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Abstract
In an era of model and data proliferation in001
machine learning/AI especially marked by the002
rapid advancement of open-sourced technolo-003
gies, there arises a critical need for standard-004
ized consistent documentation. Our work ad-005
dresses the information incompleteness in cur-006
rent human-generated model and data cards.007
We propose an automated generation approach008
using Large Language Models (LLMs). Our009
key contributions include the establishment of010
CARDBENCH, a comprehensive dataset aggre-011
gated from over 4.8k model cards and 1.4k012
data cards, coupled with the development of013
the CARDGEN pipeline comprising a two-step014
retrieval process. Our approach exhibits en-015
hanced completeness, objectivity, and faithful-016
ness in generated model and data cards, a sig-017
nificant step in responsible AI documentation018
practices ensuring better accountability and019
traceability.1020

1 Introduction021

The landscape of artificial intelligence (AI) has un-022

dergone a profound transformation with the recent023

surge in open-sourced models (Villalobos et al.,024

2022; Sevilla et al., 2022) and datasets (Northcutt025

et al., 2021; Sevilla et al., 2022). The trend has026

been significantly accelerated by the advent of dis-027

ruptive technologies such as transformers (Gruet-028

zemacher and Whittlestone, 2022; Vaswani et al.,029

2017). Since this proliferation of accessible mod-030

els and datasets can have their applications signif-031

icantly influence various aspects of society, it be-032

comes increasingly important to underscore the ne-033

cessity for standardized consistent documentation034

to communicate their performance characteristics035

accurately (Liang et al., 2022).036

In this context, model cards proposed by Mitchell037

et al. (2019) and data cards proposed by Pushkarna038

1Our code and data have been uploaded to the submission
system, and will be open-sourced upon paper acceptance.

Human Written LLM Generated

Lack import information: 
training details,
evaluation metrics, and 
results, etc.

Unclear: The description 
of intended use and 
limitations is unclear

Incomprehensible: Lacking 
essential technical 
information and 
explanation

## Training Details
N/A

## Intended uses & 
limitations
You can use the raw model 
for optical character 
recognition on single 
text-line images.

## Model Description
Images are presented to 
the model as a sequence 
of fixed-size patches 
(resolution 16x16).

## Training Details
The model is trained using 
large-scale synthetic data 
and fine-tuned with 
human-labeled datasets.

## Model Description
It resizes the input text 
image into 384x384 and 
splits it into a sequence of 
16x16 patches.

## Intended uses & 
limitations
The model is specifically 
trained and optimized for 
printed text recognition 
and may not perform as 
well on other types of text, 
such as handwritten or 
scene text.

Figure 1: Common problems with manually generated
model cards and data cards.

et al. (2022), emerge as necessary documentation 039

tools. These cards bridge the communication gap 040

between model/data creators and product develop- 041

ers, thereby ensuring a comprehensive understand- 042

ing of the model’s/data’s capabilities and limita- 043

tions for both in academia as well as industrial 044

applications (Pushkarna et al., 2022; Sevilla et al., 045

2022; Vaswani et al., 2017; Sevilla et al., 2022). 046

Model/data cards are instrumental in research, of- 047

fering detailed insights such as data characteristics, 048

sources, etc, as well as model architecture, training 049

procedures, and potential biases and limitations, 050

which accelerates development and reduces error 051

propagation in subsequent models (Swayamdipta 052

et al., 2020). 053

Inspired by these concepts, HuggingFace (HF) de- 054

veloped card specifications for models and datasets 055

hosted on its website. Despite the release of some 056
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available tools to assist model card writing2, HF057

leaves the decision of what to report up to devel-058

opers. This raises several problems: First, this059

approach relies heavily on the developers’ under-060

standing and interpretation of what should be re-061

ported, leading to inconsistencies and potential062

omissions of critical information (Shukla et al.,063

2021). Second, there is a tendency among card064

creators to use completed cards as templates rather065

than starting from the standardized template pro-066

vided (Pushkarna et al., 2022). Such variability067

compromises the comprehensiveness and reliabil-068

ity of the cards.069

With the power of state-of-the-art LLMs (Touvron070

et al., 2023; Brown et al., 2020; Ouyang et al., 2022;071

Jiang et al., 2023; Touvron et al., 2023), automatic072

generation of model and data cards can be served as073

an approach to ensure uniformity, consistency, and074

thoroughness across different model/data cards. To075

that end, we contribute the following: (1) A novel076

pioneering initiative to systematically utilize LLMs077

for automatically generating model/data cards; (2)078

CARDBENCH, a curated dataset that encompasses079

all the associated papers and GitHub READMEs080

referenced in 4.8k model cards and 1.4k data cards;081

(3) A novel approach that decomposes the card gen-082

eration task into multiple sub-tasks, proposing a083

CARDGEN pipeline including a two-step retrieval084

process; (4) A novel set of quantitative and qualita-085

tive evaluation metrics. We demonstrate that using086

our pipeline with GPT3.5, we achieve higher scores087

than human generated cards on completeness, ob-088

jectivity, and understandability, demonstrating the089

effectiveness of CARDGEN pipeline.090

2 Related Work091

2.1 Accountability and Traceability for AI092

Systems Through Documentation093

The increasing complexity of AI systems have094

raised significant concerns about their potential095

biases and non-transparency, thereby the negative096

implications for users and society (Jacovi et al.,097

2021; Barocas and Selbst, 2016; Panch et al., 2019;098

Daneshjou et al., 2021; Huang et al., 2023). This099

motivated the emergence of various documentation100

frameworks for ML models and datasets:101

2https://huggingface.co/spaces/huggingface/
Model_Cards_Writing_Tool

Model Cards Mitchell et al. (2019) proposed the 102

concept of model cards as a framework for trans- 103

parent documentation of machine learning mod- 104

els (ML) and provided detailed evaluations across 105

diverse demographic groups and conditions. Ad- 106

vancements in model card design including the 107

advocate of consumer labels’ generation for ML 108

models (Seifert et al., 2019), the principle introduc- 109

tion for explainable models (Phillips et al., 2020), 110

other cards as complimentary to model cards (Ad- 111

kins et al., 2022; Shen et al., 2021), environmental 112

and financial impact considerations (Strubell et al., 113

2019), and some toolkits that help to track and re- 114

port specific information in ML models (Arya et al., 115

2019; Shukla et al., 2021). 116

Data Cards In ML dataset documentation, Ge- 117

bru et al. (2021) initiated datasheets for datasets, 118

followed by the introduction of data statements 119

for NLP data (Bender and Friedman, 2018; Ben- 120

der et al., 2021), and data nutrition labels for 121

better decision-making (Holland et al., 2020). 122

McMillan-Major et al. (2021); Hutchinson et al. 123

(2021) provided comprehensive data card tem- 124

plates. Pushkarna et al. (2022) proposed data cards 125

for responsible AI development. Díaz et al. (2022) 126

introduced CrowdWorkSheets for transparent doc- 127

umentation of crowdsourced data. 128

2.2 Knowledge-Enhanced Text Generation 129

LLMs can be augmented with external knowledge 130

sources to improve their reasoning capabilities 131

(Lewis et al., 2020; Li et al., 2022). Retriever, 132

generator, and evaluator are the key components in 133

a standard RAG system. With the advancement of 134

powerful pretrained seq2seq models as generators, 135

numerous studies have concentrated on retrieval 136

and evaluation performance: 137

Dense Retrieval Dense retrievers match relevant 138

contents with fully learned embeddings (Cao and 139

Xiong, 2018; Lee et al., 2019), capturing more 140

semantically similar texts than sparse retrievers 141

using lexical overlaps (Robertson and Zaragoza, 142

2009). Pretrained retrieval representations have 143

also been explored and used for zero-shot semantic 144

matching (Reimers and Gurevych, 2019a; Gao and 145

Callan, 2021; Günther et al., 2023; Lin et al., 2023). 146

Researchers studied the transfer learning abilities 147

(Thakur et al., 2021; Yu et al., 2022), using neural 148

generative models as search indices (Metzler et al., 149
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2021), and generating hypothetical documents be-150

fore retrieval (Gao et al., 2023).151

RAG Text Generation Evaluation Due to vari-152

ations in retrieved content, customized generation153

pipelines, and user intentions, evaluating the ef-154

fectiveness of LLM generated texts in a Retrieval-155

Augmented Generation (RAG) system becomes156

challenging (Huang et al., 2023; Mialon et al.,157

2023). Traditional n-gram based metrics like158

BLEU (Papineni et al., 2002), ROUGE (Lin, 2004),159

and PARENT-T (Wang et al., 2020b) are used160

for assessing the overlap between generated texts161

and references, but cannot fully grasp the quality162

nuances of human expectations (Honovich et al.,163

2021; Maynez et al., 2020). Some model-based164

metrics have later been invented to align better165

with human judgments without supervision, such166

as BERTScore (Zhang et al., 2019), MoverScore167

(Zhao et al., 2019), and BARTScore (Yuan et al.,168

2021). Research focused mainly on factuality (Gou169

et al., 2023; Chen et al., 2023; Galitsky, 2023;170

Min et al., 2023), and faithfulness (Barrantes et al.,171

2020; Fabbri et al., 2022; Santhanam et al., 2021;172

Laban et al., 2023; Durmus et al., 2020) of genera-173

tion quality. Some frameworks have been designed174

to automate the assessment pipeline with the power175

of LLMs (Es et al., 2023; Pietsch et al., 2020; Liu176

et al., 2023; Fu et al., 2023; Manakul et al., 2023).177

3 Defining the Model/Data Card178

Generation Task179

3.1 Task Formulation180

Denote our test set as D := {(mi,pi, gi)}Ni=1 con-181

sisting of N triples, each with a human-generated182

model card mi, a direct paper document pi, and183

a direct GitHub README document gi. For184

each question qj from the question template set185

Q := {qj}Mj=1, we define a two-stage retrieve-and-186

generate task f1 and f2.187

The retrieval task f1 : P × G × Q → R maps188

source paper and GitHub documents according to189

the question to a set of retrieved chunks R.190

The generation task f2 : R × Q → A maps the191

retrieved chunk set and questions to a space A that192

contains generated answers for all questions.193

3.2 Structured Generation194

Inspired by the model card design from Mitchell195

et al. (2019), HF provides its guidelines about how196

to fully fill out a model card.3 It suggests a detailed 197

disclosure of the model features and limitations in 198

a published model card. Following the guidelines, 199

we define seven sections including 31 individual 200

questions for generating a complete model card. 201

These sections are model summary, model details, 202

uses, bias and risks, training details, evaluation, and 203

additional information about the proposed model. 204

We release our full question template for model 205

cards and data cards in Appendix A. Table 1 shows 206

the most important questions for each section of 207

the full template. 208

4 CARDBENCH Dataset 209

CARDBENCH contains 4,829 human-generated 210

model cards and 328 data cards with paper and 211

GitHub references. 212

4.1 Dataset Collection 213

Data Source and Preprocessing We identify 214

the model page4 and the dataset page5 of HF as 215

data sources. We crawl the 10,000 most down- 216

loaded model cards (READMEs) and 10,000 most 217

downloaded data cards from the HF page up to 218

October 1, 2023. For each collected model card, 219

we use regular expressions to find all valid paper 220

URLs and GitHub repository URLs for both model 221

cards and data cards. We leverage the SciPDF 222

Parser6 to parse downloaded paper PDFs into a 223

JSON formatted data structure for the paper sec- 224

tions. We further use the GitHub REST API7 to 225

obtain README files of each repository. For each 226

collected data card, we devise regular expressions 227

to locate all data cards with the ”Dataset Descrip- 228

tion” section, which should contain information 229

such as the dataset homepage, paper link, and 230

GitHub repository. Then, based on the informa- 231

tion obtained from the data card, we retrieve and 232

process paper documents and GitHub READMEs 233

as done for model cards. 234

Evaluation Set Construction In the absence of 235

standardized and strict content requirements by HF, 236

collected model cards are mostly incomplete, and 237

some examples are even minimally modified copies 238

of existing ones. This variability undermines the 239

3https://huggingface.co/docs/hub/
model-card-annotated

4https://huggingface.co/models
5https://huggingface.co/datasets
6https://github.com/titipata/scipdf_parser
7https://docs.github.com/en/rest?api
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Question Role Prompt
Summary Project organizer Provide a 1-2 sentence summary of what the model is.
Description Project organizer Provide basic details about the model. This includes the model architecture,

training procedures, parameters, and important disclaimers.
Direct use Project organizer Explain how the model can be used without fine-tuning, post-processing, or

plugging into a pipeline. Provide a code snippet if necessary.
Bias, risks, limitations Practical Ethicist What are the known or foreseeable issues stemming from this model? These

include foreseeable harms, misunderstandings, and technical and sociotechni-
cal limitations.

Results summary Developer Summarize the model evaluation results.

Table 1: Template of the most important questions for each section.

reliability of our comparative evaluation against240

human-generated model cards as a reference met-241

ric. In an attempt to mitigate this shortcoming, we242

curate the highest quality human generated model243

cards to serve as our evaluation data set. This set244

comprised a select 350 examples that are rewritten245

by the HF team with their unique disclaimers. Also,246

for data cards, the majority of those collected are247

incomplete and lack content readability. In order to248

have a sufficient number of evaluation sets, we first249

selected all the data cards with a “Dataset Descrip-250

tion” section. We then wrote markdown matching251

logic to obtain 300 examples as our evaluation set252

based on the word count and the number of sec-253

tions in the data cards. See Appendix B for more254

details on data collection.255

4.2 Data Annotation256

In our methodology for generating model cards,257

emphasis is placed predominantly on the design258

details of the model itself, as opposed to referenc-259

ing external methodologies being cited in human-260

generated model cards. It necessitates the identifi-261

cation of the primary paper proposing the model,262

along with the direct repository reflecting model263

implementation. The evaluation set is annotated264

by two ML Master’s student researchers who know265

HF models well and are proficient in English. The266

process resulted in 294 evaluation examples hav-267

ing both direct paper and repository links. Addi-268

tionally, to annotate the whole dataset, we prompt269

GPT-3.5-Turbo (Brown et al., 2020) to validate270

direct source document links, given the context271

wherein each URL is situated in the model card.272

We finally obtained 4,829 non-empty ones with ei-273

ther direct paper links or repository links. GPT’s274

annotation reached 98.01% accuracy according to275

human validation results on the test set. For data276

cards, their primary paper link and direct repository277

responsible for the dataset is within the ’Dataset278

Description’ section. We finally obtained 865 data279

Split
Paper GitHub

# Sections # Words # Sections # Words

ModelCard
all 29 6810 22 2495
test 30 6674 17 1855

DataCard
all 25 5741 9 975
test 25 5784 8 816

Table 2: Statistics for direct paper documents and reposi-
tory READMEs for crawled model cards and data cards,
in terms of the average number of sections and the aver-
age number of words of documents.

cards with either direct paper links or repository 280

links. This gain resulted in 99.7% accuracy accord- 281

ing to human validation results on the 300 data 282

cards test set. See Appendix C for human annota- 283

tion guidelines and prompts for GPT validation. 284

4.3 Data Statistics 285

We show the overall statistics in Tables 2 and 11. 286

We can observe that our test set, the set of model 287

cards rewritten by the HF team, are more concise 288

than other developer-written ones. Their corre- 289

sponding source documents have similar sizes in 290

terms of the number of sections and words. 291

To explore whether our test set represents the whole 292

dataset well, we look into some model card features 293

obtained with the HF API. Figure 8 shows that 294

test set examples are nearly uniformly distributed 295

compared to the overall dataset in terms of the 296

number of downloads, and task distributions of 297

models/datasets. A comparison of the test set to 298

the whole set is shown in Figures 6 and 7. See 299

Appendix D for additional dataset analyses. 300

5 Method: the CARDGEN Pipeline 301

5.1 Overview 302

Figure 2 shows our CARDGEN pipeline. For each 303

qj in Q, we first prompt LLMs to split qj into a sub- 304

question set. Next, we use LLMs to infer relevant 305

sections as potential knowledge sources, and gener- 306

ate pseudo answers for each sub-question leverag- 307
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GPT LLAMA MISTRAL

Paragraph

Store

Provide a 1-2 sentence 
summary of what the model 
{model} is.

What are the known or 
foreseeable issues stemming 
from this model

What metrics will be used 
for evaluation in light of 
tradeoffs between different 
errors about the model

Questions Generated Result

## Summary
{model} is an end-to-end 
Transformer-based OCR 
model that leverages …
### Metrics
Word-level precision, recall, 
and F1-score: …
Character-level accuracy: …

### Limitations and Biases
May not perform as well on 
other types of text, such as 
handwritten or scene text.

● Abstract
● Introduction
● Methods
● Experiment
● Result
● Analysis

Pseudo 
Answer

Retrieval Chain

Pseudo Answer 
Chain

Infer Relevant Paragraph

Generation 
Chain

Abstract

Figure 2: Overview of the CARDGEN pipeline to generate a full model card or a full data card.

ing LLM’s own knowledge (Gao et al., 2023). The308

pseudo answer is used as a query to get the set R309

of relevant document chunks. We use an LLM to310

generate answers for the question prepended with311

highest-ranked document chunks.312

5.2 Designing the Retriever313

As the process of supervised retrieval necessitates314

the acquisition of additional crowd-sourced anno-315

tations for establishing ground truth sentences for316

each query, it constitutes a substantial amount of317

labor. Consequently, we choose to modify the stan-318

dard RAG retrieval baselines (Lewis et al., 2020),319

where source documents are ranked based on the320

inner product similarity with a query question. We321

develop a two-step retrieval method to improve the322

retrieval precision: (1) Given all section names323

of a model’s paper and README documents, we324

prompt the LLM to infer the top-k most plausibly325

relevant sections. (2) We query the pseudo answer326

from chunks in the inferred section contents after327

feeding it into an embedding model. We use the em-328

bedding model jina-embeddings-v2-base-en329

developed by Günther et al. (2023). This choice is330

further verified in Section 7.2.331

5.3 Designing the Generator332

For our CARDGEN pipeline, we test GPT-4-Turbo333

(OpenAI, 2023), GPT-3.5-Turbo (Brown et al.,334

2020), Llama2 70B Chat (Touvron et al., 2023),335

Llama2 7B Chat (Touvron et al., 2023), Mistral336

7B Instruct (Jiang et al., 2023) as backbone337

LLMs. We generate the answer tj to each question338

qj given R, and concatenate all answers in order339

as the final model card. To leverage the LLM’s340

strengths in responding effectively to varied ques-341

tions, we assign specific roles to the LLM tailored342

to different questions, and outline its expected ar-343

eas of expertise. Pre-defined roles include project 344

organizer, sociotechnical practical ethicist, and de- 345

veloper, as shown in Table 1 and Appendix A, ac- 346

cording to Raw et al. (2022). See Appendix F for 347

LLM inference details. 348

6 Evaluation Setup 349

We evaluate CARDGEN on various standard as well 350

as state-of-the-art metrics to measure the faithful- 351

ness, relevance, and other aspects of the gener- 352

ation quality. Additionally, we also incorporate 353

human evaluation for the pipeline to address three 354

key challenges that can’t be solved by automatic 355

metrics: First, there is an absence of ground truth 356

labels of generated model cards by CARDGEN. To 357

mitigate this, we have to develop specific manual 358

evaluations to assess performance. Second, current 359

model cards created by human developers are of- 360

ten incomplete and deviate from the recommended 361

template provided by HF. Third, the LLM gener- 362

ated model card is typically long with over 4000 363

words, and brings challenges to both open-source 364

standard evaluations with limited context size and 365

costly GPT-based metrics. 366

Standard Metrics We follow Honovich et al. 367

(2022) and use ROUGE (Lin, 2004), BERTScore 368

(Zhang et al., 2019), BARTScore (Yuan et al., 369

2021), and NLI-finetuned models (Williams et al., 370

2018; MacCartney and Manning, 2008) to mea- 371

sure the factual consistency of retrieved chunks set 372

R and the generated answer A. Due to the large 373

size of retrieved texts, we use deberta-v3-base 374

as the base model for BERTScore, and use 375

nli-deberta-v3-large as the NLI-finetuned 376

model scorer (Reimers and Gurevych, 2019a; He 377

et al., 2021). More details in Appendix H. 378
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Metric Input Description
Factual consistency R,A How much the generated answer is supported by retrieved contexts.
Faithfulness Q,R,A How much the statements created from the question-answer pair are supported by the

retrieved context.
Answer relevance Q,A relevance score of the answer according to the given question.
Context precision Q,R How much the given context is useful in answering the question.
Context relevance Q,R Whether the question can be answered by relevant sentences extracted from the given

context.

Table 3: Illustration of the input and description of standard metrics and GPT-based metrics being used.

Metric Human GPT3.5 Llama2 70B Mistral 7B Llama2 7B
Completeness 2.33 3.75 3.60 3.60 3.70
Accuracy 4.53 3.31 3.28 3.00 2.97
Objectivity 2.30 4.08 3.15 3.02 3.83
Understandability 2.15 4.05 3.85 3.75 3.17
Reference quality 4.33 3.55 3.33 3.20 2.70

Table 4: Human evaluation results on LLM generated and human-generated model cards.

GPT Metrics Following Es et al. (2023), we con-379

sider the measurement of faithfulness, answer rele-380

vance, context precision, and context relevance us-381

ing GPT4. Table 3 provides a description of these382

metrics. As different combinations of inputs are383

taken into consideration, these metrics are neces-384

sary supplements to standard metrics. Full prompt385

details are explained in Appendix H.386

Human Evaluation Metrics Putting together387

LLM generated cards with the human-generated388

cards as a sample, we devise the following manual389

evaluation metrics: completeness, accuracy, objec-390

tivity, understandability, and reference quality. We391

design a simple Gradio annotation interface (Abid392

et al., 2019), and more details are in Appendix I.393

7 Results394

7.1 Performance Summary395

Our human evaluation results are shown in Table 4396

and automatic evaluation results are shown in Ta-397

bles 5 and 6 for model cards. The only difference398

for the data card generation pipeline is the substitu-399

tion with data card question templates. Since this is400

a new text generation task, we provide no baseline401

results.Therefore, we mainly answer two questions402

below:403

Are our generated model cards better than404

human-generated ones? We conduct a random405

sampling of 50 model cards from the test set406

and compute the average metric scores across407

all the annotated samples, as shown in Table 4.408

GPT3.5 demonstrates superior performance over 409

other LLMs and human-generated content in terms 410

of completeness, objectivity, and understandability. 411

This finding aligns with the observations presented 412

below for Tables 5 and 6. 413

Conversely, the human-generated model cards re- 414

ceived higher scores in accuracy and reference qual- 415

ity. This disparity suggests that all LLMs exhibit 416

some degree of hallucination for factual content 417

and reference links in their generation. It is impor- 418

tant to note that the human-generated model cards’ 419

incompleteness precludes a direct comparison of 420

human evaluation metrics with the metrics used 421

in Tables 5 and 6. Moreover, the insights derived 422

from Table 4 are not obtainable through automatic 423

metrics. We thus conclude that human evaluation 424

metrics are indispensable components of our over- 425

all evaluation framework. 426

How does GPT3.5 perform compared with open 427

sourced LLMs? From Table 5, we can’t ob- 428

serve a uniform trend for factual consistency across 429

all sub-tasks. GPT3.5 outperforms open-sourced 430

LLMs on “Uses” and “Bias” question sets in 3 over 431

4 standard metrics, while Llama2 70b generates 432

more factual consistent answers on other sub-tasks 433

according to ROUGE-L and BERTScore. 434

According to Table 6, GPT3.5 beats other LLMs 435

on faithfulness and answer relevance across nearly 436

all sub-tasks, and shows its strong instruction- 437

following capabilities for question-answering. 438

However, we have an interesting observation that 439
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Metric Model Summary Model details Uses Bias Training details Evaluation More info

ROUGE-L

GPT3.5 9.90 10.70 16.51 20.21 14.46 15.75 10.73
Llama2 70b chat 12.71 14.35 12.85 17.20 18.74 18.03 16.21
Mistral 7b inst 12.19 11.01 13.02 15.07 16.79 16.23 9.47
Llama2 7b chat 11.91 12.84 13.89 15.85 14.63 16.21 13.61

BERTScore

GPT3.5 54.86 53.17 58.62 59.29 56.61 57.42 52.47
Llama2 70b chat 57.21 56.15 53.97 56.55 59.69 59.46 56.99
Mistral 7b inst 55.69 52.80 54.12 53.76 57.10 57.63 49.12
Llama2 7b chat 55.76 54.51 53.93 55.48 56.30 57.13 54.72

BARTScore

GPT3.5 17.09 9.58 2.04 3.52 5.75 6.65 9.10
Llama2 70b chat 14.17 5.41 1.45 3.10 5.30 4.60 5.91
Mistral 7b inst 16.52 9.65 2.00 3.55 7.00 8.75 8.31
Llama2 7b chat 14.04 3.49 2.11 3.61 4.70 3.68 4.01

NLI

GPT3.5 65.14 49.83 57.54 62.41 59.14 60.14 56.80
Llama2 70b chat 56.46 51.70 55.22 58.42 57.70 62.04 59.74
Mistral 7b inst 58.67 50.36 54.25 54.59 59.06 58.91 55.17
Llama2 7b chat 56.46 50.19 54.31 57.23 57.82 62.11 56.44

Table 5: Factual consistency evaluation results per section on our retrieve-and-generate pipeline using ROUGE-L,
BERTScore, BARTScore, and NLI pretrained scorers.

Metric Model Summary Description Direct use Bias, risks, limitation Results summary

Faithfulness

GPT3.5 71.23 83.21 48.71 55.17 82.99
Llama2 70b chat 70.03 76.39 43.20 32.14 63.87
Mistral 7b inst 76.75 75.03 38.28 41.77 73.61
Llama2 7b chat 72.41 71.35 48.43 44.23 65.56

Answer relevance

GPT3.5 91.18 93.26 90.70 93.75 93.24
Llama2 70b chat 90.76 92.27 91.25 92.23 91.63
Mistral 7b inst 90.46 91.77 90.36 91.56 90.43
Llama2 7b chat 90.44 90.95 92.55 92.69 92.81

Context precision

GPT3.5 29.07 51.80 25.71 18.77 37.88
Llama2 70b chat 21.05 50.00 25.35 20.03 40.82
Mistral 7b inst 31.10 52.22 28.45 21.36 44.45
Llama2 7b chat 32.46 50.79 25.52 14.27 40.04

Context relevance

GPT3.5 13.27 51.03 29.82 18.97 26.44
Llama2 70b chat 13.32 49.62 27.22 18.37 24.31
Mistral 7b inst 13.22 47.05 28.40 18.75 23.52
Llama2 7b chat 13.87 50.78 28.07 17.57 26.23

Table 6: GPT4 evaluation results on five most important questions based on faithfulness (Faith), answer relevance
(AR), context precision (CP), and context relevance (CR).

though GPT3.5 has higher context relevance scores,440

it is outperformed by Mistral 7B on context pre-441

cision. A higher context relevance indicates that442

the question can be better answered from the given443

context, while a lower context precision means that444

the context may contain other unnecessary informa-445

tion for answering the question. The discrepancy446

between results by these two metrics suggests that447

retrieved texts from the GPT CARDGEN pipeline448

are more informative but less concise. Addition-449

ally, since we use LLM generated pseudo answers450

as queries for similar paragraphs, pseudo answers451

with more possibly unrelated contents will lead to452

more irrelevant chunks from retrieval. Along with453

the illustration in Figure 9, we draw the conclu-454

sion that GPT3.5 generates pseudo answers with455

potentially more unrelated details.456

7.2 Ablation Study 457

To evaluate the significance of CARDGEN’s compo- 458

nents, we conducted the following ablation studies 459

and explored model architecture variations: (1) Re- 460

move the pseudo answer chain and use original 461

questions for embedding similarity matching. (2) 462

Vary the final generation chain only with different 463

LLMs, and maintain all preceding reasoning chains 464

as generated by GPT3.5. (3) Employ different em- 465

bedding models for dense retrieval. To manage the 466

expenses associated with OpenAI AI calling, we 467

employ GPT3.5 for subsequent studies. We obtain 468

Krippendorff’s α (mean=0.83, std=0.14, min=0.56, 469

max=0.99) for the agreements on Table 6 by GPT4 470

and GPT3.5 to validate our evaluation model sub- 471

stitution (Castro, 2017). 472
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Metric Model Summary Description Direct use Bias, risks, limitation Results summary

NLI GPT3.5 65.14(+2.14) 51.53(+0.53) 50.51(+0.51) 64.12(+1.12) 58.50(+0.50)
w/o pseudo 63.00 51.00 50.00 63.00 58.00

Faith GPT3.5 81.93(+6.75) 79.30(+4.30) 41.23(+0.62) 46.42(-2.53) 72.66(+1.21)
w/o pseudo 75.18 75.00 40.61 48.95 71.45

AR GPT3.5 86.94(+0.06) 89.56(-0.65) 88.95(+0.78) 93.55(+0.40) 95.20(+0.02)
w/o pseudo 86.88 90.21 88.17 93.15 95.18

CP GPT3.5 47.53(+7.49) 19.61(+1.01) 13.44(+3.20) 13.03(-0.26) 64.15(+0.24)
w/o pseudo 40.04 18.60 10.24 13.29 63.91

CR GPT3.5 11.85(+2.32) 23.24(-2.21) 8.70(+1.19) 4.35(+0.69) 24.04(+5.79)
w/o pseudo 9.53 25.45 7.51 3.66 18.25

Faith GPT3.5 81.93(8.09) 79.30(15.31) 41.23(26.62) 46.42(22.14) 72.66(25.16)
Llama2 70B 73.84 63.99 14.61 24.28 47.50

AR GPT3.5 86.94(-1.56) 89.56(+0.63) 88.95(6.58) 93.55(9.53) 95.20(7.21)
Llama2 70B 88.50 88.93 82.37 84.02 87.99

Table 7: GPT3.5 evaluation results on five most important questions for pseudo answer chain ablation in top five
rows and generation chain ablation in bottom two rows. For the generation chain ablation, we keep all previous
chains unchanged with GPT-3.5-turbo as the backbone, and only vary the choice of LLMs for the final generation
chain, including GPT-3.5-turbo and Llama2-70B-Chat-HF.

Pseudo Answer Chain We compare the GPT473

evaluation scores and factual consistency using474

NLI of CARDGEN + GPT3.5 pipeline with or with-475

out the pseudo answer chain, as illustrated in Ta-476

ble 7. CARDGEN with the pseudo answer chain477

outperforms the other across nearly all important478

questions and metrics being tested. Our results479

demonstrate the necessity of the pseudo answer480

chain in our pipeline. Some lower scores may be481

because of more unrelated texts from the generated482

pseudo answers for specific questions.483

Generation Chain In bottom two rows of Ta-484

ble 7, we show the comparison results by only485

substituting GPT3.5 in the generation chain with486

Llama2 70B based on faithfulness and answer rele-487

vance. Context precision and context relevance are488

the same since retrieved texts remain unchanged.489

We observe a large drop for the faithfulness score490

and a moderate drop for the answer relevance score,491

indicating the stronger instruction following capa-492

bility of GPT3.5 in the generation stage compared493

to Llama2 70B.494

Embedding Models We compare the embed-495

ding model jina-embeddings-v2-base-en that496

we use with two other commonly used sen-497

tence transformer models: all-MiniLM-L6-v2498

and all-mpnet-base-v2 (Günther et al., 2023;499

Wang et al., 2020a; Reimers and Gurevych, 2019b,500

2020). We justify our choice of embedding501

models in Figure 3, where CARDGEN with502

jina-embeddings-v2-base-en performs better503

than others according to all three metrics related to 504

the retrieved texts. 505

Context precision Context relevance Faithfulness
Metric types
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Figure 3: Comparison of three embedding models on
context precision, context relevance, and faithfulness.

7.3 LLM Generated Model Card Statistics 506

Appendix G provides related statistics. Compared 507

with human generated model card statistics in Ta- 508

ble 11, LLM generated model cards are longer and 509

more informative. 510

8 Conclusion 511

In this study, we introduce a novel task focused 512

on the automatic generation of model cards and 513

data cards. This task is facilitated by the creation 514

of the CARDBENCH dataset, and the development 515

of the CARDGEN pipeline leveraging state-of-the- 516

art LLMs. The system is designed to assist in the 517

generation of understandable, comprehensive, and 518

consistent models and data cards, thereby providing 519

a valuable contribution to the field of responsible 520

AI. 521
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Limitations522

One limitation of our method is that, despite the523

adoption of the RAG pipeline and explicit instruc-524

tions for LLMs to adhere closely to the retrieved525

text, there remains the potential for hallucinations526

in the generated text. To mitigate this, future work527

may integrate specific strategies into our CARD-528

GEN pipeline for hallucination reduction by care-529

fully balancing generation speed with quality.530

Our current approach employs a single-step gen-531

eration process and a two-step retrieval process532

that first infers relevant section contents. Future533

work could incorporate more advanced chain-of-534

thought prompting techniques and compare with535

our CARDGEN pipeline. For complex questions re-536

quiring multistep reasoning, after decomposed into537

manageable sub-questions, we can address each538

sub-question through multiple reasoning steps, as539

suggested by recent research (Yao et al., 2022; Khot540

et al., 2022; Press et al., 2022; He et al., 2022).541

Additionally, an iterative retrieval-generation col-542

laborative framework can also be used to refine re-543

sponses in each iteration based on newly retrieved544

contexts, following recent advancements in itera-545

tive retrieval and generation frameworks for com-546

plex tasks (Shao et al., 2023; Feng et al., 2023).547

Ethical Considerations548

This work aims to provide insights about the au-549

tomatic generation of model cards and data cards.550

Such an endeavor is instrumental in promoting ac-551

countability and traceability among developers as552

they document their models. The dataset for this re-553

search was collected using public REST APIs from554

HF Hub, Arxiv, and GitHub. We ensured that only555

open-source model cards, data cards, and their as-556

sociated source documents were collected, strictly557

adhering to the stipulations of their respective li-558

censes for research purposes, so there were no user559

privacy concerns in the dataset. Our dataset and560

method should only be used for research purpose.561
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A Question Templates979

Tables 8 and 9 shows full question templates of980

model cards and data cards. We have 31 questions981

in total for generating model cards, and 21 ques-982

tions for generating data cards. We create these983

questions based on the template provided by HF.8984

and include necessary requirements985

B Dataset Collection Details986

For the model card evaluation set selection, we987

select all 350 examples that are rewritten by the988

HF team with their unique disclaimers, as shown989

in Figure 4.990

Figure 4: bert-base-uncased (Devlin et al., 2018) as
a current model card example with a unique disclaimer
sentence, indicating a modification by the HF team.

C Dataset Annotation Details991

Human Annotation Guidelines To evaluate pa-992

per links and direct GitHub links on the model993

card evaluation set, we require the annotators to go994

through each current model card and provide all995

possible paper links and GitHub links to annotators.996

They are asked to select the direct paper link and997

GitHub link from all candidate links, by looking998

at their positions of occurrences in the model card999

example. If no direct links of either sources can be1000

determined, they need to label this model card as1001

“Invalid”.1002

GPT Annotation Details We show our two-shot1003

prompts for asking GPT-3.5-turbo to select di-1004

rect paper links in Figure 5. Direct GitHub link1005

selection is prompted similarly.1006

8https://github.com/huggingface/huggingface_
hub/tree/main/src/huggingface_hub/templates

You are a helpful assistant.

Descriptions about the model {model} that might contain its paper links are 
enclosed by ``` below:
```
<contexts_including_link1>\n<contexts_including_link2>\n…
```

Here are candidate paper link references from the passage above: <link1>, 
<link2>, …
Which paper should be the direct one that introduces the model? If none of 
the papers are the direct reference to the model, please answer "None".

The direct paper link is <direct_link>.

Figure 5: Prompts for calling GPT3.5 to select direct
paper links. We prepend one positive example and one
negative example to the message list to improve its in-
ference quality.

LLM # words # sentences # links
GPT3.5 4023.88 215.17 4.18
Llama2 70B Chat 6210.32 323.56 4.55
Llama2 7B Chat 5548.50 302.73 1.44
Mistral 7B Inst 4126.07 202.16 2.65

Table 10: Statistics about whole generated model cards

D Dataset Analysis 1007

We provide the number of card examples with di- 1008

rect paper links in their human-generated cards, 1009

with direct GitHub repository links, and with both 1010

links in Table 11. We also provide additional fig- 1011

ures about the dataset task taxonomy in Figure 6. 1012

The taxonomy is obtained using the REST API of 1013

HF Hub. 1014

Split Measure # W papers # W repos # W both

ModelCard
all

# samples 5689 4829 2485
# words 1064 948 1134

test
# samples 344 299 294
# words 668 710 711

DataCard
all

# samples 660 533 328
# words 1394 1104 1416

test
# samples 86 71 50
# words 1003 1290 1155

Table 11: Statistics for crawled model cards and data
cards, including the number of examples with direct
paper links or direct github links or both, and the average
number of words in each category.

E Retriever Details 1015

We use FAISS as our embedding store database 1016

(Johnson et al., 2019). We fix the chunk size as 1017

512 and the chunk overlap as 64. After retrieving 1018

relevant sections, we choose to obtain 8 chunks 1019

from these sections, together with 4 other chunks 1020

from other sections to reduce the bias propagation. 1021
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Question Role Prompt
Summary Project organizer Provide a 1-2 sentence summary of what the model is.
Description Project organizer Provide basic details about the model. This includes the model architecture,

training procedures, parameters, and important disclaimers.
Funded by Project organizer List the people or organizations that fund this project of the model.
Shared by Developer Who are the contributors that made the model available online as a GitHub

repo?
Model type Project organizer Summarize the type of the model in terms of the training method, machine

learning type, and modality in one sentence.
Language Project organizer Summarize what natural human language the model uses or processes in one

sentence.
License Project organizer Provide the name and link to the license being used for the model.
Finetuned from Project organizer If the model is fine-tuned from another model, provide the name and link to

that base model.
Demo sources Project organizer Provide the link to the demo of the model.
Direct use Project organizer Explain how the model can be used without fine-tuning, post-processing, or

plugging into a pipeline. Provide a code snippet if necessary
Downstream use Project organizer Explain how this model can be used when fine-tuned for a task or when

plugged into a larger ecosystem or app. Provide a code snippet if necessary
Out of scope use Sociotechnic How the model may foreseeably be misused and address what users ought

not do with the model.
Bias risks limitations Sociotechnic What are the known or foreseeable issues stemming from this model? These

include foreseeable harms, misunderstandings, and technical and sociotechni-
cal limitations.

Bias recommendations Sociotechnic What are recommendations with respect to the foreseeable issues about the
model?

Training data Developer Write 1-2 sentences on what the training data of the model is. Links to
documentation related to data pre-processing or additional filtering may go
here as well as in More Information.

Preprocessing Developer Provide detail tokenization, resizing/rewriting (depending on the modality),
etc. about the preprocessing for the data of the model.

Training regime Developer Provide detail training hyperparameters when training the model.
Speeds sizes times Developer Provide detail throughput, start or end time, checkpoint sizes, etc. about the

model.
Testing data Developer Provide benchmarks or datasets that the model evaluates on.
Testing factors Sociotechnic What are the foreseeable characteristics that will influence how the model

behaves? This includes domain and context, as well as population subgroups.
Evaluation should ideally be disaggregated across factors in order to uncover
disparities in performance.

Testing metrics Developer What metrics will be used for evaluation in light of tradeoffs between different
errors about the model?

Results Developer Provide evaluation results of the model based on the Factors and Metrics.
Results summary Developer Summarize the evaluation results about the model.
Model examination Developer This is an experimental section some developers are beginning to add, where

work on explainability/interpretability may go about the model.
Hardware Developer Provide the hardware type that the model is trained on.
Software Developer Provide the software type that the model is trained on.
Hours used Developer Provide the amount of time used to train the model.
Cloud provider Developer Provide the cloud provider that the model is trained on.
Co2 emitted Developer Provide the amount of carbon emitted when training the model.
Model specs Developer Provide the model architecture and objective about the model.
Compute infrastructure Developer Provide the compute infrastructure about the model.

Table 8: Template of the all questions necessary for generating a whole model card.

F Generator Details1022

Open-sourced LLMs are inferenced through vllm1023

Kwon et al. (2023). Llama2-70B-Chat-HF is run1024

on 4 A6000s. Two 7B models are run on 1 A6000.1025

We fix temperature to 0 to ensure a stable gener-1026

ation quality. We show our prompt description1027

of different roles in Table 12, and the generation1028

prompt in Figure 10.1029

G LLM Generated Model Card Statistics 1030

H Metric Details 1031

For standard metrics, we use the list of re- 1032

trieved texts together with the generated answer 1033

as inputs. We normalize all these scores to 1034

be in the [0,1] range. Since the output of 1035

nli-deberta-v3-large is in {“contradiction”, 1036

“entailment”, “neutral”}, we map these outputs 1037

to {0, 0.5, 1}, respectively to maintain a percent- 1038
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Task taxonomy for models in model cards
text-generation
text-to-image
None
image-classification
text-classification
fill-mask
text2text-generation
feature-extraction
token-classification
translation
sentence-similarity
automatic-speech-recognition
question-answering
object-detection
conversational
summarization
image-segmentation
image-to-text
zero-shot-image-classification
...

Figure 6: The task taxonomy of models in the model
cards dataset, with the inner circle as the test set, and
the outer circle as the whole set.

Task taxonomy for datasets in dataset cards
text-classification
text-generation
None
token-classification
translation
fill-mask
summarization
text2text-generation
automatic-speech-recognition
text-retrieval
other
conversational
tabular-classification
image-classification
object-detection
multiple-choice
image-to-text
text-to-image
audio-classification
...

Figure 7: The task taxonomy of datasets in the data
cards dataset, with the inner circle as the test set, and
the outer circle as the whole set.

age scale. We use the implementation of ROUGE1039

score by HF. We use official implementations for1040

BERTScore and BARTScore.1041

For GPT metrics, we use GPT-4-1106-preview1042

as evaluators for the main results, and use1043

GPT-3.5-turbo for ablation studies.1044

I Human Annotation Details1045

We give two annotators the same set of examples1046

each with four model cards generated by LLMs1047

and one written by human. We calculate the Krip-1048

pendorff’s α among the results of two annotators,1049

and got mean=0.76 and std=0.13 for the agreement1050

level. We report averaged ranking scores in Table 4.1051

Note that we don’t have direct comparison across1052

human evaluation metrics vs. automatic metrics,1053

since our human metrics evaluate on a whole model1054

card, while automatic metrics take each (Q,R,A)1055

tuple for evaluation and they have different scales.1056

We need to implement human metrics in this way1057
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Figure 8: Distribution of the amount of downloads for
the whole dataset and the test set. Test set examples
distribute quite uniformly.
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Figure 9: Distribution comparison of pseudo answer
length generated by GPT3.5 and Mistral 7B Instruct.

to supplement the limited scope of automatic met- 1058

rics’ focus. The annotation interface is shown in 1059

Figure 11. 1060

J Pseudo Answer Analyses 1061

We show the distribution of pseudo answer length 1062

generated by GPT3.5 and Mistral 7B Instruct in 1063

Figure 9. 1064

Statistics about LLM generated model cards are 1065

shown in Tables 10 and 13 to 16. 1066
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You are a helpful assistant.

{role_specification}Below is the reference to refer to and the question you need to answer for the dataset {model} that 
you have worked on:
References:
```
{reference}
```

Question:
```
{query}
```

Please refer to the above contents of "References" as the knowledge source to answer the question about your dataset 
{model}. If you don't know the answer for a specific part, you should just say "[More Information Needed]". You can write 
code only if you find a direct code block reference from above, otherwise just output "[More Information Needed]". Your 
answer should be easy to read and succinct.

<answer>

Figure 10: Our generation prompt templates.

Figure 11: The human annotation interface built by gradio with an example of model
bert-large-cased-whole-word-masking (Abid et al., 2019; Devlin et al., 2018). The information that
a model card is written by whom is hidden, and orders of five model cards shown at each time are randomly shuffled
to avoid positional bias.
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Question Role Prompt
Description Data manager Provide the homepage link for the dataset, just give me a link please.
Leaderboard Data manager Provide the Leaderboard link for the dataset.
Pointofcontact Data manager Provide the Point of Contact for the dataset.
Summary Data manager Provide basic details about the dataset. Briefly summarize the dataset,

its intended use and the supported tasks. Give an overview of how
and why the dataset was created. The summary should explicitly
describe the domain, topic, or genre covered.

Supported tasks and leaderboards Data analyst Describe the tasks and leaderboards supported by the dataset. Include
task description, metrics, suggested models, and leaderboard details.

Languages Data analyst Provide an overview of the languages represented in the dataset,
including details like language type, script, and region. Include BCP-
47 codes if available.

Data instances Data scientist Provide a JSON-formatted example of a typical instance in the dataset
with a brief description. Include a link to more examples if available.
Describe any relationships between data points.

Data fields Data architect List and describe the fields in the dataset, including their data type,
usage in tasks, and attributes like span indices. Mention if the dataset
contains example IDs and their inherent meaning.

Data splits Data manager Describe the data splits in the dataset. Include details such as the
number of splits, any criteria used for splitting the data, differences
between the splits, and the sizes of each split. Provide descriptive
statistics for the features where appropriate, for example, average
sentence length for each split.

Curation rationale Data manager What need or purpose motivated the creation of this dataset? Describe
the underlying reasons and major choices involved in its assembly.
Explain the significance of the dataset in its field and any specific
gaps or demands it aims to address.

Source data Data manager Describe the source data used for this dataset. Describe the data
collection process. Describe any criteria for data selection or filtering.
List any key words or search terms used. If possible, include runtime
information for the collection process.

Source language producers Data manager Clarifying the human or machine origin of the dataset. Avoiding
assumptions about the identity or demographics of the data creators.
Providing information about the people represented in the data, with
references where applicable.

Annotations Data manager Describe the annotation process to the dataset. Detail the annotation
process and tools used, or note if none were applied. Specify the
volume of data annotated.

Annotators Data manager Describe the annotator of the dataset. For annotations in the dataset,
state their human or machine-generated nature. Describe the creators
of the annotations, their selection process, and any self-reported
demographic information.

Personal and sensitive information Data manager Categorize how identity data, such as gender referencing Larson
(2017), is sourced and used in the dataset. Indicate if the data in-
cludes sensitive information or can identify individuals. Describe any
anonymization methods applied.

Social impact of dataset Data manager Explore the dataset’s social impacts: its role in advancing technol-
ogy and enhancing quality of life. Consider negative effects like
decision-making opacity and reinforcing biases. Check if it includes
low-resource or under-represented languages. Assess its impact on
underserved communities.

Discussion of biases Data manager When constructing datasets, especially those including text-based
content like Wikipedia articles, biases may be present. If there have
been analyses to quantify these biases, it’s important to summarize
these studies and note any measures taken to mitigate the biases.

Other known limitation Data analyst Outline and cite any known limitations of the dataset, such as annota-
tion artifacts, in your studies.

Dataset curators Data manager List the people involved in collecting the dataset and their affiliations.
If known, include information about funding sources for the dataset.
This should encompass individuals, organizations, and any collabora-
tive efforts involved in the dataset creation.

Licensing information Legal advisor Provide the license and link to the license webpage if available for
the dataset.

Contributions Data manager Write in 1-2 sentence about the contributers for the dataset.
Mention the GitHub username and provide their GitHub pro-
file link. You should follows the format: Thanks to [@github-
username](https://github.com/<github-username>) for adding this
dataset.

Table 9: Template of the all questions necessary for generating a whole data card.
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Card Role Description

ModelCard
Developer who writes the code and runs training
Sociotechnic who is skilled at analyzing the interaction of technology and society long-term (this

includes lawyers, ethicists, sociologists, or rights advocates)
Project organizer who understands the overall scope and reach of the model and can roughly fill out each

part of the card, and who serves as a contact person for model card updates

DataCard
Data curator who collects and organizes the data
Data analyst who is skilled at understanding and documenting dataset characteristics and biases
Data manager who oversees dataset versioning, availability, and usage guidelines

Table 12: Our prompts for different roles in answering specific questions.
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Question # words # sentences # links
Summary 53.91 1.95 0.02
Description 275.47 14.51 0.17
Funded by 78.29 4.25 0.37
Shared by 33.41 1.86 0.36
Model type 46.11 1.51 0.00
Language 30.24 1.10 0.01
License 47.56 2.78 0.53
Finetuned from 93.95 4.81 0.26
Demo sources 76.70 3.83 0.66
Direct use 227.26 8.78 0.34
Downstream use 287.05 10.23 0.17
Out of scope use 305.64 16.50 0.20
Bias risks limitations 305.09 19.07 0.01
Bias recommendations 298.46 18.04 0.04
Training data 61.17 3.14 0.29
Preprocessing 169.67 11.06 0.04
Training regime 110.71 4.82 0.00
Speeds sizes times 170.33 8.41 0.21
Testing data 112.20 7.98 0.01
Testing factors 230.03 13.26 0.01
Testing metrics 64.45 3.67 0.01
Results 137.94 7.69 0.03
Results summary 154.57 9.01 0.04
Model examination 214.29 11.32 0.19
Hardware 24.87 1.73 0.00
Software 64.71 3.50 0.03
Hours used 27.95 2.06 0.01
Cloud provider 26.13 1.82 0.03
Co2 emitted 36.01 2.40 0.01
Model specs 207.91 10.52 0.11
Compute infrastructure 51.80 3.59 0.02

Table 13: GPT3.5 generated model card statistics per
question averaged by all samples in the test set.

Question # words # sentences # links
Summary 89.40 3.23 0.05
Description 276.50 13.87 0.04
Funded by 96.10 4.96 0.06
Shared by 108.62 4.53 0.58
Model type 115.77 3.47 0.00
Language 100.23 4.30 0.00
License 94.86 4.74 0.82
Finetuned from 137.65 5.96 1.06
Demo sources 150.54 7.42 0.82
Direct use 247.95 7.45 0.05
Downstream use 256.03 8.11 0.03
Out of scope use 341.98 21.69 0.00
Bias risks limitations 330.94 22.76 0.00
Bias recommendations 333.96 22.13 0.01
Training data 103.41 4.54 0.24
Preprocessing 285.66 18.20 0.03
Training regime 208.14 12.66 0.03
Speeds sizes times 250.69 12.74 0.10
Testing data 144.15 9.00 0.01
Testing factors 293.02 17.23 0.00
Testing metrics 267.89 14.11 0.02
Results 276.72 16.85 0.05
Results summary 230.82 10.94 0.03
Model examination 317.01 17.74 0.04
Hardware 81.48 4.29 0.02
Software 91.29 4.54 0.12
Hours used 172.74 7.52 0.02
Cloud provider 82.82 4.38 0.11
Co2 emitted 220.29 9.14 0.11
Model specs 276.66 12.12 0.04
Compute infrastructure 227.01 12.94 0.05

Table 14: Llama2 70B Chat generated model card statis-
tics per question averaged by all samples in the test set.
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Question # words # sentences # links
Summary 71.93 2.61 0.00
Description 187.40 8.93 0.01
Funded by 91.97 6.40 0.05
Shared by 57.94 3.18 0.04
Model type 67.69 2.68 0.00
Language 57.52 1.84 0.00
License 43.05 2.79 0.17
Finetuned from 115.16 5.98 0.30
Demo sources 228.09 12.81 0.51
Direct use 260.14 12.20 0.01
Downstream use 301.56 16.29 0.02
Out of scope use 339.81 20.71 0.00
Bias risks limitations 317.83 19.05 0.00
Bias recommendations 336.44 19.88 0.00
Training data 72.18 3.31 0.00
Preprocessing 228.65 13.34 0.00
Training regime 162.46 7.19 0.01
Speeds sizes times 211.52 10.62 0.02
Testing data 87.29 5.55 0.03
Testing factors 344.08 21.64 0.00
Testing metrics 226.08 14.20 0.00
Results 263.82 16.22 0.03
Results summary 215.33 9.79 0.04
Model examination 264.26 15.67 0.02
Hardware 72.26 3.43 0.04
Software 49.32 2.45 0.00
Hours used 164.28 8.29 0.00
Cloud provider 56.88 2.92 0.04
Co2 emitted 243.23 10.27 0.00
Model specs 204.47 9.90 0.01
Compute infrastructure 205.86 12.61 0.05

Table 15: Llama2 7B Chat generated model card statis-
tics per question averaged by all samples in the test set.

Question # words # sentences # links
Summary 63.61 2.39 0.01
Description 264.11 12.87 0.04
Funded by 31.15 1.89 0.06
Shared by 43.69 2.41 0.12
Model type 56.07 1.70 0.00
Language 21.67 1.09 0.01
License 42.63 2.49 0.36
Finetuned from 65.91 3.47 0.49
Demo sources 141.35 6.48 0.94
Direct use 211.97 6.29 0.09
Downstream use 254.17 7.30 0.04
Out of scope use 225.52 10.20 0.00
Bias risks limitations 274.26 16.36 0.00
Bias recommendations 309.82 18.44 0.00
Training data 85.98 4.01 0.02
Preprocessing 222.67 12.46 0.01
Training regime 179.76 11.08 0.01
Speeds sizes times 192.81 9.40 0.05
Testing data 87.16 4.96 0.02
Testing factors 245.14 11.60 0.01
Testing metrics 137.77 7.12 0.01
Results 210.40 10.50 0.04
Results summary 136.51 6.21 0.09
Model examination 169.52 8.47 0.02
Hardware 21.44 1.39 0.01
Software 23.53 1.47 0.04
Hours used 58.86 2.86 0.01
Cloud provider 18.55 1.32 0.02
Co2 emitted 33.65 2.13 0.00
Model specs 161.47 7.17 0.03
Compute infrastructure 134.92 6.61 0.10

Table 16: Mistral 7B Inst generated model card statistics
per question averaged by all samples in the test set.

21


	Introduction
	Related Work
	Accountability and Traceability for AI Systems Through Documentation
	Knowledge-Enhanced Text Generation

	Defining the Model/Data Card Generation Task
	Task Formulation
	Structured Generation

	CardBench Dataset
	Dataset Collection
	Data Annotation
	Data Statistics

	Method: the CardGen Pipeline
	Overview
	Designing the Retriever
	Designing the Generator

	Evaluation Setup
	Results
	Performance Summary
	Ablation Study
	LLM Generated Model Card Statistics

	Conclusion
	Question Templates
	Dataset Collection Details
	Dataset Annotation Details
	Dataset Analysis
	Retriever Details
	Generator Details
	LLM Generated Model Card Statistics
	Metric Details
	Human Annotation Details
	Pseudo Answer Analyses

