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Abstract

Accurate wildfire forecasting from remote sensing data is essential for climate resilience and
emergency planning. Beyond predictive performance, understanding where and why uncer-
tainty arises is critical for operational trust. We analyze the spatial structure of predictive
uncertainty in wildfire spread forecasts using multimodal Earth observation (EO) inputs,
including Sentinel-2 vegetation indices and VIIRS thermal reflectance. Using Monte Carlo
dropout, Deep Ensembles, and Bayesian Neural Networks for uncertainty quantification, we
find that uncertainty estimates are spatially structured and concentrated near predicted fire
perimeters, consistent with the expected uncertainty in fire spread forecasts. We introduce
a novel and interpretable centroid-oriented distance metric that reveals high-uncertainty
regions consistently form 20–60 meter buffer zones around predicted firelines. Feature attri-
bution using integrated gradients highlights vegetation condition and recent fire activity as
primary drivers of model confidence. Together, these results suggest that spatial uncertainty
in EO-based wildfire forecasting is structured, interpretable, and operationally actionable.
The code for all experiments is available on GitHub.1

1 Introduction

Wildfires have become an escalating global crisis, intensified by climate change, prolonged droughts, and
expanding human development. Most recently in January 2025, Southern California experienced wildfire
events that have been among the costliest natural disasters in U.S. history. Wildfires in the European
Union have become increasingly frequent and severe, with over 166,000 hectares burned by May 2025, nearly
three times the long-term average, driven by climate change and affecting regions beyond the traditional
Mediterranean hotspots (EFFIS, 2025). Globally, regions such as the Amazon, North America, Australia,
and parts of Africa have witnessed unprecedented wildfire activity, leading to significant ecological damage,
loss of biodiversity, and adverse health effects due to smoke exposure (Cunningham et al., 2024). As climate
change continues to exacerbate wildfire risks, there is an urgent need for accurate, high-resolution wildfire
forecasting to aid in early response, resource allocation, and risk mitigation. While remote sensing products
like VIIRS (Schroeder et al., 2014) and MODIS provide near real-time fire detections, they do not forecast
how wildfires will evolve in the days to come.

Traditionally, fire spread forecasting has relied on physics-based simulators such as Farsite (Finney, 1998)
and Prometheus (Tymstra et al., 2010), which use hand-crafted rules and environmental inputs to simulate
fire growth. These tools are interpretable and physically grounded but require fine-grained inputs—like fuel
maps and localized weather forecasts—which are difficult to obtain in real time and hard to calibrate to
dynamic fire conditions.

Machine learning has emerged as a scalable alternative for fire forecasting (Radke et al., 2019; Bolt et al.,
2022), learning directly from remote sensing and historical fire data. Shadrin et al. (2024) trained U-Net
and DeepLabV3 models to perform multi-day fire spread segmentation using multimodal remote sensing and
meteorological inputs. Their work benchmarks a variety of input combinations and shows strong predictive

1https://github.com/roloccark/wildf-UQ
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performance, but does not quantify uncertainty—leaving users without insight into where or why the model
might be wrong.

In parallel Huot et al. (2022) introduced the NextDayWildfireSpread dataset, emphasizing single-frame
predictions of fire growth based on remote sensing. Gerard et al. (2023) extended this effort by releasing
WildfireSpreadTS, a large-scale benchmark for multi-temporal wildfire forecasting across 607 fire events.
The dataset incorporates Sentinel-2, VIIRS thermal bands, fire history, meteorology, and slope, enabling
testing of temporal models like ConvLSTM Shi et al. (2015b) and U-Net with Temporal Attention Encoder
(UTAE (Garnot & Landrieu, 2021)).

Generative modeling is also being explored for fire forecasting. Shaddy et al. (2024) use a physics-informed
GAN (cWGAN) to fuse fire simulations from WRF-SFIRE with satellite observations. Their system out-
puts ensembles of arrival time maps conditioned on sparse input detections, providing uncertainty-aware
predictions that can be used to initialize atmospheric-fire models. However, their approach focuses more on
generating plausible initial states than on operational fire masks or end-to-end spatial uncertainty analysis
using public datasets.

Despite the operational risks involved, no prior work has investigated uncertainty quantification in high-
resolution wildfire forecasting. Most existing approaches are fully deterministic, producing binary or prob-
abilistic predictions without expressing model confidence—leaving critical questions of when and where the
model may fail unanswered. This omission is especially concerning for wildfire response, where uncertainty-
aware decision-making is essential for frontline planning, containment strategies, and risk assessment. In
this paper, we take a first step toward addressing this gap by analyzing the spatial structure of predictive
uncertainty in Earth observation-based wildfire forecasts. Using Monte Carlo dropout and attribution tech-
niques, we investigate where uncertainty arises, how it aligns with vegetation and fire morphology, and how
it could guide the construction of interpretable buffer zones to support triage and operational planning.

2 Why This Study

Our work focuses on the operational quantification of uncertainty in deep learning-based, pixel-wise wild-
fire spread prediction. While prior efforts have tackled deterministic segmentation, event-level uncertainty,
probabilistic fire danger indices, surrogate-assisted physical modeling, and generative reconstruction of fire
histories, these approaches often lack the spatial resolution or reliability needed for on-the-ground decision-
making. We aim to directly benchmark and interpret spatial uncertainty in multi-day, high-resolution spread
forecasts using real-world wildfire events. By emphasizing calibrated and interpretable uncertainty at the
pixel level, our work bridges the gap between state-of-the-art machine learning and the practical needs of
fire managers and scientists operating in high-risk environments.

3 Methods

Model We use the UTAE model (Garnot & Landrieu, 2021), a transformer-based spatiotemporal encoder-
decoder architecture designed for multitemporal satellite image time series. UTAE has previously shown
strong performance on change detection and land cover segmentation tasks using Sentinel-2 data, and is
well-suited for the wildfire spread forecasting setting, where temporal patterns are key. Although newer
transformer-based architectures, such as Swin Transformers (Liu et al., 2021), have been explored for spa-
tiotemporal wildfire modeling (Lahrichi et al., 2025), using the same dataset, the evidence shows that they
do not outperform UTAE in next-day wildfire spread prediction. On the downside, these larger architectures
contain roughly 27M parameters compared to UTAE’s lightweight 1M parameters, requiring significantly
more computational resources for both pretraining and fine-tuning. They are also prone to overfitting and
typically demand much larger datasets to generalize effectively—an unrealistic requirement given the size
and variability of current wildfire datasets. For these reasons, and given UTAE’s proven reliability and
favorable trade-off between performance, computational efficiency, and robustness, we adopt UTAE as our
primary model. As a baseline comparison, we also experiment with a ConvLSTM model (Shi et al., 2015a),
a recurrent architecture tailored for spatiotemporal prediction. ConvLSTM has the ability to capture local
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Figure 1: Example input channels from a single sample at prediction time, including Sentinel-2 bands, NDVI,
EVI2, and active fire features. These inputs are provided as a 5-day sequence to the model.

temporal dependencies using convolutional operations, and has been used in wildfire modeling in prior work
(Burge et al., 2022).

Dataset We conduct all experiments on the publicly available WildfireSpreadTS dataset2 (Gerard et al.,
2023), which provides spatial-temporal cubes of 64×64 patches centered on active wildfire regions. Each
sample consists of 5 days of multimodal input features (Sentinel-2 reflectance bands, meteorological variables,
NDVI, slope, and other static features), and a binary burn mask for a future day as target. The dataset
includes fires from 2018 to 2021 across diverse regions. Following the original benchmark protocol, we
perform 12-fold cross-validation over all year-based train/val/test permutations to account for inter-annual
variability and covariate shift. A sample of the input modalities used by the model—including reflectance
bands, vegetation indices, and active fire features—is visualized in Figure 1. The dataset includes 607
wildfire events across the western United States from January 2018 to October 2021, with a total of 13,607
daily images. These fires span diverse ecosystems and terrain across states like California, Oregon, and
Washington.

Training, Evaluation and Uncertainty Quantification The model is trained in a sliding-window
fashion. For each fire event, we extract 5-day sequences as input and predict the binary burn mask on
the 6th day. Additional details are provided in the appendix. Spatial crops (128×128) are used to batch
variable-sized regions. Following the original benchmark configuration, we train our model using only five
vegetation-based input channels: VIIRS bands M11, I2, I1, NDVI, and EVI2. No meteorological or static

2https://github.com/SebastianGer/WildfireSpreadTS
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terrain features are used. We report Average Precision (AP) on test folds, along with probabilistic calibration
metrics described below.

We evaluate three uncertainty quantification (UQ) approaches for pixel-wise wildfire spread prediction:

1. Monte Carlo (MC) Dropout (Gal & Ghahramani, 2016): Dropout layers remain active at test
time, and 20 stochastic forward passes are performed. The per-pixel mean and variance of predicted
probabilities are used to quantify epistemic uncertainty.

2. Deep Ensembles: Multiple independent UTAE models are trained with distinct random seeds,
each also employing MC Dropout with 20 stochastic forward passes at inference. Predictions from
these models are aggregated to quantify uncertainty stemming from variations in weight initializa-
tion, training stochasticity, and dropout-induced randomness. This approach typically improves
calibration and robustness.

3. Bayesian Neural Networks (BNN): BNNs treat the weights of the neural network as random
variables with learned probability distributions rather than fixed values (Blundell et al., 2015).
We adopt a variational approximation (Bayes-by-Backprop), where each weight has a mean and
variance parameter learned during training. At inference, multiple stochastic samples of the weight
distributions are drawn, and predictive probabilities are averaged per pixel to obtain both a mean
wildfire burn probability and an associated epistemic uncertainty map. This provides a theoretically
grounded Bayesian treatment of uncertainty for pixel-wise classification, albeit with a far greater
computational cost and more challenging setup and optimization compared to MC Dropout or Deep
Ensembles.

To assess probabilistic quality, we compute three standard metrics: (1) Negative Log-Likelihood (NLL),
which penalizes overconfident mispredictions; (2) Brier Score (Brier, 1950), a proper scoring rule for binary
probabilistic forecasts; and (3) Expected Calibration Error (ECE, (Guo et al., 2017)), which measures the
discrepancy between predicted confidence and empirical accuracy. All UQ experiments are implemented in
PyTorch, and the code is publicly available on Github3.

4 Results

Given that the model is driven purely by vegetation-based features, we interpret high uncertainty as a
reflection of ambiguous fuel signatures — e.g., sparse or transitional NDVI zones, or conflicting spectral
responses.

4.1 Feature Group Ablations

To better understand the contribution of different input feature categories, we conduct a systematic ablation
study by training UTAE models using isolated subsets of inputs. Each configuration retains only one feature
group—vegetation, weather, land cover, or topography—while preserving active fire indicators to ensure
temporal grounding. We also include two important reference points: (i) a persistence baseline, which
assumes that the fire remains unchanged between consecutive days, providing a non-learned lower bound
on predictive skill, and (ii) an all-features variant, where vegetation, weather, land cover, and topography
inputs are jointly supplied alongside active fire information.

Table 1 summarizes the 12-fold average precision for each setup. The persistence baseline achieves the
lowest AP of 0.191 ± 0.063, confirming that naive extrapolation underestimates the complex dynamics of
wildfire spread. Interestingly, the all-features configuration (0.319 ± 0.077) does not surpass the best single-
feature setup, suggesting that additional modalities introduce optimization challenges or noise under the
current training regime. Among all tested UTAE variants, vegetation combined with active fire achieves the
highest average precision (0.378 ± 0.083), outperforming both other ablations and the ConvLSTM baseline
(0.304±0.093). Accordingly, all downstream uncertainty analyses in this study—including spatial structure,

3https://github.com/roloccark/wildf-UQ
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Figure 2: Qualitative comparison of model predictions for three fire events of varying size: large (top),
medium (middle), and small (bottom). Each row shows the NDVI input, mean prediction from a Deep
Ensemble (fold 1: trained on 2018–2019, validated on 2020), and the ground-truth burn mask. The influence
of vegetation features on the model’s mean predictions is clearly evident, with predicted burn areas modulated
by spatial vegetation patterns. The events span approximately 125.6 acres (large), 52.3 acres (medium), and
5.2 acres (small), corresponding to 1271, 527, and 53 burned pixels respectively.

buffer zone characterization, and feature attribution—are conducted using the UTAE model trained on
vegetation inputs and active fire.
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Table 1: Mean Average Precision (AP) across 12 folds for different feature groups using UTAE. For compar-
ison, ConvLSTM trained on vegetation + active fire is also included.

Feature Group Mean AP

Persistence baseline 0.191 ± 0.063
Vegetation + active fire 0.378 ± 0.083
Weather + active fire 0.323 ± 0.078
Land cover + active fire 0.319 ± 0.092
Topography + active fire 0.317 ± 0.082
All Features (veg + Weather + Land + Topo) + active fire 0.319 ± 0.077
ConvLSTM (veg. + active fire) 0.304 ± 0.093

4.2 Benchmarking Calibration for Trustworthy Spatial Uncertainty

To ensure that our uncertainty estimates are trustworthy, we evaluate calibration using three standard
metrics: Expected Calibration Error (ECE), Brier Score, and Negative Log-Likelihood (NLL). Our primary
analyses—such as spatial uncertainty overlays, buffer zone estimation, and feature attribution—are based on
Monte Carlo (MC) Dropout (Gal & Ghahramani, 2016) with 20 stochastic forward passes. We experimented
with 10, 15, 20, 25, and 30 passes, observing that calibration performance plateaued beyond 20–30 passes.
Therefore, we adopt 20 passes for computational efficiency without sacrificing reliability. To benchmark its
calibration robustness, we also train a Deep Ensemble of 5 independently initialized models for each of the
12 folds. Each member of deep ensemble uses 20 MC dropout passes. The details of the BNN architecture
and training procedure are summarized in Table 4. As shown in Table 2, the ensemble achieves consistently
stronger calibration across all metrics compared to the MC Dropout baseline. This comparison strengthens
our confidence that the uncertainty maps derived from MC Dropout are probabilistically reliable, providing
a sound foundation for the spatial analyses that follow.

Table 2: Calibration metrics (12-fold averages) for the three UQ approaches. Lower values indicate better
calibration. BNN shows slight improvements over MC Dropout but does not reach the performance of Deep
Ensembles.

Metric MC Dropout BNN Deep Ensemble

ECE 0.536 ± 0.015 0.525 ± 0.014 0.512 ± 0.018
Brier Score 0.294 ± 0.012 0.283 ± 0.019 0.265 ± 0.009
NLL 0.805 ± 0.020 0.794 ± 0.054 0.731 ± 0.023

4.3 Qualitative Uncertainty Patterns.

Figure 2 shows NDVI overlays, mean predictions and ground truth label for three representative fire events.
The three fire examples shown in Figure 2 span a range of ground-truth sizes: the events span approximately
125.6 acres (large), 52.3 acres (medium), and 5.2 acres (small), corresponding to 1271, 527, and 53 burned
pixels respectively. In larger fires, uncertainty is sharply localized near the fire perimeter, while in smaller or
fragmented fires, it appears more diffuse and spatially ambiguous. This shows that uncertainty often gathers
around the edges of fires—places where the model has to guess how far the fire might have spread, especially
when the burn area is small or broken into patches.

4.4 Feature Attribution.

To identify which input features (we consider vegetation features only, since they yield best performance)
most influence uncertainty, we use Integrated Gradients (Sundararajan et al., 2017) on a ResNet He et al.
(2016) surrogate model trained for 50 epochs to approximate the UTAE model’s mean predictions. Integrated
Gradient computes the path-integrated gradients of the output with respect to input features, highlighting
which input pixels most influence predictions.The surrogate model achieves a high fidelity with R2 = 0.81,
indicating strong alignment with the original model and validating its use for interpretability. As shown in
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Figure 3: Feature importance scores computed using Integrated Gradients on a CNN surrogate. Active
fire presence dominates attribution, followed by vegetation indices (NDVI, EVI2). Thermal bands are less
influential in determining predictive confidence.

Figure 3, attribution is dominated by recent fire activity and vegetation indices (NDVI, EVI2), with relatively
lower contributions from thermal reflectance bands (VIIRS-M11, I1, I2).This ranking aligns with biophysical
intuition: vegetation indices and recent fire activity dominate predictive influence because ambiguous or weak
spectral signals in sparsely vegetated or transitional fuel zones make fire spread harder to infer, indirectly
contributing to areas where uncertainty later emerges (Archibald et al., 2018).

4.5 Centroid-Aligned Boundary Distance as a Proxy for Fireline Uncertainty.

To better understand the spatial structure of false positives in fireline predictions, we introduce a centroid-
aligned boundary distance metric. For each test instance, we compute the centroid of the ground truth burn
mask (Cf ) and the centroid of the predicted fireline (Cp), using the mean prediction from deep ensembled
outputs thresholded at 0.95. We then trace a straight line between Cf and Cp, and identify the nearest
points along this axis where the predicted and ground truth firelines terminate. The distance between these
two edge points serves as a localized estimate of spatial prediction error. We formally define the distance
metric:

Let Mgt and Mpred be the binary masks for the ground truth and predicted fire regions, respectively. Let
Cf = (xf , yf ) and Cp = (xp, yp) denote the centroids of the ground truth region and the false positive region
defined as

Mfp = Mpred ∧ ¬Mgt.

We define the centroid-to-centroid axis as the discrete line segment connecting Cf and Cp, denoted by
L(Cf , Cp). Let ∂Mgt and ∂Mfp denote the boundary pixels of the ground truth and false positive regions,
respectively. These are computed as:

∂M = dilate(M) ∧ ¬M.

We identify the first boundary pixel pgt ∈ ∂Mgt along L(Cf , Cp) starting from Cf , and the first pixel
pfp ∈ ∂Mfp from the opposite direction. The centroid-oriented boundary distance d is defined as:

d = ∥pgt − pfp∥2 · s,

where s is the pixel resolution. Next, we compare this metric with two established distance measures:
Average Surface Distance (ASD) and Hausdorff Distance (HD).

Average Surface Distance (ASD): Let Dgt and Dfp be the distance transform maps of the complement
regions ¬Mgt and ¬Mfp, respectively. For each boundary pixel p ∈ ∂Mgt, we compute its distance to the
nearest boundary pixel in ∂Mfp using Dfp[p]. Similarly, for each boundary pixel q ∈ ∂Mfp, we compute its
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Figure 4: Schematic of boundary distance computation between predicted and ground truth fire masks.

distance to the nearest boundary pixel in ∂Mgt using Dgt[q]. The average surface distance dASD is defined
as:

dASD = 1
2

 1
|∂Mgt|

∑
p∈∂Mgt

Dfp[p] + 1
|∂Mfp|

∑
q∈∂Mfp

Dgt[q]

 · s.

Hausdorff Distance: Let Pgt = {p : p ∈ ∂Mgt} and Pfp = {q : q ∈ ∂Mfp} be the sets of boundary pixel
coordinates. The directed Hausdorff distances are defined as:

h(Pgt, Pfp) = max
p∈Pgt

min
q∈Pfp

∥p − q∥2

h(Pfp, Pgt) = max
q∈Pfp

min
p∈Pgt

∥q − p∥2

The Hausdorff distance dHD is defined as:

dHD = max{h(Pgt, Pfp), h(Pfp, Pgt)} · s.

Comparative Analysis of Distance Metrics The three metrics offer complementary perspectives
on spatial prediction errors (Table 3). The centroid-oriented boundary distance provides a directionally-
informed, single-value summary that captures primary spatial offset efficiently but is limited to one spatial
dimension and may miss perpendicular boundary irregularities. The Average Surface Distance (ASD) offers
a more comprehensive, symmetric assessment by averaging all boundary distances, providing statistically
robust summaries less sensitive to outliers, though it can mask significant local deviations by averaging them
with smaller errors. The Hausdorff Distance captures worst-case spatial errors through maximum boundary
separation, providing upper bound guarantees valuable for critical applications, but is highly sensitive to
noise and isolated mispredictions that may not represent systematic bias. Computationally, the centroid
method requires minimal resources, ASD involves distance transforms across boundary pixels, while Haus-
dorff requires more expensive pairwise calculations. For operational fire management, these three metrics
collectively enable rapid spatial offset assessment, balanced characterization of boundary discrepancies, and
identification of critical failure cases.

Figure 4 provides a schematic of the centroid-based boundary distance. Aggregating this distance across
test samples yields a proxy for the operational buffer zone—the typical separation between where the model
expects the fire to be and where it actually was. As shown in Table 3, the centroid-based metric peaks
consistently around 28–35 meters across all feature sets, indicating relatively small but non-negligible spatial
offsets between predicted and observed firelines (approximately 1.5–3.5 Sentinel-2 pixels).
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Table 3: Most likely spatial offsets (peak distances) from the KDE histograms for each distance metric
and feature group, computed using the deep ensemble model. These values represent the typical separation
between predicted and observed wildfire boundaries, providing an empirical estimate of the operational buffer
zone.

Distance Metric Feature Set Peak Distance (m)

Centroid Boundary Distance Landcover 28.14
Topography 31.26
Vegetation 32.19
Weather 35.17
All Features 33.48

Average Surface Distance (ASD) Landcover 46.72
Topography 52.89
Vegetation 64.15
Weather 57.34
All Features 55.86

Hausdorff Distance Landcover 148.63
Topography 153.42
Vegetation 165.78
Weather 159.11
All Features 155.67

When considering alternative distance metrics, we observe that Average Surface Distance (ASD) peaks are
moderately higher, typically between 47–64 meters, reflecting the fact that ASD accounts for discrepan-
cies across the entire fire boundary rather than a single centroid axis. Hausdorff distances are notably
larger (≈148–166 meters), capturing worst-case spatial deviations, such as isolated false positives or missed
fire patches. These complementary metrics together characterize prediction errors more comprehensively:
centroid distances highlight the main directional bias, ASD summarizes average boundary mismatch, and
Hausdorff identifies outlier errors and potential failure cases.

From an operational perspective, these distances are meaningful. A 30–70 meter offset roughly corresponds
to a few Sentinel-2 pixels, which is a scale that incident management teams can directly relate to tactical
suppression efforts near the active fire edge (Morvan & Dupuy, 2001; Thompson et al., 2016). Larger
deviations captured by Hausdorff distances, on the order of 150 meters or more, may indicate localized
high-risk regions where the model significantly misaligns with the observed firefront. This information can
help prioritize uncertainty-driven buffer zones for contingency planning, resource staging, and safety analysis
during wildfire response operations. Given that Sentinel-2 bands used in our models have spatial resolutions
of 10–20 meters (Drusch et al., 2012), these metrics offer a practically interpretable and spatially grounded
complement to traditional pixel-wise accuracy metrics.

5 Discussion

Limitations Even though the dataset includes fire events spanning a wide range of eco-regions across the
continental U.S. from forested landscapes to grasslands, it may not fully extrapolate to other geographies
such as the Mediterranean or Australia. Testing under such regimes is an important avenue for validating
robustness.

Our uncertainty quantification focuses solely on epistemic uncertainty. Aleatoric uncertainty, which can arise
from label noise, cloud cover, or unobserved ignitions, is not modeled here but is a natural extension. The
PDP approach assumes a logit-normal distribution for per-pixel wildfire probabilities, which may not be the
most natural fit for binary segmentation tasks compared to a Bernoulli or Beta distribution. Estimating both
mean and variance parameters introduces additional complexity and can lead to unstable or over-dispersed
uncertainty estimates, particularly in low-signal or sparse burn regions. Moreover, PDP has been mainly
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validated in regression and point forecasting tasks, and its effectiveness for dense spatial wildfire prediction
remains less established compared to ensemble-based methods.

The definition of the uncertainty buffer zone using centroid-aligned boundary distance is intuitive and con-
sistent across folds, but it has some caveats. First, this metric does not explicitly follow the actual advancing
firefront and instead relies on a centroid-induced direction. In some cases, this axis may point away from the
dominant fireline, limiting interpretability for operational decision-making. Second, when multiple discon-
nected fire foci are present in the ground truth, small peripheral components can disproportionately affect
the computed distance, leading to potentially misleading buffer estimates.

Our input feature set is limited to vegetation indices and active fire bands. This constraint is supported
by ablation results, which show that including additional inputs like weather, topography, or land cover
reduces performance. We speculate this degradation may arise from temporal misalignment, redundancy, or
noise. Importantly, the spatial resolution of these feature groups also differs—vegetation indices and land
cover layers are high-resolution, while weather variables are typically coarse (e.g., 2.5–10 km grids). For a
pixel-level segmentation task, this resolution mismatch introduces a valuable modeling challenge and may
explain why weather-derived features failed to help. Exploring fusion strategies that account for spatial scale
differences remains a compelling direction for future work.

Future Work Currently, we are extending this work to explore multi-fold and multi-model comparisons
of uncertainty dynamics. Another important direction involves improving how high-dimensional multimodal
EO inputs are encoded. With data streams including spectral bands, vegetation indices, terrain layers, and
fire history, the input space can be both redundant and noisy. We are investigating more effective compression
strategies—such as bottlenecked attention, sparse fusion layers, and contrastive pretraining—to ensure that
the most informative features drive both prediction and uncertainty, while reducing model complexity and
overfitting risk. Testing whether the observed uncertainty patterns generalize to different geographic regions,
fuel types, or fire regimes would validate their robustness. Evaluating uncertainty under domain shift (e.g.,
cross-continent generalization) or in out-of-distribution conditions could also expose failure modes.

6 Conclusion

This work presents a systematic analysis of spatial uncertainty in high-resolution, Earth observation-based
wildfire forecasting. Using Monte Carlo dropout, deep ensembles, and Bayesian Neural Networks, we demon-
strate that uncertainty estimates are not scattered noise but instead form coherent spatial structures aligned
with fire perimeters and vegetation gradients. These patterns are quantitatively validated: uncertainty
gradients are smooth and consistently form narrow, spatially meaningful bands—typically 20–60 meters
wide—around predicted firelines. These findings suggest that uncertainty in EO-based wildfire forecast-
ing is structured, interpretable, and can inform operational decision-making for fire management and risk
assessment.

To formalize this observation, we introduce a novel and interpretable centroid-oriented boundary distance
metric that quantifies the spatial offset between predicted and ground-truth firelines. This metric reveals
a consistent uncertainty buffer zone and offers a practical proxy for operational planning. Through feature
attribution, we find that vegetation health and recent fire activity are the strongest drivers of predictive
confidence, reinforcing the spatial and temporal grounding of model uncertainty. Additionally, we observe
that uncertainty zones scale modestly with fire size, suggesting that predictive uncertainty reflects localized
ambiguity rather than arbitrary noise.

Our analyses span multiple architectures and model instances, increasing confidence that the observed uncer-
tainty behaviors are not artifacts of a specific model but reflect generalizable patterns tied to fire morphology
and feature dynamics. Overall, these results highlight that spatial uncertainty carries interpretable and ac-
tionable structure. Rather than being discarded as noise, it can be embraced as a signal—indicating where
model hesitation, boundary ambiguity, or further scrutiny may be warranted. As EO-based systems become
increasingly operational, such structured uncertainty maps may support more robust, risk-aware wildfire
response and decision-making.
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Broader Impact Statement

Wildfires represent a growing global threat, exacerbated by climate change, land-use patterns, and increased
human activity in fire-prone areas. This work contributes to the development of transparent and trustworthy
AI models for high-resolution wildfire forecasting by introducing methods to quantify and spatially interpret
predictive uncertainty. Our goal is to improve decision-making for fire managers, emergency responders, and
policymakers through spatially calibrated uncertainty estimates that identify where model predictions may
be unreliable.

By revealing areas of model hesitation—particularly near fire boundaries and in transitional vegetation
zones—our approach may help inform triage strategies, resource allocation, and evacuation planning. The
incorporation of uncertainty into operational workflows could reduce overreliance on overconfident predic-
tions, thereby enhancing safety and trust.

However, there are potential risks. Misinterpretation of low uncertainty as a guarantee of safety could be
dangerous, especially in out-of-distribution regions. Our models are trained on U.S. fire data and rely on
vegetation-based inputs, which may not generalize to other ecosystems. Additionally, we focus on epistemic
uncertainty, without modeling aleatoric factors such as sensor noise or unobserved ignitions.

To mitigate these limitations, we recommend human-in-the-loop deployment, transparent communication
of model assumptions, and expanded testing across geographies. We also encourage future work to involve
diverse stakeholders—including frontline responders and indigenous communities—in evaluating the opera-
tional value and limitations of spatial uncertainty maps. Ultimately, this work aims to support safer, more
robust wildfire management systems that align with public and environmental benefit.

References
S. Archibald, C. E. R. Lehmann, C. M. Belcher, W. J. Bond, R. A. Bradstock, A.-L. Daniau, K. G. Dexter,

E. J. Forrestel, M. Greve, T. He, S. I. Higgins, W. A. Hoffmann, P. M. Holmes, W. M. Jolly, K. P.
Kirkman, L. Mucina, S. Pau, I. C. Prentice, P. W. Rundel, and R. J. Williams. Biological and geophysical
feedbacks with fire in the earth system. Environmental Research Letters, 13(3):033003, 2018. doi: 10.
1088/1748-9326/aa9ead.

Charles Blundell, Julien Cornebise, Koray Kavukcuoglu, and Daan Wierstra. Weight uncertainty in neural
networks. In Proceedings of the 32nd International Conference on Machine Learning (ICML), pp. 1613–
1622. PMLR, 2015. URL https://proceedings.mlr.press/v37/blundell15.html.

Andrew Bolt et al. A spatio-temporal neural network forecasting approach for emulation of firefront models.
In Signal Processing: Algorithms, Architectures, Arrangements, and Applications (SPA), 2022.

Glenn W Brier. Verification of forecasts expressed in terms of probability. Monthly Weather Review, 78(1):
1–3, 1950.

John Burge, Matthew R Bonanni, R Lily Hu, and Matthias Ihme. Recurrent convolutional deep neural
networks for modeling time-resolved wildfire spread behavior. arXiv preprint arXiv:2210.16411, 2022.

Alex Cunningham, Sarah Jones, and Ravi Patel. State of wildfires 2023–2024. Earth System Science Data,
16:3601–3620, 2024.

Matthias Drusch, Umberto Del Bello, Serge Carlier, Olivier Colin, Victor Fernandez, Ferran Gascon, Bern-
hard Hoersch, Claudio Isola, Paolo Laberinti, Philippe Martimort, et al. Sentinel-2: Esa’s optical high-
resolution mission for gmes operational services. Remote Sensing of Environment, 120:25–36, 2012.

EFFIS. Wildfire season 2025: Early trends and eu response. https://effis.jrc.ec.europa.eu/, 2025.
Accessed: 2025-05-29.

Mark A Finney. Farsite: Fire area simulator–model development and evaluation. USDA Forest Service
Research Paper RMRS-RP-4, 1998.

11

https://proceedings.mlr.press/v37/blundell15.html
https://effis.jrc.ec.europa.eu/


Under review as submission to TMLR

Yarin Gal and Zoubin Ghahramani. Dropout as a bayesian approximation: Representing model uncertainty
in deep learning. In International Conference on Machine Learning (ICML), pp. 1050–1059, 2016.

Vivien Sainte Fare Garnot and Loic Landrieu. Panoptic segmentation of satellite image time series with
convolutional temporal attention networks. In Proceedings of the IEEE/CVF International Conference on
Computer Vision (ICCV), 2021.

Sebastian Gerard, Yu Zhao, and Josephine Sullivan. WildfirespreadTS: A dataset of multi-modal time series
for wildfire spread prediction. In Thirty-seventh Conference on Neural Information Processing Systems
Datasets and Benchmarks Track, 2023. URL https://openreview.net/forum?id=RgdGkPRQ03.

Chuan Guo, Geoff Pleiss, Yu Sun, and Kilian Q Weinberger. On calibration of modern neural networks. In
International Conference on Machine Learning (ICML), pp. 1321–1330, 2017.

Kaiming He, Xiangyu Zhang, Shaoqing Ren, and Jian Sun. Deep residual learning for image recognition. In
Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition (CVPR), pp. 770–778,
2016.

Fantine Huot et al. Next day wildfire spread: A machine learning dataset to predict wildfire spreading from
remote-sensing data. IEEE Transactions on Geoscience and Remote Sensing, 60:1–13, 2022.

Saad Lahrichi, Jesse Johnson, and Jordan Malof. Predicting next-day wildfire spread with time series and
attention. arXiv preprint arXiv:2502.12003, 2025.

Ze Liu, Yutong Lin, Yue Cao, Han Hu, Yixuan Wei, Zheng Zhang, Stephen Lin, and Baining Guo. Swin
transformer: Hierarchical vision transformer using shifted windows. 2021.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. In International Conference on
Learning Representations (ICLR), 2019. URL https://openreview.net/forum?id=Bkg6RiCqY7.

D. Morvan and J.L. Dupuy. Modeling of fire spread through a forest fuel bed using a multiphase formulation.
Combustion and Flame, 127(1):1981–1994, 2001. ISSN 0010-2180. doi: 10.1016/S0010-2180(01)00302-9.
URL https://www.sciencedirect.com/science/article/pii/S0010218001003029.

David Radke, Anna Hessler, and Dan Ellsworth. Firecast: Leveraging deep learning to predict wildfire
spread. In IJCAI, pp. 4575–4581, 2019.

Wilfrid Schroeder, Patricia Oliva, Louis Giglio, and Ivan A Csiszar. The new viirs 375 m active fire detection
data product: Algorithm description and initial assessment. Remote Sensing of Environment, 143:85–96,
2014.

Bryan Shaddy, Deep Ray, Angel Farguell, Valentina Calaza, Jan Mandel, James Haley, Kyle Hilburn,
Derek V. Mallia, Adam Kochanski, and Assad Oberai. Generative algorithms for fusion of physics-based
wildfire spread models with satellite data for initializing wildfire forecasts. Artificial Intelligence for the
Earth Systems, 3(3):e2023AIES087, 2024.

I. Shadrin, V. Yadykin, N. Zavyalova, et al. Wildfire spreading prediction using multimodal data and deep
neural network approach. Scientific Reports, 14(1), 2024.

Xingjian Shi, Zhourong Chen, Hao Wang, Dit-Yan Yeung, Wai-Kin Wong, and Wang-chun Woo. Convolu-
tional lstm network: A machine learning approach for precipitation nowcasting. In Advances in neural
information processing systems, pp. 802–810, 2015a.

Xingjian Shi et al. Convolutional lstm network: A machine learning approach for precipitation nowcasting.
In NeurIPS, pp. 802–810, 2015b.

Mukund Sundararajan, Ankur Taly, and Qiqi Yan. Axiomatic attribution for deep networks. In Proceedings
of the 34th International Conference on Machine Learning - Volume 70, pp. 3319–3328, 2017.

12

https://openreview.net/forum?id=RgdGkPRQ03
https://openreview.net/forum?id=Bkg6RiCqY7
https://www.sciencedirect.com/science/article/pii/S0010218001003029


Under review as submission to TMLR

Matthew P Thompson, David E Calkin, Mark A Finney, Alan A Ager, and Julie W Gilbertson-Day. Risk
management: Core principles and practices, and their relevance to wildland fire. US Department of
Agriculture, Forest Service, Rocky Mountain Research Station, RMRS-GTR-315, 2016.

Cordy Tymstra et al. Development and structure of prometheus: the canadian wildland fire growth simula-
tion model. 2010.

13



Under review as submission to TMLR

A Appendix

A.1 UTAE Model Selection Rationale and Procedural Details

We provide detailed implementation information for the UTAE baseline, including architectural, optimiza-
tion, and data processing details. We also motivate our choice of UTAE over alternative temporal architec-
tures.

Model Architecture. We adopt the UTAE architecture(Garnot & Landrieu, 2021), a U-Net variant with
a Temporal Attention Encoder that applies simplified multi-head self-attention across the temporal dimension
at the bottleneck. These temporal attention weights are up sampled and applied to the skip connections,
enabling dynamic selection of temporally relevant features. The model has approximately 1.1M parameters
and includes a dropout rate of 0.1 after each attention block to prevent overfitting.

Motivation for UTAE. We chose UTAE for its lightweight parameter count, proven effectiveness on
spatiotemporal satellite time series segmentation, and its compatibility with variable-length sequences. Al-
though newer transformer-based architectures, such as Swin Transformers (Liu et al., 2021), have been
explored for spatiotemporal wildfire modeling (Lahrichi et al., 2025), empirical evidence suggests that they
do not outperform UTAE in next-day wildfire spread prediction. On the downside, these larger architectures
contain roughly 27M parameters compared to UTAE’s lightweight 1M parameters, requiring significantly
more computational resources for both pretraining and fine-tuning. They are also prone to overfitting and
typically demand much larger datasets to generalize effectively—an unrealistic requirement given the size
and variability of current wildfire datasets. For these reasons, and given UTAE’s proven reliability and
favorable trade-off between performance, computational efficiency, and robustness, we adopt UTAE as our
primary model. Our empirical findings also show that UTAE outperforms ConvLSTM and standard U-Net
by a margin of up to 3.9 AP points on this dataset.

Input Configuration. Each input sequence consists of 5 days of observations, each containing:

• Vegetation: VIIRS reflectance bands (I1, I2, M11), NDVI, EVI2

• Weather and Forecasts: Precipitation, temperature (min, max), wind (speed, direction), specific
humidity, PDSI, ERC, GFS forecasts of the same

• Topography: Slope, aspect, elevation

• Land cover: One-hot encoded MODIS IGBP class

• Fire masks: Timestamped detection map and binary mask

• Day-of-year: Integer mapped to temporal embedding

Preprocessing All input features are resampled to a spatial resolution of 375 m and a temporal resolution
of 24 hours. Numerical features are standardized to zero mean and unit variance, excluding angular features
(sine-transformed) and categorical/binary maps. Missing values are replaced with zero. We apply the
following augmentations:

• Random crop to 128 × 128 pixels, with oversampling based on fire presence

• Horizontal and vertical flips, 90◦ rotations

• Angle-aware adjustment for wind direction and aspect post-rotation

At test time, we apply center cropping to a size divisible by 32 to meet U-Net alignment constraints.
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Optimization We use the AdamW optimizer Loshchilov & Hutter (2019) with parameters β1 = 0.9,
β2 = 0.999, learning rate = 0.01, and weight decay λ = 0.01. Dropout (0.1) is applied at each temporal
attention block. We use a weighted binary cross-entropy loss for loss function. The model is trained for
10,000 steps. Batch size is 32 during training and 1 during testing.

Table 4: Bayesian U-TAE architecture and training configuration. The BNN version is designed with a
comparable parameter count to the deterministic UTAE to ensure a fair comparison of uncertainty quantifi-
cation methods.

Category Component Details

Architecture Model Bayesian U-TAE (Bayesian neural network version of U-
TAE) using variational inference to model weight uncertainty

Input Shape [Batch, 5, 7, Height, Width]
Output Shape [Batch, 1, Height, Width]
Bayesian Layers BayesianConv2d layers with learned mean and variance pa-

rameters (prior std = 1.0)
Encoder 3 blocks, widths=[32, 64, 64]; BatchNorm, ReLU, max pool-

ing in first 2 blocks
Decoder 3 blocks, widths=[32, 64, 64], bilinear upsampling with skip

connections
Output Layers 1 BayesianConv2d (32 channels) + final 1x1 BayesianConv2d

Training Regime Optimization Adam optimizer, LR=1e-4, weight decay=1e-5, KL
weight=1e-4 (annealed over 20 epochs), gradient clipping
norm=1.0,early stopping patience=15

Epochs 50
Loss ELBO = Binary Cross-Entropy + KL Weight × KL Diver-

gence
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