
000
001
002
003
004
005
006
007
008
009
010
011
012
013
014
015
016
017
018
019
020
021
022
023
024
025
026
027
028
029
030
031
032
033
034
035
036
037
038
039
040
041
042
043
044
045
046
047
048
049
050
051
052
053

Under review as a conference paper at ICLR 2026

LATENT STOCHASTIC INTERPOLANTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic Interpolants (SI) are a powerful framework for generative modeling,
capable of flexibly transforming between two probability distributions. However,
their use in jointly optimized latent variable models remains unexplored as they
require direct access to the samples from the two distributions. This work presents
Latent Stochastic Interpolants (LSI) enabling joint learning in a latent space with
end-to-end optimized encoder, decoder and latent SI models. We achieve this by
developing a principled Evidence Lower Bound (ELBO) objective derived directly
in continuous time. The joint optimization allows LSI to learn effective latent
representations along with a generative process that transforms an arbitrary prior
distribution into the encoder-defined aggregated posterior. LSI sidesteps the simple
priors of the normal diffusion models and mitigates the computational demands
of applying SI directly in high-dimensional observation spaces, while preserving
the generative flexibility of the SI framework. We demonstrate the efficacy of
LSI through comprehensive experiments on the standard large scale ImageNet
generation benchmark.

1 INTRODUCTION

Diffusion models have achieved remarkable success in modeling complex, high-dimensional data
distributions across various domains. These models learn to transform a simple “prior” distribution
p0, such as a standard Gaussian, into a complex data distribution p1. While early formulations were
constrained to use specific prior distributions that are Lévy Stable, recent advancements, particularly
Stochastic Interpolants (SI) (Albergo et al., 2023) offer a powerful, unifying framework capable
of bridging arbitrary probability distributions. However, SI assumes that both the prior p0 and the
target p1 distributions are fixed and the samples from both are directly observed. This requirement
limits their use in jointly learned latent variable models where the generative model is learned, along
with an encoder and a decoder, in a latent unobserved space. Further, the latent space, often lower
dimensional, evolves as the encoder and decoder are jointly optimized. Lack of support for joint
optimization implies that arbitrary fixed latent representations may not be optimally aligned with the
generative process resulting in inefficiencies.

To address this, we present Latent Stochastic Interpolants (LSI), a novel framework for end-to-end
learning of a generative model in an unobserved latent space. Our key innovation lies in deriving a
principled, flexible and scalable training objective as an Evidence Lower Bound (ELBO) directly in
continuous time. This objective, like SI, provides data log-likelihood control, while enabling scalable
end-to-end training of the three components: an encoder mapping high-dimensional observations
to a latent space, a decoder reconstructing observations from latent representations, and a latent
SI model operating entirely within the learned latent space. Our approach allows transforming
arbitrary prior distributions into the encoder-defined aggregated posterior, simultaneously aligning
data representations with a high-fidelity generative process using that representation.

LSI’s single ELBO objective provides a unified, scalable framework that avoids the need for simple
priors of the normal diffusion models, mitigates the computational demands of applying SI directly
in high-dimensional observation spaces and offers an alternative to ad-hoc multi-stage training. Our
formulation admits simulation-free training analogous to observation-space diffusion and SI models,
while preserving the flexibility of SI framework. We empirically validate LSI’s strengths through
comprehensive experiments on the challenging ImageNet generation benchmark, demonstrating
competitive generative performance and highlighting its advantages in efficiency.

1

054
055
056
057
058
059
060
061
062
063
064
065
066
067
068
069
070
071
072
073
074
075
076
077
078
079
080
081
082
083
084
085
086
087
088
089
090
091
092
093
094
095
096
097
098
099
100
101
102
103
104
105
106
107

Under review as a conference paper at ICLR 2026

Our key contributions are: 1) Latent stochastic interpolants (LSI): a novel and flexible framework
for scalable training of a latent variable generative model with continuous time dynamic latent
variables, where the encoder, decoder and latent generative model are jointly trained, 2) Unifying
perspective: a novel perspective on integrating flexible continuous-time formulation of SI within
latent variable models, leveraging insights from continuous time stochastic processes, 3) Principled
ELBO objective: a new ELBO as a principled training objective that retains strengths of SI – simple
simulation free training and flexible prior choice – while enabling the benefits of joint training in a
latent space.

2 BACKGROUND

Notation. We use small letters x, y, t etc. to represent scalar and vector variables, f, g etc. to
represent functions, Greek letters β, θ etc. to represent (hyper-)parameters. Lower case letters x
are used to represent both the random variable and a particular value x ∼ p(x). Dependence on an
argument t is indicated as a subscript ut or argument u(t) interchangeably.

Our work builds upon two key results briefly reviewed below. The first result (Li et al., 2020) states
an Evidence Lower Bound (ELBO) for models using continuous time dynamic latent variables. The
second result is a well known method for constructing a stochastic mapping between two distributions.
We exploit it to construct a variational approximation in the latent space.

2.1 VARIATIONAL LOWER BOUND USING DYNAMIC LATENT VARIABLES

As in Li et al. (2020), consider two SDEs, starting with the same starting point z0 ∼ p0(z0) at t = 0.

dz̃t = hθ(z̃t, t)dt+ σ(z̃t, t)dwt, (model) (1)
dzt = hϕ(zt, t)dt+ σ(zt, t)dwt, (variational posterior) (2)

Where wt is the Wiener process. The first equation can be viewed as the latent dynamics under the
model hθ we are interested in learning and the second as the latent dynamics under some variational
approximation to the posterior that can be used to produce samples zt. The dispersion coefficient
σ(·, ·) is assumed to be common and known. Further, let xti be observations at time ti that are
assumed to only depend on the corresponding unobserved latent state zti , then the ELBO can be
written as

ln pθ(xt1 , . . . , xtn) ≥ Ezt

[
n∑

i=1

ln pθ(xti |zti)−
∫ T

0

1

2
∥u(zt, t)∥2dt

]
(3)

Where u satisfies

σ(z, t)u(z, t) = hϕ(z, t)− hθ(z, t) (4)

We refer the reader to Li et al. (2020) for additional details and proof. Similar to the ELBO for the
VAEs (Kingma et al., 2013), the first term in eq. (3) can be viewed as a reconstruction term and the
second term as approximating the posterior resulting from hθ with the variational approximation hϕ.

2.2 DIFFUSION BRIDGE

Given two arbitrary points z0 and z1, a diffusion bridge between the two is a random process
constrained to start and end at the two given end points. A diffusion bridge can be used to specify the
stochastic dynamics of a particle that starts at z0 at t = 0 and is constrained to land at z1 at t = 1.
Consider a stochastic process starting at z0 with the dynamics specified by eq. (2). Using Doob’s
h-transform, the SDE for the end point conditioned diffusion bridge, constrained to end at z1 at time
t = 1 can be written as

dzt = [hϕ(zt, t) + σ(zt, t)σ(zt, t)
T∇zt ln p(z1|zt)]dt+ σ(zt, t)dwt (5)

where p(z1|zt) is the conditional density for z1 under the original dynamics in eq. (2) and depends
on hϕ. Note that a Brownian bridge is a special case of a Diffusion bridge where the dynamics are
specified by the standard Brownian motion. Diffusion bridges can be used to construct a stochastic
mapping between two distributions by considering the end points z0 ∼ p0(z0) and z1 ∼ p1(z1) to be
sampled from the two distributions of interest.

2

108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2026

3 LATENT STOCHASTIC INTERPOLANTS

Stochastic Interpolants (SI) and their limitation: Let x1 ∼ p(x1) be an observation from the data
distribution p(x1) that we want to model. In SI framework, another distribution p0(x0) is chosen as a
prior with samples x0 ∼ p0(x0). A stochastic interpolant xt is then constructed with the requirement
that the marginal distribution pt(xt) of xt equals p0 at t = 0 and p1 at t = 1. For example, the
interpolant xt = (1− t)x0 + tx1 +

√
t(1− t)ϵ, ϵ ∼ N(0, I) satisfies this requirement. The velocity

field and the score function for the generative model are then estimated as solutions to particular
least squares problems. SI requires that the samples x0 and x1 are observed, though x1 could be an
output of a fixed model, hence still observed. We use the term observation space SI to emphasize
this. However, we are interested in jointly learning a generative model in a latent space to leverage
efficiency of low dimensional representations while also aligning the latents with the generative
process. Therefore, we want to jointly optimize an encoder pθ(z1|x1) that represents high dimensional
observations in the latent space and a decoder pθ(x1|z1) that maps a given latent representation to
the observation space, along with the generative model. To use SI, we need to interpolate between
a fixed prior p0(z0) in the latent space and the true marginal posterior p1(z1) ≡

∫
p(z1|x1)dx1.

However, we only have access to the posterior model pθ(z1|x1) that is optimized concurrently and is
an approximation to the true intractable posterior. Consequently, we can not directly construct an
interpolant in the latent space that satisfies the requirements of SI. In the following, we address this
issue by deriving Latent Stochastic Interpolants (LSI), though from an entirely different perspective.

Generative model with dynamic latent variables: Since we want to jointly learn the generative
model in a latent space, we propose a latent variable model where the unobserved latent variables
are assumed to evolve in continuous time according to the dynamics specified by an SDE of the
form in eq. (1). Let pθ(x1|z1) be a parameterized stochastic decoder and hθ parameterized drift for
eq. (1). Then, the generation process using our model is as following – first a sample z0 ∼ p0(z0)
is produced from a prior p0(z0), then z0 evolves according to the dynamics specified by eq. (1)
using hθ from t = 0 to t = 1 to yield a z1, and finally an observation space sample is produced
using the decoder pθ(x1|z1). In theory, we can now utilize the ELBO presented in section 2.1 to
train this model. Note that, although the ELBO in eq. (3) supports arbitrary number of observations
xti at arbitrary times ti, in this paper we focus on a single observation x1 at t = 1. The ELBO in
eq. (3) needs a variational approximation to the posterior pθ(zt|x1) which can be used to sample
zt. This approximation is constructed as another dynamical model specified by the SDE in eq. (2).
Unfortunately, for a general variational approximation specified by an arbitrary hϕ, simulating eq. (2)
would lead to significant computational burden for large problems during each training iteration and
open the door to additional issues resulting from approximations needed for simulation of the SDE.
Instead, we explicitly construct the drift hϕ in eq. (2) such that zt can be sampled directly without
simulation for any time t. Our scheme provides a scalable alternative that allows simulation free
efficient training, as is common in the observation space diffusion models.

Variational posterior with simulation free samples: Let z1 ∼ pθ(z1|x1) be a stochastic encoding
of the observation x1 providing direct access to z1 at t = 1. Next, using the Diffusion Bridge
specified by eq. (5) we construct a stochastic mapping between the prior p0(z0) and the aggregated
approximate posterior

∫
pθ(z1|x1)dx1 at t = 1. The diffusion bridge, coupled with the encoder

pθ(z1|x1) yields our approximate posterior pθ(zt|x1). However, p(z1|zt) is unknown in general. If
we additionally assume that hϕ(zt, t) ≡ htzt and σ(zt, t) ≡ σt, then the original SDE in eq. (2)
becomes linear with additive noise

dzt = htztdt+ σtdwt (6)

It is well known that for linear SDEs of the above form, the transition density p(zt|zs), t > s
is gaussian N(zt; astzs, bstI) (see section E) for some functions ast, bst that depend on ht, σt.
Consequently, we can compute ∇zt ln p(z1|zt) for a given zt as

∇zt ln p(z1|zt) =
at1(z1 − at1zt)

bt1
(7)

The transformed SDE in terms of the simplified drift and dispersion coefficients can be expressed as

dzt = [htzt + σ2
t∇zt ln p(z1|zt)]dt+ σtdwt (8)

3

162
163
164
165
166
167
168
169
170
171
172
173
174
175
176
177
178
179
180
181
182
183
184
185
186
187
188
189
190
191
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215

Under review as a conference paper at ICLR 2026

Further, if we condition on the starting point z0, then the conditional density p(zt|z1, z0) can be
expressed as following using the Bayes rule

p(zt|z1, z0) =
p(z1|zt, z0)p(zt|z0)

p(z1|z0)
=

p(z1|zt)p(zt|z0)
p(z1|z0)

(9)

where p(z1|zt, z0) = p(z1|zt) because of the Markov independence assumption inherent in eq. (2).
Note that all the factors on the right are gaussian. It can be shown that the conditional density
p(zt|z1, z0) is also gaussian if the transition densities are gaussian and takes the following form

p(zt|z1, z0) =
(

1

2π

b01
b0tbt1

) d
2

exp

(
−1

2

b01
b0tbt1

∥∥∥∥zt − b0tat1z1 + bt1a0tz0
b01

∥∥∥∥2
)

(10)

Where a(·), b(·) are constant or time dependent scalars and d is the dimensionality of zt. Their
specific forms depends on the choice of ht, σt. Refer to section E for details. zt can now be directly
sampled without simulating the SDE, given a sample z0 and the encoded observation z1. Note that
the assumptions made for eq. (6), while restrictive, do not limit the empirical performance.

Latent stochastic interpolants: We can parameterize zt using the reparameterization trick as
zt = ηtϵ+ κtz1 + νtz0, ϵ ∼ N(0, I) (11)

For some functions ηt, κt, νt that depend on a(·), b(·). Note that η0 = η1 = 0, κ0 = ν1 = 0, κ1 =
ν0 = 1 since zt is sampled from a diffusion bridge with the two end points fixed at z0, z1. Equa-
tion (11) specifies a general stochastic interpolant, akin to the proposal in (Albergo et al., 2023), but
now in the latent space. If we choose the encoder and decoder to be identity functions, then above can
be viewed as an alternative way to construct stochastic interpolants in the observation space. Instead
of choosing ht, σt first, we can instead choose κt, νt and infer the corresponding ht, σt. For example,
choosing κt = t, νt = 1− t leads to σt = σ, a constant, and we arrive at the following

zt = σ
√

t(1− t)ϵ+ tz1 + (1− t)z0, ϵ ∼ N(0, I) (12)
See section H for a detailed derivation. We use the above form for all the experiments in the
paper. Further, if p0(z0) is chosen to be a standard gaussian then the interpolant simplifies to
zt = tz1 +

√
(1− t)(σ2t+ 1− t)z0 (section K). With the above interpolants, we can now define

the ELBO and optimize it efficiently with simulation free samples zt. We also derive the expressions
for variance preserving choices of κt =

√
t, η2t + ν2t = 1− t in section I, however we do not explore

this interpolant empirically.

Training objective using ELBO: To use the ELBO in eq. (3), we define u(zt, t) using eq. (8) as
u(zt, t) = σ−1

t [htzt + σ2
t∇zt ln p(z1|zt)− hθ(zt, t)] (13)

For the general latent stochastic interpolant zt = ηtϵ+ κtz1 + νtz0 (eq. (11)), we show that u(zt, t)
takes the following form

u(zt, t) = σ−1
t

[(
dηt
dt
− σ2

t

2ηt

)
ϵ+

dκt

dt
z1 +

dνt
dt

z0 − hθ(zt, t)

]
(14)

See section F for the proof. This u(zt, t) can be substituted into the ELBO in eq. (3) to construct a
training objective. For example, with the choices κt = t, νt = 1− t, we get

u(zt, t) = σ−1

[
−σ
√

t

1− t
ϵ+ z1 − z0 − hθ(zt, t)

]
(15)

See section H for details. We write a generalized loss based on the ELBO as

Ep(t)p(x1,z0)pθ(z1|x1)p(zt|z1,z0)

[
− ln pθ(x1|z1) +

βt

2

∥∥∥∥σ√ t

1− t
ϵ+ z1 − z0 − hθ(zt, t)

∥∥∥∥2
]

(16)

Where βt is a relative weighting term, similar in spirit to β-VAE(Higgins et al., 2017; Alemi et al.,
2018), allowing empirical re-balancing for metrics of interest, e.g. FID. We discuss βt further in
section 4. Above loss is reminiscent of the SI training objective, but with an additional reconstruction
term and the interpolant samples zt arising from the variational posterior approximation. We use
this training objective for all the experiments in this paper, and optimize it using stochastic gradient
descent to jointly train all three components – encoder pθ(z1|x1), decoder pθ(x1|z1) and latent SI
model hθ(zt, t). Note that we choose pθ(x1|z1) to be a conditional gaussian in all experiments,
resulting in a simple L2 decoder loss.

4

216
217
218
219
220
221
222
223
224
225
226
227
228
229
230
231
232
233
234
235
236
237
238
239
240
241
242
243
244
245
246
247
248
249
250
251
252
253
254
255
256
257
258
259
260
261
262
263
264
265
266
267
268
269

Under review as a conference paper at ICLR 2026

4 PARAMETERIZATION

Directly using the loss in eq. (16) leads to high variance in gradients and unreliable training due to
the
√
1− t in the denominator of the second term. Consequently, we consider several alternative

parameterizations for the second term, including denoising and noise prediction (see section A for
details). Among the alternatives considered, we found the following parameterization, referred to as
InterpFlow, to reliably lead to better results and we use it in all our experiments.

βt

2

∥∥∥−σ√tϵ+√1− t(z1 − z0) +
√
tzt − ĥθ(zt, t)

∥∥∥2 (17)

Where ĥθ(zt, t) ≡
√
tzt +

√
1− thθ(zt, t) and βt ≡ β/(1− t) is a time t dependent weighting term,

with β a constant. Instead of explicitly using the weights βt, due to 1 − t in the denominator, we
consider a change of variable for t with the parametric family t(s) = 1− (1− s)c with s ∼ U [0, 1]
uniformly sampled. It can be shown that p(t) ∝ (1− t)

1
c−1, therefore the change of variable provides

the reweighting and we simply set βt = β, a constant. Empirically, we found that a value of c = 1
(i.e. a uniform schedule) works the best for all parameterizations during training and sampling, except
for NoisePred and Denoising, which preferred c ≈ 2 during sampling. c < 1 led to degradation
in FID. Figure 4 in appendix visualizes t(s) for various values of c. While the ELBO suggests
using β = 1/σ2, we compute the two terms in eq. (16) as averages and experiment with different
weightings. When used with optimizers like Adam or AdamW, β can be interpreted as the relative
weighting of the gradients from the two terms for the encoder pθ(z1|x1). A lower value of β leads
the encoder to focus purely on the reconstruction and is akin to using a pre-trained encoder-decoder
pair as β → 0. A higher value of β forces the encoder to adapt its representation for the second term
as well. We empirically study the effect of β in the experiments.

5 SAMPLING

For the InterpFlow parameterization, the learned drift ĥθ(zt, t) is related to the original drift hθ(zt, t)

as hθ(zt, t) = (ĥ(zt, t) −
√
tzt)/

√
1− t (see section D.2). We can sample from the model by

discretizing the SDE in eq. (1), where σt = σ for the choices of κt = t, νt = 1 − t. However,
to derive a flexible family of samplers where we can independently tune the dispersion σ without
retraining, we exploit Corollary 1 from Singh & Fischer (2024) to introduce a family of SDEs with
the same marginal distributions as that for eq. (1)

dzt =

[
hθ(zt, t)−

(1− γ2
t)σ

2

2
∇zt ln pt(zt)

]
dt+ γtσdwt (18)

Where γt ≥ 0 can be chosen to control the amount of stochasticity introduced into sampling. For
example, setting γt = 0 yields the probability flow ODE for deterministic sampling. In general,
to use eq. (18) for γt ̸= 1, the score function ∇zt ln pt(zt) is needed as well. For the interpolant
zt = σ

√
t(1− t)ϵ+ tz1 + (1− t)z0, the score can be estimated using

∇zt ln pt(zt) = −
E[ϵ|zt]

σ
√
t(1− t)

(19)

See section C for the proof. However, for Gaussian z0, score can be computed from the drift hθ(zt, t)
(Singh & Fischer, 2024) as following (see section B for details)

∇x ln pt(zt) = −zt + thθ(zt, t) (20)

Section D provides detailed derivation of samplers for various parameterizations. For classifier free
guided sampling (Ho & Salimans, 2022; Xie et al., 2024; Dao et al., 2023; Zheng et al., 2023; Singh
& Fischer, 2024), we define the guided drift as a linear combination of the conditional drift hθ(zt, t, c)
and the unconditional drift hθ(zt, t, c = ∅) as

hcfg(zt, t, c) ≡ (1 + λ)hθ(zt, t, c)− λhθ(zt, t, c = ∅) (21)

where λ is the relative weight of the guidance, c is the conditioning information and c = ∅ denotes
no conditioning. Note that λ = −1 corresponds to unconditional sampling, λ = 0 corresponds to
conditional sampling and λ > 0 further biases towards the modes of the conditional distribution.

5

270
271
272
273
274
275
276
277
278
279
280
281
282
283
284
285
286
287
288
289
290
291
292
293
294
295
296
297
298
299
300
301
302
303
304
305
306
307
308
309
310
311
312
313
314
315
316
317
318
319
320
321
322
323

Under review as a conference paper at ICLR 2026

Table 1: LSI enables joint learning for SI and cheaper sampling: The latent space models achieve
FID similar to observation space models of comparable size. However, the latent space model L
has fewer parameters (reported in millions (M)) and FLOPs (reported in Giga (G)), as part of the
parameters live in the encoder E and the decoder D. During sampling, encoder is not used, decoder is
used only once, while the latent model L is run repeatedly, once for each sampling step. Therefore,
FLOP savings from a computationally cheaper latent model accumulate with sampling steps.

FID @ 2K epochs # Params (M) Flops (G)

Resolution Latent Observ. Latent (E/D/L) Observ. Latent (E/D/L) Observ.

64× 64 2.62 2.57 392 (5/5/382) 398 15/15/161 201
128× 128 3.12 3.46 392 (5/5/382) 400 59/59/327 466
256× 256 3.91 3.87 393 (5/5/383) 405 240/240/450 1288

10−6 10−5 10−4 10−3

4

5

6

0← β

β

FI
D

40

41

42

PSN
R

17

18

0 2 4 6

·10−2

3

4

5

6

Encoder Scale c

Fixed c
Learned c

FI
D

Figure 1: Effect of loss trade-off βββ and encoder noise scale ccc: In the left panel, we evaluate the
effect of loss trade-off weight β for 128× 128 models and observe that FID improves with β, until
the degradation in reconstruction quality (PSNR) starts degrading FID. In the right panel, we evaluate
the effect of encoder noise scale on FID. We also plot the FID for a model with learned scale as
dashed line. A deterministic encoder performs the worst (c = 0), with FID improving with c until it
degrades again. Encoder with learned c (dashed line) is outperformed by fixed c in our experiments.

6 EXPERIMENTS

We evaluate LSI on the standard ImageNet (2012) dataset (Deng et al., 2009; Russakovsky et al.,
2015). We train models at various image resolutions and compare their sample quality using the
Frechet Inception Distance (FID) metric (Heusel et al., 2017) for class conditional samples. All
models were trained for 1000 epochs, except for the comparison in table 1 which reports FID at
2000 epochs. All results use deterministic sampler, using γt = 0, unless otherwise specified. A key
implementation detail to note is that the encoder uses normalization and tanh to bound the scale of
the latents. See sections M and N for additional details.

LSI enables joint learning for SI : While SI doesn’t allow latent variables, LSI enables joint
learning of Encoder (E), Decoder (D), and Latent SI models (L). In table 1 we compare FID across
various resolutions for LSI models against SI models trained directly in observation (pixel) space. LSI
models achieve FIDs similar to the observation space models indicating on par performance in terms
of the final FID. Models for both were chosen with similar architecture and number of parameters
and trained for 2000 epochs. Reference comparison with other methods is provided in section P.

LSI enables computationally cheaper sampling: In table 1 we also report the parameter counts
(in millions) as well as FLOPs (in Giga) for the observation space SI model as well as E, D and
L models for the LSI. For the latent L model, FLOPs are reported for a single forward pass. First
note that the parameters in LSI are partitioned across the encoder E, the decoder D and the latent L
models. At sampling time, encoder is not used, decoder is used only once, while the latent model is
run multiple times, once for each step of sampling. Therefore, while the overall FLOP count for LSI
and Observation space SI models is similar for a single forward pass, sampling with multiple steps
becomes significantly cheaper. For example, sampling with 100 steps leads to 73.6% reduction in
FLOPs for sampling 128× 128 images and 48.6% for 256× 256 images.

6

324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2026

Table 2: Joint training helps mitigate capacity shift: We evaluate the effect of moving first k and
last k convolutional blocks from the latent model L to encoder and decoder respectively, for 128×128
resolution models. This results in the overall parameter count staying roughly the same, but the
number of FLOPs required for sampling changing significantly. We observe that the model trained
with β > 0 perform better and maintains FID well, in comparison to the independently trained model
(β → 0), even when capacity is shifted away from the latent model L, resulting in 8.5% reduction in
FLOPs for sampling from k = 0 to k = 6.

k FID (β > 0) FID (β → 0) #Params. (E/D/L) FLOPs (E/D/L)

0 3.76 4.31 392 (5/5/382) 59/59/327
3 3.91 4.55 389 (9/8/372) 68/66/313
6 3.96 4.87 387 (13/12/362) 75/73/299
9 4.61 4.98 383 (16/16/351) 82/80/284

Joint learning is beneficial: In fig. 1(left panel) we plot the FID as the weighting term β is varied
(eq. (17)). A higher β forces the encoder to adapt the latents more for the second term of the loss. We
observe that FID improves as β increases, going from 4.53 (for β → 0) to 3.75 (≈ 17% improvement)
for β = 0.0001, indicating that this adaptation is beneficial for the overall performance. Eventually,
FID worsens as β is increased further. We also plot the reconstruction PSNR for each of these models
in orange and observe that increasing β essentially trades-off reconstruction quality with generative
performance. For too large a β, poor reconstruction quality leads to worsening FID. The dashed line
indicates the performance when the encoder-decoder are trained independently of the latent model,
limit of β → 0. We implement it as a stop gradient operation in implementation, where the gradients
from the second term of the loss are not backpropagated into z1. To further assess the benefits of joint
training, in table 2 we compare the FIDs between jointly trained model (β > 0) and independently
trained model (β → 0) as parameters are shifted from the latent model L to the encoder E and decoder
D models, by moving first k and last k convolutional blocks from the latent model to the encoder and
the decoder respectively. While this keeps the total parameter count roughly the same, the number
of FLOPs required for sampling changes significantly. The jointly trained model performs better
and maintains FID well even when capacity shifts away from the latent model, resulting in 8.5%
reduction in FLOPs required for sampling from k = 0 to k = 6.

Encoder noise scale affects performance: The stochasticity of the encoder pθ(z1|x) has a
significant impact on the performance. We parameterize the encoder as a conditional Gaussian
N(z1;µθ(x),Σθ(x)) where Σ(x) is assumed to be diagonal. We experimented with a purely deter-
ministic encoder (Σθ(x) = 0), learned Σθ(x) and constant noise Σθ(x) = cI . In fig. 1(right panel)
we plot FID as the encoder output stochasticity c is varied. Dashed line indicates performance with
learned Σθ(x). A deterministic encoder (c = 0) performs poorly. FID improves as the noise scale c
is increased, until eventually it degrades again. While learned Σθ(x) (dashed line) performs well,
fixed c models achieved higher FID.

InterpFlowInterpFlowInterpFlow parameterization performs better than alternatives: In table 3 we compare dif-
ferent parameterizations discussed in section 4 and section A. The InterpFlow parameterization
consistently led to better FID. Both OrigFlow and NoisePred parameterizations exhibited higher
variance gradients and noisy optimization. While Denoising parameterization resulted in less noisy
training, InterpFlow parameterization led to fastest improvement in FID.

LSI supports diverse p0: In table 4 we report FID achieved by LSI using different prior p0(z0)
distributions. While Gaussian p0 performs the best, other choices for p0 yield competitive results
indicating that LSI retains one of the key strengths of SI – support for diverse p0 distributions. See
section L for additional details. To allow flexible sampling using eq. (18), we modified latent SI
model to output extra output channels and augmented the loss with another term to estimate E[ϵ|zt].
Equation (19) was used to compute the score and sample with the deterministic sampler using γt = 0.

LSI supports flexible sampling: In fig. 2 and fig. 3 we qualitatively demonstrate flexible sampling
with LSI model for popular use cases. Figure 2 demonstrates compatibility of classifier free guidance
(CFG) with LSI, using eq. (20). Increasing guidance weight λ results in more typical samples. First

7

378
379
380
381
382
383
384
385
386
387
388
389
390
391
392
393
394
395
396
397
398
399
400
401
402
403
404
405
406
407
408
409
410
411
412
413
414
415
416
417
418
419
420
421
422
423
424
425
426
427
428
429
430
431

Under review as a conference paper at ICLR 2026

Table 3: Effect of parameterization: We com-
pare various parameterization schemes at 128×
128 resolution. InterpFlow parameterization
performs better against the alternatives.

Parameterization FID @1K epochs

OrigFlow 4.56
NoisePred 4.73
Denoising 4.28
InterpFlow 3.76

Table 4: LSI supports diverse p0p0p0: LSI retains
one of the key strengths of SI – support for arbi-
trary p0 distribution. Different p0 achieve com-
petetive FID for 128× 128 resolution model.

p0 FID @1K epochs

Uniform 4.81
Laplacian 4.45
Gaussian 3.76

Gaussian Mixture 4.26

λ = 0. λ = 1. λ = 3. λ = 5. λ = 0. λ = 1. λ = 3. λ = 5.

Figure 2: LSI supports CFG sampling. Class conditional samples are visualized with increasing
guidance weight λ leading to more typical samples for the class. See text for details.

z0 is sampled from p0(z0), Gaussian in this example, following which eq. (18) is simulated forward
in time, using class conditional drift with different guidance weights λ. In fig. 3 a given ‘Original’
image (shown leftmost) is first encoded to yield it’s representation z1, which is then inverted by
simulating probability flow ODE (setting γt = 0 in eq. (18)) backward in time from t = 1 to t = 0,
yielding z0 (similar to DDIM inversion (Song et al., 2020a)). Using this z0 as starting point, eq. (18)
is simulated forward is time using γt ≡ γ(1− t) for different values of γ. We show three samples
for each value of γ and observe increasing diversity with increasing γ. See section O for additional
details and results.

7 RELATED WORK

Latent Stochastic Interpolants (LSI) draw from insights in diffusion models, latent variable models,
and continuous-time generative processes. We discuss key works from these areas in the following.

Diffusion Models: Diffusion models, originating from foundational work on score matching (Vincent,
2011; Song & Ermon, 2019) and early variational formulation (Sohl-Dickstein et al., 2015), gained
prominence with Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al., 2020). Subsequent
improvements focused on architectural choices and learned variances (Nichol & Dhariwal, 2021),
faster sampling via Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2020a), progressive
distillation (Salimans & Ho, 2022), and powerful conditional generation through techniques like
classifier-free guidance (Ho & Salimans, 2022). Further exploration of the design space (Karras et al.,
2022; 2024) has lead to highly performant models. More recently, diffusion inspired consistency
models (Song et al., 2023) have emerged, offering efficient generation. LSI complements these with
a flexible method for jointly learning in a latent space using richer prior distributions.

Latent Variable Models and Expressive Priors: Variational Autoencoders (VAEs) (Kingma et al.,
2013; Rezende et al., 2014) learn a compressed representation z of data x, but are limited by the
expressiveness of the prior p(z) (NVAE (Vahdat & Kautz, 2020), LSGM(Vahdat et al., 2021)), as
they typically use simple priors (e.g., isotropic Gaussian). LSI addresses this by jointly learning
a flexible generative process in the latent space. Early work(Sohl-Dickstein et al., 2015) derived
ELBO for discrete time diffusion models, while Variational Diffusion Models (VDM) (Kingma
et al., 2021) interpret diffusion models as a specific type of VAE with Gaussian noising process. In

8

432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2026

Original γ = 0.25 γ = 0.5 γ = 1.0

Figure 3: LSI supports flexible sampling. We demonstrate inversion of an ‘Original’ image, using
reverse probability flow ODE (similar to DDIM inversion), followed by forward stochastic sampling
to yield samples similar to it, with diversity increasing with γ (eq. (18)). See text for details.

contrast, while LSI also optimizes an ELBO, it allows for a broader choice of the prior p(z0) and
the transforms mapping the prior to the learned aggregated posterior. Our work is similar in spirit
to models like NVAE, which employed deep hierarchical latent representations, and LSGM, which
proposed training score-based models in the latent space of a VAE, but offers a flexible framework
similar to SI allowing a rich family of priors and latent space dynamics. Note that LDM (Rombach
et al., 2022) train a diffusion generative model in the latent space of a fixed encoder-decoder pair –
making their latents actually observed from the point of view of generative modeling.

Continuous-Time Generative Processes: While diffusion models have been formulated and studied
using continuous time dynamics (Song et al., 2020b;a; Kingma et al., 2021; Vahdat et al., 2021), their
relation to Continuous Normalizing Flows (CNFs)(Chen et al., 2018; Grathwohl et al., 2019) offers
another perspective on continuous-time transformations. Early training challenges with the CNFs
have been addressed by newer methods like Flow Matching (FM) (Lipman et al., 2022; Xu et al.,
2022), Conditional Flow Matching (CFM) (Neklyudov et al., 2023; Tong et al., 2023), and Rectified
Flow (Liu et al., 2022). These approaches propose simulation-free training by regressing vector
fields of fixed conditional probability paths. However, likelihood control is typically not possible
(Albergo et al., 2023), consequently extension to jointly learning in latent space is ill-specified. In
contrast, LSI optimizes an ELBO, offering likelihood control along with joint learning in a latent
space. Stochastic Interpolants (SI) (Albergo et al., 2023) provides a unifying perspective on generative
modeling, capable of bridging any two probability distributions via a continuous-time stochastic
process, encompassing aspects of both flow-based and diffusion-based methods. While SI formulates
learning the velocity field and score function directly in the observation space using pre-specified
stochastic interpolants, LSI arrives at a similar objective in the latent space, as part of the ELBO, from
the specific choices of the approximate variational posterior. LSI reduces to SI when encoder and
decoder are chosen to be Identity functions. SI is related to the Optimal Transport and the Schrödinger
Bridge problem (SBP) which have been explored as a basis for generative modeling (De Bortoli et al.,
2021; Wang et al., 2021; Shi et al., 2023). While LSI learns a transport, its primary objective is data
log-likelihood maximization via the ELBO, rather than solving a specific OT or SBP.

8 CONCLUSION

In this paper, we introduced Latent Stochastic Interpolants (LSI), generalizing Stochastic Interpolants
to enable joint end-to-end training of an encoder, a decoder, and a generative model operating
entirely within the learned latent space. LSI overcomes the limitation of simple priors of the normal
diffusion models and mitigates the computational demands of applying SI directly in high-dimensional
observation spaces, while preserving the generative flexibility of the SI framework. LSI leverage
SDE-based Evidence Lower Bound to offer a principled approach for optimizing the entire model.
We validate the proposed approach with comprehensive experimental studies on standard ImageNet
benchmark. Our method offers scalability along with a unifying perspective on continuous-time
generative models with dynamic latent variables. However, to achieve scalable training, our approach
makes simplifying assumptions for the variational posterior approximation. While restrictive, and
common with other methods, these assumptions do not seem to limit the empirical performance.

9

486
487
488
489
490
491
492
493
494
495
496
497
498
499
500
501
502
503
504
505
506
507
508
509
510
511
512
513
514
515
516
517
518
519
520
521
522
523
524
525
526
527
528
529
530
531
532
533
534
535
536
537
538
539

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have included detailed proofs of all the key theoretical results in the appendix. Sections 6 and M
provide key training and evaluation setup details. Section N provides the necessary architecture
details to reproduce the models used in the experiments. Section O provides additional sampling
setup details.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing a
broken elbo. In International conference on machine learning, pp. 159–168. PMLR, 2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrödinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695–17709, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248–255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780–8794, 2021.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In International Conference on Learning
Representations, 2019. URL https://openreview.net/forum?id=rJxgknCcK7.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840–6851, 2020.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, pp. 13213–13232.
PMLR, 2023.

Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Salimans.
Simpler diffusion (sid2): 1.5 fid on imagenet512 with pixel-space diffusion. arXiv preprint
arXiv:2410.19324, 2024.

Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972, 2022.

10

https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://openreview.net/forum?id=rJxgknCcK7

540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556
557
558
559
560
561
562
563
564
565
566
567
568
569
570
571
572
573
574
575
576
577
578
579
580
581
582
583
584
585
586
587
588
589
590
591
592
593

Under review as a conference paper at ICLR 2026

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565–26577,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174–24184, 2024.

Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients
for neural sdes. Advances in Neural Information Processing Systems, 34:18747–18761, 2021.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka,
Yuki Mitsufuji, and Stefano Ermon. Pagoda: Progressive growing of a one-step generator from
a low-resolution diffusion teacher. Advances in Neural Information Processing Systems, 37:
19167–19208, 2024.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36:65484–65516, 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696–21707, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pp. 3870–3882. PMLR, 2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learning
stochastic dynamics from samples. In International conference on machine learning, pp. 25858–
25889. PMLR, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162–8171. PMLR, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278–1286. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Björn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684–10695, June 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211–252, 2015. doi: 10.1007/s11263-015-0816-y.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Simo Särkkä and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

11

594
595
596
597
598
599
600
601
602
603
604
605
606
607
608
609
610
611
612
613
614
615
616
617
618
619
620
621
622
623
624
625
626
627
628
629
630
631
632
633
634
635
636
637
638
639
640
641
642
643
644
645
646
647

Under review as a conference paper at ICLR 2026

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrödinger
bridge matching. Advances in Neural Information Processing Systems, 36:62183–62223, 2023.

Saurabh Singh and Ian Fischer. Stochastic sampling from deterministic flow models. arXiv preprint
arXiv:2410.02217, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256–2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667–19679, 2020.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in neural information processing systems, 34:11287–11302, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661–1674, 2011.

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
schrödinger bridge. In International conference on machine learning, pp. 10794–10804. PMLR,
2021.

Tianyu Xie, Yu Zhu, Longlin Yu, Tong Yang, Ziheng Cheng, Shiyue Zhang, Xiangyu Zhang, and
Cheng Zhang. Reflected flow matching. arXiv preprint arXiv:2405.16577, 2024.

Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola. Poisson flow generative models.
Advances in Neural Information Processing Systems, 35:16782–16795, 2022.

Yilun Xu, Gabriele Corso, Tommi Jaakkola, Arash Vahdat, and Karsten Kreis. Disco-diff: Enhancing
continuous diffusion models with discrete latents. arXiv preprint arXiv:2407.03300, 2024.

Qinqing Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Juntang Zhuang, Nicha C Dvornek, Sekhar Tatikonda, and James S Duncan. Mali: A memory
efficient and reverse accurate integrator for neural odes. arXiv preprint arXiv:2102.04668, 2021.

12

648
649
650
651
652
653
654
655
656
657
658
659
660
661
662
663
664
665
666
667
668
669
670
671
672
673
674
675
676
677
678
679
680
681
682
683
684
685
686
687
688
689
690
691
692
693
694
695
696
697
698
699
700
701

Under review as a conference paper at ICLR 2026

APPENDIX

A PARAMETERIZATIONS

For the linear choice of κt = t, νt = 1− t (section H) used for experiments in this paper, the loss
term with u(zt, t) is

Et∼U [0,1]Ep(x1,z0,z1)Ep(zt|z1,z0)
1

2σ2

∥∥∥∥∥−σ
√

t

1− t
ϵ+ z1 − z0 − hθ(zt, t)

∥∥∥∥∥
2

(22)

Where ϵ ∼ N(0, I). If z0 is also Gaussian, z0 ∼ N(0, I), we can combine ϵ, z0 to yield zt =

tz1 +
√
(1− t)(σ2t+ 1− t)z0 and rewrite the above as

Et∼U [0,1]Ep(x1,z0,z1)Ep(zt|z1,z0)
1

2

∥∥∥∥∥z1 −
√

σ2t+ 1− t

1− t
z0 − hθ(zt, t)

∥∥∥∥∥
2

(23)

Directly using above forms leads to high variance in gradients and unreliable training with frequent
NaNs due to the

√
1− t in the denominator. Consequently, we consider alternative parameterizations

as discussed in the following. Two of the parameterizations OrigFlow and InterpFlow are applicable
for arbitrary p0, while the remaining two Denoising and NoisePred are applicable when z0 is
Gaussian. For each of these parameterizations, we also derive the corresponding sampler in section D

A.1 OrigFlow

With straightforward manipulation of the term inside the expectation we arrive at
1

2σ2

1

1− t

∥∥∥√1− t(z1 − z0)− σ
√
tϵ− ĥθ(zt, t)

∥∥∥2 (24)

where ĥθ(zt, t) ≡
√
1− thθ(zt, t). We rewrite above in terms of a time dependent weighting

βt ≡ 1
σ2(1−t) as following.

βt

2

∥∥∥√1− t(z1 − z0)− σ
√
tϵ− ĥθ(zt, t)

∥∥∥2 (25)

When z0 is Gaussian, we can rewrite as
βt

2

∥∥∥√1− tz1 −
√
σ2t+ 1− tz0 − ĥθ(zt, t)

∥∥∥2 (26)

This objective can be viewed as estimating ĥθ(zt, t) ≡ E[
√
1− tz1 −

√
σ2t+ 1− tz0|zt] with a

time t dependent weighting βt.

A.2 InterpFlow

Again, starting with the loss term with u(zt, t) and straightforward manipulations we arrive at the
parameterization

1

2σ2

∥∥∥∥∥−σ
√

t

1− t
ϵ+ z1 − z0 − hθ(zt, t)

∥∥∥∥∥
2

(27)

=
1

2σ2

∥∥∥∥∥−σ
√

t

1− t
ϵ+ z1 − z0 +

√
t

1− t
zt −

√
t

1− t
zt − hθ(zt, t)

∥∥∥∥∥
2

(28)

=
βt

2

∥∥∥−σ√tϵ+√1− t(z1 − z0) +
√
tzt − ĥθ(zt, t)

∥∥∥2 (29)

Where ĥθ(zt, t) ≡
√
tzt +

√
1− thθ(zt, t) and βt ≡ 1

σ2(1−t) . To gain insights into this parameteri-
zation, let’s consider the term inside the norm and substitute zt

− σ
√
tϵ+
√
1− t(z1 − z0) +

√
tzt (30)

= −σ
√
tϵ+
√
1− t(z1 − z0) +

√
t(tz1 + (1− t)z0 + σ

√
t(1− t)ϵ) (31)

= (
√
1− t+ t

√
t)z1 + (

√
t(1− t)−

√
1− t)z0 + σ(t

√
1− t−

√
t)ϵ (32)

13

702
703
704
705
706
707
708
709
710
711
712
713
714
715
716
717
718
719
720
721
722
723
724
725
726
727
728
729
730
731
732
733
734
735
736
737
738
739
740
741
742
743
744
745
746
747
748
749
750
751
752
753
754
755

Under review as a conference paper at ICLR 2026

Leading to

βt

2

∥∥∥(√1− t+ t
√
t)z1 + (

√
t(1− t)−

√
1− t)z0 + σ(t

√
1− t−

√
t)ϵ− ĥθ(zt, t)

∥∥∥2 (33)

The term (
√
1− t+ t

√
t)z1 + (

√
t(1− t)−

√
1− t)z0 + σ(t

√
1− t−

√
t)ϵ reduces to z1 − z0 at

t = 0 and z1 − σϵ at t = 1. Since this term appears to interpolate between the two, we refer to this
parameterization as InterpFlow. When z0 is also Gaussian, we can combine ϵ, z0 and rewrite as

βt

2

∥∥∥(√1− t+ t
√
t)z1 + (

√
t(1− t)− 1)

√
σ2t+ 1− tz0 − ĥθ(zt, t)

∥∥∥2 (34)

Observe that, with σ = 1, the term (
√
1− t+ t

√
t)z1 + (

√
t(1− t)− 1)z0 reduces to z1 − z0 both

at t = 0 and t = 1.

A.3 Denoising

This parameterization is applicable only when z0 is Gaussian. Starting with the loss term with u(zt, t)

and using the fact that zt = tz1 +
√
(1− t)(σ2t+ 1− t)z0, we can manipulate the objective as

following

1

2

∥∥∥∥∥z1 −
√

σ2t+ 1− t

1− t
z0 − hθ(zt, t)

∥∥∥∥∥
2

(35)

=
1

2

∥∥∥∥∥z1 −
√

σ2t+ 1− t

1− t

zt − tz1√
(1− t)(σ2t+ 1− t)

− hθ(zt, t)

∥∥∥∥∥
2

(36)

=
1

2

∥∥∥∥z1 − zt − tz1
1− t

− hθ(zt, t)

∥∥∥∥2 (37)

=
1

2

1

(1− t)2
∥z1 − zt − (1− t)hθ(zt, t)∥2 (38)

=
1

2

1

(1− t)2

∥∥∥z1 − ĥθ(zt, t)
∥∥∥2 (39)

=
βt

2

∥∥∥z1 − ĥθ(zt, t)
∥∥∥2 (40)

where ĥθ(zt, t) ≡ zt + (1 − t)hθ(zt, t) and βt ≡ 1/(1 − t)2. In this form, ĥ can be viewed as a
denoiser.

A.4 NoisePred

This parameterization is applicable only when z0 is Gaussian. Similar to the previous sec-
tion, we can construct the noise prediction parameterization by substituting z1 using zt =

14

756
757
758
759
760
761
762
763
764
765
766
767
768
769
770
771
772
773
774
775
776
777
778
779
780
781
782
783
784
785
786
787
788
789
790
791
792
793
794
795
796
797
798
799
800
801
802
803
804
805
806
807
808
809

Under review as a conference paper at ICLR 2026

tz1 +
√
(1− t)(σ2t+ 1− t)z0.

1

2

∥∥∥∥∥z1 −
√

σ2t+ 1− t

1− t
z0 − hθ(zt, t)

∥∥∥∥∥
2

(41)

=
1

2

∥∥∥∥∥zt −
√
(1− t)(σ2t+ 1− t)z0

t
−
√

σ2t+ 1− t

1− t
z0 − hθ(zt, t)

∥∥∥∥∥
2

(42)

=
1

2

∥∥∥∥∥
√
1− tzt − (1− t)

√
σ2t+ 1− tz0 − t

√
σ2t+ 1− tz0

t
√
1− t

− hθ(zt, t)

∥∥∥∥∥
2

(43)

=
1

2

∥∥∥∥∥
√
1− tzt −

√
σ2t+ 1− tz0

t
√
1− t

− hθ(zt, t)

∥∥∥∥∥
2

(44)

=
1

2

1

t2(1− t)

∥∥∥√1− tzt −
√
σ2t+ 1− tz0 − t

√
1− thθ(zt, t)

∥∥∥2 (45)

=
1

2

σ2t+ 1− t

t2(1− t)

∥∥∥∥z0 − √1− tzt − t
√
1− thθ(zt, t)√

σ2t+ 1− t

∥∥∥∥2 (46)

=
βt

2

∥∥∥z0 − ĥθ(zt, t)
∥∥∥2 (47)

where ĥθ(zt, t) ≡ (
√
1− tzt − t

√
1− thθ(zt, t))/

√
σ2t+ 1− t and βt ≡ 1/(t2(1− t)).

B LATENT SCORE FUNCTION WITH GAUSSIAN p0

When p0(z0) is gaussian, z0 ∼ N(0, I), we can compute the score function estimate ∇zt ln pt(zt)
from the learned drift hθ (Singh & Fischer, 2024). When z0 is gaussian, the transition density p(zt|z1)
is Gaussian. With zt = ηtϵ+ κtz1 + νtz0, we can reparameterize as zt = κtz1 +

√
ν2t + η2t z0, z0 ∼

N(0, I).

p(zt|z1) = N(zt;κtz1, (ν
2
t + η2t)I) (48)

From Singh & Fischer (2024)(eq. 41, Appendix B) we have

∇zt ln pt(zt) = Ept(z1|zt)

[
−zt + µ(z1, t)

σ(z1, t)2

]
(49)

Substituting

∇zt ln pt(zt) = Ept(z1|zt)

[
−zt + κtz1
ν2t + η2t

]
(50)

=
−zt + κtE[z1|zt]

ν2t + η2t
(51)

Since the interpolation relates z0, z1, zt as zt = κtz1 +
√
ν2t + η2t z0, we can rewrite the above

expression in terms of z0 as following

∇zt ln pt(zt) = −
E[z0|zt]√
ν2t + η2t

(52)

C LATENT SCORE FUNCTION WITH GENERAL p0

For a general distribution p0(z0), it may not be possible to estimate the score function∇zt ln pt(zt)
from the learned drift hθ(zt, t) alone. Here we derive the expression for estimating the score function
for a general distribution p0(z0). Recall from eq. (9) that p(zt|z0, z1) is Gaussian. From Denoising
Score Matching (Vincent, 2011), we can write

∇zt ln pt(zt) = Ept(z0,z1|zt)
∂ ln pt(zt|z0, z1)

∂zt
(53)

15

810
811
812
813
814
815
816
817
818
819
820
821
822
823
824
825
826
827
828
829
830
831
832
833
834
835
836
837
838
839
840
841
842
843
844
845
846
847
848
849
850
851
852
853
854
855
856
857
858
859
860
861
862
863

Under review as a conference paper at ICLR 2026

where we have conditioned on both variables x0, x1. Since p(zt|z0, z1) is Gaussian, as in the previous
section, we can write

∇zt ln pt(zt) = Ept(z0,z1|zt)

[
−zt + µ(z0, z1, t)

σ(z0, z1, t)2

]
(54)

Now, for zt = ηtϵ+ κtz1 + νtz0, we have p(zt|z0, z1) = N(zt;κtz1 + νtz0, η
2
t I). Substituting

∇zt ln pt(zt) = Ept(z0,z1|zt)

[
−zt + κtz1 + νtz0

η2t

]
(55)

= Ept(ϵ|zt)

[
−ηtϵ
η2t

]
(56)

= −
Ept(ϵ|zt)[ϵ]

ηt
≡ −E[ϵ|zt]

ηt
(57)

Note that this result mirrors the one for SI (Theorem 2.8, (Albergo et al., 2023)), though our derivation
is straightforward and follows directly from Denoising Score MatchingVincent (2011).

D DETAILED DERIVATION OF SAMPLING

For an SDE of the form

dzt = hθ(zt, t)dt+ σtdwt (58)

Singh & Fischer (2024) (Corollary 1) derives a flexible family of samplers as following

dzt =

[
hθ(zt, t)−

(1− γ2
t)σ

2
t

2
∇zt ln pt(zt)

]
dt+ γtσtdwt (59)

where γt is a time dependent weighting that can be chosen to control the amount of stochasticity
injected into the sampling. Note that choosing γt = 0 yields the probability flow ODE (Song et al.,
2020b) and results in a deterministic sampler. This general form of sampler requires both the drift
hθ(zt, t) and the score function∇zt ln pt(zt). In general, the score function needs to be separately
estimated. See section C for an estimator. We can also set γt = 1, leading to direct discretization of
the original SDE in eq. (58). However, for the special case of Gaussian z0, we can infer the score
function from the learned drift hθ (section B). For this special case, we use the general form above to
derive a family of samplers for various parameterizations discussed in section A. Recall that for the
choice of κt = t, νt = 1− t used in this paper, the loss term is specified by eq. (23). Without any
reparameterization, we have

hθ(zt, t) =
E[z1|zt]− zt

1− t
(60)

E[z1|zt] = zt + (1− t)hθ(zt, t) (61)

We can use the above to determine the expression for the score function

∇x ln pt(zt) =
−zt + thθ(zt, t)

σ2t+ 1− t
(62)

Above expressions for the score ∇x ln pt(zt) can then be plugged into eq. (59) to derive a sampler
for the original formulation

dzt =

[
hθ(zt, t)−

(1− γ2
t)σ

2

2

−zt + thθ(zt, t)

σ2t+ 1− t

]
dt+ γtσdwt (63)

For each of the following parameterizations, we calculate the expression for the drift hθ and the score
function ∇x ln pt(zt). These expressions can then be plugged into eq. (59) to derive the sampler.

16

864
865
866
867
868
869
870
871
872
873
874
875
876
877
878
879
880
881
882
883
884
885
886
887
888
889
890
891
892
893
894
895
896
897
898
899
900
901
902
903
904
905
906
907
908
909
910
911
912
913
914
915
916
917

Under review as a conference paper at ICLR 2026

D.1 SAMPLER FOR OrigFlow

For the OrigFlow parameterization, we have

hθ(zt, t) =
ĥθ(zt, t)√

1− t
(64)

For Gaussian z0, we can now substitute into the expression for the score function

∇x ln pt(zt) =
−zt + thθ(zt, t)

σ2t+ 1− t
(65)

=
−
√
1− tzt + tĥθ(zt, t)√
1− t(σ2t+ 1− t)

(66)

The drift hθ and the score function ∇x ln pt(zt) can now be plugged into eq. (59) to derive the
sampler.

D.2 SAMPLER FOR InterpFlow

For the InterpFlow parameterization, we have

hθ(zt, t) =
ĥ(zt, t)−

√
tzt√

1− t
(67)

For Gaussian z0, we can now substitute into the expression for the score function

∇x ln pt(zt) =
−zt + thθ(zt, t)

σ2t+ 1− t
(68)

=
−
√
1− tzt + tĥθ(zt, t)− t

√
tzt√

1− t(σ2t+ 1− t)
(69)

=
−(
√
1− t+ t

√
t)zt + tĥθ(zt, t)√

1− t(σ2t+ 1− t)
(70)

The drift hθ and the score function ∇x ln pt(zt) can now be plugged into eq. (59) to derive the
sampler.

D.3 SAMPLER FOR Denoising

For the Denoising parameterization, we have

hθ(zt, t) =
ĥθ(zt, t)− zt

1− t
(71)

For Gaussian z0, substituting into the expression for the score function

∇x ln pt(zt) =
−zt + thθ(zt, t)

σ2t+ 1− t
(72)

=
−(1− t)zt + tĥθ(zt, t)− tzt

(1− t)(σ2t+ 1− t)
(73)

=
−zt + tĥθ(zt, t)

(1− t)(σ2t+ 1− t)
(74)

The drift hθ and the score function ∇x ln pt(zt) can now be plugged into eq. (59) to derive the
sampler.

D.4 SAMPLER FOR NoisePred

Again, we have

hθ(zt, t) =
−
√
σ2t+ 1− tĥθ(zt, t) +

√
1− tzt

t
√
1− t

(75)

17

918
919
920
921
922
923
924
925
926
927
928
929
930
931
932
933
934
935
936
937
938
939
940
941
942
943
944
945
946
947
948
949
950
951
952
953
954
955
956
957
958
959
960
961
962
963
964
965
966
967
968
969
970
971

Under review as a conference paper at ICLR 2026

For Gaussian z0, substituting into the expression for the score function

∇x ln pt(zt) =
−zt + thθ(zt, t)

σ2t+ 1− t
(76)

=
−
√
1− tzt −

√
σ2t+ 1− tĥθ(zt, t) +

√
1− tzt√

1− t(σ2t+ 1− t)
(77)

=
−ĥθ(zt, t)√

(1− t)(σ2t+ 1− t)
(78)

The drift hθ and the score function ∇x ln pt(zt) can now be plugged into eq. (59) to derive the
sampler.

E GAUSSIANITY OF CONDITIONAL DENSITY

We have

p(zt|z1, z0) =
p(z1|zt)p(zt|z0)

p(z1|z0)
(79)

Further, for the SDE in eq. (6), using results from section J, we have that the transition density
p(xt|xs) is normal with

p(xt|xs) = N(xt;µst,Σst) (80)

µst = µs exp

(∫ t

s

h(τ)dτ

)
≡ µsast (81)

Σst = I

∫ t

s

σ(τ)2 exp

(
2

∫ t

τ

h(u)du

)
dτ) ≡ Ibst (82)

Then, the conditional density p(zt|z1, z0) is also normal N(zt;µ(z0, z1, t),Σ(z0, z1, t)) with

µ(z0, z1, t) =
b0tat1z1 + bt1a0tz0

b01
(83)

Σ(z0, z1, t) =
b0tbt1
b01

I (84)

Proof: First note that

a01 = a0tat1 (85)

ast =
a0t
a0s

=
as1
at1

(86)

bst =

∫ t

s

σ(v)2a2vtdv (87)

Next

b01 =

∫ 1

0

σ(v)2a2v1dv (88)

=

∫ t

0

σ(v)2a2v1dv +

∫ 1

t

σ(v)2a2v1dv (89)

=

∫ t

0

σ(v)2a2vta
2
t1dv + bt1 (90)

= a2t1

∫ t

0

σ(v)2a2vtdv + bt1 (91)

= a2t1b0t + bt1 (92)

18

972
973
974
975
976
977
978
979
980
981
982
983
984
985
986
987
988
989
990
991
992
993
994
995
996
997
998
999
1000
1001
1002
1003
1004
1005
1006
1007
1008
1009
1010
1011
1012
1013
1014
1015
1016
1017
1018
1019
1020
1021
1022
1023
1024
1025

Under review as a conference paper at ICLR 2026

Now

p(zt|z1, z0) =
(

1

2π

b01
bt1b0t

)n
2

exp

(
−1

2

(
|z1 − at1zt|2

bt1
+
|zt − a0tz0|2

b0t
− |z1 − a01z0|2

b01

))
(93)

Using the identities a01 = a0tat1, b01 = a2t1b0t + bt1 and completing the squares we get

p(zt|z1, z0) =
(

1

2π

b01
b0tbt1

)n
2

exp

(
−1

2

b01
b0tbt1

∣∣∣∣zt − b0tat1z1 + bt1a0tz0
b01

∣∣∣∣2
)

(94)

We can therefore parameterize zt as following using the reparameterization trick.

zt =

√
b0tbt1
b01︸ ︷︷ ︸
ηt

ϵ+
b0tat1
b01︸ ︷︷ ︸
κt

z1 +
bt1a0t
b01︸ ︷︷ ︸
νt

z0, ϵ ∼ N(0, I) (95)

we can succinctly rewrite the above as

zt = ηtϵ+ κtz1 + νtz0, ϵ ∼ N(0, I) (96)

Where ηt, κt, νt are appropriate scalar functions of time t.

F GENERAL TRAINING OBJECTIVE

Here we derive the form of the general training objective. The first term in the objective is the
reconstruction term and remains as is. The second term of the training objective uses u(zt, t), let’s
recall it’s expression

u(zt, t) = σ−1
t [htzt + σ2

t∇zt ln p(z1|zt)− hθ(zt, t)] (97)

The first two terms in the above serve as the target for hθ. Next, we rewrite them in terms of existing
variables. Let ξ(t) denote these two terms and substitute eq. (7) as following

ξ(t) = htzt + σ2
t∇zt ln p(z1|zt) (98)

= htzt +
σ2
t at1(z1 − at1zt)

bt1
(99)

=

(
ht −

σ2
t a

2
t1

bt1

)
zt +

σ2
t at1z1
bt1

(100)

Next, recall the stochastic interpolant and the expressions for ast and bst from section E

zt = ηtϵ+ κtz1 + νtz0, ϵ ∼ N(0, I) (101)

ηt =

√
b0tbt1
b01

, κt =
b0tat1
b01

, νt =
bt1a0t
b01

, (102)

ast = exp

(∫ t

s

h(τ)dτ

)
, bst =

∫ t

s

σ(v)2a2vtdv (103)

(104)

Intuitively, we expect the drift hθ to be related to the velocity field. Therefore, we compute the time
derivatives of κt, νt and ηt next

dκt

dt
=

1

b01

(
b0t

dat1
dt

+
db0t
dt

at1

)
(105)

dνt
dt

=
1

b01

(
bt1

da0t
dt

+
dbt1
dt

a0t

)
(106)

dηt
dt

=
1

2ηtb01

(
b0t

dbt1
dt

+
db0t
dt

bt1

)
(107)

19

1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2026

From the expression for ast, using differentiation under the integral sign, we have
da0t
dt

= a0tht,
dat1
dt

= −at1ht (108)

Similarly, from the expression for bst
db0t
dt

= σ2
t a

2
tt + 2

∫ t

0

σ(v)2a2vthtdv = σ2
t + 2b0tht (109)

dbt1
dt

= −σ2
t a

2
t1 (110)

Since att = 1. Substituting back into the equations for the derivatives of κt and νt
dκt

dt
=

1

b01

(
−b0tat1ht + (σ2

t + 2b0tht)at1
)
=

1

b01

(
σ2
t at1 + b0tat1ht

)
(111)

=
σ2
t at1
b01

+ κtht (112)

dνt
dt

=
1

b01

(
bt1a0tht − σ2

t a
2
t1a0t

)
= νtht −

σ2
t a

2
t1a0t
b01

(113)

= νt

(
ht −

σ2
t a

2
t1

bt1

)
(114)

dηt
dt

=
1

2ηtb01

(
−σ2

t a
2
t1b0t + (σ2

t + 2b0tht)bt1
)

(115)

=
1

2ηtb01

(
(bt1 − a2t1b0t)σ

2
t + 2b0tbt1ht

)
(116)

=
1

2ηtb01

(
(bt1 − a2t1b0t)σ

2
t + 2b0t

(
bt1
νt

dνt
dt

+ σ2
t a

2
t1

))
(117)

=
1

2ηtb01

(
(bt1 + a2t1b0t)σ

2
t +

2b0tbt1
νt

dνt
dt

)
(118)

=
1

2ηtb01

(
b01σ

2
t +

2η2t b01
νt

dνt
dt

)
(119)

=
σ2
t

2ηt
+

ηt
νt

dνt
dt

(120)

Where we have used the identity b01 = bt1 + a2t1b0t from eq. (92). Further, we can relate dκt

dt and
dνt

dt by eliminating ht as following

dκt

dt
=

σ2
t at1
b01

+ κt

(
1

νt

dνt
dt

+
σ2
t a

2
t1

bt1

)
=

κt

νt

dνt
dt

+
σ2
t at1
b01

+ κt
σ2
t a

2
t1

bt1
(121)

=
κt

νt

dνt
dt

+
σ2
t at1
b01

+
b0tat1
b01

σ2
t a

2
t1

bt1
=

κt

νt

dνt
dt

+
σ2
t at1(bt1 + b0ta

2
t1)

b01bt1
(122)

=
κt

νt

dνt
dt

+
σ2
t at1b01
b01bt1

(123)

=
κt

νt

dνt
dt

+
σ2
t at1
bt1

(124)

We can now substitute into the expression for ξ(t) in eq. (100)

ξ(t) =
1

νt

dνt
dt

zt +
σ2
t at1z1
bt1

(125)

=
1

νt

dνt
dt

(ηtϵ+ κtz1 + νtz0) +

(
dκt

dt
− κt

νt

dνt
dt

)
z1 (126)

=
ηt
νt

dνt
dt

ϵ+
dκt

dt
z1 +

dνt
dt

z0 (127)

=

(
dηt
dt
− σ2

t

2ηt

)
ϵ+

dκt

dt
z1 +

dνt
dt

z0 (128)

20

1080
1081
1082
1083
1084
1085
1086
1087
1088
1089
1090
1091
1092
1093
1094
1095
1096
1097
1098
1099
1100
1101
1102
1103
1104
1105
1106
1107
1108
1109
1110
1111
1112
1113
1114
1115
1116
1117
1118
1119
1120
1121
1122
1123
1124
1125
1126
1127
1128
1129
1130
1131
1132
1133

Under review as a conference paper at ICLR 2026

Substituting back into the expression for u(zt, t) we can write the general form as following

u(zt, t) = σ−1
t

[(
dηt
dt
− σ2

t

2ηt

)
ϵ+

dκt

dt
z1 +

dνt
dt

z0 − hθ(zt, t)

]
(129)

With the u(zt, t) above, the ELBO can be written using eq. (3).

G DRIFT ht, DISPERSION σt AND STOCHASTICITY ηt FROM κt, νt

Often, specifying the interpolant coefficients κt, νt is intuitively easier than specifying ht, σt directly.
Here we derive expressions for ht and σt given κt and νt. We have

dκt

dt
= κtht +

σ2
t at1
b01

(130)

dνt
dt

= htνt −
σ2
t a

2
t1

bt1
νt (131)

Multiplying first equation by νt and second by κt and then subtracting the second from the first

νt
dκt

dt
− κt

dνt
dt

= νt
σ2
t at1
b01

+ κt
σ2
t a

2
t1

bt1
νt (132)

=

(
νt
σ2
t at1
b01

+ κt
σ2
t a

2
t1

bt1
νt

)
(133)

Substituting in the definitions of κt and νt in RHS and simplifying

νt
dκt

dt
− κt

dνt
dt

=

(
bt1a01σ

2
t

b201
+

b0tσ
2
t a

2
t1a01

b201

)
(134)

=
a01σ

2
t

b201

(
bt1 + b0ta

2
t1

)
=

a01σ
2
t

b201
b01 (135)

=
a01σ

2
t

b01
(136)

where we have used a01 = a0tat1 and b01 = bt1 + b0ta
2
t1. Therefore

σ2
t =

b01
a01

(
νt
dκt

dt
− κt

dνt
dt

)
(137)

Where b01 > 0, a01 > 0 are time t independent constants that can’t be determined by κt, νt alone. In
this paper, we assume a01 = 2 and b01 = a01σ

2, where σ is a hyper-parameter. Next, to derive the
expression for ht, we eliminate σ2

t from eqs. (130) and (131).

b01

(
dκt

dt
− κtht

)
=

bt1
at1

(
− 1

νt

dνt
dt

+ ht

)
(138)

ht

(
b01κt +

bt1
at1

)
= b01

dκt

dt
+

bt1
at1

1

νt

dνt
dt

(139)

ht

(
at1b01κt + bt1

at1

)
= b01

dκt

dt
+

bt1
at1

b01
bt1a0t

dνt
dt

(140)

ht

(
a0tat1κt +

a0tbt1
b01

)
= a0tat1

dκt

dt
+

dνt
dt

(141)

ht (a01κt + νt) = a01
dκt

dt
+

dνt
dt

(142)

ht =
a01

dκt

dt + dνt

dt

a01κt + νt
(143)

As before, a01 > 0 is a time independent constant that can’t be determined from the choice of κt, νt
alone. Finally, to express ηt in terms of given κt, νt, note that

η2t =
b0tbt1
b01

=
b01

a0tat1

b0tat1
b01

bt1a0t
b01

=
b01
a01

κtνt (144)

21

1134
1135
1136
1137
1138
1139
1140
1141
1142
1143
1144
1145
1146
1147
1148
1149
1150
1151
1152
1153
1154
1155
1156
1157
1158
1159
1160
1161
1162
1163
1164
1165
1166
1167
1168
1169
1170
1171
1172
1173
1174
1175
1176
1177
1178
1179
1180
1181
1182
1183
1184
1185
1186
1187

Under review as a conference paper at ICLR 2026

where we have used the identity a01 = a0tat1. In the following, we derive the formulation for
the linear κt, νt schedule used in experiments in this paper. This schedule also corresponds to the
choice used in Stochastic Interpolants(Albergo et al., 2023). Note that similar choice is made by the
Rectified Flow (Liu et al., 2022), however the missing η term implies that they do not have a bound
on the likelihood, as also observed by Albergo et al. (2023). We also provide the derivation for the
variance preserving schedule as it is quite commonly used for diffusion models. However, we do not
empirically explore it.

H FORMULATION FOR LINEAR κt, νt

For linear choice κt = t, νt = 1− t. Further, we assume a01 = 2, b01 = a01σ
2. Therefore,

dκt

dt
= 1,

dνt
dt

= −1 (145)

We can write the expressions for ht and σ2
t directly, using eqs. (137) and (143), as

ht =
1

1 + t
, σ2

t = σ2 (146)

To express the latent stochastic interpolant, we can calculate the coefficient ηt for ϵ

ηt =

√
b01
a01

κtνt = σ
√

t(1− t) (147)

We can now write the expression for the latent stochastic interpolant

zt = σ
√
t(1− t)ϵ+ tz1 + (1− t)z0, ϵ ∼ N(0, I). (148)

Finally, to express u(zt, t) first we calculate

dηt
dt
− σ2

t

2ηt
=

σ(1− t− t)

2
√
t(1− t)

− σ2

2σ
√
t(1− t)

=
σ2(1− 2t)− σ2

2σ
√
t(1− t)

= −σ
√

t

1− t
(149)

leading to

u(zt, t) = σ−1

[
−σ
√

t

1− t
ϵ+ z1 − z0 − hθ(zt, t)

]
(150)

I FORMULATION FOR VARIANCE PRESERVING κt, νt

For the variance preserving formulation, we set κt =
√
t and η2t + ν2t = 1 − t. Note that if

z0 ∼ N(0, I) is Gaussian, this setting leads to the latent stochastic interpolant zt =
√
tz1+

√
1− tz0.

Here ϵ and z0 have been combined since they both are Gaussian. Let b01/a01 = C, then

η2t = C
√
tνt = 1− t− ν2t (151)

=⇒ νt =
−C
√
t+

√
(C2 − 4)t+ 4

2
(152)

Using above, the expressions for ht and σ2
t can be derived as

ht =

a01√
t
− C

2
√
t
+ C2−4

2
√

(C2−4)t+4

2a01
√
t− C

√
t+

√
(C2 − 4)t+ 4

(153)

σ2
t =

C
√
t
√
(C2 − 4)t+ 4

(154)

Choosing a01 = 1 and C = 2 yields

ht = 0, σ2
t =

1√
t
, νt = 1−

√
t (155)

22

1188
1189
1190
1191
1192
1193
1194
1195
1196
1197
1198
1199
1200
1201
1202
1203
1204
1205
1206
1207
1208
1209
1210
1211
1212
1213
1214
1215
1216
1217
1218
1219
1220
1221
1222
1223
1224
1225
1226
1227
1228
1229
1230
1231
1232
1233
1234
1235
1236
1237
1238
1239
1240
1241

Under review as a conference paper at ICLR 2026

The coefficient ηt for ϵ can be calculated as

ηt =

√
b01
a01

κtνt =

√
2
√
t(1−

√
t) (156)

We can now write the expression for the latent stochastic interpolant

zt =

√
2
√
t(1−

√
t)ϵ+

√
tz1 + (1−

√
t)z0, ϵ ∼ N(0, I). (157)

Finally, to express u(zt, t) first we calculate

dηt
dt
− σ2

t

2ηt
= − 1√

2
√
t(1−

√
t)

(158)

with
dκt

dt
=

1

2
√
t
,

dνt
dt

= − 1

2
√
t

(159)

we arrive at

u(zt, t) = σ−1

− 1√
2
√
t(1−

√
t)
ϵ+

1

2
√
t
z1 −

1

2
√
t
z0 − hθ(zt, t)

 (160)

Note that above expression is for a particular choice of a01 = 1 and the ratio b01/a01 = 2, which we
chose for relative simplicity of the final expression above. Other choices can be made, leading to
different expressions.

J GAUSSIAN TRANSITION DENSITIES

Let’s consider a linear SDE of the form

dzt = htztdt+ utdt+ σtdwt (161)

When the SDE is linear with additive noise, we know that the transition densities are gaussian and
are therefore fully specified by their mean and covariance. From Särkkä & Solin (2019) (Eq 6.2)
these are specified by the following differential equations

dµt

dt
= htµt + ut (162)

dΣt

dt
= 2htΣt + σ2

t I (163)

The solution to these is given by (eq. 6.3, 6.4, Särkkä & Solin (2019))

µt = Ψ(t, t0)µt0 +

∫ t

t0

Ψ(t, τ)u(τ)dτ (164)

Σt = Ψ(t, t0)Σt0Ψ(t, t0)
T +

∫ t

t0

σ(τ)2Ψ(t, τ)Ψ(t, τ)T dτ (165)

Where Ψ(s, t) is the transition matrix. For our specific case of linear SDEs, we have

Ψ(s, t) = exp

(∫ s

t

h(τ)dτ

)
(166)

Substituting, we get

µt = µt0 exp

(∫ t

t0

h(τ)dτ

)
+

∫ t

t0

exp

(∫ t

τ

h(s)ds

)
u(τ)dτ (167)

Σt = Σt0 exp

(
2

∫ t

t0

h(τ)dτ

)
+ I

∫ t

t0

σ(τ)2 exp

(
2

∫ t

τ

h(s)ds

)
dτ (168)

23

1242
1243
1244
1245
1246
1247
1248
1249
1250
1251
1252
1253
1254
1255
1256
1257
1258
1259
1260
1261
1262
1263
1264
1265
1266
1267
1268
1269
1270
1271
1272
1273
1274
1275
1276
1277
1278
1279
1280
1281
1282
1283
1284
1285
1286
1287
1288
1289
1290
1291
1292
1293
1294
1295

Under review as a conference paper at ICLR 2026

K GAUSSIAN z0

For the interpolant (section H)

zt = σ
√
t(1− t)ϵ+ tz1 + (1− t)z0, ϵ ∼ N(0, I), (169)

if z0 is gaussian, we can replace the linear combination of two normal random variables ϵ, z0 with a
single random variable ẑ0 ∼ N(µ̂, Σ̂). Assuming z0 ∼ N(0, I), the mean µ̂ = 0 and covariance Σ̂
can be computed as

Σ̂ =
(
σ2t(1− t) + (1− t)2

)
I (170)

= (1− t)(tσ2 + (1− t))I (171)

Using the reparameterization trick, we can express ẑ0 in terms of z0 and write

zt = tz1 +
√

(1− t)(tσ2 + (1− t))z0, z0 ∼ N(0, I) (172)

Note that

zt = tz1 +
√
1− tz0, if σ2 = 1 (173)

zt = tz1 + (1− t)z0, if σ2 = 0 (174)

Similarly, recall the expression for u(zt, t) from section H

u(zt, t) = σ−1

[
−σ
√

t

1− t
ϵ+ z1 − z0 − hθ(zt, t)

]
(175)

If z0 ∼ N(0, I) is also gaussian, we can combine ϵ, z0 and write

u(zt, t) = σ−1

[
z1 −

√
1 + (σ2 − 1)t

1− t
z0 − hθ(zt, t)

]
(176)

if we choose σ2 = 1, then the expression simplifies to

u(zt, t) = z1 −
1√
1− t

z0 − hθ(zt, t) (177)

Finally, we would like to reiterate that we arrive at the above by assuming z0 is gaussian. The general
form derived in other sections make no assumptions about the distribution of z0.

L CHOICE OF PRIOR p0

The Gaussian distribution, along with a small set of other distributions, enjoys the special privilege of
being Lévy stable. That is, a linear combination of two Gaussian random variables is still a Gaussian
random variable. Lévy stability is the main property behind the original formulation of the simulation
free training of the Gaussian diffusion models, e.g. as in DDPM. In contrast, Laplacian, Uniform and
Gaussian Mixture are not Lévy stable, and thus our experiment with those provides strong evidence
for the general nature of the proposed method. The Gaussian mixture used in our experiment was
constructed by having a component for each training image. Consequently, it is a mixture with a very
large number of components. The current estimate of the encoder being learned was used to encode
the training images, yielding the means of the corresponding components. Standard deviation for
each dimension was fixed to 0.1. In practice, we simply shuffled the encoding of the training images,
added noise, and used a stop_gradient operation to prevent the flow of gradient through the prior.
Since the encoder is also evolving during training, this experiment required ∼ 3× more steps to yield
the reported FID. Without stop_gradient, the experiment became unstable.

M IMAGENET TRAINING AND EVALUATION DETAILS

We trained our models using the entire ImageNet training dataset, consisting of approximately 1.2
million images. Models are trained with Stochastic Gradient Descent (SGD) with the AdamW

24

1296
1297
1298
1299
1300
1301
1302
1303
1304
1305
1306
1307
1308
1309
1310
1311
1312
1313
1314
1315
1316
1317
1318
1319
1320
1321
1322
1323
1324
1325
1326
1327
1328
1329
1330
1331
1332
1333
1334
1335
1336
1337
1338
1339
1340
1341
1342
1343
1344
1345
1346
1347
1348
1349

Under review as a conference paper at ICLR 2026

0 0.2 0.4 0.6 0.8 1
0

0.2

0.4

0.6

0.8

1

s

t(
s)

t(s) = 1− (1− s)c

c = 0.1
c = 0.2
c = 0.5
c = 1
c = 2
c = 5
c = 10

Figure 4: Schedule for t. A visualization of the schedule for t(s) with s ∈ [0, 1] as c is varied. As c
increases, larger t values are favored, thereby sampling interpolants closer to t = 1 more frequently.

.

optimizer (Kingma & Ba, 2014; Loshchilov & Hutter, 2017), using β1 = 0.9, β2 = 0.99, ϵ = 10−12.
All models are trained for 1000 epochs using a batch size of 2048, except for the ones reported
in table 1 where they were trained for 2000 epochs. Only center crops were used after resizing
the images to the have the smaller side match the target resolution. For data augmentation, only
horizontal (left-right) flips were used. Pixel values for an image I were scaled to the range [−1, 1] by
computing 2(I/255)− 1 before feeding to the model. For evaluation, a exponential moving average
of the model’s parameters was used using a decay rate of 0.9999. The FIDs were computed over the
training dataset, with reference statistics derived from center-cropped images, without any further
augmentation. All FIDs are reported with class conditioned samples. To compute PSNR, sampled
image pixel values were scaled back to the range [0, 255] and quantized to integer values. Figure 4
visualizes the change of variables discussed in section 4. All reported results use c = 1, resulting
in uniform schedule, for both training and sampling, except for NoisePred and Denoising both of
which resulted in slightly better FID values for c = 2 during sampling.

Each model was trained on Google Cloud TPU v3 with 8× 8 configuration. For 2000 epochs, the
64 × 64 model took 2 days to train, 128 × 128 took 4 days to train and 256 × 256 took 7 days to
train. For 1000 epochs, the training times were roughly the half of that for 2000 epochs. The training
times for the models reported in table 1 are roughly similar for similarly sized models. Note that our
training setup is not maximally optimized for training throughput.

N ARCHITECTURE DETAILS

The base architecture of our model is adapted from the work described by Hoogeboom et al. (2023)
and modified to separate out Encoder, Decoder and Latent SI models. In the adapted base architecture
feature maps are processed using groups of convolution blocks and downsampled spatially after
each group, to yield the lowest feature map resolution at 16 × 16. A sequence of Self-Attention
Transformer blocks then operates on the 16× 16 feature map. Note that the transformer blocks in
our adapted architecture operate only at 16× 16 resolution. Consequently, for a 64× 64 resolution
input image, two downsamplings are performed, for 128 × 128 resolution, three downsamplings
are performed and for 256 × 256 four downsamplings are performed. All convolutional groups
have the same number of convolutional blocks. The observation space SI models used in this paper
are constructed using this adapted base architecture. To construct Encoder, Decoder and Latent SI

25

1350
1351
1352
1353
1354
1355
1356
1357
1358
1359
1360
1361
1362
1363
1364
1365
1366
1367
1368
1369
1370
1371
1372
1373
1374
1375
1376
1377
1378
1379
1380
1381
1382
1383
1384
1385
1386
1387
1388
1389
1390
1391
1392
1393
1394
1395
1396
1397
1398
1399
1400
1401
1402
1403

Under review as a conference paper at ICLR 2026

D
en

se

C
on

v
(x

3)

D
ow

ns
am

pl
in

g

C
on

v
(x

3)

D
ow

ns
am

pl
in

g

D
en

se

N
or

m
al

iz
at

io
n

Ta
nh

1
2
8
×

1
2
8
×

3

1
2
8
×

1
2
8
×

6
4

1
2
8
×

1
2
8
×

6
4

6
4
×

6
4
×

1
2
8

6
4
×

6
4
×

1
2
8

3
2
×

3
2
×

2
5
6

3
2
×

3
2
×

1
6

3
2
×

3
2
×

1
6

3
2
×

3
2
×

1
6

(a) Encoder architecture

D
en

se

U
ps

am
pl

in
g

C
on

v
(x

3)

U
ps

am
pl

in
g

C
on

v
(x

3)

D
en

se3
2
×

3
2
×

1
6

3
2
×

3
2
×

5
1
2

6
4
×

6
4
×

2
5
6

6
4
×

6
4
×

2
5
6

1
2
8
×

1
2
8
×

1
2
8

1
2
8
×

1
2
8
×

1
2
8

1
2
8
×

1
2
8
×

3

(b) Decoder architecture

D
en

se

C
on

v
(x

9)

D
ow

ns
am

pl
in

g1

C
on

v
(x

9)

D
ow

ns
am

pl
in

g2

Se
lf

-A
tte

nt
io

n
Tr

an
sf

or
m

er
(x

16
)

U
ps

am
pl

in
g1

C
on

v
(x

9)

U
ps

am
pl

in
g2

C
on

v
(x

9)

D
en

se3
2
×

3
2
×

1
6

3
2
×

3
2
×

5
1
2

3
2
×

3
2
×

5
1
2

1
6
×

1
6
×

1
0
2
4

1
6
×

1
6
×

1
0
2
4

8
×

8
×

2
0
4
8

8
×

8
×

2
0
4
8

1
6
×

1
6
×

1
0
2
4

1
6
×

1
6
×

1
0
2
4

3
2
×

3
2
×

5
1
2

3
2
×

3
2
×

5
1
2

3
2
×

3
2
×

1
6

16 × 16 × 1024

32 × 32 × 512

(c) Latent stochastic interpolant model architecture. The blocks shown with dashed boundaries are optional
across different resolutions.

Figure 5: An overview of the architecture of various components for 128× 128 resolution model.
The architecture for 64 × 64 and 256 × 256 resolutions is similar, except for the difference in the
spatial feature map sizes. See section N for details.

models, we simply partition the base model into three parts. The first part contains two groups of
convolutional blocks, each followed by downsampling, and forms the encoder. An extra dense layer
is added to reduce the number of channels. Further, the output is normalized to have zero mean
and unit standard deviation followed by tanh activation to limit the range to [−1, 1]. Similarly, the
last part contains two groups of convolutional blocks, each followed by upsampling, and forms the
decoder. An extra dense layer is added at the beginning to increase the number of channels. The
remaining middle portion forms the Latent SI model, where two extra dense layers are added, one at
beginning and one at end to increase and decrease the feature map sizes respectively. We show an
overview of the architecture for various components in the fig. 5.

Note that the tanh activation or other forms of scale control, such as normalization, play a crucial
role in preventing the encoder from learning arbitrarily large embeddings and allowing it to achieve
better FID. Without this constraint, the model makes the encoder outputs have large scale to make
denoising easier at later timesteps. This is an important implementation detail that ensures stable
training. Empirically, encoder output normalization yielded more stable training and better FID, than
without anything, at the same number of steps. Addition of tanh further improved the FID.

For different resolutions, the Encoder and Decoder models are fully convolutional and have the same
architecture. The architecture of Latent SI models differs in the presence/absence of the optional
downsampling and upsampling blocks (shown as blocks with dashed boundaries). The 64×64 Latent
SI model does not contain any downsampling/upsampling blocks as the encoder output is already
16× 16. The 128× 128 model does not contain "Downsampling1" and "Upsampling2" blocks. The
256× 256 model contains all blocks. All models contain 16 Self-Attention Transformer blocks. To
increase/decrease number of parameters to match model capacities, only the number of convolutional
blocks in groups immediately before and after the Self-Attention Transformer blocks is changed.

All models operate with a 3× smaller latent dimensionality that the observations. We focused on this
dimensionality ratio to ensure fair comparison with observation-space baselines while maintaining
reasonable latent dimensionality for effective modeling. In earlier experiments we tried other com-
pression ratios including 2× and 4×, before settling on 3×. The primary effect of the dimensionality
ratio is on the reconstruction performance. Higher the dimensionality ratio, the harder it is for the
decoder to achieve a high PSNR at the same number of training steps, resulting in worse sample
quality (FID) and longer training times. Lower the dimensionality ratio, less the computational
advantage.

26

1404
1405
1406
1407
1408
1409
1410
1411
1412
1413
1414
1415
1416
1417
1418
1419
1420
1421
1422
1423
1424
1425
1426
1427
1428
1429
1430
1431
1432
1433
1434
1435
1436
1437
1438
1439
1440
1441
1442
1443
1444
1445
1446
1447
1448
1449
1450
1451
1452
1453
1454
1455
1456
1457

Under review as a conference paper at ICLR 2026

Table 5: Comparison with state-of-the-art FID results on ImageNet 128×128. Note that these models
have differing sizes, FLOPs and NFEs. The comparison is provided purely for reference.

Method FID

Ours 3.12

SiD2 (Hoogeboom et al., 2024) 1.26
PaGoDA (Kim et al., 2024) 1.48
DisCo-Diff (Xu et al., 2024) 1.73
VDM++ (Kingma & Gao, 2023) 1.75
SiD (Hoogeboom et al., 2023) 1.94
RIN (Jabri et al., 2022) 2.75
CDM (Ho & Salimans, 2022) 3.52
ADM (Dhariwal & Nichol, 2021) 5.91

O ADDITIONAL SAMPLING DETAILS AND RESULTS

All the results reported in the paper use the deterministic sampler with 300 steps, setting γt = 0 in
eq. (59), except when otherwise stated. fig. 3 and fig. 6 use stochastic sampling with γt ≡ γ(1− t),
where γ is a specified constant. We use Euler (for probability flow ODE) and Euler-Maruyama (for
SDE) discretization for all results, except for qualitative inversion results in fig. 3 and fig. 6. For
the inversion results we experimented with two reversible samplers: 1) Reversible Heun (Kidger
et al., 2021) and, 2) Asynchronous Leapfrog Integrator (Zhuang et al., 2021). While both exhibited
instability and failed to invert some of the images, we found Asynchronous Leapfrog Integrator to be
more stable in our experiments and used it for results in fig. 3 and fig. 6. Figure 7 provides additional
samples for qualitative assessment, complementing fig. 2 in the main paper.

Sampling speed (with 100 steps) for pixel space models is roughly 2.2 images/sec/core for 64x64,
0.95 images/sec/core for 128x128 and 0.21 images/sec/core for 256x256. LSI achieves 2.65 im-
ages/sec/core for 64x64, 1.30 images/sec/core, and 0.53 images/sec/core for 256x256. We would like
to emphasize that these numbers exhibit high variance, are highly hardware dependent and can be
significantly impacted by hardware specific optimizations that are not the focus of this paper.

P COMPARISON WITH OTHER METHODS

While the primary focus of this paper is on the theoretical results and their empirical validation,
in table 5 we present comparison with other image generation methods for completeness. We
provide this table purely for reference as these methods are not directly comparable due to differing
model sizes, FLOPs and NFEs. While our best result is comparable, techniques in these works are
complementary to our method. We leave it as future work to explore this direction.

Q USE OF LLM

LLMs were used to help create some of the figures in the paper.

27

1458
1459
1460
1461
1462
1463
1464
1465
1466
1467
1468
1469
1470
1471
1472
1473
1474
1475
1476
1477
1478
1479
1480
1481
1482
1483
1484
1485
1486
1487
1488
1489
1490
1491
1492
1493
1494
1495
1496
1497
1498
1499
1500
1501
1502
1503
1504
1505
1506
1507
1508
1509
1510
1511

Under review as a conference paper at ICLR 2026

Original γ = 0.25 γ = 0.5 γ = 1.0

Figure 6: LSI supports flexible sampling.

28

1512
1513
1514
1515
1516
1517
1518
1519
1520
1521
1522
1523
1524
1525
1526
1527
1528
1529
1530
1531
1532
1533
1534
1535
1536
1537
1538
1539
1540
1541
1542
1543
1544
1545
1546
1547
1548
1549
1550
1551
1552
1553
1554
1555
1556
1557
1558
1559
1560
1561
1562
1563
1564
1565

Under review as a conference paper at ICLR 2026

λ = 0. λ = 1. λ = 3. λ = 5. λ = 0. λ = 1. λ = 3. λ = 5.

Figure 7: LSI supports CFG sampling.

29

	Introduction
	Background
	Variational Lower Bound using Dynamic Latent Variables
	Diffusion Bridge

	Latent Stochastic Interpolants
	Parameterization
	Sampling
	Experiments
	Related Work
	Conclusion
	Parameterizations
	OrigFlow
	InterpFlow
	Denoising
	NoisePred

	Latent score function with Gaussian p0
	Latent score function with general p0
	Detailed derivation of sampling
	Sampler for OrigFlow
	Sampler for InterpFlow
	Sampler for Denoising
	Sampler for NoisePred

	Gaussianity of conditional density
	General training objective
	Drift ht, dispersion sigmat and stochasticity etat from kt, vt
	Formulation for linear kt, vt
	Formulation for variance preserving kt, vt
	Gaussian transition densities
	Gaussian z0
	Choice of prior p0
	ImageNet training and evaluation details
	Architecture details
	Additional sampling details and results
	Comparison with other methods
	Use of LLM

