by OAI. Finally, Google Pixel
6 and 7 smartphones, provisioned with programmable 5G SIM cards, served as the User Equipment
(UE) throughout all experiments.

Adversarial Environment Setup. To further enhance the experimental environment and enable data
collection under adversarial conditions, a suite of malicious jammers was implemented and integrated
into the network. As shown in Fig. 2(c), a USRP X310 SDR was utilized to synthesize controlled
over-the-air jamming signals using GNU Radio software, with the jammer strategically positioned at
varying locations relative to the RU to emulate diverse radio link impairments. To introduce flexibility
and realism into the adversarial environment, multiple jamming configurations were implemented,
allowing dynamic control over transmission gain, occupied bandwidth, and jammer activity patterns.
Throughout the campaign, three types of jamming attacks were generated: single-tone jamming
(continuous narrowband interference at a specific frequency), pulsed jamming (intermittent bursts
of narrowband interference), and wideband noise jamming (broad-spectrum interference across a
wide frequency range). These jamming signals were transmitted over the air with the objective of
disrupting the RU–UE communication link during the data collection process and observing the
resulting impact across multiple KPIs, including signal quality, throughput, and error rates.

Network Performance Tuning and Optimization. To support long-duration experimentation and
ensure reliable KPI collection with real-time granularity, several low-level software and hardware
optimizations were required to maintain stable end-to-end network performance. During early
operation, we observed recurring instability during measurements, often resulting in intermittent UE
disconnections and incomplete KPI traces. This instability was primarily attributed to three factors:
(i) the limited transmit power of the RU, which reduced link robustness during sustained over-the-air
operation; (ii) processing bottlenecks on the gNB baseband stack, where high-rate IQ samples were
occasionally delayed or dropped; and (iii) external in-band interference, which intermittently affected
reception quality in the n78 band.

To address these challenges, we introduced a set of system-level optimizations targeting both the server
running the baseband processing functions and the SDR. On the baseband server, we disabled hyper-
threading to eliminate core contention, deployed a low-latency Linux kernel to reduce scheduling
delays, disabled kernel page table isolation to mitigate Spectre-related overhead, and set the CPU
governor to performance mode to maintain maximum CPU performance by preventing frequency
scaling and disabling energy-saving states. On the RU side, the fronthaul link was carefully tuned to
ensure deterministic and lossless IQ sample delivery. Jumbo frames with a Maximum Transmission
Unit (MTU) of 9000 bytes were enabled to reduce packetization overhead, and both kernel socket
buffers and Ethernet ring buffers were enlarged to accommodate high-throughput traffic without
introducing jitter or packet drops. Finally, to minimize the impact of external interference, the
operating frequency within the n78 band was selected based on in-band noise measurements, allowing
us to identify and utilize the cleanest available sub-band for over-the-air transmission.

B.2 DATA COLLECTION AND PREPARATION

Network Zoning for Controlled Experiments. To systematically capture KPI variations under
diverse radio conditions, the network was deployed in a controlled lab environment covering ap-
proximately 70 m2. The space was partitioned into three spatial zones—Zone A, Zone B, and Zone
C—based on the distance between the UE and the RU. This zoning strategy enabled controlled exper-
imentation across distinct wireless conditions, facilitating structured data collection for downstream
analysis. Zones closer to the RU correspond to stronger signal conditions with minimal interference,
while more distant zones experience weaker signals due to increased distance and potential obstacles.

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Zone A includes all locations within a 3-meter radius of the RU, representing scenarios with strong
signal strength, low path loss, and minimal fading.

Figure 14: Spatial parti-
tioning of the environment
into 3 zones.

Zone B spans distances between 3 and 6 meters, emulating moderate
signal quality with potential variations due to partial obstruction or en-
vironmental reflections.

Zone C comprises all areas beyond 6 meters, corresponding to weak-
signal conditions with increased attenuation, and a higher likelihood of
radio link degradation.

A visual layout of the lab environment and spatial zoning configuration
is shown in Fig. 14, illustrating the relative position of the RU and the
boundaries of each zone.

Application-Level Traffic and Interference Scenarios. To capture
network behavior under representative real-world conditions, we selected
a suite of application-layer scenarios encompassing both typical user
behavior and adverse operational contexts. Experiments were conducted
under two UE mobility profiles: (i) a static profile, where the UE remained
stationary, and (ii) a mobile profile, where the UE moved at a constant pedestrian speed of 5 km/h to
emulate realistic urban mobility in the lab.

The selected applications reflect common mobile usage patterns while imposing varied demands
on different layers of the network protocol stack. Specifically, in the mobile device we run a set of
typical mobile applications during data collection, including buffered video streaming via YouTube,
live video streaming via Twitch, and large file downloads over HTTP. In addition, to examine
system performance under resource contention, we introduced a controlled congestion scenario by
connecting a second UE executing concurrent download tasks, thereby increasing cell load during the
data collection phase.

A detailed breakdown of the data collection observations for each traffic type, mobility pattern, and
zone is presented in Table 7, capturing the spatiotemporal scope of the experimental campaign across
all operating conditions.

Category Condition Activity Zones Observations

Normal

Static

No congestion
YouTube A, B, C 100k/zone
Twitch A, B, C 100k/zone

File A, B, C 100k/zone

Congestion
YouTube A, B, C 10k/zone
Twitch A, B, C 10k/zone

File A, B, C 10k/zone

Motion
YouTube n/a 10k
Twitch n/a 10k

File n/a 10k

Anomalous

Jamming
YouTube A 10k
Twitch A 10k

File A 10k

Synthetic
YouTube A, B, C 10k/zone
Twitch A, B, C 10k/zone

File A, B, C 10k/zone

Table 7: Breakdown of total data collection sample counts across all zones and experimental condi-
tions.

To study network behavior under adversarial conditions, we conducted controlled data collection
sessions with active jamming during live application traffic. In each session, the UE maintained
continuous traffic flows while exposed to over-the-air interference from a co-located jammer, allowing

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

us to observe both control- and data-plane KPIs under degraded radio conditions. The jammer
remained stationary throughout the experiments, with its placement illustrated in Fig. 14. We
employed multiple jamming patterns, including wideband noise covering the full n78 band, single-
tone, and pulse-based interference. The jamming signal followed a periodic pattern, alternating
between 2 seconds of activity and 8 seconds of silence. To ensure effective disruption of the RU–UE
link, the jammer’s transmit gain was set to 25 dBi. Representative spectrograms showcasing benign
and jammed scenarios are presented in Fig. 15. These include samples of wideband noise and pulsed
interference patterns used during the experiments.

(a) Benign (b) Wideband Jamming (c) Pulsed Jamming

Figure 15: Spectrograms illustrating benign and adversarial interference patterns during collection.

Data Collection, Filtering, and Synchronization. For each measurement scenario, a single mobile
device was connected to the network and actively engaged in the designated traffic session for a
continuous duration of four hours. During each session, data was collected at both the link and
the network layer to enable detailed analysis of network behavior. To isolate relevant traffic, all
control plane signaling was excluded from the dataset. In the user plane, only transport-layer headers
(i.e., TCP and UDP) were retained, while payload data was discarded to reduce storage overhead.
Packet-level information was captured using Wireshark on the core network, enabling inspection of
traffic characteristics and flow-level behavior, followed by IP filtering to isolate the target device.

Due to independent timestamping mechanisms between the link layer logging modules and the packet
capture software, a temporal misalignment existed across the two data sources of the order of two
seconds. To address this, we found the time offset that best matched the transmitted byte counts (from
the Physical layer) with the downlink packet counts (from the network trace), which are expected to
be highly correlated, and applied it to all PHY-layer KPIs to synchronize them with the network-layer
trace. For this, we used a histogram-based matching technique: for each 300 ms window of the
transmitted byte series, we computed the KL divergence against 300 ms windows of the packet count
series, slid with a 30 ms stride. The best-matching offset for each window was recorded, and the
mode of these offsets was selected as the final alignment correction.

(a) Before alignment (b) After alignment

Figure 16: Number of packets (top) and number of transmitted bytes (bottom) before (a) and after (b)
alignment.

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Algorithm 1 End-to-End Data Collection Procedure

1: Initialize Core Network
2: Deploy containerized 5G Core components as pods in the Kubernetes Cluster
3: Verify inter-component connectivity between the pods
4: Configure Radio Unit
5: Set sampling rate, transmit gain, and center frequency
6: Ensure proper synchronization and signal lock
7: Activate gNB
8: Launch baseband processing stack
9: Establish registration and connection to the Core network

10: Start Data Logging Modules
11: Activate KPI loggers on gNB and UE
12: Start user plane packet capture on the Core network
13: Connect Mobile Device
14: Power on mobile device and disable airplane mode
15: Attach device to the network and establish user session
16: Verify IP configuration and data-plane reachability
17: Run Traffic Session
18: Generate traffic via selected application (YouTube, Twitch, File Downloading)
19: Maintain session for the experiment duration
20: Postprocessing
21: Filter control-plane traffic, discard payload data, and retain only packets associated with the

target device IP
22: Parse KPIs and packet logs
23: Apply timestamp alignment (e.g., histogram-based matching)
24: Export synchronized dataset for downstream analysis

To ensure consistency and repeatability across experiments, we followed a structured procedure that
orchestrated each stage of the data collection pipeline—from system initialization to postprocessing.
The detailed steps of this end-to-end process are outlined in Algorithm 1, which captures the sequence
of operations for initializing the 5G network, configuring devices, capturing KPIs and traffic, and
exporting the synchronized dataset for analysis.

Overview of Collected KPIs. To enable fine-grained monitoring of wireless performance across all
protocol layers, our dataset includes a rich set of KPIs captured from both the base station and the
mobile device. These KPIs span the physical (PHY), medium access control (MAC), and network
layers, providing a multi-dimensional view of network behavior under varying radio, mobility, and
interference conditions. The metrics include signal quality indicators, resource allocation statistics,
error rates, transport protocol usage, and traffic volume, allowing detailed analysis of both control and
data plane dynamics. The tables below summarize each collected KPI, including a brief description
of each for reference.

RSRP (Reference Signal Received Power)

Layer: PHY Reported by: UE Type: Numerical (float) Range: [-140, -45]
Measures the received signal strength from the base station’s reference signals. Reflects path
loss and coverage quality.

UL_SNR (Uplink Signal-to-Noise Ratio)

Layer: PHY Reported by: UE Type: Numerical (float) Range: [-3.5, 60]
Indicates the uplink signal quality at the receiver. A higher SNR corresponds to better link
reliability.

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

DL_BLER / UL_BLER (Downlink / Uplink - Block Error Rate)

Layer: MAC Reported by: gNB Type: Numerical (float) Range: [0, 1]
Fraction of erroneous transport blocks over total transmitted blocks in downlink/uplink. High
BLER signals poor radio conditions.

DL_MCS / UL_MCS (Downlink / Uplink - Modulation and Coding Scheme)

Layer: MAC Reported by: gNB Type: Numerical (float) Range: [0, 27]
Represents the average modulation and coding level selected for a given link. Higher values
indicate more aggressive transmission schemes.

UL_NPRB (Allocated Uplink Physical Resource Blocks)

Layer: MAC Reported by: gNB Type: Numerical (int) Range: [0, 105]
Number of Physical Resource Blocks assigned to the UE for uplink transmission during a
Transmission Time Interval.

Estimated_UL_Buffer

Layer: MAC Reported by: gNB Type: Numerical (int) Range: [0, 250k]
Estimation of buffered uplink data at the UE as reported to the gNB via Buffer Status Reports.

PRBs_DL_Current / PRBs_UL_Current (Downlink / Uplink - Physical Resource Blocks)

Layer: MAC Reported by: gNB Type: Numerical (float) Range: [0, 105]
Number of Physical Resource Blocks currently allocated to the UE in the downlink/uplink
direction in a given Transmission Time Interval.

PRB_Utilization_DL / PRB_Utilization_UL (Downlink / Uplink - Physical Resource Block
Utilization Ratio)

Layer: MAC Reported by: gNB Type: Numerical (float) Range: [0, 100]
Percentage of total Physical Resource Blocks utilized by the UE in downlink/uplink over
time, indicating traffic load and resource usage.

TX_Bytes / RX_Bytes (Transmitted / Received Bytes)

Layer: MAC Reported by: gNB Type: Numerical (int) Range: [0, 450M]
Total number of user-plane bytes transmitted and received, used to compute throughput and
volume.

UL_Protocol / DL_Protocol (Uplink / Downlink - Transport Protocol)

Layer: Network Reported by: UPF Type: Categorical Range: {TCP, UDP, None}
Specifies the transport protocol (TCP or UDP) used in the uplink/downlink direction.

UL_NumberOfPackets / DL_NumberOfPackets (Uplink / Downlink - Packet Count)

Layer: Network Reported by: UPF Type: Numerical (int) Range: [0, 10k]
Total number of user-plane packets observed in the uplink/downlink direction.

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

Table 8: List of Function Types

Function Type Temporal Description Parameters

Constant Addition ✗ Add a fixed constant to all points Additive Shift
Constant Multiplication ✗ Multiply all points by a fixed factor Multiplicative Factor
Linear Growth ✓ Increase linearly Slope
Exponential Growth ✓ Multiply data by an exponential Growth Rate
Logistic Growth ✓ Add a logistic growth function Growth Rate
Logarithmic Decay ✓ Multiply by decay factor Decay Rate
Sinusoidal Fluctuation (additive) ✓ Add a sine function Amplitude, Frequency, Shift
Sinusoidal Fluctuation (multiplicative) ✓ Multiply by a sine function Amplitude, Frequency, Factor

C ANOMALY CURATION DETAILS

Modeling KPI Effects. To simulate an anomaly, we apply transformations to our collected wireless
data. Specifically, we alternate between sampling from two exponential distributions, one to get the
anomaly inter-arrival time (the time between two anomalies) and one to get the anomaly duration.
This gives us a set of timestamps (si, ti) of anomaly start and end time pairs. For each timestamp
(si, ti), we will assign it some anomaly type ai. Then, for the relevant affect KPIs affected by this
anomaly type (vsi

j , . . . , vti
j), we apply a function to get our transformed data, (f(vsi

j), . . . , f(vti
j)).

As anomalies can have diverse effects on KPIs, as evidenced by the gathered scholarly material, we
use 8 different function types listed in Table 8. Two of such function types, constant addition and
multiplication, are static, while the other functions evolve with time. Next, given that many KPIs have
a fixed range of possible values (e.g., UL_BLER can only be between 0 and 1), we assign boundaries
to all KPIs when appropriate and truncate any values that exceed these boundaries. This often occurs
with transformations such as exponential growth, where KPIs experience saturation, usually signaling
a severe anomaly.

However, truncating to these “hard” boundaries can often be unrealistic, as most systems will fail
before reaching theoretical saturation and not all anomalies manifest as saturations. Therefore, we
set a range of soft bounds for each KPI and sample from these ranges to get our threshold. To avoid
excessively aggressive soft bounds that truncate non-anomalous data, we take the threshold to be the
minimum or maximum with respect to the 20th lowest or largest data point in the input time series.
We choose the number 20 empirically to avoid outliers or measurement errors that may result in an
issue like UL_BLER being equal to 1.06. Furthermore, when a KPI reaches saturation, we inject
noise at the saturated data points, as otherwise, we get unrealistic flat clipped values.

For specific function classes, such as sinusoidal fluctuations, linear growth, and logistic growth, we
may choose to inject small noise to maintain realism for these additive effects. Additionally, a naive
implementation of exponential growth leads to incredibly noisy data, often due to the presence of 0
or other small values in the data, as the data will jump between exponentially high values and near 0
within a few timestamps. For example, the transmitted bytes may be very high in general. However,
for a given decisecond, it is possible that no bytes are transmitted. We remedy this by first injecting
small positive noise before multiplying by the exponential factor. Furthermore, small variations in
the natural noise of our data will blow up under exponential growth. Therefore, we apply kernel
smoothing to get the general trend of our KPI and subtract the kernel-smoothed values from our
original values to get residuals. Then, we apply exponential growth to our smoothed values and add
back our residuals. This leads to realistic exponential growth behaviors with appropriate variance.

Time
122.5

120.0

117.5

115.0

112.5

110.0

107.5
(a) Constant

Time

50

100

150

200
(b) Linear

Time
0

2000

4000

6000

(c) Exponential

Time
0.05

0.10

0.15

0.20

0.25

0.30

(d) Sinusoidal

Figure 17: Examples of anomaly effects under varying function types.

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

Table 9: List of Anomalies

Anomaly Domain Temporal Affected KPIs

Antenna Failure Hardware ✓ 13
Buffer Overflow Software/Infrastructure ✓ 10
Co-Channel Interference (Mild) Infrastructure ✗ 9
Co-Channel Interference (Severe) Infrastructure ✗ 11
Doppler Shift Environment ✓ 7
Faulty Handover Algorithm (Frequent) Software ✓ 9
Faulty RF Filters Hardware ✓ 9
High Network Congestion (Static) Usage ✗ 10
High Network Congestion (Temporal) Usage ✓ 10
Resource Allocation Bugs Software ✓ 9

Anomaly Curation. We carefully select a list of 10 representative anomalies listed in Table 9 that
span diverse effects on KPIs. These anomalies can be classified into one of five types of wireless
anomalies: hardware failure, software issues, infrastructure issues, environmental interference, and
anomalous usage. Three of our anomalies are static, meaning that all KPIs are affected statically,
reflecting sudden onset anomalies. The remaining anomalies are temporal and represent anomalies
that gradually build up. For every anomaly, we use scholarly material to select a list of KPIs that
would be affected under this anomaly and match each KPI with a function class/KPI effect mentioned
in the previous section. Most importantly, to accurately simulate anomalies, we carefully pick
parameters for these functions classes to match the anomaly. Given an affected KPI of an anomaly,
we use GPT-4.1 to generate a range of feasible values for each parameter. Using a range allows us to
model the stochasticity of real-world anomalies. Then, at generation time, we will uniformly sample
within this range to determine the transformation applied to our data. We repeatedly verify these
parameters using human feedback until we have satisfactory results.

Troubleshooting Ticket. We provide GPT-4.1 with the prompt found in Appendix D to generate a
troubleshooting ticket each time we simulate an anomaly in our wireless data. The anomaly impact
variable inputs a fixed textual description for each anomaly that lists how every affected metric
changes under the anomaly. The alarm time and resolution time are optional inputs that match the
start and end time of the corresponding anomaly. We use a human-in-the-loop process to ensure
quality for our tickets.

Anomaly Dataset. To obtain a final anomaly dataset, we slice all anomalous time series sequences
into sequences of length 128 with a stride of 32. We remove all samples that no longer contain
anomalous data points. We also remove all samples containing two different types of anomalies
to simplify downstream tasks and to avoid unrealistic anomaly density, as recommended by Wu &
Keogh (2023). Finally, we add relevant metadata such as alarm and resolution time, affected metrics,
and an indicator array for anomalous data points.

D PROMPTS

Troubleshooting Ticket. This prompt is used to generate multimodal anomaly detection and
root cause analysis simultaneously with the simulated time series anomaly data in Appendix
C. For every instance of an anomaly, we record its type (for instance “Antenna Failure”) as
well as its impact on metrics. The latter is a paragraph that describes how each affected KPI
is transformed under the anomaly and its corresponding function type. Optionally, we can
include the alarm and resolution time. We prompt GPT-4.1 to perform a root cause analysis
and generate a hypothetical solution to the simulated anomaly. Such troubleshooting tickets can
hopefully endow multimodal anomaly detection models with anomaly analysis and resolution insights.

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

Troubleshooting Ticket Generation Prompt

Generate a concise troubleshooting summary for a wireless network anomaly.

Context:
• Anomaly Type: anomaly_type
• Alarm Time: anomaly_time [Optional]
• Resolution Time: resolved_time [Optional]
• Anomaly Impact: anomaly_impact

Format the response as follows (DO NOT add extra explanations):
Diagnose Summary:

• Issue: [Briefly describe the detected anomaly.]
• Symptoms: [Summarize affected metrics and key changes.]
• Root Cause: [State the most likely cause.]
• Resolution: [Summarize the main actions taken to fix it.]

Anomaly Experiment Prompts. The following prompts are used to assess a model’s anomaly
detection and analysis capabilities. For each prompt, we provide a time series sample as well as the
alarm and resolution times. Detailed instructions and context are given, and we optionally provide
additional context on wireless data or anomaly descriptions to aid the model. Finally, we prompt the
model to output a strictly formatted conclusion block that allows for regular expression parsing.

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

Anomaly Detection Prompt

You are an AI assistant tasked with analyzing time series data for anomalies in a wireless
network. You will be provided with a time series dataset containing various metrics and a
specific time range to analyze. The time series is sampled every 0.1 seconds (i.e. timestamps
are a decisecond apart), and contains a total of n time steps. Your goal is to detect any
anomalies within this range and identify the timestamps where they occur.

[Optional, if context=True]
Note: Wireless network data is naturally noisy and erratic, even under normal conditions.
Sporadic spikes, sharp drops, or momentary fluctuations can appear without indicating any
true anomaly. This sequence is only ℓ seconds long, so be especially cautious in interpreting
short-term changes as significant. Only mark something as anomalous if there is clear and
sustained evidence of abnormal behavior across multiple metrics.

First, review the time series data provided from start_time to end_time:

metric_1: v1
1 v1

2 . . . v1
n

metric_2: v2
1 v2

2 . . . v2
n

more metrics ...

[Optional, if context=True]
To detect anomalies, follow these steps:

1. Begin by scanning the time series for any unusual behavior: sharp spikes or drops,
sustained deviations, or values inconsistent with the expected range.

2. Consider inter-metric relationships — for example, whether high buffer utilization
coincides with low throughput or high BLER.

3. All anomalies occur at the same timestamp range, so you should identify a single set
of timestamps for the anomaly event and attribute affected metrics to that period.

Summarize your conclusion as follows:
<conclusion>
Anomaly Detected: [Yes/No]
[If yes, include the following strictly formatted line:]
Anomaly Timestamps: [(start_time1, end_time1),

(start_time2,
end_time2), ...]
</conclusion>

Only base your analysis on the provided time range. If no anomaly is detected, write:
<conclusion>
Anomaly Detected: No
</conclusion>

Do not include additional comments or summaries outside this format.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Anomaly Boundary Prompt

You are an AI assistant tasked with analyzing time series data for anomalies in a wireless
network. You will be provided with a time series dataset containing various metrics and a
specific time range to analyze. The time series is sampled every 0.1 seconds (i.e. timestamps
are a decisecond apart), and contains a total of n time steps. Your goal is to identify a single
contiguous time interval during which an anomaly occurs. There is exactly one anomaly in
the data, and it may span the entire sequence or just a sub-segment.

First, review the time series data provided from start_time to end_time:

metric_1: v1
1 v1

2 . . . v1
n

metric_2: v2
1 v2

2 . . . v2
n

more metrics ...

Summarize your conclusion as follows:
<conclusion>
Anomaly Timestamps: (YYYY-MM-DD HH:MM:SS.sss, YYYY-MM-DD
HH:MM:SS.sss)
</conclusion>

Do not include any additional commentary or explanation outside the specified format.
Respond with only the <conclusion> block and nothing else.

Root Cause Analysis Prompt

You are an AI assistant tasked with diagnosing a known anomaly in wireless network time
series data. You will be provided with a short time series segment sampled every 0.1
seconds, covering ℓ seconds and n time steps. This sequence ranges from start_time to
end_time and is confirmed to contain an anomaly.

The anomaly is known to be one of the following, and each is equally likely to occur in this
dataset. Do not assume any anomaly is more common or more likely than another.
Your task is to identify the most plausible anomaly type from the following list:
anomaly_list

Please analyze the metrics below and select the single most likely anomaly.

[Optional, if descriptions=True]
Here is a summary on how the provided anomalies generally behave: [Anomaly
descriptions]

Here is the time series data:
metric_1: v1

1 v1
2 . . . v1

n
metric_2: v2

1 v2
2 . . . v2

n
more metrics ...

Summarize your conclusions as follows:
<conclusion>
Anomaly Type: [One exact string from the predefined

anomaly
list.]
</conclusion>

Do not include any additional commentary or explanation outside the specified format.
Respond with only the <conclusion> block and nothing else.

Time Series QA Prompts. These prompts are used to assess a model’s time series analysis
capabilities. For each prompt, we provide a single KPI from a sample and ask the model to perform
elementary statistical analysis such as detecting the average value, variance, etc. Oftentimes,
models will output reasoning steps, so we include warnings to discourage such behavior, which has
significantly helped with regular expression parsing.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Mean Detection Prompt

Consider the following list of numbers representing a time series: v1, v2, . . . , vn. Some
values may be missing (NaN). What is the average channel value of this series, ignoring
NaNs? Respond with only a single float rounded to 2 decimal places — no other text or
numbers. Please DO NOT include any other analysis or explanations.

Variance Detection Prompt

Consider the following list of numbers representing a time series: v1, v2, . . . , vn. Some
values may be missing (NaN). What is the variance of channel for this series, ignoring
NaNs? Respond with only a single float rounded to 2 decimal places — no other text or
numbers. Please DO NOT include any other analysis or explanations.

Periodicity Detection Prompt

Consider the following series: v1, v2, . . . , vn. Please investigate whether the series exhibits
strong periodicity, ignoring any NaN values. If it does, respond with an integer value
representing approximately how often strong periods occur in the series. If there is no
evidence of strong periodicity, respond with the sequence length n. Do not include any
other numbers in your response, whether in the form of intermediate calculations or steps.
Remember you MUST return an INTEGER value or n. Please DO NOT include any other
analysis or explanations.

Trend Detection Prompt

Consider the following series: v1, v2, . . . , vn. Please describe the average trend of the series,
ignoring any NaN values. If the series is decreasing on average, respond with a value of -1.
If it is increasing, respond with a value of 1. If there doesn’t appear to be a strong trend in
any direction, please respond with a value of 0. Note that wireless data can be noisy, so look
at global changes to determine trend. Do not include any other numbers in your response,
whether in the form of intermediate calculations or steps. ONLY RESPOND WITH -1, 0, or
1. Do NOT include any other analysis or explanations.

Network QA Prompts. These prompts are used to assess a model’s network understanding
capabilities. For each prompt, we provide the KPIs from a sample and ask the model to provide an
answer to the question at hand.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

Network QA Prompt

You are an AI assistant tasked with analyzing time series data for a wireless network. You
will be provided with a time series dataset containing various metrics to analyze. The time
series is sampled every 0.1 seconds.

Your goal is to answer the questions about the user’s activity, location, network congestion,
jammer presence, and motion status based on the provided time series data only.

The possible activities are: YouTube, Large file download, and Twitch. The possible zones
are: Zone A (closest to the gNB), Zone B (middle), and Zone C (furthest). The possible
congestion status is: Yes or No. The possible motion status is: Yes or No. The possible
jammer presence is: Yes or No.

Time range : {ts_range[0]} to {ts_range[−1]}
{metric1} : {values1}

...
{metricn} : {valuesn}

Now, answer the following questions:
Q1. What activity was the user engaged in?
Q2. Where was the user located?
Q3. Was the network congested?
Q4. Was the user in motion?
Q5. Was there a jammer present?

Do not include any reasoning, explanation, or commentary. You must return only the final
answer using the format shown below, exactly as specified.

Respond with:
<activity>[your answer here]</activity>
<zone>[your answer here]</zone>
<congestion>[your answer here]</congestion>
<motion>[your answer here]</motion>
<jammer>[your answer here]</jammer>

29

1566
1567
1568
1569
1570
1571
1572
1573
1574
1575
1576
1577
1578
1579
1580
1581
1582
1583
1584
1585
1586
1587
1588
1589
1590
1591
1592
1593
1594
1595
1596
1597
1598
1599
1600
1601
1602
1603
1604
1605
1606
1607
1608
1609
1610
1611
1612
1613
1614
1615
1616
1617
1618
1619

Under review as a conference paper at ICLR 2026

E TELECOMTS: AN EXAMPLE

Root Cause Analysis Prompt

{
"start_time": "2025-07-07 00:07:21.600",
"end_time": "2025-07-07 00:07:34.300",
"sampling_rate_hz": 10,
"KPIs": {

"keys": [
"RSRP", "DL_BLER", "DL_MCS", "UL_BLER", "UL_MCS",
"UL_NPRB", "UL_SNR", "TX_Bytes", "RX_Bytes",

...
],
"values": [

[-106.0, -106.0, -106.0, ...], [0.00132, ...],
...

]
},
"anomalies": {

"exists": true,
"type": ["High Network Congestion (Gradual Buildup)"],
"anomaly_duration": [{"start": 0, "end": 127}],
"affected_kpis": ["UL_BLER", "TX_Bytes", ...],
"troubleshooting_tickets": ["High Network Congestion",

"**Diagnose Summary:**\n- **Issue:** ... "]
},
"statistics": {

"RSRP": {
"mean": -106.0,
"variance": 0.0,
"trend": 0,
"periodicity": 1

},
...

},
"labels": {

"zone": "B",
"application": "Youtube",
"mobility": "No",
"congestion": "No",
"anomaly_present": "Yes"

},
"QnA": {

"network": [
{"q": "Can we classify the user as moving?",
"a": "The session involved a static user."},
...

],
"timeseries": [

{"q": "What is the var of RX_Bytes?", "a": 286.3},
{"q": "What is the avg value of RSRP?","a": -106},
...

]
},
"description": "The radio link shows a steady downlink..."

}

30

1620
1621
1622
1623
1624
1625
1626
1627
1628
1629
1630
1631
1632
1633
1634
1635
1636
1637
1638
1639
1640
1641
1642
1643
1644
1645
1646
1647
1648
1649
1650
1651
1652
1653
1654
1655
1656
1657
1658
1659
1660
1661
1662
1663
1664
1665
1666
1667
1668
1669
1670
1671
1672
1673

Under review as a conference paper at ICLR 2026

F TRAINING DETAILS

We train our models on TelecomTS using an 80–20 split between training and test data. To avoid
label imbalance and potential bias, we ensure that the training subset is balanced across labels, both
for anomaly detection and root cause analysis tasks. For foundation models, only the classification or
regression head is trained, while the backbone remains frozen. Optimization is performed using the
Adam optimizer with a learning rate of 0.0001, a batch size of 64, and for 10 epochs. The training
objective depends on the task: cross-entropy loss is used for classification, while mean squared error
(MSE) is used for forecasting.

31

	Introduction
	Related Work
	TelecomTS Dataset
	Raw Data Collection
	Anomalies Curation
	Question Answering Curation
	Overall Statistics

	Experiments
	Anomaly Detection
	Anomaly Duration Analysis
	Root Cause Analysis
	Forecasting
	Question Answering

	Conclusions
	The Use of Large Language Models (LLMs)

	Analysis of TelecomTS and Comparison With Existing Datasets
	Data Collection Details
	5G Network
	Data Collection and Preparation

	Anomaly Curation Details
	Prompts
	TelecomTS: An Example
	Training Details

