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Abstract

Omission and addition of content is a typi-001
cal issue in neural machine translation. We002
propose a method for detecting such phenom-003
ena with off-the-shelf translation models. Us-004
ing contrastive conditioning, we compare the005
likelihood of a full sequence under a transla-006
tion model to the likelihood of its parts, given007
the corresponding source or target sequence.008
This allows to pinpoint superfluous words in009
the translation and untranslated words in the010
source even in the absence of a reference trans-011
lation. The accuracy of our method is com-012
parable to a supervised method that requires a013
custom quality estimation model.014

1 Introduction015

Neural machine translation (NMT) is susceptible to016

coverage errors such as the addition of superfluous017

target words or the omission of important source018

content. Previous approaches to detecting such019

errors make use of reference translations (Yang020

et al., 2018) or employ a separate quality estima-021

tion (QE) model trained on synthetic data for a022

language pair (Tuan et al., 2021; Zhou et al., 2021).023

In this paper, we propose a reference-free al-024

gorithm based on hypothetical reasoning. Our025

premise is that a translation has optimal coverage if026

it uses as little information as possible and as much027

information as necessary to convey the source se-028

quence. Therefore, an addition error means that the029

source would be better conveyed by a translation030

containing less information. Conversely, an omis-031

sion error means that the translation would be more032

adequate for a less informative source sequence.033

Inspired by contrastive conditioning (Vamvas034

and Sennrich, 2021), we use probability scores of035

NMT models to approximate this concept of cov-036

erage. We create parse trees for both the source037

sequence and the translation, and treat their con-038

stituents as units of information. Omission errors039

are detected by systematically deleting constituents040

from the source and by estimating the probabil- 041

ity of the translation conditioned on such a partial 042

source sequence. If the probability score is higher 043

than when the translation is conditioned on the full 044

source, the deleted constituent might have no coun- 045

terpart in the translation (Figure 1). We apply the 046

same principle to the detection of addition errors 047

by swapping the source and the target sequence. 048

When comparing the detected errors to human 049

annotations of coverage errors on the segment 050

level (Freitag et al., 2021), our approach surpasses 051

a supervised QE baseline that was trained on a large 052

number of synthetic coverage errors. Human raters 053

find that word-level precision is higher for omis- 054

sions than additions, with 39% of predicted error 055

spans being precise for English–German transla- 056

tions, and 20% for Chinese–English. False pos- 057

itives can occur if the translation has a different 058

syntax than the source. We believe our algorithm 059

could be a useful aid whenever humans remain in 060

the loop, for example in a post-editing workflow. 061

We release the code and data to reproduce our 062

findings, including a large-scale dataset of syn- 063

thetic coverage errors in English–German and Chi- 064

nese–English machine translations. 065

2 Related Work 066

Coverage errors in NMT Addition and omis- 067

sion of target words have been observed by human 068

evaluation studies in various languages, with omis- 069

sion as the more frequent error type (Castilho et al., 070

2017; Zheng et al., 2018). They are included as 071

typical translation issues in the Multidimensional 072

Quality Metrics (MQM) framework (Lommel et al., 073

2014).1 Addition is defined as an accuracy issue 074

where the target text includes text not present in the 075

source, and omission is defined as an accuracy issue 076

where content is missing from the translation but 077

1http://qt21.eu/mqm-definition/
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Please exit the plane after landing

4    Infer error span 

Please exit the plane  after landing  .

3    Score conditioned on partial sequences

Score(Y | Please exit the plane after landing.) = 0.23 

Score(Y | Please exit the plane after landing.) = 0.11

Score(Y | Please exit the plane after landing.) = 0.15

Score(Y | Please exit the plane after landing.) = 0.34

1    Translate

X = Please exit the plane after landing.

Y = Bitte verlassen Sie das Flugzeug.

2    Extract constituents

Figure 1: Example of how an omission error is detected. The German translation leaves after landing erroneously
untranslated (Step 1). Potential error spans are derived from a parse tree (Step 2). An NMT model such as
mBART50 assigns a higher probability score to Y conditioned on the source with after landing deleted than to Y
conditioned on the full source (Step 3). This indicates that there is an omission error (Step 4).

is present in the source.2 Freitag et al. (2021) used078

MQM to manually re-annotate English–German079

and Chinese–English machine translations submit-080

ted to the WMT 2020 news translation task (Bar-081

rault et al., 2020). Their findings confirm that state-082

of-the-art NMT systems still erroneously add and083

omit target words, and that omission occurs more084

often than addition. Similar patterns can be found085

in English–French machine translations that have086

been annotated with fine-grained MQM labels for087

the document-level QE shared task (Specia et al.,088

2018; Fonseca et al., 2019; Specia et al., 2020).089

Detecting and reducing coverage errors While090

reference-based approaches include measuring the091

n-gram overlap to the reference (Yang et al., 2018)092

and analyzing word alignment to the source (Kong093

et al., 2019), this work focuses on the reference-094

free detection of coverage errors.095

Previous work has employed custom QE models096

trained on labeled parallel data. For example, Zhou097

et al. (2021) insert synthetic hallucinations and098

train a Transformer to predict the inserted spans.099

Similarly, Tuan et al. (2021) train a QE model on100

synthetically noisy translations. In this paper, we101

propose a method that is based on off-the-shelf102

NMT models only.103

Other related work has focused on improving104

coverage during decoding or training, for exam-105

ple via attention weights (Tu et al., 2016; Wu et al.,106

2016; Li et al., 2018; among others). More recently,107

Yang et al. (2019) found that contrastive fine-tuning108

on references with synthetic omissions reduces cov-109

erage errors produced by an NMT system.110

2The terms overtranslation and undertranslation have been
used in the literature as well. MQM reserves these terms for
errors where the translation is too specific or too unspecific.

3 Approach 111

Contrastive Conditioning Properties of a trans- 112

lation can be inferred by estimating its probability 113

conditioned on contrastive source sequences (Vam- 114

vas and Sennrich, 2021). For example, if a certain 115

translation is more probable under the MT model 116

when conditioned on a counterfactual source se- 117

quence, the translation might be inadequate. 118

Application to Omission Errors Figure 1 illus- 119

trates how contrastive conditioning can be directly 120

applied to the detection of omission errors. We con- 121

struct partial source sequences by systematically 122

deleting constituents from the source. If the prob- 123

ability score of the translation (average token log- 124

probability) is higher when conditioned on such a 125

partial source, the deleted constituent is taken to be 126

missing from the translation. 127

Application to Addition Errors We apply the 128

same method to addition detection, but swap the 129

source and target languages. Namely, we use an 130

NMT model for the reverse translation direction, 131

and we score the source sequence conditioned on 132

the full translation and a set of partial translations.3 133

Potential Error Spans To keep our search space 134

sub-quadratic to sequence length, we use a parser to 135

enumerate potential error spans. We use universal 136

dependency parsers (de Marneffe et al., 2021) given 137

their broad availability. The set of constituents that 138

we extract is defined as follows:4 139

3Another possibility would be to leave the translation di-
rection unreversed and to score the partial translations con-
ditioned on the source. However, the scores might be con-
founded by a lack of fluency in the partial translations.

4While we refer to the word spans as constituents, it should
be noted that the word spans are not necessarily constituents
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1. A constituent is a complete subtree.140

2. It must cover a contiguous subsequence.141

3. It contains a part of speech of interest.5142

For every constituent extracted according to this143

definition, we create a partial sequence by deleting144

the constituent from the original sequence.145

4 Experimental Setup146

In this section we describe the data and tools that147

we use to implement and evaluate our approach.148

Scoring model We use mBART50 (Tang et al.,149

2020), which is a sequence-to-sequence Trans-150

former pre-trained on monolingual corpora in many151

languages using the BART objective (Lewis et al.,152

2020; Liu et al., 2020) that was fine-tuned on153

English-centric multilingual MT in 50 languages.154

Sequence-level probability scores are computed by155

averaging the log-probabilites of all target tokens.156

Error spans We use Stanza (Qi et al., 2020) for157

dependency parsing, a neural pipeline for various158

languages trained on data from Universal Depen-159

dencies (de Marneffe et al., 2021). We make use160

of universal part-of-speech tags (UPOS) to define161

parts of speech that might constitute potential error162

spans. Specifically, we treat common nouns, proper163

nouns, main verbs, adjectives, numerals, adverbs,164

and interjections as relevant parts of speech.165

Gold Standard Data We use state-of-the-art En-166

glish–German and Chinese–English machine trans-167

lations for evaluation, which have been annotated168

by Freitag et al. (2021) with translation errors.6 We169

set aside translations by the system Online-B as170

a development set, and use the other systems as171

a test set, excluding translations by humans. The172

development set was used to identify typical UPOS173

tags of coverage error spans.174

Synthetic Data We also create synthetic cover-175

age errors, which we use for an evaluation study176

and for training a supervised baseline QE system.177

We propose a data creation process that is inspired178

by previous work (Yang et al., 2019; Zhou et al.,179

2021; Tuan et al., 2021) but is defined such that it180

works for both additions and omissions, and pro-181

duces fluent translations.182

in a strict sense according to phrase structure grammar.
5For example, a noun. In contrast, function words such as

determiners or punctuation may be added/omitted for syntactic
reasons, and such additions/omissions are not typically errors.

6https://github.com/google/
wmt-mqm-human-evaluation

We start from sentences in the source language 183

and create partial sources by randomly deleting 184

constituents. We machine-translate both, yielding 185

full and partial machine translations. We retain 186

only samples where the full machine translation 187

is different from the partial one, and can be con- 188

structed by addition. This allows us to treat full 189

machine translations as overtranslations of the par- 190

tial sources, and the added words as addition errors. 191

Conversely, partial machine translations are treated 192

as undertranslations of the full sources. Negative 193

examples are created by pairing the full sources 194

with the full machine translations, and the partial 195

sources with the partial machine translations. 196

Our synthetic data are based on monolingual 197

news text released for WMT.7 Partial sources are 198

created by deleting each constituent with a proba- 199

bility of 15%. To train a supervised baseline QE 200

system, we use 80k unique source segments per 201

language pair. Statistics are reported in Table A3. 202

Supervised baseline system We follow the ap- 203

proach outlined by Moura et al. (2020). Implemen- 204

tation details are provided in Appendix A. 205

5 Evaluation 206

5.1 Segment-Level Comparison to Gold Data 207

The accuracy of our approach can be estimated 208

based on the human ratings by Freitag et al. (2021). 209

Evaluation Design We use the MQM error types 210

Accuracy/Addition and Accuracy/Omission, and ig- 211

nore other types such as Accuracy/Mistranslation. 212

We count a prediction as correct if any one of the 213

human raters has marked the same error type any- 214

where in the segment.8 We exclude segments from 215

the evaluation that might have been incompletely 216

annotated (because raters stopped after marking 5 217

errors). For ease of implementation, we also ex- 218

clude segments that consist of multiple sentences. 219

Results The results of the gold-standard compar- 220

ison are shown in Table 1. Our approach clearly 221

surpasses the baseline in the detection of omission 222

errors in both language pairs, and in the detection 223

of addition errors in English–German translations. 224

Both approaches recognize Chinese–English addi- 225

tion errors with low accuracy. We also note that 226

the supervised baseline has low recall. Considering 227

7http://data.statmt.org/news-crawl/
8We perform a segment-level evaluation and do not quan-

tify word-level accuracy in this section since the dataset does
not contain consistently annotated spans for coverage errors.
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Approach Detection of additions Detection of omissions
Precision Recall F1 Precision Recall F1

EN–DE
Supervised baseline 6.9±1.9 2.9±0.9 4.0±1.3 40.3±5.2 6.1±0.1 10.6±0.2
Our approach 5.9 16.7 8.7 22.5 19.2 20.7

ZH–EN
Supervised baseline 4.3±0.6 4.7±0.7 4.5±0.6 49.6±0.6 9.4±1.0 15.9±1.4
Our approach 2.3 41.6 4.4 26.5 62.3 37.2

Table 1: Segment-level comparison of coverage error detection methods on the gold dataset by Freitag et al. (2021).
We average over three baseline models trained with different random seeds, reporting the standard deviation.

EN–DE ZH–EN

Target
Addition errors 2.3 1.2
Any errors 7.4 12.0

Source
Omission errors 36.3 13.8
Any errors 39.4 19.5

Table 2: Word-level precision of the spans highlighted
by our approach according to a human evaluation.

its high performance on a synthetic test set (Table228

A1 in the Appendix), it seems that the model does229

not generalize well to real-world coverage errors,230

highlighting the challenges of training a supervised231

QE model on purely synthetic data.232

5.2 Human Evaluation of Precision233

We perform an additional word-level human eval-234

uation to analyze the predictions obtained via our235

approach in more detail. Our human raters were236

presented segments that had been marked as true237

or false positives in the above evaluation, allowing238

us to quantify word-level precision.239

Evaluation Design We employed two linguistic240

experts per language pair as raters.9 Each rater241

was shown around 700 randomly sampled positive242

predictions across both types of coverage errors.243

Raters were shown the source sequence, the244

machine translation, and the predicted error span.245

They were asked whether the highlighted span was246

indeed translated badly, and were asked to perform247

a fine-grained analysis based on a list of predefined248

answer options (Figures 2 and 3 in the Appendix).249

A part of the samples were annotated by both250

raters. The agreement was moderate for the main251

question, with a Cohen’s kappa of 0.54 for EN–DE252

and 0.45 for ZH–EN. Agreement on the more sub-253

jective follow-up question was lower (0.32 / 0.13).254

9Raters were paid ca. USD 30 per hour.

Results The fine-grained answers allow to quan- 255

tify the word-level precision of the spans high- 256

lighted by our approach, both with respect to cover- 257

age errors in particular and to translation errors in 258

general (Table 2). Precision is higher than expected 259

when detecting omission errors in English–German 260

translations, but is still low for additions. The dis- 261

tribution of the detailed answers (Figures 2 and 3 in 262

the Appendix) suggests that syntactical differences 263

between the source and target language contribute 264

to the false positives regarding additions. Some 265

example predictions are provided in Appendix G. 266

Finally, Table 2 shows that many of the predicted 267

error spans are in fact translation errors, but not 268

coverage errors in a narrow sense. For example, 269

more than 10% of the spans marked in Chinese– 270

English translations were classified by our raters as 271

a different type of accuracy error. 272

6 Conclusion 273

We have proposed a reference-free method to au- 274

tomatically detect coverage errors in translations. 275

Derived from contrastive conditioning, our method 276

relies on hypothetical reasoning over the likelihood 277

of partial sequences. Since any off-the-shelf NMT 278

model can be used to estimate conditional likeli- 279

hood, no access to the original translation system or 280

to an external quality estimation model is needed. 281

Segment-level evaluation based on real cover- 282

age errors shows that our approach generally out- 283

performs a supervised quality estimation baseline 284

trained on synthetic coverage errors. We believe 285

that our method could be useful as an aid to trans- 286

lators and post-editors especially for the detection 287

of omission errors, which according to our human 288

evaluation are more reliably detected. Future work 289

could address the low precision in the detection 290

of addition errors, which are relatively rare in the 291

datasets we used for evaluation. 292
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A Description of the Baseline System 484

We follow Moura et al. (2020) and use the 485

OpenKiwi framework (Kepler et al., 2019) to 486

train a separate Predictor-Estimator model (Kim 487

et al., 2017) per language pair, based on XLM- 488

Roberta (Conneau et al., 2020). 489

This supervised task can be described as token- 490

level binary classification. Every token is classified 491

as either OK or BAD, similar to the word-level la- 492

bels used for the QE shared tasks (Specia et al., 493

2020). A source token is BAD if it is omitted in the 494

translation, and a token in the translation is BAD 495

if it is part of an addition error. For English and 496

German, we use the Moses tokenizer (Koehn et al., 497

2007) to separate the text into labeled tokens; for 498

Chinese we label the text on the character level. 499

Where suitable, we use the default settings of 500

OpenKiwi. We fine-tune the large version of XLM- 501

Roberta, which results in a model of similar pa- 502

rameter count as the mBART50 model we use for 503

contrastive conditioning. We train for 10 epochs 504

with a batch size of 32, with early stopping on the 505

validation set. For token classification we train two 506

linear layers, separately for source and target lan- 507

guage. We use AdamW (Loshchilov and Hutter, 508

2018) with a learning rate of 1e-5, freezing the 509

pretrained encoder for the first 1000 steps. 510
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Detection of additions Detection of omissions
Prec. Recall F1 MCC Prec. Recall F1 MCC

EN–DE
Baseline 98.8±0.4 98.0±.2 98.4±.2 96.8±.1 94.0±1.3 96.6±0.4 95.3±.5 90.5±.2
Ours 78.1 88.3 82.9 76.7 79.6 98.4 88.0 77.9

ZH–EN
Baseline 87.2±1.5 75.7±.6 81.0±.3 72.6±.6 67.3±1.3 68.0±1.2 67.7±.9 53.8±.3
Ours 33.0 86.9 47.9 22.7 28.3 98.4 43.9 40.4

Table A1: Segment-level and word-level (MCC) evaluation based on a test set with synthetic coverage errors.

Short sentence pair Long sentence pair

Additions Omissions Both Additions Omissions Both
Baseline - - 23 ms - - 24 ms
Our approach 48 ms 49 ms 97 ms 177 ms 205 ms 383 ms
– excluding parser 22 ms 23 ms 46 ms 103 ms 156 ms 257 ms

Table A2: Average inference times when predicting on a short and a long sentence pair. We also report inference
time without including the time needed for parsing, since we did not use a parser that is optimized for efficiency.

B Evaluation on Synthetic Errors511

We used a test split held back from the synthetic512

data to perform an additional evaluation. On the513

segment level, we report Precision, Recall and F1-514

score. Like in Section 5.1, a prediction is treated515

as correct on the segment level if for a predicted516

coverage error there is indeed a coverage error of517

that type anywhere in the segment.518

On the word level, we follow previous work on519

word-level QE (Specia et al., 2020) and report the520

Matthews correlation coefficient (MCC) across all521

the tokens in the test set.522

Results Results are shown in Table A1. The523

supervised baseline has a high accuracy on En-524

glish–German translations and a moderate accuracy525

on Chinese–English translations. In comparison,526

our approach performs clearly worse than the super-527

vised baseline on the synthetic errors, but Table 2528

shows that it outperforms the baseline in the detec-529

tion of real-world MQM errors.530

C Inference Time531

Inference times are reported in Table A2. We mea-532

sure the average inference time both for a short533

sentence pair and a long sentence pair. The short534

sentence pair is taken from Figure 1; the long sen-535

tence pair has 40 tokens in the source and 47 tokens536

in the target.537

D Annotator Guidelines 538

You will be shown a series of source sentences 539

and translations. One or several spans in the text 540

are highlighted and it is claimed that the spans 541

are translated badly. You are asked to determine 542

whether the claim is true. 543

The highlighted spans can be either in the source 544

sequence or in the translation. If a span is in 545

the source sentence, check whether it has been 546

correctly translated. If a span is in the transla- 547

tion, check whether it correctly conveys the source. 548

Sometimes, multiple spans are highlighted. In that 549

case, focus your answer on the span that is most 550

problematic for the translation. 551

In a second step, you are asked to select an ex- 552

planation. On the one hand, if you agree that the 553

highlighted span is translated badly, please explain 554

your reasoning by selecting your explanation. On 555

the other hand, if you disagree and think that the 556

span is well-translated, please select an explana- 557

tion why the span might have been marked as badly 558

translated in the first place. Should multiple expla- 559

nations be equally plausible, select the first from 560

the top. 561
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E Dataset Statistics562

Dataset split Number of segments Number of tokens
Total W/ addition W/ omission Src. OK Src. BAD Tgt. OK Tgt. BAD

EN–DE Train 135269 18423 18423 2185918 58378 2197843 53911
EN–DE Dev 16984 2328 2328 273311 7398 275156 6781
EN–DE Test 16984 2328 2328 273277 7701 275036 7032

ZH–EN Train 110195 10697 10697 2576135 62311 1866567 37730
ZH–EN Dev 14149 1383 1383 326743 7562 236685 4244
ZH–EN Test 14026 1342 1342 322000 7566 234757 4882

Table A3: Statistics for the dataset of synthetic coverage errors described in Section 4.

Dataset split Number of segments
Total With an addition error With an omission error

EN–DE Dev 1418 77 187
EN–DE Test 8508 407 1057
– without excluded segments 4839 162 484

ZH–EN Dev 1999 69 516
ZH–EN Test 13995 329 3360
– without excluded segments 8851 149 1569

Table A4: Statistics for the gold dataset by Freitag et al. (2021).

F Examples of Synthetic Coverage Errors563

English–German Example564

Addition error565

Partial source: But they haven’t played.566

Full machine translation: Aber sie haben nicht
:::::
gegen

:::
ein

:::::
Team

::::
wie

::::
uns gespielt.567

Omission error568

Full source: But they haven’t played
::::::
against

:
a
:::::
team

::::
like

::
us.569

Partial machine translation: Aber sie haben nicht gespielt.570

Chinese–English Example571

Addition error572

Partial source: 医院和企业共同研发相关检测试剂盒，惠及更多患者。573

Full translation: Hospitals and enterprises jointly develop related test kits to benefit more
::::::
cancer patients.574

Omission error575

Full source: 医院和企业共同研发相关检测试剂盒，惠及更多
:::::
肿瘤患者。576

Partial translation: Hospitals and enterprises jointly develop related test kits to benefit more patients.577
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G Examples of Coverage Errors Predicted by Contrastive Conditioning 578

English–German Examples 579

Predicted addition error 580

Source: He added: "It’s backfired on him now, though, that’s the sad thing." 581

Machine translation: Er fügte
:::::
hinzu: "Es ist jetzt auf ihn abgefeuert, aber das ist das Traurige." 582

Original MQM rating (Freitag et al., 2021): No related accuracy error marked by the three raters. 583

Answer by our human rater: The highlighted target span is not translated badly. It might have been 584

highlighted because it is syntactically different from the source. 585

Meaning of highlighted span: hinzu = ‘additionally’ 586

Predicted omission error 587

Source: UK’s medical
:::::
drug supply still uncertain in no-deal Brexit 588

Machine translation: Die medizinische Versorgung Großbritanniens ist im No-Deal-Brexit noch ungewiss 589

Original MQM rating: No accuracy error marked by the three raters. 590

Answer by our human rater: The highlighted source span is indeed translated badly. It contains informa- 591

tion that is missing in the translation but can be inferred or is trivial. 592

Predicted omission error 593

Source: The automaker is expected to report its quarterly vehicle deliveries in the next
:::
few days. 594

Machine translation: Der Autohersteller wird voraussichtlich in den nächsten Tagen seine vierteljährlichen 595

Fahrzeugauslieferungen melden. 596

Original MQM rating: No related accuracy error marked by the three raters. 597

Answer by our human rater: The highlighted source span is not translated badly. The words in the span 598

do not need to be translated. 599

Chinese–English Examples 600

Predicted addition error 601

Source: 美方指责伊朗制造了该袭击，并对伊朗实施新制裁。 602

Machine translation: The US accused Iran of causing the attack and imposed new sanctions
:::::::
on Iran. 603

Original MQM rating (Freitag et al., 2021): No related accuracy error marked by the three raters. 604

Answer by our human rater: The highlighted target span is not translated badly. No phenomenon that 605

might have caused the prediction was identified. 606

Predicted omission error 607

Source:
:::::
目前已收到来自俄罗斯农业企业的约50项申请。 608

Machine translation: About 50 applications have been received from Russian agricultural enterprises. 609

Original MQM rating: No accuracy error marked by the three raters. 610

Answer by our human rater: The highlighted source span is indeed translated badly. It contains informa- 611

tion that is missing in the translation. 612

Meaning of highlighted span: 目前 = ‘at present’ 613

Predicted omission error 614

Source: 他说，该系统目前在世界上有很大需求，但俄罗斯军队也需要它， 615

::::
其中包括在北极地区。 616

Machine translation: He said that the system is currently in great demand in the world, but the Russian 617

army also needs it, including in the Arctic. 618

Original MQM rating: No accuracy error marked by the three raters. 619

Answer by our human rater: The highlighted source span is not translated badly. The words in the span 620

do not need to be translated. 621

Meaning of highlighted span: 其中 = ‘among’ 622
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H Detailed Results of Human Evaluation623

EN–DE ZH–EN

The span adds information that is 
supported by the context or trivial.

The span adds unsupported 
information.

The span is badly translated 
because of an accuracy error.

The span is badly translated 
because of a fluency error.

The words in the span are 
redundant but fluent.

The span adds information that is 
supported by the context or trivial.

The translation is syntactically 
different from the source.

No phenomenon 
identified

EN–DE ZH–EN

100 300 samples100300100 samples100

Correctly predicted additions Falsely predicted additions

Figure 2: Results for the human evaluation of predicted addition errors. If human raters answered that the high-
lighted span in the translation was indeed badly translated, they were offered the four explanation options on the
left. Otherwise they chose from the four options on the right.

The words in the span do not 
need to be translated.

The span contains information that is 
missing but can be inferred or is trivial.

The span contains information that is 
missing in the translation.

The span contains information that is 
missing but can be inferred or is trivial.

The span is badly translated 
because of an accuracy error.

The span is badly translated 
because of a fluency error.

The translation is syntactically 
different from the source.

No phenomenon 
identified

100 300 samples100300100 samples100

EN–DE ZH–EN EN–DE ZH–EN

Correctly predicted omissions Falsely predicted omissions

Figure 3: Results for the human evaluation of predicted omission errors. If human raters answered that the high-
lighted span in the source sequence was indeed badly translated, they were offered the four explanation options on
the left. Otherwise they chose from the four options on the right.
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