Under review as a conference paper at ICLR 2026

LATENT STOCHASTIC INTERPOLANTS

Anonymous authors
Paper under double-blind review

ABSTRACT

Stochastic Interpolants (SI) are a powerful framework for generative modeling,
capable of flexibly transforming between two probability distributions. However,
their use in jointly optimized latent variable models remains unexplored as they
require direct access to the samples from the two distributions. This work presents
Latent Stochastic Interpolants (LLSI) enabling joint learning in a latent space with
end-to-end optimized encoder, decoder and latent SI models. We achieve this by
developing a principled Evidence Lower Bound (ELBO) objective derived directly
in continuous time. The joint optimization allows LSI to learn effective latent
representations along with a generative process that transforms an arbitrary prior
distribution into the encoder-defined aggregated posterior. LSI sidesteps the simple
priors of the normal diffusion models and mitigates the computational demands
of applying SI directly in high-dimensional observation spaces, while preserving
the generative flexibility of the SI framework. We demonstrate the efficacy of
LSI through comprehensive experiments on the standard large scale ImageNet
generation benchmark.

1 INTRODUCTION

Diffusion models have achieved remarkable success in modeling complex, high-dimensional data
distributions across various domains. These models learn to transform a simple “prior” distribution
Do, such as a standard Gaussian, into a complex data distribution p;. While early formulations were
constrained to use specific prior distributions that are Lévy Stable, recent advancements, particularly
Stochastic Interpolants (SI) (Albergo et al.l [2023) offer a powerful, unifying framework capable
of bridging arbitrary probability distributions. However, SI assumes that both the prior py and the
target p; distributions are fixed and the samples from both are directly observed. This requirement
limits their use in jointly learned latent variable models where the generative model is learned, along
with an encoder and a decoder, in a latent unobserved space. Further, the latent space, often lower
dimensional, evolves as the encoder and decoder are jointly optimized. Lack of support for joint
optimization implies that arbitrary fixed latent representations may not be optimally aligned with the
generative process resulting in inefficiencies.

To address this, we present Latent Stochastic Interpolants (LSI), a novel framework for end-to-end
learning of a generative model in an unobserved latent space. Our key innovation lies in deriving a
principled, flexible and scalable training objective as an Evidence Lower Bound (ELBO) directly in
continuous time. This objective, like SI, provides data log-likelihood control, while enabling scalable
end-to-end training of the three components: an encoder mapping high-dimensional observations
to a latent space, a decoder reconstructing observations from latent representations, and a latent
SI model operating entirely within the learned latent space. Our approach allows transforming
arbitrary prior distributions into the encoder-defined aggregated posterior, simultaneously aligning
data representations with a high-fidelity generative process using that representation.

LSI’s single ELBO objective provides a unified, scalable framework that avoids the need for simple
priors of the normal diffusion models, mitigates the computational demands of applying SI directly
in high-dimensional observation spaces and offers an alternative to ad-hoc multi-stage training. Our
formulation admits simulation-free training analogous to observation-space diffusion and SI models,
while preserving the flexibility of SI framework. We empirically validate LSI’s strengths through
comprehensive experiments on the challenging ImageNet generation benchmark, demonstrating
competitive generative performance and highlighting its advantages in efficiency.

Under review as a conference paper at ICLR 2026

Our key contributions are: 1) Latent stochastic interpolants (LSI): a novel and flexible framework
for scalable training of a latent variable generative model with continuous time dynamic latent
variables, where the encoder, decoder and latent generative model are jointly trained, 2) Unifying
perspective: a novel perspective on integrating flexible continuous-time formulation of SI within
latent variable models, leveraging insights from continuous time stochastic processes, 3) Principled
ELBO objective: a new ELBO as a principled training objective that retains strengths of SI — simple
simulation free training and flexible prior choice — while enabling the benefits of joint training in a
latent space.

2 BACKGROUND

Notation. We use small letters x, y,t etc. to represent scalar and vector variables, f, g etc. to
represent functions, Greek letters 3, 6 etc. to represent (hyper-)parameters. Lower case letters x
are used to represent both the random variable and a particular value x ~ p(z). Dependence on an
argument ¢ is indicated as a subscript u; or argument «(¢) interchangeably.

Our work builds upon two key results briefly reviewed below. The first result (Li et al.,[2020) states
an Evidence Lower Bound (ELBO) for models using continuous time dynamic latent variables. The
second result is a well known method for constructing a stochastic mapping between two distributions.
We exploit it to construct a variational approximation in the latent space.

2.1 VARIATIONAL LOWER BOUND USING DYNAMIC LATENT VARIABLES

As in|Li et al.|(2020), consider two SDEs, starting with the same starting point zo ~ po(zo) att = 0.
dét = hg (Zt, t)dt + O'(Zt, t)dwt, (model) (1)
dzy = he(z, t)dt + o (2, t)dwy, (variational posterior) 2)

Where wy is the Wiener process. The first equation can be viewed as the latent dynamics under the
model hy we are interested in learning and the second as the latent dynamics under some variational
approximation to the posterior that can be used to produce samples z;. The dispersion coefficient
o(-,-) is assumed to be common and known. Further, let x;, be observations at time ¢; that are
assumed to only depend on the corresponding unobserved latent state z;,, then the ELBO can be
written as

Inpg(xe,,...,2¢,) > E,, lz In pg(x¢,|2t,) — / §||U(Zt,t)||2dt 3)
i=1 0

Where u satisfies
o(z,t)u(z,t) = he(z,t) — ho(z,1))

We refer the reader to|L1 et al.|(2020) for additional details and proof. Similar to the ELBO for the
VAEs (Kingma et al.,[2013)), the first term in eq. @ can be viewed as a reconstruction term and the
second term as approximating the posterior resulting from hy with the variational approximation /4.

2.2 DIFFUSION BRIDGE

Given two arbitrary points zy and z;, a diffusion bridge between the two is a random process
constrained to start and end at the two given end points. A diffusion bridge can be used to specify the
stochastic dynamics of a particle that starts at zy at £ = 0 and is constrained to land at z; at ¢ = 1.
Consider a stochastic process starting at z, with the dynamics specified by eq. (2). Using Doob’s
h-transform, the SDE for the end point conditioned diffusion bridge, constrained to end at z; at time
t = 1 can be written as

dzy = [hg(ze,t) + 0 (2, t)o (24, t)TVZt In p(z1|2¢)]dt + o (24, t)dw; 5)

where p(z1|z¢) is the conditional density for z; under the original dynamics in eq. (2)) and depends
on hy. Note that a Brownian bridge is a special case of a Diffusion bridge where the dynamics are
specified by the standard Brownian motion. Diffusion bridges can be used to construct a stochastic
mapping between two distributions by considering the end points zg ~ pg(zo) and z; ~ p1(z1) to be
sampled from the two distributions of interest.

Under review as a conference paper at ICLR 2026

3 LATENT STOCHASTIC INTERPOLANTS

Stochastic Interpolants (SI) and their limitation: Let 2, ~ p(z1) be an observation from the data
distribution p(z;) that we want to model. In SI framework, another distribution po(xg) is chosen as a
prior with samples x ~ po(zo). A stochastic interpolant x; is then constructed with the requirement
that the marginal distribution p;(x;) of z; equals py at ¢ = 0 and p; at ¢t = 1. For example, the
interpolant z; = (1 — t)zo + tx1 + \/t(1 — t)e, e ~ N(0, I) satisfies this requirement. The velocity
field and the score function for the generative model are then estimated as solutions to particular
least squares problems. SI requires that the samples zy and x; are observed, though x; could be an
output of a fixed model, hence still observed. We use the term observation space SI to emphasize
this. However, we are interested in jointly learning a generative model in a latent space to leverage
efficiency of low dimensional representations while also aligning the latents with the generative
process. Therefore, we want to jointly optimize an encoder py (21|21) that represents high dimensional
observations in the latent space and a decoder pg(x1|z1) that maps a given latent representation to
the observation space, along with the generative model. To use SI, we need to interpolate between
a fixed prior py(zo) in the latent space and the true marginal posterior p1(z1) = [p(z1|z1)d;.
However, we only have access to the posterior model py(z1|z1) that is optimized concurrently and is
an approximation to the true intractable posterior. Consequently, we can not directly construct an
interpolant in the latent space that satisfies the requirements of SI. In the following, we address this
issue by deriving Latent Stochastic Interpolants (LSI), though from an entirely different perspective.

Generative model with dynamic latent variables: Since we want to jointly learn the generative
model in a latent space, we propose a latent variable model where the unobserved latent variables
are assumed to evolve in continuous time according to the dynamics specified by an SDE of the
form in eq. . Let pg(21|21) be a parameterized stochastic decoder and hy parameterized drift for
eq. . Then, the generation process using our model is as following — first a sample zg ~ po(zg
is produced from a prior pg(2p), then zy evolves according to the dynamics specified by eq.
using hg fromt = 0 tot = 1 to yield a z;, and finally an observation space sample is produced
using the decoder py(z1]z1). In theory, we can now utilize the ELBO presented in section to
train this model. Note that, although the ELBO in eq. (3] supports arbitrary number of observations
T, at arbitrary times ¢;, in this paper we focus on a single observation z; at £ = 1. The ELBO in
eq. needs a variational approximation to the posterior py(2;|x1) which can be used to sample
z¢. This approximation is constructed as another dynamical model specified by the SDE in eq. (2)).
Unfortunately, for a general variational approximation specified by an arbitrary 4, simulating eq.
would lead to significant computational burden for large problems during each training iteration and
open the door to additional issues resulting from approximations needed for simulation of the SDE.
Instead, we explicitly construct the drift h4 in eq. (2) such that z; can be sampled directly without
simulation for any time ¢. Our scheme provides a scalable alternative that allows simulation free
efficient training, as is common in the observation space diffusion models.

Variational posterior with simulation free samples: Let z; ~ pp(z1]z1) be a stochastic encoding
of the observation z; providing direct access to z; at ¢t = 1. Next, using the Diffusion Bridge
specified by eq. (5) we construct a stochastic mapping between the prior py(zg) and the aggregated
approximate posterior [pg(z1|x1)dz, at ¢t = 1. The diffusion bridge, coupled with the encoder
pe(z1]21) yields our approximate posterior pg(z;|x1). However, p(z1|z;) is unknown in general. If
we additionally assume that hy(2;,t) = hyz, and o(z;,t) = oy, then the original SDE in eq.
becomes linear with additive noise

dZt = httht + O'td’wt (6)

It is well known that for linear SDEs of the above form, the transition density p(z|zs),t > s
is gaussian N(z;; astzs,bsel) (see section E]) for some functions ag¢, bs; that depend on hy, 0.
Consequently, we can compute V , In p(z;|z;) for a given z; as

a1 (21 — a1 2e)

7
b N

VZt lnp(zl |Zt) =

The transformed SDE in terms of the simplified drift and dispersion coefficients can be expressed as

dzt = [htzt + a‘?vzt lnp(zl|zt)]dt + Utd’wt (8)

Under review as a conference paper at ICLR 2026

Further, if we condition on the starting point zg, then the conditional density p(z¢|z1, 20) can be
expressed as following using the Bayes rule
p(21]2t, 20)p(2t|20) _ p(21]26)p(2¢]20)
p(zt|21, 20) = = ©))
p(z1l20) p(z120)
where p(z1|2¢, 20) = p(21]2:) because of the Markov independence assumption inherent in eq. (2).
Note that all the factors on the right are gaussian. It can be shown that the conditional density
p(2t|21, 20) 18 also gaussian if the transition densities are gaussian and takes the following form
_ botaniz + buagizo

4 2
1 b01 2 1 bOl
(L 1 10
p(2t|21, 20) <27r bOtbtl) exp (2 botbi bo) "

Where a .y, by are constant or time dependent scalars and d is the dimensionality of z;. Their
specific forms depends on the choice of h, 0. Refer to section [E] for details. z; can now be directly
sampled without simulating the SDE, given a sample z; and the encoded observation z;. Note that
the assumptions made for eq. (6)), while restrictive, do not limit the empirical performance.

2t

Latent stochastic interpolants: We can parameterize z; using the reparameterization trick as

zt = M€+ Kez1 + 29, €~ N(0,1) (11)
For some functions 7, k¢, v that depend on a(.), b(.). Note that o = 71 = 0,50 = v1 = 0,k1 =
vy = 1 since z; is sampled from a diffusion bridge with the two end points fixed at zg, z;. Equa-
tion (TT)) specifies a general stochastic interpolant, akin to the proposal in (Albergo et al.,[2023)), but
now in the latent space. If we choose the encoder and decoder to be identity functions, then above can
be viewed as an alternative way to construct stochastic interpolants in the observation space. Instead
of choosing h;, o; first, we can instead choose ;, 1; and infer the corresponding h;, o;. For example,
choosing k; = t,1, = 1 — t leads to oy = o, a constant, and we arrive at the following

2 =0\t(l —t)e+tzy + (1 —t)zo, €~ N(0,1) (12)
See section [H for a detailed derivation. We use the above form for all the experiments in the
paper. Further, if pg(zg) is chosen to be a standard gaussian then the interpolant simplifies to
2 =tz1 + /(1 —t)(02t + 1 — t)2 (section . With the above interpolants, we can now define
the ELBO and optimize it efficiently with simulation free samples z;. We also derive the expressions
for variance preserving choices of x; = /t,n? +v2 =1 —tin sectionm however we do not explore
this interpolant empirically.

Training objective using ELBO: To use the ELBO in eq. , we define u(z¢,t) using eq. (8] as
w(ze,t) = 07 Hheze + 07V, Inp(z1]20) — ho(z,1))] (13)

For the general latent stochastic interpolant z; = n:€ + k21 + Vi 2o (€q.), we show that u(z¢,t)
takes the following form

_ d’l]t 0'2 d:‘it th
_ 1 _ Tt _
u(z,t) = oy [(dt 277t> €+ T + prl he(Zt,t)} (14)

See sectionfor the proof. This u(z¢,t) can be substituted into the ELBO in eq. (3)) to construct a
training objective. For example, with the choices x; = t, v, = 1 — ¢, we get

u(zg,t) =0 ? [0‘ : teJrzl — 2o — ho(2t,1) (15)
See section [H] for details. We write a generalized loss based on the ELBO as
B ’
Ep(t)p(a1,20)p0 (z1]a1)p(z1|21.20) l— Inpy(z1lz1) + [0y 75+ 21— 20 —ho(ze)| | (16)

Where j; is a relative weighting term, similar in spirit to 3-VAE(Higgins et al.,[2017; |Alemi et al.,
2018)), allowing empirical re-balancing for metrics of interest, e.g. FID. We discuss 3; further in
section[d Above loss is reminiscent of the SI training objective, but with an additional reconstruction
term and the interpolant samples z; arising from the variational posterior approximation. We use
this training objective for all the experiments in this paper, and optimize it using stochastic gradient
descent to jointly train all three components — encoder py (21|21), decoder py(x1|21) and latent SI
model hy(z¢,t). Note that we choose pg(z1]21) to be a conditional gaussian in all experiments,
resulting in a simple Ly decoder loss.

Under review as a conference paper at ICLR 2026

4 PARAMETERIZATION

Directly using the loss in eq. (I6) leads to high variance in gradients and unreliable training due to
the v/1 — t in the denominator of the second term. Consequently, we consider several alternative
parameterizations for the second term, including denoising and noise prediction (see section |A|for
details). Among the alternatives considered, we found the following parameterization, referred to as
InterpFlow, to reliably lead to better results and we use it in all our experiments.

% H—a\/fe—‘-\/li—t(zl — 20) + Vtz —Ee(ztvt)HQ (17

Where fzg(zt, t) = Vtzy + /1 — thg(z:,t) and B; = B/(1 —t) is a time ¢ dependent weighting term,
with £ a constant. Instead of explicitly using the weights 3;, due to 1 — ¢ in the denominator, we
consider a change of variable for ¢ with the parametric family ¢(s) = 1 — (1 — s)¢ with s ~ U/[0, 1]
uniformly sampled. It can be shown that p(t) o< (1 —1t) =~1, therefore the change of variable provides
the reweighting and we simply set 3; = (3, a constant. Empirically, we found that a value of ¢ = 1
(i-e. a uniform schedule) works the best for all parameterizations during training and sampling, except
for NoisePred and Denoising, which preferred ¢ ~ 2 during sampling. ¢ < 1 led to degradation
in FID. Figure in appendix visualizes t(s) for various values of ¢. While the ELBO suggests
using 5 = 1/0°, we compute the two terms in eq. as averages and experiment with different
weightings. When used with optimizers like Adam or AdamW, 3 can be interpreted as the relative
weighting of the gradients from the two terms for the encoder pg(z1|x1). A lower value of 3 leads
the encoder to focus purely on the reconstruction and is akin to using a pre-trained encoder-decoder
pair as 5 — 0. A higher value of g forces the encoder to adapt its representation for the second term
as well. We empirically study the effect of 5 in the experiments.

5 SAMPLING

For the InterpFlow parameterization, the learned drift ila; 2t, t) is related to the original drift hg (2, t)

as hg(z,t) = (h(z,t) — Vtz)/V/1— 1t (see section . We can sample from the model by
discretizing the SDE in eq. @), where o; = o for the choices of k; = t,v; = 1 — t. However,
to derive a flexible family of samplers where we can independently tune the dispersion o without
retraining, we exploit Corollary 1 from |Singh & Fischer] (2024) to introduce a family of SDEs with
the same marginal distributions as that for eq.

1— 2\ 2
dzy = |he(ze,t) — #Vﬁ lnpt(zt)} dt + viodw, (18)

Where v, > 0 can be chosen to control the amount of stochasticity introduced into sampling. For
example, setting 7; = 0 yields the probability flow ODE for deterministic sampling. In general,
to use eq. for v, # 1, the score function V, In p;(2;) is needed as well. For the interpolant

2zt = 0/t(1 — t)e + tz1 + (1 — t)z, the score can be estimated using
Elelz]

oy/t(l —1t)

See section |C|for the proof. However, for Gaussian zy, score can be computed from the drift hg(z¢, t)
(Singh & Fischer, [2024) as following (see section [B|for details)

VI lnpt(zt) = —Z¢ =+ thg (Zt, t) (20)

Section [D] provides detailed derivation of samplers for various parameterizations. For classifier free
guided sampling (Ho & Salimans| |[2022; |Xie et al., 2024; [Dao et al.| {2023} Zheng et al., 2023} |Singh
& Fischer, 2024), we define the guided drift as a linear combination of the conditional drift hg(z:, ¢, ¢)
and the unconditional drift hg (2, ¢, c = @) as

h‘:fg(zt,t,c) = (14 Nho(zt,t,¢) — Ahg(24,t,c = @) 21

V. Inpi(z) = — (19)

where) is the relative weight of the guidance, c is the conditioning information and ¢ = & denotes
no conditioning. Note that A = —1 corresponds to unconditional sampling, A = 0 corresponds to
conditional sampling and A > O further biases towards the modes of the conditional distribution.

Under review as a conference paper at ICLR 2026

Table 1: LSI enables joint learning for SI and cheaper sampling: The latent space models achieve
FID similar to observation space models of comparable size. However, the latent space model L.
has fewer parameters (reported in millions (M)) and FLOPs (reported in Giga (G)), as part of the
parameters live in the encoder E and the decoder D. During sampling, encoder is not used, decoder is
used only once, while the latent model L is run repeatedly, once for each sampling step. Therefore,
FLOP savings from a computationally cheaper latent model accumulate with sampling steps.

FID @ 2K epochs # Params (M) Flops (G)
Resolution Latent Observ. Latent (E/D/L) Observ. Latent (E/D/L) Observ.
64 x 64 2.62 2.57 392 (5/5/382) 398 15/15/161 201
128 x 128 3.12 3.46 392 (5/5/382) 400 59/59/327 466
256 x 256 3.91 3.87 393 (5/5/383) 405 240/240/450 1288
[T \\\HH‘ T \\\HH‘ T \\\HH‘ T T 42 18
6r / | 17])
—e— Fixed ¢
EG* ---Learnedc;
-
Lol Lol Lol Lo 3 | | |
1076 1075 1074 1073 0 2 4 6
B Encoder Scale ¢ 102

Figure 1: Effect of loss trade-off 5 and encoder noise scale ¢: In the left panel, we evaluate the
effect of loss trade-off weight 3 for 128 x 128 models and observe that FID improves with 3, until
the degradation in reconstruction quality (PSNR) starts degrading FID. In the right panel, we evaluate
the effect of encoder noise scale on FID. We also plot the FID for a model with learned scale as
dashed line. A deterministic encoder performs the worst (¢ = 0), with FID improving with c until it
degrades again. Encoder with learned c (dashed line) is outperformed by fixed c in our experiments.

6 EXPERIMENTS

We evaluate LSI on the standard ImageNet (2012) dataset (Deng et al., [2009; Russakovsky et al.,
2015). We train models at various image resolutions and compare their sample quality using the
Frechet Inception Distance (FID) metric (Heusel et al. 2017) for class conditional samples. All
models were trained for 1000 epochs, except for the comparison in table [T] which reports FID at
2000 epochs. All results use deterministic sampler, using ; = 0, unless otherwise specified. A key
implementation detail to note is that the encoder uses normalization and tanh to bound the scale of
the latents. See sections[Mland [Nl for additional details.

LSI enables joint learning for SI : While SI doesn’t allow latent variables, LSI enables joint
learning of Encoder (E), Decoder (D), and Latent SI models (L). In table [I| we compare FID across
various resolutions for LSI models against SI models trained directly in observation (pixel) space. LSI
models achieve FIDs similar to the observation space models indicating on par performance in terms
of the final FID. Models for both were chosen with similar architecture and number of parameters
and trained for 2000 epochs. Reference comparison with other methods is provided in section [P}

LSI enables computationally cheaper sampling: In table[T| we also report the parameter counts
(in millions) as well as FLOPs (in Giga) for the observation space SI model as well as E, D and
L models for the LSI. For the latent L model, FLOPs are reported for a single forward pass. First
note that the parameters in LSI are partitioned across the encoder E, the decoder D and the latent L
models. At sampling time, encoder is not used, decoder is used only once, while the latent model is
run multiple times, once for each step of sampling. Therefore, while the overall FLOP count for LSI
and Observation space SI models is similar for a single forward pass, sampling with multiple steps
becomes significantly cheaper. For example, sampling with 100 steps leads to 73.6% reduction in
FLOPs for sampling 128 x 128 images and 48.6% for 256 x 256 images.

Under review as a conference paper at ICLR 2026

Table 2: Joint training helps mitigate capacity shift: We evaluate the effect of moving first k£ and
last k£ convolutional blocks from the latent model L to encoder and decoder respectively, for 128 x 128
resolution models. This results in the overall parameter count staying roughly the same, but the
number of FLOPs required for sampling changing significantly. We observe that the model trained
with 8 > 0 perform better and maintains FID well, in comparison to the independently trained model
(8 — 0), even when capacity is shifted away from the latent model L, resulting in 8.5% reduction in
FLOPs for sampling from k = 0 to k = 6.

k FID(8>0) FID(3—0) Params. (E/D/L) FLOPs (E/D/L)
0 3.76 431 392 (5/5/382) 59/59/327
3 391 4.55 389 (9/8/372) 68/66/313
6 3.96 4.87 387 (13/12/362) 75/73/299
9 461 4.98 383 (16/16/351) 82/30/284

Joint learning is beneficial: In fig. [T(left panel) we plot the FID as the weighting term £ is varied
(eq. (I7)). A higher 3 forces the encoder to adapt the latents more for the second term of the loss. We
observe that FID improves as (3 increases, going from 4.53 (for 8 — 0) to 3.75 (= 17% improvement)
for = 0.0001, indicating that this adaptation is beneficial for the overall performance. Eventually,
FID worsens as (3 is increased further. We also plot the reconstruction PSNR for each of these models
in orange and observe that increasing /3 essentially trades-off reconstruction quality with generative
performance. For too large a 3, poor reconstruction quality leads to worsening FID. The dashed line
indicates the performance when the encoder-decoder are trained independently of the latent model,
limit of 5 — 0. We implement it as a stop gradient operation in implementation, where the gradients
from the second term of the loss are not backpropagated into z;. To further assess the benefits of joint
training, in table [2) we compare the FIDs between jointly trained model (5 > 0) and independently
trained model (5 — 0) as parameters are shifted from the latent model L to the encoder E and decoder

models, by moving first k and last & convolutional blocks from the latent model to the encoder and
the decoder respectively. While this keeps the total parameter count roughly the same, the number
of FLOPs required for sampling changes significantly. The jointly trained model performs better
and maintains FID well even when capacity shifts away from the latent model, resulting in 8.5%
reduction in FLOPs required for sampling from £ = 0 to k = 6.

Encoder noise scale affects performance: The stochasticity of the encoder py(zi|x) has a
significant impact on the performance. We parameterize the encoder as a conditional Gaussian
N (z1; o(x), Xg(x)) where X(z) is assumed to be diagonal. We experimented with a purely deter-
ministic encoder (X¢(z) = 0), learned Xy () and constant noise 3¢ () = cI. In fig. [I[(right panel)
we plot FID as the encoder output stochasticity c is varied. Dashed line indicates performance with
learned Xy (z). A deterministic encoder (¢ = 0) performs poorly. FID improves as the noise scale ¢
is increased, until eventually it degrades again. While learned ¥y (x) (dashed line) performs well,
fixed ¢ models achieved higher FID.

InterpFlow parameterization performs better than alternatives: In table 3| we compare dif-
ferent parameterizations discussed in section] and section [A] The InterpFlow parameterization
consistently led to better FID. Both OrigFlow and NoisePred parameterizations exhibited higher
variance gradients and noisy optimization. While Denoising parameterization resulted in less noisy
training, InterpFlow parameterization led to fastest improvement in FID.

LSI supports diverse pp: In tablewe report FID achieved by LSI using different prior po(zo)
distributions. While Gaussian pg performs the best, other choices for py yield competitive results
indicating that LSI retains one of the key strengths of SI — support for diverse pg distributions. See
section [[] for additional details. To allow flexible sampling using eq. (I8), we modified latent SI
model to output extra output channels and augmented the loss with another term to estimate E[e|z;].
Equation (T9) was used to compute the score and sample with the deterministic sampler using y; = 0.

LSI supports flexible sampling: In fig. [2]and fig. [} we qualitatively demonstrate flexible sampling
with LSI model for popular use cases. Figure 2] demonstrates compatibility of classifier free guidance
(CFG) with LSI, using eq. (20). Increasing guidance weight A results in more typical samples. First

Under review as a conference paper at ICLR 2026

Table 3: Effect of parameterization: We com- Table 4: LSI supports diverse po: LSI retains
pare various parameterization schemes at 128 x one of the key strengths of SI — support for arbi-
128 resolution. InterpFlow parameterization trary po distribution. Different po achieve com-

performs better against the alternatives. petetive FID for 128 x 128 resolution model.
Parameterization FID @ 1K epochs Po FID @IK epochs
OrigFlow 4.56 Uniform 4.81
NoisePred 4.73 Laplacian 4.45
Denoising 4.28 Gaussian 3.76
InterpFlow 376 Gaussian Mixture 4.26

Figure 2: LSI supports CFG sampling. Class conditional samples are visualized with increasing
guidance weight A leading to more typical samples for the class. See text for details.

2o is sampled from pg(zp), Gaussian in this example, following which eq. is simulated forward
in time, using class conditional drift with different guidance weights A. In fig. [3|a given ‘Original’
image (shown leftmost) is first encoded to yield it’s representation z;, which is then inverted by
simulating probability flow ODE (setting v; = 0 in eq. (T8)) backward in time from ¢ = 1to ¢t = 0,
yielding 2o (similar to DDIM inversion (Song et alll 2020a)). Using this z(as starting point, eq. (I8)
is simulated forward is time using v, = (1 — t) for different values of v. We show three samples
for each value of and observe increasing diversity with increasing . See section [O] for additional
details and results.

7 RELATED WORK

Latent Stochastic Interpolants (LSI) draw from insights in diffusion models, latent variable models,
and continuous-time generative processes. We discuss key works from these areas in the following.

Diffusion Models: Diffusion models, originating from foundational work on score matching
[201T; Song & Ermon, [2019) and early variational formulation (Sohl-Dickstein et al., 2015), gained
prominence with Denoising Diffusion Probabilistic Models (DDPMs) (Ho et al.,[2020). Subsequent
improvements focused on architectural choices and learned variances (Nichol & Dhariwall, 202T)),
faster sampling via Denoising Diffusion Implicit Models (DDIMs) (Song et al., 2020a)), progressive
distillation (Salimans & Hol, [2022)), and powerful conditional generation through techniques like
classifier-free guidance (Ho & Salimans}, [2022)). Further exploration of the design space

has lead to highly performant models. More recently, diffusion inspired consistency
models have emerged, offering efficient generation. LSI complements these with
a flexible method for jointly learning in a latent space using richer prior distributions.

Latent Variable Models and Expressive Priors: Variational Autoencoders (VAEs) (Kingma et al,
2013}, Rezende et al, 2014) learn a compressed representation z of data x, but are limited by the
expressiveness of the prior p(z) (NVAE (Vahdat & Kautz,2020), LSGM(Vahdat et al., 2021)), as
they typically use simple priors (e.g., isotropic Gaussian). LSI addresses this by jointly learning
a flexible generative process in the latent space. Early work(Sohl-Dickstein et al, 2015)) derived
ELBO for discrete time diffusion models, while Variational Diffusion Models (VDM)
interpret diffusion models as a specific type of VAE with Gaussian noising process. In

Under review as a conference paper at ICLR 2026

Figure 3: LSI supports flexible sampling. We demonstrate inversion of an ‘Original’ image, using
reverse probability flow ODE (similar to DDIM inversion), followed by forward stochastic sampling
to yield samples similar to it, with diversity increasing with vy (eq. @). See text for details.

contrast, while LSI also optimizes an ELBO, it allows for a broader choice of the prior p(zy) and
the transforms mapping the prior to the learned aggregated posterior. Our work is similar in spirit
to models like NVAE, which employed deep hierarchical latent representations, and LSGM, which
proposed training score-based models in the latent space of a VAE, but offers a flexible framework
similar to SI allowing a rich family of priors and latent space dynamics. Note that LDM
train a diffusion generative model in the latent space of a fixed encoder-decoder pair —
making their latents actually observed from the point of view of generative modeling.

Continuous-Time Generative Processes: While diffusion models have been formulated and studied
using continuous time dynamics (Song et al., 2020bfa}; [Kingma et al.] ahdat et al.| [2021), their
relation to Continuous Normalizing Flows (CNFs)(Chen et al., 2018} |Grathwohl et al., 2019) offers
another perspective on continuous-time transformations. Early training challenges with the CNFs
have been addressed by newer methods like Flow Matching (FM) (Lipman et al., 2022} [Xu et al
[2022), Conditional Flow Matching (CFM) (Neklyudov et al., 2023} [Tong et al., 2023), and Rectified
Flow [2022). These approaches propose simulation-free training by regressing vector
fields of fixed conditional probability paths. However, likelihood control is typically not possible
(Albergo et al}[2023)), consequently extension to jointly learning in latent space is ill-specified. In
contrast, LSI optimizes an ELBO, offering likelihood control along with joint learning in a latent
space. Stochastic Interpolants (SI) (Albergo et al.,[2023)) provides a unifying perspective on generative
modeling, capable of bridging any two probability distributions via a continuous-time stochastic
process, encompassing aspects of both flow-based and diffusion-based methods. While SI formulates
learning the velocity field and score function directly in the observation space using pre-specified
stochastic interpolants, LSI arrives at a similar objective in the latent space, as part of the ELBO, from
the specific choices of the approximate variational posterior. LSI reduces to SI when encoder and
decoder are chosen to be Identity functions. SI is related to the Optimal Transport and the Schrodinger
Bridge problem (SBP) which have been explored as a basis for generative modeling
2021} [Wang et all 2021}, [Shi et al} [2023)). While LSI learns a transport, its primary objective is data
log-likelihood maximization via the ELBO, rather than solving a specific OT or SBP.

8 CONCLUSION

In this paper, we introduced Latent Stochastic Interpolants (LSI), generalizing Stochastic Interpolants
to enable joint end-to-end training of an encoder, a decoder, and a generative model operating
entirely within the learned latent space. LSI overcomes the limitation of simple priors of the normal
diffusion models and mitigates the computational demands of applying SI directly in high-dimensional
observation spaces, while preserving the generative flexibility of the SI framework. LSI leverage
SDE-based Evidence Lower Bound to offer a principled approach for optimizing the entire model.
We validate the proposed approach with comprehensive experimental studies on standard ImageNet
benchmark. Our method offers scalability along with a unifying perspective on continuous-time
generative models with dynamic latent variables. However, to achieve scalable training, our approach
makes simplifying assumptions for the variational posterior approximation. While restrictive, and
common with other methods, these assumptions do not seem to limit the empirical performance.

Under review as a conference paper at ICLR 2026

REPRODUCIBILITY STATEMENT

We have included detailed proofs of all the key theoretical results in the appendix. Sections[6]and [M]
provide key training and evaluation setup details. Section [N] provides the necessary architecture
details to reproduce the models used in the experiments. Section [O] provides additional sampling
setup details.

REFERENCES

Michael S Albergo, Nicholas M Boffi, and Eric Vanden-Eijnden. Stochastic interpolants: A unifying
framework for flows and diffusions. arXiv preprint arXiv:2303.08797, 2023.

Alexander Alemi, Ben Poole, Ian Fischer, Joshua Dillon, Rif A Saurous, and Kevin Murphy. Fixing a
broken elbo. In International conference on machine learning, pp. 159—168. PMLR, 2018.

Ricky T. Q. Chen, Yulia Rubanova, Jesse Bettencourt, and David K Duvenaud. Neural ordinary
differential equations. In S. Bengio, H. Wallach, H. Larochelle, K. Grauman, N. Cesa-Bianchi, and
R. Garnett (eds.), Advances in Neural Information Processing Systems, volume 31. Curran Asso-
ciates, Inc., 2018. URL https://proceedings.neurips.cc/paper_files/paper/
2018/fi1ile/69386f6bbldfed68692a24c8686939b9—-Paper.pdf.

Quan Dao, Hao Phung, Binh Nguyen, and Anh Tran. Flow matching in latent space. arXiv preprint
arXiv:2307.08698, 2023.

Valentin De Bortoli, James Thornton, Jeremy Heng, and Arnaud Doucet. Diffusion schrédinger
bridge with applications to score-based generative modeling. Advances in Neural Information
Processing Systems, 34:17695-17709, 2021.

Jia Deng, Wei Dong, Richard Socher, Li-Jia Li, Kai Li, and Li Fei-Fei. Imagenet: A large-scale
hierarchical image database. In 2009 IEEE conference on computer vision and pattern recognition,
pp. 248-255. Ieee, 2009.

Prafulla Dhariwal and Alexander Nichol. Diffusion models beat gans on image synthesis. Advances
in neural information processing systems, 34:8780-8794, 2021.

Will Grathwohl, Ricky T. Q. Chen, Jesse Bettencourt, and David Duvenaud. Scalable reversible
generative models with free-form continuous dynamics. In International Conference on Learning
Representations, 2019. URL | https://openreview.net/forum?id=rJxgknCcK7.

Martin Heusel, Hubert Ramsauer, Thomas Unterthiner, Bernhard Nessler, and Sepp Hochreiter. Gans
trained by a two time-scale update rule converge to a local nash equilibrium. Advances in neural
information processing systems, 30, 2017.

Irina Higgins, Loic Matthey, Arka Pal, Christopher Burgess, Xavier Glorot, Matthew Botvinick,
Shakir Mohamed, and Alexander Lerchner. beta-vae: Learning basic visual concepts with a
constrained variational framework. In International conference on learning representations, 2017.

Jonathan Ho and Tim Salimans. Classifier-free diffusion guidance. arXiv preprint arXiv:2207.12598,
2022.

Jonathan Ho, Ajay Jain, and Pieter Abbeel. Denoising diffusion probabilistic models. Advances in
neural information processing systems, 33:6840-6851, 2020.

Emiel Hoogeboom, Jonathan Heek, and Tim Salimans. simple diffusion: End-to-end diffusion for
high resolution images. In International Conference on Machine Learning, pp. 13213-13232.
PMLR, 2023.

Emiel Hoogeboom, Thomas Mensink, Jonathan Heek, Kay Lamerigts, Ruiqi Gao, and Tim Salimans.
Simpler diffusion (sid2): 1.5 fid on imagenet512 with pixel-space diffusion. arXiv preprint
arXiv:2410.19324, 2024.

Allan Jabri, David Fleet, and Ting Chen. Scalable adaptive computation for iterative generation.
arXiv preprint arXiv:2212.11972, 2022.

10

https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://proceedings.neurips.cc/paper_files/paper/2018/file/69386f6bb1dfed68692a24c8686939b9-Paper.pdf
https://openreview.net/forum?id=rJxgknCcK7

Under review as a conference paper at ICLR 2026

Tero Karras, Miika Aittala, Timo Aila, and Samuli Laine. Elucidating the design space of diffusion-
based generative models. Advances in Neural Information Processing Systems, 35:26565-26577,
2022.

Tero Karras, Miika Aittala, Jaakko Lehtinen, Janne Hellsten, Timo Aila, and Samuli Laine. Analyzing
and improving the training dynamics of diffusion models. In Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pp. 24174-24184, 2024.

Patrick Kidger, James Foster, Xuechen Chen Li, and Terry Lyons. Efficient and accurate gradients
for neural sdes. Advances in Neural Information Processing Systems, 34:18747-18761, 2021.

Dongjun Kim, Chieh-Hsin Lai, Wei-Hsiang Liao, Yuhta Takida, Naoki Murata, Toshimitsu Uesaka,
Yuki Mitsufuji, and Stefano Ermon. Pagoda: Progressive growing of a one-step generator from
a low-resolution diffusion teacher. Advances in Neural Information Processing Systems, 37:

19167-19208, 2024.

Diederik Kingma and Ruiqi Gao. Understanding diffusion objectives as the elbo with simple data
augmentation. Advances in Neural Information Processing Systems, 36:65484-65516, 2023.

Diederik Kingma, Tim Salimans, Ben Poole, and Jonathan Ho. Variational diffusion models. Advances
in neural information processing systems, 34:21696-21707, 2021.

Diederik P Kingma and Jimmy Ba. Adam: A method for stochastic optimization. arXiv preprint
arXiv:1412.6980, 2014.

Diederik P Kingma, Max Welling, et al. Auto-encoding variational bayes, 2013.

Xuechen Li, Ting-Kam Leonard Wong, Ricky TQ Chen, and David Duvenaud. Scalable gradients
for stochastic differential equations. In International Conference on Artificial Intelligence and
Statistics, pp. 3870-3882. PMLR, 2020.

Yaron Lipman, Ricky TQ Chen, Heli Ben-Hamu, Maximilian Nickel, and Matt Le. Flow matching
for generative modeling. arXiv preprint arXiv:2210.02747, 2022.

Xingchao Liu, Chengyue Gong, and Qiang Liu. Flow straight and fast: Learning to generate and
transfer data with rectified flow. arXiv preprint arXiv:2209.03003, 2022.

Ilya Loshchilov and Frank Hutter. Decoupled weight decay regularization. arXiv preprint
arXiv:1711.05101, 2017.

Kirill Neklyudov, Rob Brekelmans, Daniel Severo, and Alireza Makhzani. Action matching: Learning
stochastic dynamics from samples. In International conference on machine learning, pp. 25858-
25889. PMLR, 2023.

Alexander Quinn Nichol and Prafulla Dhariwal. Improved denoising diffusion probabilistic models.
In International conference on machine learning, pp. 8162-8171. PMLR, 2021.

Danilo Jimenez Rezende, Shakir Mohamed, and Daan Wierstra. Stochastic backpropagation and
approximate inference in deep generative models. In International conference on machine learning,
pp. 1278-1286. PMLR, 2014.

Robin Rombach, Andreas Blattmann, Dominik Lorenz, Patrick Esser, and Bjorn Ommer. High-
resolution image synthesis with latent diffusion models. In Proceedings of the IEEE/CVF Confer-
ence on Computer Vision and Pattern Recognition (CVPR), pp. 10684—10695, June 2022.

Olga Russakovsky, Jia Deng, Hao Su, Jonathan Krause, Sanjeev Satheesh, Sean Ma, Zhiheng Huang,
Andrej Karpathy, Aditya Khosla, Michael Bernstein, Alexander C. Berg, and Li Fei-Fei. ImageNet
Large Scale Visual Recognition Challenge. International Journal of Computer Vision (IJCV), 115
(3):211-252, 2015. doi: 10.1007/s11263-015-0816-y.

Tim Salimans and Jonathan Ho. Progressive distillation for fast sampling of diffusion models. arXiv
preprint arXiv:2202.00512, 2022.

Simo Siarkkéd and Arno Solin. Applied stochastic differential equations, volume 10. Cambridge
University Press, 2019.

11

Under review as a conference paper at ICLR 2026

Yuyang Shi, Valentin De Bortoli, Andrew Campbell, and Arnaud Doucet. Diffusion schrédinger
bridge matching. Advances in Neural Information Processing Systems, 36:62183-62223, 2023.

Saurabh Singh and Ian Fischer. Stochastic sampling from deterministic flow models. arXiv preprint
arXiv:2410.02217, 2024.

Jascha Sohl-Dickstein, Eric Weiss, Niru Maheswaranathan, and Surya Ganguli. Deep unsupervised
learning using nonequilibrium thermodynamics. In International conference on machine learning,
pp. 2256-2265. PMLR, 2015.

Jiaming Song, Chenlin Meng, and Stefano Ermon. Denoising diffusion implicit models. arXiv
preprint arXiv:2010.02502, 2020a.

Yang Song and Stefano Ermon. Generative modeling by estimating gradients of the data distribution.
Advances in neural information processing systems, 32, 2019.

Yang Song, Jascha Sohl-Dickstein, Diederik P Kingma, Abhishek Kumar, Stefano Ermon, and Ben
Poole. Score-based generative modeling through stochastic differential equations. arXiv preprint
arXiv:2011.13456, 2020b.

Yang Song, Prafulla Dhariwal, Mark Chen, and Ilya Sutskever. Consistency models. 2023.

Alexander Tong, Nikolay Malkin, Guillaume Huguet, Yanlei Zhang, Jarrid Rector-Brooks, Kilian
Fatras, Guy Wolf, and Yoshua Bengio. Improving and generalizing flow-based generative models
with minibatch optimal transport. arXiv preprint arXiv:2302.00482, 2023.

Arash Vahdat and Jan Kautz. Nvae: A deep hierarchical variational autoencoder. Advances in neural
information processing systems, 33:19667-19679, 2020.

Arash Vahdat, Karsten Kreis, and Jan Kautz. Score-based generative modeling in latent space.
Advances in neural information processing systems, 34:11287-11302, 2021.

Pascal Vincent. A connection between score matching and denoising autoencoders. Neural computa-
tion, 23(7):1661-1674, 2011.

Gefei Wang, Yuling Jiao, Qian Xu, Yang Wang, and Can Yang. Deep generative learning via
schrodinger bridge. In International conference on machine learning, pp. 10794—10804. PMLR,
2021.

Tianyu Xie, Yu Zhu, Longlin Yu, Tong Yang, Ziheng Cheng, Shiyue Zhang, Xiangyu Zhang, and
Cheng Zhang. Reflected flow matching. arXiv preprint arXiv:2405.16577, 2024.

Yilun Xu, Ziming Liu, Max Tegmark, and Tommi Jaakkola. Poisson flow generative models.
Advances in Neural Information Processing Systems, 35:16782-16795, 2022.

Yilun Xu, Gabriele Corso, Tommi Jaakkola, Arash Vahdat, and Karsten Kreis. Disco-diff: Enhancing
continuous diffusion models with discrete latents. arXiv preprint arXiv:2407.03300, 2024.

Qinqging Zheng, Matt Le, Neta Shaul, Yaron Lipman, Aditya Grover, and Ricky TQ Chen. Guided
flows for generative modeling and decision making. arXiv preprint arXiv:2311.13443, 2023.

Juntang Zhuang, Nicha C Dvornek, Sekhar Tatikonda, and James S Duncan. Mali: A memory
efficient and reverse accurate integrator for neural odes. arXiv preprint arXiv:2102.04668, 2021.

12

Under review as a conference paper at ICLR 2026

APPENDIX

A PARAMETERIZATIONS

For the linear choice of k; = t, 1, = 1 — t (section[H) used for experiments in this paper, the loss

term with u(z¢, t) is
t
—04/ T3¢ + 21 — 20 — ho(zt,)

Where € ~ N(0,I). If z is also Gaussian, zg ~ N(0,I), we can combine ¢, zy to yield z; =
tz1 + /(1 — t)(02t + 1 — t)zo and rewrite the above as

o2t +1—t
21 — ﬁzo - he(zut)

Directly using above forms leads to high variance in gradients and unreliable training with frequent
NaNs due to the y/1 — ¢ in the denominator. Consequently, we consider alternative parameterizations
as discussed in the following. Two of the parameterizations OrigFlow and InterpFlow are applicable
for arbitrary py, while the remaining two Denoising and NoisePred are applicable when z is
Gaussian. For each of these parameterizations, we also derive the corresponding sampler in section D]

2
1
EtNZ/{[O,l]Ep(zl,zn,zl)Ep(zt |z1,20) ﬁ

(22)

2
1

EtNU[Oal]]EP(l’l720,21)]EP(Zt|21,20)5 (23)

A.1 OrigFlow

With straightforward manipulation of the term inside the expectation we arrive at

sz [VTHe — 20) — oVie — o) @4

where fzg(zt, t) = V1 —thg(z:,t). We rewrite above in terms of a time dependent weighting
By = m as following.

. 2
% V1—t(z1 —20) — 0 te—hg(zt,t)H (25)
When z; is Gaussian, we can rewrite as

% V1—tz — \/U2t+1—t20—i10(2t,t)H2 (26)

This objective can be viewed as estimating iLe(Zt, t) = E[V1 —tz; — Vo2t + 1 — tzo|z] with a
time ¢ dependent weighting ;.

A.2 InterpFlow

Again, starting with the loss term with wu(z;,t) and straightforward manipulations we arrive at the
parameterization

2
1 t
257 1_t6+z1—zo—h9(zt,t) 27
\/1_ €+21*Zo+1/ \/1_ 2 — hg(z, 1) (28)
H_UJHF_ Hz1 — 20) + ViEz — (2,)H (29)

Where hg(z,t) = vtz + /1 — the(z,t) and , = m. To gain insights into this parameteri-
zation, let’s consider the term inside the norm and substitute z;

—oVite+ V1 —t(z1 — 20) + Vi (30)
= —oVte+ V1 —t(z1 — 20) + VE(tz1 + (1 = t)z0 + o /t(1 — t)e) 31
= (W1 —t+tvVt)zr + (V1 —t) = V1 —t)z0 +o(tvV/1 —t — V)e (32)

13

Under review as a conference paper at ICLR 2026

Leading to
% H(\/l "tV + (VI — 1) — VT =)20 + o(tVI = — Vi)e — ﬁg(zt,t)HQ (33)

The term (V1 —t +tv/t)z1 + (VE(1 —t) — V1 — 1)z + o(ty/1 —t — \/t)e reduces to z; — 2 at
t =0and z; — oe att = 1. Since this term appears to interpolate between the two, we refer to this
parameterization as InterpFlow. When zj is also Gaussian, we can combine ¢, zy and rewrite as

% (VT =1+ tvDz + (VIO — 1) — Vo2t + 1 — iz — ilg(zt,t)H2 (34)

Observe that, with o = 1, the term (/1T — £ + tv/t)z, + (1/t(1 —) — 1)z reduces to z; — 2o both
att=0andt = 1.

A.3 Denoising

This parameterization is applicable only when zq is Gaussian. Starting with the loss term with w(z¢, t)
and using the fact that z; = tz1 + /(1 — t)(02t + 1 —)z, we can manipulate the objective as
following

1 ot 1—t
||V T e el) G
1 2t 41 —¢ t i
ot +1— Zt — 121
2 || 1—-t JA-t)(c2t+1-1) ot (
2
1 zy —tz
:2‘21_ tlftl — ho(z,1) D
1 1
= S la = s = (L= Ok O G
11 ; 2
st i
R 2
= % H21 - he(zt,t)H 0

where hg(z,t) = z + (1 — t)hg(z,t) and B, = 1/(1 — t)2. In this form, i can be viewed as a
denoiser.
A.4 NoisePred

This parameterization is applicable only when zp is Gaussian. Similar to the previous sec-
tion, we can construct the noise prediction parameterization by substituting z; using z; =

14

Under review as a conference paper at ICLR 2026

tz1 + /(1 =) (02t + 1 — t)z.

2
1 o2t+1—t
=z — 1720—%(%75) 41)
—t

1 VA =t)(o2t+1-t 2t +1—t ’

=5 a- V=)@t 1-t)z fort+1- 20 — ho(z1,t) (42)
t 1—t
2

1 \/1—tzt—(1—t)\/02t+1—tzo—t\/02t+1—tzo_h (20.1) 43)
_2 ; /71—15 O\ <t

1|v/I—t¢ Volt+1—t ?
_ - L e e el I SO (44)

2 tv1—t

11 2
= §m H\/l—tZt -V 0'2t+ 1 _tZ() —t\/l—thg(Zt,t)H (45)
_102t+1—t’2 _\/l—tzt—t\/l—thg(zt,t)H2)

2 2(1—¢) ||° Vot +1—t

N 2

- % Hzo - hg(zt,t)H 47)

where hg(z:,t) = (VI — tze — t\/1 — the(ze,t))/Vo2t + 1 — tand B; = 1/(t2(1 — t)).

B LATENT SCORE FUNCTION WITH GAUSSIAN pg

When pg(2o) is gaussian, zo ~ N (0, I), we can compute the score function estimate V., Inp;(z;)
from the learned drift hg (Singh & Fischer,2024). When z is gaussian, the transition density p(z¢|z1)

is Gaussian. With z; = nye + k421 + V420, We can reparameterize as z; = k¢21 + l/t2 + 7]?20, zo ~
N(0,7).

plzt|z1) = Nz k21, (V7 4 7)) (48)
From [Singh & Fischer| (2024)(eq. 41, Appendix B) we have

-zt + :U’(Zla t)
Tt) =By | @
Substituting
—2¢ + Kz
vzt lnpt(zt) =]Ept(zl\zt) [M] (50)
_—E Tt ki E[21]2¢] 51)

vi +n7

Since the interpolation relates zg, 21, 2t as 2y = K21 + \/ Vf + ntzzo, we can rewrite the above
expression in terms of zg as following

Elzo]z]

VVE + 07

C LATENT SCORE FUNCTION WITH GENERAL py

V. Inpi(z) = — (52)

For a general distribution py(2p), it may not be possible to estimate the score function V, In ps(z:)
from the learned drift hg(z¢,t) alone. Here we derive the expression for estimating the score function
for a general distribution py(zo). Recall from eq. (9) that p(z;|20, z1) is Gaussian. From Denoising
Score Matching (Vincent, [2011)), we can write

Olnpi(z¢)20, 21)

07, (53)

V., Inpi(z) = Ept(ZO;zllzt)

15

Under review as a conference paper at ICLR 2026

where we have conditioned on both variables ¢, z1. Since p(z¢|z0, 21) is Gaussian, as in the previous
section, we can write

z —|—u 20721 t
vzt lnpt(zt) pf(z[),zl|zf) |: : :):| (54
ZOa Zl)
Now, for z; = n€ + k21 + V420, we have p(z¢|20, 21) = N (245 k¢21 + V420,72 1). Substituting

—2t + K21 + gz

Vi npe(2) = Bpy (2,020 [e 0] (55)

Un

—Te
= Ep, (e[2) [2] (56)
i

— _Ept(e‘zt)[e] = _E[e‘zt] (57)

un un

Note that this result mirrors the one for SI (Theorem 2.8, (Albergo et al.,[2023)), though our derivation
is straightforward and follows directly from Denoising Score MatchingVincent| (2011).

D DETAILED DERIVATION OF SAMPLING

For an SDE of the form
dZt = ha (Zt, t)dt + atdwt (58)

Singh & Fischer| (2024) (Corollary 1) derives a flexible family of samplers as following

(1- ’Yt)

dzy = |hg(zt,t) — 5 % V., Inpi(2¢) | dt + yiordwy (59)

where ~y; is a time dependent weighting that can be chosen to control the amount of stochasticity
injected into the sampling. Note that choosing ¢ = 0 yields the probability flow ODE (Song et al.,
2020b) and results in a deterministic sampler. This general form of sampler requires both the drift
ho(zt,t) and the score function V, In p;(z;). In general, the score function needs to be separately
estimated. See section@]for an estimator. We can also set y; = 1, leading to direct discretization of
the original SDE in eq. . However, for the special case of Gaussian zy, we can infer the score
function from the learned drift kg (section[B). For this special case, we use the general form above to
derive a family of samplers for various parameterizations discussed in section [A] Recall that for the
choice of k; = t,1» = 1 — t used in this paper, the loss term is specified by eq. (23). Without any
reparameterization, we have

E[z1|2:] — 2

oz t) = =40 (60)
Elz1|2t] = z¢ + (1 — t)ho (24, 1) (61)
We can use the above to determine the expression for the score function
— th 4
Vo lnpy(z) = —z +the(z,t) (62)

o2t+1—t

Above expressions for the score V, In p;(z;) can then be plugged into eq. to derive a sampler
for the original formulation

(1 — ’)/t2)0'2 —Z¢ + thg(Zt,t)
2 o2t+1-—t

dzy = |he(24,t) — dt + viodw, (63)

For each of the following parameterizations, we calculate the expression for the drift hy and the score
function V,, In p;(z;). These expressions can then be plugged into eq. to derive the sampler.

16

Under review as a conference paper at ICLR 2026

D.1 SAMPLER FOR OrigFlow

For the OrigFlow parameterization, we have

}ALQ (Zt7 t)
ho(z,t) = —— 64
9(t) \/m ()
For Gaussian zg, we can now substitute into the expression for the score function
—Zt + thg(zt, t)
V1 = 65
np;(2t) o2t +1—¢ (65)
_ — 1—t25t+th9(2t,t) (66)

VI—tlo?t+1—1t)

The drift hg and the score function V, In p;(z;) can now be plugged into eq. to derive the
sampler.

D.2 SAMPLER FOR InterpFlow

For the InterpFlow parameterization, we have

il(Zt, t) — \/iZt

ho(zi,t) = N (67)
For Gaussian zp, we can now substitute into the expression for the score function
V() = el (68)
_ VT =tz the(z, 1) — tVEz 69)
V1I—t(o?t+1—1t)
_ —(VI=1+ 1)z + the(z1, 1) a0)

VI—tlo2t+1—1t)

The drift hg and the score function V, ln p;(z;) can now be plugged into eq. to derive the
sampler.

D.3 SAMPLER FOR Denoising

For the Denoising parameterization, we have

iLg Zt,t — Z¢

ho(z:,t) = # (71)
1—1t

For Gaussian z, substituting into the expression for the score function

—2z¢ + thg(Zt, t)

Velnp(z) = — i1 72)
 —(L—t)z + the(ze,t) — tz
T @D r1-1) (73)
_ At the(ze,t) .

1—t)(o2t+1—1)

The drift hg and the score function V, In p;(z;) can now be plugged into eq. to derive the
sampler.

D.4 SAMPLER FOR NoisePred

Again, we have

o2t 1 — th 1—
(20, t) = Vo2t + the(zt,t) + v/ tz (75)

tv1—1t

Under review as a conference paper at ICLR 2026

For Gaussian z, substituting into the expression for the score function

—z¢ + the(z, 1)

Vl- lnpt(zt) = 0'2t + 1 _ (76)
Ttz — Vo2t + 1 — thy(z,t) + VI — Lz an
- VI—t(o2t4+1—1t)
_ —hg(Zt,t) (78)

VI =t)(o2t+1-1)

The drift hg and the score function V, In p;(2;) can now be plugged into eq. to derive the
sampler.

E GAUSSIANITY OF CONDITIONAL DENSITY

‘We have

P [2)p(a]20)

79
Pz]z0))

p(zt|21, 20) =

Further, for the SDE in eq. (6), using results from section [J| we have that the transition density
p(2¢|zs) is normal with

p(xezs) = N(2e; prse, Xst) (80)
t
Hst = [s €XP (/ h(T)dT) = UsOst 8D
t t
V=1 / o ()% exp (2 / h(u)du) dr) = Iby (82)

Then, the conditional density p(z¢|21, zo) is also normal N (z¢; p(20, 21, t), X(20, 21, t)) with

_ botanz1 + byraoizo

w(zo, 21,t) = 2 (83)
01
botb
¥(z0,21,t) = LAY | (84)
bo1
Proof: First note that
ap1 = Aot (85)
Qg = = = 2 (86)
aos Qg1
t
be = / o(v)?a?,dv (87)
Next
1
bor = / o(v)?a?,dv (88)
0
¢ 1
= / o(v)?a?,dv —|—/ o(v)?a?,dv (89)
0 t
¢
:/ o(v)?a?,a? dv + by (90)
0
t
=a} / o(v)?a?,dv + by o1
0
= ajbot + b 92)

18

Under review as a conference paper at ICLR 2026

Now

Dzl) = 1 bo Eexp 1|z = anzl? N 2t — aorz0l* |21 — ao120/?
HE =0 27 by bos 2 bu bos bo1

93)

Using the identities ag1 = aotat1, bo1 = a? bor + by and completing the squares we get

1 boy H L box 2
N 1 4
p(2e] 21, 20) <27T botbu) eXp (2 borbyr |) o

We can therefore parameterize z; as following using the reparameterization trick.

 botasiz1 + briaotzo

t

bo1

[botb b b
7 = 0t0t1 €+ 0t a1 2+ t100¢ 20, €~ N(O,I) (95)
bo1 bo1 bo1
N—_—— N—— N——
Mt Kt Vt

we can succinctly rewrite the above as
2t = e + Kez1 + 2o, €~ N(0,1) (96)

Where n,, r;, 1, are appropriate scalar functions of time ¢.

F GENERAL TRAINING OBJECTIVE

Here we derive the form of the general training objective. The first term in the objective is the
reconstruction term and remains as is. The second term of the training objective uses u(z, t), let’s
recall it’s expression

u(ze,t) = U{l[htzt + vazt Inp(z1|2t) — ho(zt,t)] (97)

The first two terms in the above serve as the target for hg. Next, we rewrite them in terms of existing
variables. Let £(t) denote these two terms and substitute eq. (7)) as following

E(t) = heze + 07V, Inp(22) 98)
2 —
= hyz + 2L a“(zbl : anz) (99)
t
2 2 2
_ (ht _ Uz“ﬂ) 2+ UtZtlzl (100)
tl tl

Next, recall the stochastic interpolant and the expressions for a,; and by, from section [E]

2t = e + Kez1 + 20, €~ N(0,1) (101)

_— /bOtbtl’ ry = bOtatl’ vy = bthLOt7 (102)
bo1 bo1 bo1

¢ ¢
ast = exp (/ h(T)dT) , ba = / o(v)?a?,dv (103)
(104)

Intuitively, we expect the drift hy to be related to the velocity field. Therefore, we compute the time
derivatives of k¢, v and 7, next

dlit 1 datl dbOt

dre 1 ([, dan | dbor 1

at boy (bOt a " dt ““) (105)
dl/t 1 da()t dbtl

e _ 1 b 1

dt b <b“ a ““) (106)
d’l?t]. dbtl dbot

e 2 (p, L Doy, 107
at ~ 2mbor <°t a “) (107

19

Under review as a conference paper at ICLR 2026

From the expression for as;, using differentiation under the integral sign, we have

daﬂ
dt

daot

08— aolh
dt aot g,

Similarly, from the expression for b,

dbor _
dt
dbyy

dt

= —au hy

t
= t tt + 2/ ()2azthtdv = O’t2 + QbOtht
0

2 2

= 04 Ay

Since a;; = 1. Substituting back into the equations for the derivatives of x; and v,

dry
dt

dvy
dt

dne
dt

1 1
_ (—botatlht + (0',52 + 2b0tht)at1) = — (U?aﬂ + bOtatlht)
bo1 boy

2
M + I'itht

bo1

1 o202 a
i (btlaOtht — Ufafla()t) =vihy — Tt H1%0t
bo1 Dot

o2a2
= v h, — t tl)
' (S
1 (Ut atlb()t + (Jt + 2b0tht)bt1)
21¢bo1
1
21bot ((b 1 — ajybor)ot + 2b0tbt1ht)
1 b1 dvg
2n¢box ((bﬂ aflbo*)af + 20y (tht +crt2a?1)>
1 200:be1 dvy
b 2 bot)o? .2
2n¢bo1 ((o+ anbor)or + vy dt
1 21n%boy d
bomf 7li Yo1 V¢
2n:bo1 vy dt
o mdv
27]1& Vi dt

(108)

(109)

(110)

(111)

(112)

(113)

(114)

(115)

(116)

(117)

(118)

(119)

(120)

Where we have used the identity bg; = b1 + a?, bo; from eq. . Further, we can relate d’“ and
d”t by eliminating h; as following

driy
dt

We can now substitute into the expression for &(¢)

2
O a1

bo1

K¢ dl/t

V¢ dt

Kt th

V¢ dt
Ht d Vg
V¢ dt

§(t) =

(Lt) i cion
vy dt bi1 vy dit bo1 b1
ofan | boran oja Ky dvy aap (b + boray)
bo1 bor bu v dt bo1bs1
0,52@1:1501
bo1b1
ofatl
b1
in eq. (100)

1 dy, afaﬂzl

vedt T by

Vl%(ntﬁ + K21+ ve20) + (3? - IZZ:) 21

3 dut dry dvy

vedt © T at YT A e

(

d’l’]t 0.t2 d:‘ﬂ?t d
i om) Tt

20

(121)

(122)

(123)

(124)

(125)

(126)

(127)

(128)

Under review as a conference paper at ICLR 2026

Substituting back into the expression for u(z, t) we can write the general form as following

[/dm o2 dr: v,
w(z,t) = ot [(;7; _ 27;) " thZl += P o — oz,) (129)

With the u(z, t) above, the ELBO can be written using eq. (3).

G DRIFT hy, DISPERSION 0; AND STOCHASTICITY 7); FROM Fy, V4

Often, specifying the interpolant coefficients k¢, v; is intuitively easier than specifying h;, o; directly.
Here we derive expressions for h; and o, given x; and v;. We have

dlﬂlt O'g Qa1
— = kth 130
a Kihe + by (130)
dvy oZa}
— = hyy — 131
dt tVt bt (131)
Multiplying first equation by v, and second by «; and then subtracting the second from the first
dr duv; Ufaﬂ 01:2@%1
-t = 132
Y A T o Ty (132
2 2.2
— (W"t a4, 2t yt> (133)
bo1 b1
Substituting in the definitions of «; and 14 in RHS and simplifying
dry dvy biragio? boota?ae
il = 134
o T "ar (B2, B2, (134)
ao10? ap10?
= 078 (b + bosa?y) = —2-Lboy (135)
b51 b5
2
— 0% (136)
bo1
where we have used ag1 = agias and bg; = by + bgtafl. Therefore
b dk dl/
2 01 Ghy t
= == 137
ot ani (dt dt) ()

Where by > 0,ag1 > 0 are time ¢ independent constants that can’t be determined by k., 14 alone. In
this paper, we assume agy = 2 and bo1 = ama Where o is a hyper-parameter. Next, to derive the
expression for h;, we eliminate o2 from egs. (130) and (131] -

dry b1 1 dyy
boi | — —kihe | = — [———+h 1
<dt e t> a1 (V¢ dt * t) (38)
btl dlﬁ:t btl 1 th
B B A T 2 Tt 1
hy (bomt + aﬂ) bo1 L + et vr dt (139)
apbor ke + b dig | b bor dng
hy | ————— | =b 140
t < a1) g dt a1 btlaot dt ()
aoibi1 dre dy,
h = 141
t (GOthlfit + bos > aota1 —- T ar (141)
dr dv,
he (ao1ke + 1) = 01(7; + 7; (142)
t dvy
hy = M (143)
ap1kt + 1

As before, ag; > 0 is a time independent constant that can’t be determined from the choice of x;, vy
alone. Finally, to express 7, in terms of given k¢, 14, note that

n? = botbtr _ bor botan briaor _ @Ktyt (144)

bo1 aotar1 bot bo1 ap1

21

Under review as a conference paper at ICLR 2026

where we have used the identity ag; = agiay1. In the following, we derive the formulation for
the linear k¢, 1 schedule used in experiments in this paper. This schedule also corresponds to the
choice used in Stochastic Interpolants(Albergo et al.l 2023)). Note that similar choice is made by the
Rectified Flow (Liu et al.| |2022)), however the missing 1 term implies that they do not have a bound
on the likelihood, as also observed by |Albergo et al.|(2023)). We also provide the derivation for the
variance preserving schedule as it is quite commonly used for diffusion models. However, we do not
empirically explore it.

H FORMULATION FOR LINEAR K¢, Vs

For linear choice k; = t, v, = 1 — t. Further, we assume ag; = 2, bg; = ag10>. Therefore,

dK,t dl/t
o 7t 145
dt Toodt (145
We can write the expressions for h; and o7 directly, using egs. (137)) and (143)), as
1
ht: m, U?:UQ (146)

To express the latent stochastic interpolant, we can calculate the coefficient n; for €

b
=1 e = o JE(1—1) (147)

ao1

We can now write the expression for the latent stochastic interpolant

2 =01 —t)e+tzy + (1 —t)zg, €~ N(0,1). (148)

Finally, to express u(z;, t) first we calculate

dny o2 o(l—t—1t) o? o%(1—2t) — o2 t (149)
L2 T — = = gy ——
dt 2ne 2\/t(1—t) 20/t(1—1) 20+/t(1 — 1) 1—t
leading to
u(zt,t) :U—l —0 17t6+zl — 20 —hg(zt,t)] (150)

I FORMULATION FOR VARIANCE PRESERVING Ky, 4

For the variance preserving formulation, we set x; = \/t and 77t2 + Vf = 1 — t. Note that if

29 ~ N (0, I) is Gaussian, this setting leads to the latent stochastic interpolant z; = v/tz; ++/T — tzg.
Here € and zp have been combined since they both are Gaussian. Let by /ag1 = C, then

w=CVtyy=1—t—1v? (151)

—CVt+./(C? -4t +4 (152)
2

ﬁyt:

Using above, the expressions for h; and o can be derived as

ap _ C_ €74
b Vi 2Vt 2, /(C2—4)t+4 (153)
! 2@01\/%-0\/%4- (02—4)t+4
C
o = (154)

VI/(C2 = 4)t + 4
Choosing ag; = 1 and C' = 2 yields

v=1-1t (155)

Under review as a conference paper at ICLR 2026

The coefficient 7, for € can be calculated as

M =4/ boflfftl/t =/2Vt(1 = V1) (156)
ao1

We can now write the expression for the latent stochastic interpolant

2 =\/2Vt(1 = Vt)e+ iz + (1 —Vt)z, e~ N(0,I). (157)
Finally, to express u(z¢, t) first we calculate
d z 1
e 2Vi(1 - V1)
with
dlit 1 th 1
W L W 159
dt 2yt dt 24/t (159)
we arrive at
1 1 1
u(ze,t) =0 ——¢ ——20 — ho(z¢,1) (160)

1
+ —=71 =
i1 -vE) VP 2V

Note that above expression is for a particular choice of ag; = 1 and the ratio bp1 /ap1 = 2, which we
chose for relative simplicity of the final expression above. Other choices can be made, leading to
different expressions.

J GAUSSIAN TRANSITION DENSITIES

Let’s consider a linear SDE of the form
dzy = hyzidt + updt + opdwy (161)

When the SDE is linear with additive noise, we know that the transition densities are gaussian and
are therefore fully specified by their mean and covariance. From [Sarkka & Solin| (2019) (Eq 6.2)
these are specified by the following differential equations

d
% = hypig + ug (162)
dx
—t = o> + ol (163)
dt
The solution to these is given by (eq. 6.3, 6.4,|Sarkké & Solin| (2019))
t
pe = U (t, to) e, —l—/ U(t, 7)u(r)dr (164)
to
t
Yy = U(t, to) T4, Ut to)T +/ (72U (t, 7)U(t,7) dr (165)
to

Where ¥ (s, t) is the transition matrix. For our specific case of linear SDEs, we have

U(s,t) = exp </t h(T)dT> (166)

Substituting, we get

t t t
Mt = [ty €XD </ h(T)dT) +/ exp (/ h(s)ds) u(r)dr (167)
to to T
¢ ¢ t
Y = Xy, exp <2/ h(T)d7'> + I/ o ()% exp (2/ h(s)ds) dr (168)
to to T

23

Under review as a conference paper at ICLR 2026

K GAUSSIAN zq

For the interpolant (section
zi=0\t(l —t)e+tz; + (1 —t)zg, €~ N(0,1), (169)

if 2z is gaussian, we can replace the linear combination of two normal random variables €, zy with a

single random variable 2y ~ N (ji, X2). Assuming zo ~ N (0, I), the mean i = 0 and covariance ¥
can be computed as

S= (o1 -t)+(1-t)?) I (170)
=(1=t)(te* + (1 —t)I (171)
Using the reparameterization trick, we can express 2 in terms of zy and write
2z =tz1 + /(1 —t)(toe2 + (1 —)20, 20~ N(0,1) (172)
Note that
2 =tz + V1 — tz, ifo?=1 (173)
ze =tz + (1 — t)zp, ifo?=0 (174)
Similarly, recall the expression for u(z,) from section|[H|
u(z,t) = o [—0‘ 1—t6+zl - 20 _he(th)} (175)

If zo ~ N (0, I) is also gaussian, we can combine ¢, z and write

1+ (2 —1)t
1-t¢

u(z,t) =0 [zl - 20 — hg(Zt,t)] (176)

if we choose 02 = 1, then the expression simplifies to
1
vV1—t

Finally, we would like to reiterate that we arrive at the above by assuming 2 is gaussian. The general
form derived in other sections make no assumptions about the distribution of zj.

w(zg, t) = 21 — 20 — ho(z¢,t) (177)

L CHOICE OF PRIOR py

The Gaussian distribution, along with a small set of other distributions, enjoys the special privilege of
being Lévy stable. That is, a linear combination of two Gaussian random variables is still a Gaussian
random variable. Lévy stability is the main property behind the original formulation of the simulation
free training of the Gaussian diffusion models, e.g. as in DDPM. In contrast, Laplacian, Uniform and
Gaussian Mixture are not Lévy stable, and thus our experiment with those provides strong evidence
for the general nature of the proposed method. The Gaussian mixture used in our experiment was
constructed by having a component for each training image. Consequently, it is a mixture with a very
large number of components. The current estimate of the encoder being learned was used to encode
the training images, yielding the means of the corresponding components. Standard deviation for
each dimension was fixed to 0.1. In practice, we simply shuffled the encoding of the training images,
added noise, and used a stop_gradient operation to prevent the flow of gradient through the prior.
Since the encoder is also evolving during training, this experiment required ~ 3x more steps to yield
the reported FID. Without stop_gradient, the experiment became unstable.

M IMAGENET TRAINING AND EVALUATION DETAILS

We trained our models using the entire ImageNet training dataset, consisting of approximately 1.2
million images. Models are trained with Stochastic Gradient Descent (SGD) with the AdamW

24

Under review as a conference paper at ICLR 2026

1,
0.8
0.6
=
0.4
—0c=1
0.2} —c=2
—c=5
//// c=10
0 | | |
0 0.2 0.4 0.6 0.8 1

S

Figure 4: Schedule for ¢. A visualization of the schedule for #(s) with s € [0, 1] as ¢ is varied. As ¢
increases, larger ¢ values are favored, thereby sampling interpolants closer to ¢ = 1 more frequently.

optimizer (Kingma & Ba), 2014; [Loshchilov & Hutter}, [2017), using 8; = 0.9, 82 = 0.99, ¢ = 10712,
All models are trained for 1000 epochs using a batch size of 2048, except for the ones reported
in table [T] where they were trained for 2000 epochs. Only center crops were used after resizing
the images to the have the smaller side match the target resolution. For data augmentation, only
horizontal (left-right) flips were used. Pixel values for an image I were scaled to the range [—1, 1] by
computing 2(1/255) — 1 before feeding to the model. For evaluation, a exponential moving average
of the model’s parameters was used using a decay rate of 0.9999. The FIDs were computed over the
training dataset, with reference statistics derived from center-cropped images, without any further
augmentation. All FIDs are reported with class conditioned samples. To compute PSNR, sampled
image pixel values were scaled back to the range [0, 255] and quantized to integer values. Figure
visualizes the change of variables discussed in section[d All reported results use ¢ = 1, resulting
in uniform schedule, for both training and sampling, except for NoisePred and Denoising both of
which resulted in slightly better FID values for ¢ = 2 during sampling.

Each model was trained on Google Cloud TPU v3 with 8 x 8 configuration. For 2000 epochs, the
64 x 64 model took 2 days to train, 128 x 128 took 4 days to train and 256 x 256 took 7 days to
train. For 1000 epochs, the training times were roughly the half of that for 2000 epochs. The training
times for the models reported in table[I]are roughly similar for similarly sized models. Note that our
training setup is not maximally optimized for training throughput.

N ARCHITECTURE DETAILS

The base architecture of our model is adapted from the work described by [Hoogeboom et al.| (2023)
and modified to separate out Encoder, Decoder and Latent SI models. In the adapted base architecture
feature maps are processed using groups of convolution blocks and downsampled spatially after
each group, to yield the lowest feature map resolution at 16 x 16. A sequence of Self-Attention
Transformer blocks then operates on the 16 x 16 feature map. Note that the transformer blocks in
our adapted architecture operate only at 16 x 16 resolution. Consequently, for a 64 x 64 resolution
input image, two downsamplings are performed, for 128 x 128 resolution, three downsamplings
are performed and for 256 x 256 four downsamplings are performed. All convolutional groups
have the same number of convolutional blocks. The observation space SI models used in this paper
are constructed using this adapted base architecture. To construct Encoder, Decoder and Latent SI

25

Under review as a conference paper at ICLR 2026

128 x 128 x 64
128 x 128 x 64
128 x 128 x 128
128 x 128 x 128

128 x 128 x 3
64 x 64 x 128

32 x 32 x 16
32 % 32 x 16
32 x 32 x 512
64 X 64 X 256

Conv (x3)
Downsampling
Conv (x3)
Downsampling
Normalization
Upsampling
Conv (x3)
Upsampling
Conv (x3)

(a) Encoder architecture (b) Decoder architecture
512
. 1024 |
L \ .
' ' v ¥
) (—‘\ Y <+ (‘—\ <+ T TN | T TN <+ ' <+ T TN ')
o o] 3) I] 3 o o
e 7 a0 18 g o= 2 g e 12 g e
x x x X XN :] EG\ & | x x ! box x x
o o o | © © ob X — x —_ © e 'l ! @ & o
3 3 8 2 S | 3 S a a3 3
x x > x \é : X > X \é : t 235 ‘f(| ébl X > X 1 g": X > x x
3 2 8 X8, g s S T = T 58| » |22 » 2 =8 x| 8 2 8
? a ~ = ~ = 12 =] =" ~ e © ~ ? a
—— S —* > " g —* > —* 3 i = E T E > 2™ g —* 2" 8
a =l @ f @, <5 = = b & =] a
5 . g | 1S P g ! o S g 15 Cg 3
O I %] O - o 2 \:S-‘ O [T &)
PR LS © 8 : | 1R
o L o I P
| I I |
- - ooy N oo - o (N R— - -

(c) Latent stochastic interpolant model architecture. The blocks shown with dashed boundaries are optional
across different resolutions.

Figure 5: An overview of the architecture of various components for 128 x 128 resolution model.
The architecture for 64 x 64 and 256 x 256 resolutions is similar, except for the difference in the
spatial feature map sizes. See section [N|for details.

models, we simply partition the base model into three parts. The first part contains two groups of
convolutional blocks, each followed by downsampling, and forms the encoder. An extra dense layer
is added to reduce the number of channels. Further, the output is normalized to have zero mean
and unit standard deviation followed by tanh activation to limit the range to [—1, 1]. Similarly, the
last part contains two groups of convolutional blocks, each followed by upsampling, and forms the
decoder. An extra dense layer is added at the beginning to increase the number of channels. The
remaining middle portion forms the Latent SI model, where two extra dense layers are added, one at
beginning and one at end to increase and decrease the feature map sizes respectively. We show an
overview of the architecture for various components in the fig. [3

Note that the tanh activation or other forms of scale control, such as normalization, play a crucial
role in preventing the encoder from learning arbitrarily large embeddings and allowing it to achieve
better FID. Without this constraint, the model makes the encoder outputs have large scale to make
denoising easier at later timesteps. This is an important implementation detail that ensures stable
training. Empirically, encoder output normalization yielded more stable training and better FID, than
without anything, at the same number of steps. Addition of t anh further improved the FID.

For different resolutions, the Encoder and Decoder models are fully convolutional and have the same
architecture. The architecture of Latent SI models differs in the presence/absence of the optional
downsampling and upsampling blocks (shown as blocks with dashed boundaries). The 64 x 64 Latent
SI model does not contain any downsampling/upsampling blocks as the encoder output is already
16 x 16. The 128 x 128 model does not contain "Downsampling1" and "Upsampling2" blocks. The
256 x 256 model contains all blocks. All models contain 16 Self-Attention Transformer blocks. To
increase/decrease number of parameters to match model capacities, only the number of convolutional
blocks in groups immediately before and after the Self-Attention Transformer blocks is changed.

All models operate with a 3x smaller latent dimensionality that the observations. We focused on this
dimensionality ratio to ensure fair comparison with observation-space baselines while maintaining
reasonable latent dimensionality for effective modeling. In earlier experiments we tried other com-
pression ratios including 2x and 4 x, before settling on 3 x. The primary effect of the dimensionality
ratio is on the reconstruction performance. Higher the dimensionality ratio, the harder it is for the
decoder to achieve a high PSNR at the same number of training steps, resulting in worse sample
quality (FID) and longer training times. Lower the dimensionality ratio, less the computational
advantage.

26

Under review as a conference paper at ICLR 2026

Table 5: Comparison with state-of-the-art FID results on ImageNet 128 x 128. Note that these models
have differing sizes, FLOPs and NFEs. The comparison is provided purely for reference.

Method FID
Ours 3.12
SiD2 (Hoogeboom et al., [2024) 1.26
PaGoDA (Kim et al.| [2024) 1.48
DisCo-Diff (Xu et al., 2024) 1.73
VDM++ (Kingma & Gao, [2023) 1.75
SiD (Hoogeboom et al.,[2023) 1.94
RIN (Jabri et al., 2022) 2.75
CDM (Ho & Salimans), [2022) 3.52

ADM (Dhariwal & Nichol,[2021) 5.91

O ADDITIONAL SAMPLING DETAILS AND RESULTS

All the results reported in the paper use the deterministic sampler with 300 steps, setting v; = 0 in
eq. , except when otherwise stated. fig. [3|and fig. E]use stochastic sampling with v, = v(1 — ¢),
where 7 is a specified constant. We use Euler (for probability flow ODE) and Euler-Maruyama (for
SDE) discretization for all results, except for qualitative inversion results in fig. 3] and fig. [6] For
the inversion results we experimented with two reversible samplers: 1) Reversible Heun (Kidger
et al.| 2021)) and, 2) Asynchronous Leapfrog Integrator (Zhuang et al.||2021). While both exhibited
instability and failed to invert some of the images, we found Asynchronous Leapfrog Integrator to be
more stable in our experiments and used it for results in fig. [3]and fig.[§] Figure[7]provides additional
samples for qualitative assessment, complementing fig. [2]in the main paper.

Sampling speed (with 100 steps) for pixel space models is roughly 2.2 images/sec/core for 64x64,
0.95 images/sec/core for 128x128 and 0.21 images/sec/core for 256x256. LSI achieves 2.65 im-
ages/sec/core for 64x64, 1.30 images/sec/core, and 0.53 images/sec/core for 256x256. We would like
to emphasize that these numbers exhibit high variance, are highly hardware dependent and can be
significantly impacted by hardware specific optimizations that are not the focus of this paper.

P COMPARISON WITH OTHER METHODS

While the primary focus of this paper is on the theoretical results and their empirical validation,
in table [5] we present comparison with other image generation methods for completeness. We
provide this table purely for reference as these methods are not directly comparable due to differing
model sizes, FLOPs and NFEs. While our best result is comparable, techniques in these works are
complementary to our method. We leave it as future work to explore this direction.

Q UsEoFLLM

LLMs were used to help create some of the figures in the paper.

27

Under review as a conference paper at ICLR 2026

Original

Figure 6: LSI supports flexible sampling.

28

Under review as a conference paper at ICLR 2026

Figure 7: LSI supports CFG sampling.
29

	Introduction
	Background
	Variational Lower Bound using Dynamic Latent Variables
	Diffusion Bridge

	Latent Stochastic Interpolants
	Parameterization
	Sampling
	Experiments
	Related Work
	Conclusion
	Parameterizations
	OrigFlow
	InterpFlow
	Denoising
	NoisePred

	Latent score function with Gaussian p0
	Latent score function with general p0
	Detailed derivation of sampling
	Sampler for OrigFlow
	Sampler for InterpFlow
	Sampler for Denoising
	Sampler for NoisePred

	Gaussianity of conditional density
	General training objective
	Drift ht, dispersion sigmat and stochasticity etat from kt, vt
	Formulation for linear kt, vt
	Formulation for variance preserving kt, vt
	Gaussian transition densities
	Gaussian z0
	Choice of prior p0
	ImageNet training and evaluation details
	Architecture details
	Additional sampling details and results
	Comparison with other methods
	Use of LLM

