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Abstract

Contrastive learning has delivered impressive results for various tasks in the self-
supervised regime. However, existing approaches optimize for learning represen-
tations specific to downstream scenarios, i.e., global representations suitable for
tasks such as classification or local representations for tasks such as detection and
localization. While they produce satisfactory results in the intended downstream
scenarios, they often fail to generalize to tasks that they were not originally designed
for. In this work, we propose to learn video representations that generalize to both
the tasks which require global semantic information (e.g., classification) and the
tasks that require local fine-grained spatio-temporal information (e.g., localization).
We achieve this by optimizing two contrastive objectives that together encour-
age our model to learn global-local visual information given audio signals. We
show that the two objectives mutually improve the generalizability of the learned
global-local representations, significantly outperforming their disjointly learned
counterparts. We demonstrate our approach on various tasks including action/sound
classification, lip reading, deepfake detection, event and sound localization

1 Introduction

Recent years have seen a surge of interest in contrastive self-supervised learning (CSL) [591138.,135,(16]
to obtain representations that generalize to various downstream scenarios. In CSL, the choice of
“contrasting views” plays a crucial role because the learned representations capture information
shared between different views by maximizing mutual information between them [§]]. This makes it
critical to design contrastive objectives with the “right” contrasting views tailored for the intended
downstream scenarios [[77]], which has been the focus of many recent works [38 10, 145} 74,184} 83]].

The progress made so far provides important insights for understanding how to select optimal
contrasting views for a given task [77]. However, the current paradigm of designing CSL approaches
specific to any intended (global or local) downstream scenarios could be suboptimal, as in the
real-world case the downstream scenarios are generally unknown in advance. This not only limits
the generalizability of the learned representations, evaluating the approaches solely on the intended
scenarios could produce misleading conclusions. Although existing approaches achieve impressive
results in their intended downstream tasks, they often fail to generalize to tasks that they were not
originally designed for, e.g., as we show later in our experiments, global representations do not
generalize well to tasks such as lip reading [22}121] which require local spatio-temporal information.

Motivated by this, we take an orthogonal direction to the current CSL approaches: We aim to
learn representations agnostic to the types of downstream scenarios and generalize to both the
scenarios that require global representations (e.g., classification) and scenarios that require local
representations (e.g., localization). We focus on learning video representations using the natural
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audio-visual correspondence as the primary self-supervisory signal. In this scenario, the notion of
global/local representations is intertwined in space and time; we can obtain representations that
are spatially global or local, and also temporally global or local. However, most existing video
CSL approaches optimize for only global spatio-temporal representations and demonstrate them on
audio/visual video classification tasks [60} 46l 55, |61]]. Part of the difficulty here is that formulating
a contrastive objective for local representations is not straightforward because of the one-to-many
relationship in audio-visual correspondences, i.e., spatially, multiple pixel regions can contribute to
the sound in the corresponding audio, and temporally, multiple temporal slices of audio can map to a
single video frame due to sampling rate differences. This hinders the development of CSL for local
video representations useful for tasks such as sound source separation and lipreading.

In this paper, we present an approach for learning global-local video representations in the CSL frame-
work. We design two cross-modal contrastive objectives that collaboratively capture information
shared between audio and visual signals. An important aspect of our approach is the factoriza-
tion of the spatio-temporal feature space into a spatially-local/temporally-global subspace and a
spatially-global/temporally-local subspace, where each of the two contrastive objectives are defined
in, respectively; see Fig.[l] The explicit space-time factorization helps each contrastive objective
focus on capturing either spatially-local or temporally-local information and thus facilitates learning
complementary features from audio-visual correspondence more effectively than in the original
spatio-temporal space. Furthermore, we define both objectives in the multiple instance learning
framework [24} 52]] to handle the one-to-many relationship between audio and visual signals. This
helps the model learn representations without knowing fine-grained audio-visual correspondence.

We evaluate our approach on various downstream tasks that need local spatio-temporal information,
i.e., lip reading [22} 211 |3]], deep-fake detection [25] and audio-visual event localization [76]], and also
discriminative tasks that needs global information, i.e., audio/visual video classification [71} 47, 163,
41]]. We show that the same pretrained model successfully generalizes to all our scenarios without
having to re-pretrain it using different objectives and/or datasets. Furthermore, we demonstrate that
the two contrastive objectives mutually benefits each other and helps improve the generalizability
of both global and local representations. To the best of our knowledge, our work is the first to
demonstrate a CSL approach that learns video representations that generalize to both global and local
video understanding scenarios.

2 Related Work

Contrastive self-supervised learning. Contrastive learning leverages multiple views of the same
data [59], e.g., multiple perspectives within the same modality such as augmentations of the same
image, different frames/clips of a video, etc. [35 137, 32]] or perspectives from different modalities
such as RGB and depth, images/videos and text [[75} 73,153 14]. DIM [38]] and SimCLR [16] show
that leveraging local information in contrastive learning further improves performance on image
classification. DIM [38]] has been extended to multi-scale [11] and to video data [37]. However,
evaluation is still focused on “discriminative” tasks, e.g., image classification and video classification,
while there is little evidence that these models will adapt well to tasks that require local information.

Several recent advances happened in the image domain, e.g., MoCo [35, [17, [19], BYOL [31]],
SwAV [13]], SimSiam [18]], BarlowTwins [90]. Although evaluation is performed in both global
and local downstream scenarios such as image classification, object detection, semantic/instance
segmentation and depth estimation, this line of work focuses on evaluating generalizability of the
learned global representations rather than studying the importance of global and local information in
generalization, which is the focus of this work. They also focus on image recognition tasks only.

Audio-visual video representation learning. Learning video representations from the natural audio-
visual correspondence has been studied extensively. Most existing approaches aim to capture high-
level semantic information useful for sequence-level (global) discrimination tasks such as audio/visual
video classification [9, 146} 15,155,161} 123]]. Along this line of work, AVSlowFast [81]] utilizes different
temporal scales of the audio and visual data, which encourages the model to capture fine-grained
temporal information. However, their learning objective optimizes for only global representations
induced by different sampling rates and their evaluation is still focused on classification tasks.

Another line of work focuses on capturing fine-grained spatio-temporal local information suitable for
“local” task such as sound source separation and localization [7} 169, 93} 192} 28 88 164, 150]. Lin et
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Figure 1: We factorize the joint spatio-temporal feature space into a spatially-local/temporally-global
subspace and a spatially-global/temporally-local subspace. In each space we define a cross-modal
contrastive objective that compare audio-visual signals in the multiple instance learning framework.
For notational simplicity we indicate only the temporal scale in the superscripts of all the variables.

al. [50] learn patch-level audio-visual correspondence by drawing positive/negative patches iteratively
from sounding/non-sounding regions induced by audio-visual feature correlation. However, their
approach learns spatially-local/temporally-global representations only, and their evaluation is focused
on localization tasks. In contrast to these previous work, we explicitly optimize for global and local
spatio-temporal representations and evaluate on both classification and localization downstream
tasks. There are also some work proposed to learn audio-visual representations, however they are
specifically designed for a particular task, e.g. speaker recognition [36]. While our work learns
general-purpose video representation and is demonstrated on a variety of downstream tasks.

3 Approach

We factorize the feature space into a spatially-local/temporally-global (S-local/T-global) subspace
and a spatially-global/temporally-local (S-global/T-local) subspace and define two cross-modal
contrastive objectives in each of the subspaces. The S-local/T-global objective captures slowly
changing patch-level information (Sec[3.T)) while the S-global/T-local objective captures fast changing
frame-level information (Sec[3.2)). Furthermore, we utilize the learned patch-level information to
guide learning frame-level information via a spatially-aware attention pooling mechanism (Sec[3.3).

3.1 Spatially-Local Temporally-Global Contrastive Objective

The purpose of this objective is to capture slowly changing patch-level information with high audio-
visual correlation. We define an audio encoder EY that computes audio embeddings 29 € RTa*F,
where T}, is the audio sequence length and F' is the number of frequency bands, and perform temporal
average pooling to obtain z9 € R I, Slmllarly, we define a visual encoder E2J that computes visual
embeddings zJ € RTv*HxWxC 'where T, is the visual sequence length and H W, C are the height,
width and channel dimensions, and perform temporal average pooling to obtain zJ € RI*H*WxC,

To help our model capture slowly changing yet spatially-detailed information, we purposely make
input frames lack local temporal information by feeding them at a low sampling rate, e.g., at one
eighths of the original sampling rate, which has been shown to be effective at capturing fine-grained
spatial details [27]. For audio, we found that keeping the original sampling rate to be more effective.

We consider zJ and zJ that come from the same clip as positive pairs, while features coming from
different clips are negatives. To capture local spatial information in zJ, we consider each cell of the
H x W spatial grid as an instance and define pairs by coupling zJ Wlth 29[i],Vi € H x W. Note
that not all z9[i] will have valid audio-visual correspondence to z7; it is rather likely that only a
few cells (e.g., the lip region of a talking person) will match the information in zJ. To resolve this



misalignment issue, we define our contrastive loss in the multiple instance learning framework [53]:

£9 = —log Zza‘f[i]ep F(zg, 231i])
erg[i]e’]? F(zq, 25i]) + Zz;e/\/ F(23,2'7)
where F(z,,2,) = exp(z! z,) measures the compatibility between z, and z,, P is a set of spatial

grids in zZ, and V is a set of negative visual instances taken from different clips, i.e., given a batch of
B video clips, we consider H x W x (B — 1)? negative pairs.
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3.2 Spatially-Global Temporally-Local Contrastive Objective

To capture information sensitive to temporal changes, e.g., the lip region of a talking head, we take
a temporally-granular approach and contrast visual features at each time step to the corresponding
audio features in a local temporal neighborhood. We compute audio embeddings z!, € RT«*¥ and
visual embeddings 2} € RTv*Hx WX in the same manner as before but without applying temporal
average pooling at the end. To help our model capture fine-grained temporal changes, unlike in the
previous objective, we feed frames at a higher sampling rate and perform spatial pooling over visual
embeddings to obtain 2/ € RTvx1x1xC

We construct contrasting views by taking audio and visual features from the same local temporal
block as positive pairs; audio-visual pairs from different temporal blocks of the same video become
negatives. We do not use samples from different videos in order to encourage the shared information
between modalities to be just how features vary over time.

Note that a single visual feature 2. [t],¢ € T, maps to multiple audio features z.[t], € T, because
audio signals are typically captured at a higher sampling rate. Therefore, unlike in the previous
objective, all the pairs within the same local temporal block can be considered as valid positives.
There exists several ways to define a contrastive objective with multiple positives [42] 12, [70]; we opt
for a simple approach that sums scores over all positive pairs, which leads to a form similar to Eqn.

£ = —log 2ot jler F(ZGlte], 24 1E])
szl[tk]E’P F(Zé[tk]v Zf}[t]) + ZZQEN F(Z(’l, Zé)

P is a set of audio features within the same temporal block of z![t] and N is a set of all possible
audio-visual slice pairs that come from different parts of the same video. Given a video with T,
frames and T,, = M x T, audio slices, we consider M x (T}, — 1)2 negative pairs for a video
sequence.

2)

3.3 Spatial Pooling with Audio-Visual Attention

To define the two subspaces we apply global pooling over either spatial or temporal dimensions. For
the S-local/T-global subspace, we simply perform temporal average pooling because video inputs to
our model are relatively of short length (3 seconds) and tend to show content recorded in a single
scene. For the S-global/T-local subspace, however, spatial average pooling could be problematic
because not all pixel regions will contribute to the sound in the corresponding audio signals.

Therefore, we use the learned S-local/T-global representation (Sec. [3.1)) to obtain an audio-visual
attention map and use it to perform spatial attention pooling, as seen in Fig.[l} Specifically, we
compute the dot product between z¢ and each of 29[i],Vi € H x W to obtain an attention map
indicating regions of high audio-visual correlation. We use this map to perform spatial pooling at
each time step to obtain 2 [t], Vt € T,,. We demonstrate the effectiveness of spatial attention pooling
in Table [8]and show qualitative examples in Fig. [2|for the scenario of sound source localization.

4 Experiments

Implementation details. We use 3D-ResNet [34] for our visual encoders (£9 and Ef}) and 1D-
ResNet [36] for our audio encoders (E£¢ and Ei), in both cases using Batch Normalization [39]. We
share the weights of the two audio encoders and denote both simply by E,; for the visual encoders we
instead keep the weights separate in order to encourage them to capture complementary information
from two different sampling rates; this can be seen as an instantiation of the SlowFast network with no



lateral connection [27]. All models are trained end-to-end using ADAM [44] with an initial learning
rate v = 1073 after a warm-up period of 500 iterations. We use 16 NVIDIA Tesla P100 GPUs with a
batch size of 32. For the S-local/T-global objective we use features at a 16 x 16 spatial resolution. To
compute the S-global/T-local objective, we adopt a temporal window of size three without overlap.

During pretraining we sample frames at 10 FPS and apply random cropping, horizontal flipping, gray-
scaling, and temporal jittering. We set the clip length to 32 frames (3 seconds) and resize frames to
112 x 112; we feed 8 frames and 32 frames to EJ and E!, respectively. We extract mel-spectrograms
from the raw waveform using LibROSA and get a 80 x 7" matrix with 80 frequency bands; T is
proportional to the length of an audio clip. We then segment the mel-spectrogram according to
the corresponding video clips to ensure temporal alignment. We treat the mel-spectrograms as an
80-channel 1D signal. For downstream tasks we follow the standard data preprocessing protocols.

Datasets. Many video tasks involve human actions (e.g., action recognition), faces (e.g., deepfake),
and speech (e.g., lip reading). Pretraining our model on different datasets for different downstream
tasks could produce misleading conclusions as the model could simply pick up the biases in the data
useful for downstream tasks, e.g., Kinetics [[14] contains various human actions useful for solving
action recognition and AVSpeech [26] mostly contains human speech useful for lip reading, but not
the other way around. Therefore, we pretrain our model only once for all downstream tasks using a
combination of Kinetics [14] and AV Speech [26]. The standard choice of video dataset for pretraining
is Kinetics-400 [41]] that contains 240K videos. We match the size by randomly selecting 120K video
samples from each datasets; we term it as K-AV-240K. For the ablation study, we pretrain our model
on a subset of 15K samples from the K-AV-240K dataset. For fair comparisons with existing work,
we also pretrain our model on the same datasets as with state-of-the-art (SOTA) approaches.

We evaluate our pretrained model on action recognition (UCF101 [71]], HMDBS51 [47]], and Kinet-
ics400 [41]]), on sound classification (ESC50 [63]]), on lip reading (LRW [22] and LRS2 [21]]), on
deepfake detection (DFDC [23])), and on audio-visual event localization (AVE [[76]). We also conduct
qualitative analysis on sound source separation on Kinetics-Sounds [6].

4.1 Downstream Scenarios

Lip Reading. Visually recognizing a speaker’s utterance is a challenging task, e.g., lip movements for
different sounding letters can be visually similar to each other (e.g., /b and /p/, /d and /t). This requires
visual representations to capture fine-grained spatio-temporal information. For a fair comparison
with SOTA, we use the standard data processing protocol of [91]]. We detect 68 facial landmarks in
each frame using dlib [15] and use the outer eye and nose tip landmarks to align the detected face in
each frame using an affine transform. Finally, an image of size 112x 112 is cropped from the aligned
face with the lip landmarks at the center, so that the lip region occupies one third of the image width.
We apply random horizontal flipping as data augmentation. We concatenate the features produced
by our pretrained E¢ and E! and feed them to a 2-layer MLP prediction head. For LRS2, we apply
spatial average pooling before concatenation to preserve the temporal dimension and train the model
using the CTC loss [30]. For LRW we apply spatio-temporal average pooling before concatenation
and train the model on the cross-entropy loss. In both cases we train the whole model end-to-end.

Table [T] compares our approach with SOTA supervised and self-supervised methods. For LRS2,
we report the word error rate (WER; the lower the better); for LRW, we evaluate on a 500-way
word classification task and report top-1 accuracy (the higher the better). The results show that our
approach with the same ResNet18 backbone outperforms SOTA supervised approaches on LRS and
LRW by large margins, i.e. 4.7% WER reduction on LRS2 and 5.1% accuracy improvements on LRW.
All the baseline self-supervised methods optimize for variants of global contrastive objectives and
generally perform poorly on all three datasets. Our approach outperforms all SOTA self-supervised
approaches with the same backbone and using the same pretraining dataset. These results demonstrate
the importance of capturing fine-grained spatio-temporal information necessary for lip reading.

Deepfake Detection. We observe that “deepfakes” tend to be characterized by fine-grained audio-
visual inconsistencies such as misalignment between lip motions and audio, unnatural facial and lip
appearance/movements or asymmetry between facial regions such as the left and right eyes. Detecting
such artifacts requires local spatio-temporal features. We take our pretrained model and finetune it on
1 second video clips from the DFDC dataset [25] for 100 epochs with a batch size of 16. We evaluate
performance using video-wise Area Under the Curve (AUC). We follow the same data preprocessing



Method Backbone Pretrained on LRS2) LRWT Method Backbone Pretrained on DFDC (AUC)T
WAS [21] Conv. N/A 70.4 76.2 Capsule [58 VGG-19 N/A 533
STF [01] ResNetl8  N/A 51.7 83.7 Multi-task [57] Y-shape N/A 53.6
TM-CTC [2] ResNetl8  N/A 65.0 - HeadPose [89 - N/A 55.9
TM-sep2seq [2] ResNet18 N/A 49.8 - Two-stream [95] Inception3  N/A 614
LRW [22] VGG-M N/A - 61.1 Xception-c23 67 XCeption N/A 722
Perfect Match [23] TC-5 N/A - 71.6 Meso4 [1] Inceptiond  N/A 753
ResNet-LSTM [72] | ResNet34 — N/A - 83.0 DSP-FWA [48] - N/A 75.5
TwoStream [791 13D N/A - 84.1 Siamese [54] - N/A 84.41
DFTN |82] ResNet18 ~ N/A - 84.1 MDS [20] ResNetl§  N/A 9151
MoCo [35] ResNetl8  K-AV-15K 71.5 61.2 MoCo [35] ResNetl18 K-AV-15K 60.2
CPC [59] ResNetl8  K-AV-15K 66.7 65.3 CPC [59] ResNet18 K-AV-15K 67.9
DPC [59] ResNet18 K-AV-15K 65.1 67.5 DPC [33] ResNetl18 K-AV-15K 712
AVSlowFast [81] ResNet18 K-AV-15K 56.1 75.8 AVSlowFast [81] ResNet18 K-AV-15K 80.9
VDIM [37] ResNet18 K-AV-15K 53.2 70.7 VDIM [37] ResNet18 K-AV-15K 85.3
ResNetl8  K-AV-15K 47.8 83.7 ResNetl18 K-AV-15K 90.1
Our ResNet50  K-AV-15K 45.0 85.5 Ours ResNet50 K-AV-15K 92.7
ResNetl8  K-AV-240K 45.1 89.2 ResNetl18 K-AV-240K 96.7

Table 1: Comparison with SOTA on lipreading: Table 2: Comparison with SOTA on deepfake de-
LRS2 [21]] (word error rate (WER); lower is better) tection [25]]. 1: [54}[20] use audio-visual signals;
and LRW [22] (top-1 accuracy; higher is better).  all the other methods use visual signals only.

Method Backbone Pretrained on | UCF101T HMDBS511t ESC5071
Random Forest [63] | MLP N/A - - 443
ConvNet [62] ConvNet-4 N/A - - 64.5
ConvRBM [68]] ConvNet-4 N/A - - 86.5
Scratch ResNet18 N/A 46.5 17.1 -
Supervised ResNet18 ImageNet 82.8 46.7 -
MotionPred [78]] C3D K400-240K 61.2 334 -
RotNet3D [40] ResNet18 K400-240K 62.9 33.7 -
ST-Puzzle [43] ResNet18 K400-240K 65.8 33.7 -
ClipOrder [85]] R(2+1)D-18  K400-240K 72.4 30.9 -
DPC [32] ResNet34 K400-240K 75.7 35.7 -
CBT [73] S3D&BERT  K400-240K 79.5 44.6 -
SeLaVi [9] R(2+1)D-18  K400-240K 83.1 47.1 -
XDC [5] R(2+1)D-18  K400-240K 84.2 47.1 78.0
AVTS [46] MC3 K400-240K 85.8 56.9 76.7
AVID [55] R(2+1)D-18  K400-240K 87.5 60.8 79.1
GDT [61] RQ2+1)D-18  K400-240K 89.3 60.0 -
Ours ResNet18 K-AV-240K 90.1 61.3 80.1
ResNet18 K400-240K 91.1 61.9 79.8

Table 3: Comparison with SOTA on action classification (UCF101 [71], HMDB51 [47]) and sound
classification (ESC50 [63]). We highlight the best results and the second best results.

protocol as in SOTA approaches for this task, and use the same training and test sets as [20]. We
perform face detection to crop the face region in each video frame. We concatenate the features
produced by our pretrained EY and E!, after applying spatio-temporal average pooling, feed them to
a 2-layer MLP prediction head, and train the whole network end-to-end using the cross-entropy loss.

Table 2] shows the results. Two of the baselines, [20] and [54]], use both visual and audio features;
all the other methods use only the visual features. We can see that when using only the visual
features, our approach outperforms all previous SOTA approaches (AUC=96.7). We also compare our
model with SOTA self-supervised approaches. Again, the baseline self-supervised methods perform
poorly on this task which require local spatio-temporal information. Our model outperforms the best
self-supervised result, highlighted in blue, by a large margin (90.1 vs. 85.3).

Audio-Visual Event Localization. An “audio-visual event” is defined as an event that is both visible
and audible in a video segment. Audio-video event localization is usually evaluated in two settings,
i.e. fully-supervised and weakly-supervised. The former aims to predict which temporal segment of
a video has an audio-visual event and what category the event belongs to; the latter assumes that
only a video-level event category is available and there is no temporal event boundary information
during training. This is a challenging task because an event usually appears only in a small portion of

’Blue: comparisons of ours with the self-supervised approaches under the same setting. Underline: best
reported results of supervised methods. All the supervised results are from the literature; all the self-supervised
results are ours. N/A: models are trained from scratch on target datasets. 1 / |: higher/lower is better.



frames within a video. Detecting which temporal segment contains an audio-visual event requires
fine-grained (“local”) spatio-temporal representations, especially in weakly-supervised setting, where
there is no clue about temporal event boundaries.

In Table ] we show comparisons with
the SOTA on audio-visual event localiza-

tion. Again, we take the same K-AV- Ai\ldg]ih[o;i = Fuug;gper' Weak;g';ur’er'
240K-pretrained model used in the previ- AVSDN [49] 726 673
ous experiments and finetune it on the AVE CMAN [87] 733 704
dataset [[76]]. We concatenate the features DAM [80] 74.5 -
produced by our pretrained E! and E!, AVRB [66] 74.8 68.9
and feed them to a 2-layer MLP predic- AVIN [65] 752 69.4
tion head. Especially, we first utilize the AVT R 76.8 70.2

E! to perform a spatial attention pooling Cfl\,dsfl{;?glj,é- ;;g ;gg

on E! to highlight the “important” local Ours 821 70.8

spatial information. In this way, the final
concatenated audio-visual features contain
the desired the spatio-temporal local infor-
mation. We evaluate our model on both
Sfully-supervised (Fully-super.) and weakly-
supervised (Weakly-super.) settings. For a fair comparison, we followed the same protocol and
evaluation metric as [76]. Without bells and whistles, we achieved 82.1% localization accuracy on
Sully-supervised setting, and 79.8% on weakly-supervised setting, which all outperforms the SOTA,
i.e. PSP [94] (77.8%) (Fully-super.) and 73.5% (weakly-super.), by large margins.

Sound Source Localization. To further demonstrate our approach achieving good audio-visual
localization, we visualize audio-visual spatial attention maps on Kinetics-Sounds [6]] (see Fig. E]),
which contains videos deemed to have high audio-visual correspondence. Such visualization can
also be considered as performing sound source localization, i.e. locate objects that making sound.
To plot the figure, we use the learned audio-visual attention map, add a softmax layer and apply
bilinear interpolation of the 16 x 16 attention map back to the original image size, i.e. 192 x 192.
The figure shows that our learned attention maps successfully localize sounding sources in videos,
especially when visual content is highly related to the corresponding audio signal. For example,
the first row (video frames from “playing instruments”) shows that our model can successfully
localize the sounding region. For other activities like “baby talking,” “playing basketball,” “running,”
our model successfully highlights regions with humans. However, we find that the attention map
incorrectly highlights regions on videos that have ambiguous audio-visual relation. We show example
failure cases in the last two columns of the third row: There is no visual content that clearly relates
with the audio signal, and thus the model fails to find sounding sources.

Table 4: Comparison with SOTA on audio-visual event
localization.

Action and Sound Classification. To evaluate the effectiveness of the learned global spatio-temporal
representations, we evaluate our approach on action and sound classification. For action classification,
we concatenate the visual features from EY and E! after spatio-temporal average pooling, feed them
to a 2-layer MLP prediction head, and train the whole network end-to-end using the cross-entropy
loss. For audio classification, we apply temporal average pooling to the audio features from F, and
feed them to a 2-layer MLP prediction head, which is trained using the cross-entropy loss.

Table 3| shows the results. For a fair comparison to existing approaches, we report both the results
pretrained on K-AV-240K and the results pretrained on Kinetics-400 [41]] that contains 240K videos
(K400-240K). We find that, while the K400-240K pretrained models leads to better performance
on UCF101 and HMDBS51 due to the similarities between datasets (all focus on human actions),
the K-AV-240K pretrained models also achieve competitive results, outperforming all the baselines.
Overall, on all three benchmarks, our approach achieves new SOTA results (91.1% on UCF101,
61.9% on HMDBS51 and 80.1% on ESC50), demonstrating the effectiveness of learning global-local
representations even for tasks that require global information. This suggests that optimizing for local
representations also helps improve performance on classification tasks that require global information.

4.2 Ablation and Analysis

Comparison of different contrastive objectives. In Table |5 we compare various contrastive ob-
jectives on tasks that require fine-grained local spatio-temporal information. All the methods use



Figure 2: Visualization of the learned audio-visual spatial attention maps on videos from Kinetics-
Sounds [6] show that they successfully locate sounding sources, e.g., musical instruments.

Method Contrastive Objective X-Modal Spa. Temp. | LRS2] LRW?T DFDCYT
MoCo [33] Momentum Contrast G G 71.5 61.2 60.2
CPC [39] Predictive Coding G G 66.7 65.3 67.9
DPC [33] Dense Predictive Coding L G 65.1 67.5 71.2
VDIM Global-Local DIM L G 53.2 70.7 85.3
AVTS [46] Audio-Visual Contrast v G G 72.1 64.9 63.1
AVSlowFast [81]] | AVC + Rotation v G G 56.1 75.8 80.9
Ours Global-Local AVC v G+L G+L 47.8 83.7 90.1

Table 5: Comparison of different contrastive objectives. All the results are based on our implemen-
tation. X-Modal specifies the methods that use a cross-modal contrastive objective; others define
contrastive objective on the visual modality only. We also indicate whether each contrastive objective
optimizes for global and/or local representations in spatial (Spa.) and temporal (Temp.) dimensions.

the same backbone (3D-ResNet18) and the same pretraining dataset (K-AV-15K), and follow the
same experimental protocol. The results show that MoCo [33]], which is successful for image clas-
sification tasks, falls short on lip reading and deepfake detection. This suggests that the “vanilla”
global contrastive objective may not be effective at tasks that require local information We find
that the contrastive objectives that explicitly optimize for local spatial representations — DPC [33]],
VDIM [37]], and ours — generally perform well, suggesting the importance of local spatial contrastive
objectives. We also see that AVSlowFast [81]] achieves competitive performance although it does
not explicitly optimize local contrastive objectives. This can be explained by the fact that, unlike all
the other methods, AVSlowFast [81] and ours define two visual encoders to capture complementary
temporal information (“slow” and “fast” changing temporal features). In addition to AV SlowFast, we
explicitly optimize for global and local spatio-temporal representation via space-time factorization;
the strong performance suggests the effectiveness of our global-local contrastive objectives.

Importance of global-local joint contrastive objective. To demonstrate the importance of jointly
learning global-local representations, we ablate three components of our model: 1) do we need both
the visual encoders E£J and EfJ? 2) do we need both the contrastive objectives £9 and £ 3) do we
need features from both the subspaces zJ and z!, for the downstream tasks? In TableEl we evaluate
various combinations of these. We can see that jointly optimizing both the contrastive objectives
holistically improves representations in both the subspaces zJ and z!. What is particularly interesting
is that optimizing the objectives not only helps learn the subspace that they are defined in, but it
also helps learn the other subspace. For example, compared to optimizing only £, optimizing it
jointly with L! helps also improve z¢ (lines a and b). We also evaluate a variant of our approach



V. Enc. Ob;j. Feat. | LRS2] LRWt DFDCt UCF1011 HMDB511
(@ Both LG (L9 LG(z9) | 709 65.3 67.9 823 57.1
() Both Both LG (z9) | 47.6 86.8 92.6 89.2 59.9
(c) Both GL(LH GLGEY) | 686 65.1 70.3 82.1 55.6
(d | GL(EY) Both  GL(z) | 50.8 81.2 89.7 83.6 57.3
(e) Both Both GL(z)) | 465 88.9 95.9 88.5 58.3
) Both Both Both 45.1 89.2 96.7 90.1 61.3

Table 6: The roles of global and local information on different benchmarks. LG means spatially-
local/temporally-global and GL means spatially-global/temporally-local. V. Enc.: visual encoder
setup, Obj.: contrastive objective used during pretraining, Feat.: features used in downstream tasks.

Method | LRS2| LRW1 DFDC?T UCF101T  HMDBSI11
Avg Pooling & Single Pos. Pair 40.4 79.2 88.9 87.8 56.3
No Pooling & Multiple Pos. Pairs | 47.8(17.4) 83.7(14.5) 90.1(11.2) 88.1(10.3) 56.8(10.5)

Table 7: Comparison of different methods to handle multiple positive audio-visual pairs in £;.

that uses only the S-global/T-local encoder E! (line d). Pretraining this with both the objectives
improves over our full model pretrained with only £ (line c), again suggesting the effectiveness of
our global-local joint contrastive objectives. Our full model consistently outperforms all the other
variants, demonstrating the importance of all three components (encoders, objectives, and features).

Handling multiple positive pairs in £; (Eq.[2). In our S-global/T-local contrastive objective, we
handle multiple positive audio-visual pairs (due to a higher audio sampling rate) by summing up the
scores of all positive pairs. Here, we validate the effectiveness of this approach by comparing it to
an alternative that performs an average temporal pooling over audio features in each local window
and uses the vanilla contrastive loss [[L6] over the synchronized audio and visual features. Table
shows that performance of this alternative approach drops significantly on tasks that require local
information (LRS2, LRW, DFDC), while for classification tasks both approaches achieve comparable
results. This suggests the importance of our formulation specifically on capturing local information.

Audio window size. In our implementa-
tion, each video frame covers one-tenth

of a second and roughly maps to three M | LRS2| LRWf DFDCT UCFt HMDBf
X . 1 49.8 87.1 95.0 87.8 579
audio slices (M = 3). We therefore fix 3 45.1 89.2 96.7 90.1 61.3
M = 3 to use all available audio slices 5 44.9 89.0 96.5 89.5 61.6
without overlap between windows; here, 7 46.8 88.1 95.1 88.3 59.0

we vary M € {1,3,5,7} to see how that
affects the performance. Table [9] shows
that M = {3,5} isideal. M = 1 leads to
the worst performance due to information
loss (we drop two audio slices per window),
while M > 5 starts degrading performance due to the increased noise in audio-visual correspondence
(each window overlaps with others).

Table 9: Comparison of different window sizes (M) for
audio-visual temporal matching.

AV spatial attention (Sec. 3.3). The learned audio-visual spatial attention map can highlight
discriminative face regions useful for lip reading. In Table [§] we demonstrate the quality of our
attention maps by replacing lip/face bounding boxes typically used in lip reading and deepfake
detection with our attention map. We note that all SOTA approaches extract features from lip/face
cropped regions using off-the-shelf detectors (which require substantial supervision on their own).
First, as a baseline we evaluate a variant of our approach that is trained directly on full frames without
using attention maps or lip/face detectors (“Ours/Full Frame”); the performance drops significantly
on all three benchmarks. Next, we extract features from the entire frame (no lip/face cropping) and
use our attention map to pool the features spatially. Note that the purpose of this experiment is to
evaluate the quality of attention maps; we use audio signal just to obtain attention maps and discard
it for lipreading/deepfake detection. The results (“Ours/Attention”) show that it achieves results
comparable to our best setting (“Ours/Crop”), which extracts features from the cropped lip/face
region similar to the SOTA approaches. Notably, the attention-based approach outperforms SOTA on
LRW and DFDC even without relying on lip/face region detectors, demonstrating the effectiveness.



Task SOTA Results Ours/Full Frame  Ours/Attention ~ Ours/Crop
LRS2] | TM-seq2seq [2] 49.8 71.9 51.2 45.1/ Lip Crop
LRW1 | DFTN [82] 84.1 62.3 85.1 89.2 / Lip Crop
VDIM [37] 85.3 (V) 96.7 (V) / Face Crop
DEDCT | \ips [20] 915 (v4A) | 81V 39V) 97.1 (V+A) / Face Crop

Table 8: Evaluation of the learned audio-visual spatial attention maps. “V” uses only visual sequence
and “V+A” uses both visual and audio sequence for finetuning on downstream tasks.

Kinetics400 UCF101 HMDB51 ESC50 LRS2 LRW DFDC
Method Backbone LN FT LN FT LN FT LN FT FT FT FT
AVTS [46] | MC3 , B , 9.0 , 61.6 80.6 , B . .
XDC[5] | R@+1)D-18 - 91.2 - 610 84.8 - - -
AVID [55] | R(2+1)D-50 - - 91.5 - 64.7  89.2 - -
GDT [61] | R(Q+1)D-18 - - - 925 - 66.1 885 - -
VA ] R(2+1)D-18 | 55.5* - 839 915 600 70.1 856 - -
VA [4] S$3D-G 59.8* - 847 90.1 604 682  86.1 - - - -
Ours ResNetl8 637 715 851 939 612 737 851 893 381 952 98.9

Table 10: Comparison to SOTA approaches that are pretrained on AudioSet [29]]. “FT”: finetuning,
“LN”: linear evaluation. *: evaluation on Kinetics600

Pretraining on a large-scale dataset. We also investigate how the pretraining scale affects the
results on various downstream tasks. To this end, we pretrain our model on AudioSet [29] and
evaluate it on all downstream tasks. The results are show in Table We report the results on both
the linear (LN) evaluation and finetuning (FT) scenarios. We followed the experimental protocol
used in our paper and used the same pretrained checkpoint for all downstream scenarios. For a fair
comparison, we only show the results evaluated by AudioSet pretrained models for all the other
comparing approaches. As we can see, among all the SOTA approaches, “Ours” achieves the best
performance. When pretraining on a large-scale dataset, i.e. AudioSet with 2 million video clips, the
performance can further be improved comparing with that pretrained on medium scale dataset, e.g.
Kinetics and K-AV-240k.

5 Conclusion

We presented a contrastive approach for learning global and local spatio-temporal video represen-
tations from audio-visual correspondence. We showed that the space-time factorization leads to an
effective solution for learning global-local representations. Unlike many prior work in the video self-
supervised learning literature, we expand the downstream evaluation scenarios to include both “global”
and “local” tasks and demonstrate that our approach successfully transfers to various tasks including
lip reading, deepfake detection, audio-visual event localization, and action/sound classification.

Limitations. We leverage audio-visual correspondence to compute the spatial attention map.However,
when applying to downstream tasks which contains videos with no audio, such a mechanism can
not be used. In addition, the attention mechanism should also be considered along the temporal
dimension. For example, certain frames might play more important roles in deepfake detection, e.g.
frames with obvious artifacts, or in the case of lip reading, some frames or audio slices can give more
clues for the model to recognize the word through visemes and/or phonemes. How to incorporate
temporal or spatio-temporal attention is also an important future work.

Boarder Impact. Our paper studies self-supervised pretraining, with applications to tasks involving
both audio and visual signals, e.g. deepfake detection, lip reading, audio-visual event localization and
audio/video classification. As one of the core machine learning problems, self-supervised pretraining
can enable machine learning to work better and more efficiently with less data and/or task-specific
designs. Especially, audio and video signals are two key sensory signals in many real-world scenarios.
In this sense, our work have broader applications in computer vision, audio/speech, bioinformatics,
and human-machine intelligence. The datasets in our study are all publicly available. But every data-
driven method brings the risk of learning biases in the data. Although our approach is promising in
creating more safe and real environment, i.e. deepfake detection, we encourage the deployment of our
method to be done with careful consideration of sensitive applications that have ethical implications.
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