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ABSTRACT

The large-scale pre-trained vision language models (VLM) have shown remark-
able domain transfer capability on natural images. However, it remains unknown
whether this capability can also apply to the medical image domain. This pa-
per thoroughly studies the knowledge transferability of pre-trained VLMs to the
medical domain, where we show that well-designed medical prompts are the key
to elicit knowledge from pre-trained VLMs. We demonstrate that by prompting
with expressive attributes that are shared between domains, the VLM can carry
the knowledge across domains and improve its generalization. This mechanism
empowers VLMs to recognize novel objects with fewer or without image samples.
Furthermore, to avoid the laborious manual designing process, we develop three
approaches for automatic generation of medical prompts, which can inject expert-
level medical knowledge and image-specific information into the prompts for fine-
grained grounding. We conduct extensive experiments on thirteen different med-
ical datasets across various modalities, showing that our well-designed prompts
greatly improve the zero-shot performance compared to the default prompts, and
our fine-tuned models surpass the supervised models by a significant margin.

1 INTRODUCTION

There may not exist another domain like medical images that requires high level of expert knowl-
edge, while acquiring expert labeled data is also quite expensive. In fact, limited amount of well-
labeled data is one of the factors that deter the medical image domain moves toward the era of large-
scale pre-trained models, and transfer learning becomes a natural choice. Nevertheless, as argued in
(Niu et al., [2021), the mismatch between domains may compromise the capability of the pre-trained
models being transferred from one to another (Raghu et al.,[2019). Unfortunately, this mismatch also
exists between medical and natural image domains. Therefore, finding a data-efficient approach with
superior domain transfer performance is essential for advancing medical image understanding.

Though pre-trained vision-language models (VLMs) have shown much success in domain transfer
tasks, it is not known whether the knowledge learned from natural image and text pairs through large
pre-trained vision-language models can benefit the understanding of the medical images. As pointed
out by (Shen et al., 2022), the large-scale VLMs perform well in recognizing common objects but
may not perform well while encountering visual concepts that rarely appeared in their pre-training
data. This observation motivates us to discover an even stronger approach to bridge the domain gap.
In VL models like GLIP (Li et al.l 2022), X-VLM (Zeng et al., 2021), and VinVL (Zhang et al.,
2021), prompt learning also plays an essential role in enhancing the model’s generalization. Instead
of simply aligning the text and image pairs, GLIP aims to ground image regions with the help of text
prompts and shows that prompts with expressive attributes can further improve model’s performance
in domain transfer. We presume that a prompt integrated with expert-level knowledge and image-
specific information could vastly help the domain transfer process because one key challenge in
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medical image understanding is locating the objects that merely appear in the natural image domain.
With the help of well-designed text prompts, the model can be equipped with high-level semantics
describing the characteristic of target objects instead of only providing object names.

In this paper, we aim to leverage the powerful pre-trained vision-language models like GLIP with ex-
pressive medical prompts to make efficient domain transfers from natural images to medical images
for object detection. To this end, we first explore how to manually design effective medical prompts
by using attribute injection, and show that such well-designed prompts can significantly improve
the domain transfer capability compared to the default category names. Intuitively, some common
graphic attributes in text prompts, such as color, texture and shape, are shared across domains, and
therefore by including these expressive attributes in the prompts, the VLMs can selectively learn to
align visual features through the anchor points set by the prompts rather than aimlessly learning.

Furthermore, to improve the efficiency and avoid the laborious manual designing, we propose several
approaches, i.e., masked language model (MLM) driven auto-prompt generation, image specific
auto-prompt generation or a hybrid of both, to automatically generate medical prompts that make
the VLMs perform on par with the model with manually elaborated prompts. The MLM-driven
approach mainly focuses on extracting expert-level knowledge from pretrained language models
specialized in the medical domain, whereas the image-specific prompt generation, based on visual
question answering (VQA) system, allows the flexibility in designing prompts to include image-
specific attribute information, rather than using a single fixed prompt for all images during inference.

‘We evaluate our approaches on a broad range of existing medical datasets across different modalities
including photography, endoscopy, cytology, histopathology and radiology (X-ray, CT, MRI and
Ultrasound) image datasets. The models with our well-designed medical prompts exhibit significant
superiority compared to those with default prompts in terms of zero-shot and few-shot performance,
some even surpassing the supervised model trained with full data. Moreover, our fine-tuned models
outperform the traditional supervised baselines by a significant margin across almost all datasets.

2 RELATED WORK

Transfer between natural and medical image domains Transfer learning is a prevailing strategy
for training deep neural networks for domains with limited labeled data, such as the medical domain.
Transfer learning has been widely investigated in the medical domain for a while (Peng et al., 2021}
Mustafa et al.,[2021; Raghu et al.,|2019). |[Zhou et al.| (2021) broadly discussed about transfer learning
for medical images. Mustafa et al.|(2021) argued that transfer from natural to medical images could
help if performed at a sufficient scale. [Peng et al.| (2021) and Raghu et al.| (2019) pointed out that
large models do not consistently outperform the simple and lightweight models. To the best of our
knowledge, there hasn’t been any transfer learning work done on medical images with VLMs.

Vision language models Recently, VLMs have made breakthroughs in cross-modal tasks and visual
recognition problems. Some pre-trained VLMs (Lu et al., |2019; [[lharco et al.l [2021) proposed to
leverage BERT-like architecture to deal with cross-modal inputs, and [Zhang et al.| (2020)) adopted
the contrastive learning paradigm to train a VLM for medical images. Inspired by this line of work,
in CLIP (Radford et al., 2021) and ALIGN (Jia et al., |2021), a large amount of image and text
pairs have been used to train the VLMs through contrastive learning. [Eslami et al.|(2021)) proposed
to leverage large-scale VLMs for medical VQA tasks. While these work focusing on pre-trained
VLMs, another line of work focuses on integrating multi-task learning with the vision-language
pre-training paradigm (Bao et al.l 2021} [Yu et al.| |2022; [Wang et al., | 2022). And these models are
capable of performing cross-modal tasks, such as image captioning and visual question answering.
(Moon et al.; 2021)) is one of the pioneer works in the medical domain for VLM multi-tasks learning.

Prompt design Knowledge-intensive domains, such as the medical domain, usually require training
domain-specific language models on expert knowledge augmented corpus to learn proper represen-
tations for domain concepts (Gu et al., 2021b} [Lee et al., [2020). Moreover, prompting language
models in zero-shot or few-shot manner to elicit knowledge has been a commonly adopted approach
in recent years (Petroni et al.,[2019; Jiang et al., 2020). Except for directly mining knowledge from
language models, [Shen et al.| (2022)) designed a pipeline for extracting knowledge from an external
source such as WordNet (Miller [1998). Our proposed auto-prompts generation approaches are also
partially inspired by the line of research (Song et al., 2022;[Yang et al.,|2022)). |[Zhou et al.|(2022) pro-
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posed to learn to prompt with context optimization. These prompting methods successfully help us
to generate knowledge-rich prompts for further VLM prompting in a zero-shot or few-shot manner.

Object detection and phrase grounding The R-CNN series are the first to introduce CNNs into
the field of object detection and have been a great success (Girshick et al., |2014; |Girshick, 2015
Ren et al.,|2015)). They are two-stage object detector, while single-stage detector networks are more
compact, e.g., YOLO (Redmon et al.l 2016} |Redmon & Farhadil 2017; |2018)), SSD (Liu et al.,
2016), RetinaNet (Lin et al., [2017). Later, DyHead (Dai et al.,|2021) unifies object detection heads
with attentions, improving performance. Recently, GLIP (L1 et al., |2022) unifies phrase grounding
and object detection tasks, demonstrating exciting domain transfer capability. By making use of the
rich knowledge learned from CLIP and text input, ViLD (Gu et al.| [2021a)) is proposed for open-
vocabulary object detection and DenseCLIP (Rao et al., [2022)) further improves the performance.

3 METHOD

In this work, we mainly explore how to leverage the entailed knowledge in the large vision-language
models, such as GLIP (Li et al.| [2022)), and transfer it to medical domains. Towards this end, we con-
duct a comprehensive study on a variety of detection tasks in medical domains, where we propose
several strategies for better elicitation of medical knowledge from vision-language models pretrained
on natural images. We focus on the design and automatic generation of medical prompts that can in-
clude expert-level knowledge and image-specific information, which empowers the vision-language
models for medical lesion detection in both zero-shot transfer and fine-tuning scenarios.

3.1 PRELIMINARIES

Unifying the vision and language pre-training norms has become a prevailing method to enhance the
algorithm’s performance in many vision-related tasks, showing promising domain transfer capability
as well. Following the idea of introducing language supervision into visual recognition problems,
GLIP (Li et al.;[2022) reformulates object detection as phrase grounding tasks where the model takes
both an image input and a text prompt which contains the candidate categories for the target objects.
Then both inputs will go through a specific image/text encoder to obtain unaligned representations.
During the pre-training stage, GLIP uses a grounding module to align image boxes/regions with
corresponding phrases in the text prompt. For example, a prompt can simply be like the following
format: Prompt = “objecty, objects, objects...objecty;”, where object; is a class name among the
M candidate classes. This alignment/grounding process in GLIP can be formulated as follows:

O = Ency(Image), P = Ency (Prompt), Syrouna = OP ", Las = Loss(Sgrouna; T), (1)

where O € RV*4 P ¢ RM*4 denote the image and text features respectively, Sground € RN xM
represents the cross-modal alignment scores, and T € {0, 1}V*M is the target matrix. With the
aforementioned alignment training by minimizing the loss function, it is not hard to see that the
cross-modal inputs have been sufficiently aligned, so one could provide an auxiliary prompt input
to guide the image module to locate the corresponding regions more easily. Given that, we believe
a well-designed prompt could largely enhance the performance of the pretrained models on the
subsequent detection/grounding tasks, especially in an unfamiliar domain like medical images.

3.2 MEDICAL PROMPT DESIGN WITH ATTRIBUTE INJECTION

Here, we take the GLIP model as an entry point to explore how to utilize the text prompts and
vision-language models entailed knowledge to bridge the gap between the natural and medical image
domains smoothly. Similar to previous findings in natural images (Shen et al. [2022; [Li et al.,
2022)), our preliminary experiments also indicate that providing an expressive description in medical
prompt can primarily benefit the zero-shot transfer performance of vision language models. More
importantly, we find that the injection of shared attributes between natural and medical domains
such as shape, color and location would be the most vital in locating the novel categories from the
medical domain.

Following this idea, we propose to design medical prompts with a focus on the injection of essential
attributes describing the medical objects/lesions of interest. Assuming M categories of target objects
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Flgure 1: Overview of the proposed approach. The optimal medical prompts can be automatically
generated with the help of pre-trained VQA model, medical language model, or a hybrid of both.

associated with [V attributes, we can construct the prompt by using the following template:
Prompt = Z Template({vAtt“}, objecty,), Attr; € {Attry, Attra, ..., Attry }, @)
m

where the summation means the concatenation of M categories of objects described by the N chosen
attributes. For example, if the attribute set is chosen as {shape, color, location}, then a templated
prompt could be ‘object is v*"P¢ shape, in v°°!°" color, located on v!°¢@*®°" * By injecting the
specifically engineered attributes, the zero-shot results increase significantly and surpass the results
of providing with only the default category name by a large margin. This pattern could be seen in a
variety of medical datasets across different modalities, from endoscopy images to histopathological
images, demonstrating the effectiveness of well-designed medical prompts with attribute injection.

However, during the process of searching for appropriate prompts, we also find that the current
text prompt design has the following limitations: Firstly, manually designing an effective prompt
requires expert-level knowledge and a lot of effort; Secondly, in the current vision-language models,
the prompts are normally fixed for all samples during inference, i.e., not image-specific, which is
not ideal for grounding novel objects that may have varying appearances. For example, malignant
skin lesions or diabetic foot wounds often have various irregular shapes and colors.

3.3 AUTOMATIC GENERATION OF MEDICAL PROMPTS

To overcome such limitations, in this section, we further investigate how to efficiently generate
knowledge-rich and image-specific prompts. Particularly, we discuss about the creative auto-prompt
pipelines we proposed for generating expert-level knowledge supported and image-specific prompts.

Masked Language Model Driven Auto-Prompt Generation To obtain expert-level knowledge,
we utilize medical knowledge enriched (or expert-level) BERT-like pre-trained language models,
e.g., the PubMedBERT model (Gu et al.,|2021b)), for identifying key attributes of a medical concept.
The PubMedBERT model is derived from ordinary BERT-like pre-trained NLP models (Petroni
et al.,2019) through masked language modeling, but pretrained on the biomedical domain.

Figure[I] (right) illustrates the overall flow of our MLM-driven auto-prompt generation pipeline. We
first ask the model which contains medical domain-specific knowledge to predict the masked token
in given cloze sentences we design. The template of the cloze sentences is given as: “The [Attr] of
an [Object] is [MASK]’, where the ‘Attr’ and ‘Object’ tokens are provided and represent the desired
attribute name and category name respectively. This operation could be formulated as:

v = arg max  Pegpen([mask] = 547|t,), 3)
,UAffTe
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where V' is the expert knowledge augmented vocabulary, and ¢ represent the tokens constituting
the cloze sentence template we mentioned above. Pggpere Tepresents the conditional probability of
predicting the masked attribute value ¢ for a desired attribute At¢r and the target object name object.

We take the top-k predicted words for the [MASK] token as our candidate attribute value, because
the language model not necessarily always predict the correct word. Then we generate top-k prompts
using the template defined in Eq. (2), by repeating the above process for each attribute Attr; in the
attribute set and each object category object,, to be detected. The whole process can be formulated
as follows:

Prompt,, = Z Template({v,?tt”},objectm), Attr; € {Attry, Attrs, ..., Attry }, 4
Where {vj " v € Top-k { Pexpen([mask] = 9447 |t,)}} are the top-F attribute values pre-
,aAttr,/ 2%

dicted by the masked language model described in Eq. , i.e., MLM (Attr;, object,,).

Image Specific Auto-Prompt Generation Although with the above MLM-driven prompt gen-
eration approach, we can successfully generate auto-prompts that are supported by expert-level
knowledge, the prompts are still not flexible enough to include image-specific attribute information.
Therefore, in this section, we further propose an image specific auto-prompt generation approach by
adopting pre-trained visual question answering (VQA) models, e.g., the OFA model (Wang et al.,
2022). As demonstrated in Figure [T] (left), we ask the VQA models multiple questions related to
the desired attributes iteratively. For example, we can ask the model: "What color is this wound?”.
We expect to receive a proper answer from the VQA model and take that answer as the value for
the related attribute. Unlike the MLM-driven approach, we won’t ask for top-k answers due to the
computation time constraint. This process has to be applied to each image input to generate image-
specific prompts, which means the corresponding prompt for each image can vary. Given an image
input z, the corresponding prompt could be formulated as follows:

Prompt,, = Zm Template({VQA(z, Q attr, ), -, VQA(z, Qawry )}, 0bjecty,), )

where VQA(x, Q astr,) Tepresents the attribute value obtained from the VQA model with image
input « and question Q) a4, for the i-th attribute, and Template(-) is the same as defined in Eq. .

We believe that the domain transfer performance would be improved if we inject both expert-level
knowledge and image-specific information into the prompts. However, our preliminary results ob-
tained from the VQA prompts suggest that certain attribute (e.g., location) may not be appropriately
answered by the pre-trained VQA models. We speculate that the wrong locations given by the VQA
models can be explained by the fact that most of the medical images are taken in a quite different
environment compared to the natural images, and therefore expecting the VQA model pre-trained
on natural images to recognize what organ or which part of the human body is in the image could
be challenging. In this regard, we choose to combine the two above approaches, namely the MLM-
driven approach and the VQA based approach for different attributes. For example, we can use the
VQA models to provide the object intrinsic attributes such as shape, color and texture, while for
the location attribute, we obtain it from the language model approach. The intuition behind such a
combination is that we think the shape, color and texture of an object are much easier to tell from
the image and belong to image-specific characteristics, whereas the location of an object can be
ambiguous between the relative location of the object in the image versus the location of which part
of human body for medical image grounding. We call the prompts generated by this hybrid ap-
proach the ‘hybrid prompts’, while the ones generated by purely VQA based models are the ‘VQA
prompts’. In this case, the prompt template in Eq. (3] for ‘hybrid prompts’ can be updated to:

Prompt,, = Z Template({VQA(z, Qattr, ), ..., M LM (Location, object,, )}, object,,), (6)
m

where M LM (Location, object,, ) represents the location attribute predicted by the MLM model in
Eq. , and VQA(x, Q awr, ) represents the VQA model output for other object intrinsic attributes.

4 EXPERIMENTS

4.1 SETUP

Datasets. For a comprehensive study, we collect 13 public medical image datasets across various
different modalities including: Photography image datasets for skin lesions ISIC 2016 (Gutman
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Table 1: Dataset overview (13 datasets in total).

Microscopy images Radiology images
Cytology Histopathology X ray CT MRI  Ultrasound
Dataset ISIC 2016 DFUC 2020 Ployp Benchmark (x5)* BCCD CPM-17 TBX11K Lunal6 ADNI  TN3k
* includes CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir, and ETIS

Zero-shot detection 100-shot detection B Full data fine-tuning

Photography images Endoscopy images
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Figure 2: Comparisons with a fully supervised baseline (the horizontal line). The y-axis shows AAP
compared to the supervised baseline. For non-radiology datasets, we exhibit zero-shot and full data
results; we show 100-shot and full data results for the radiology datasets (from TBX11K to TN3k).

et al., [2016)) and diabetic foot ulcer DFUC 2020 (Cassidy et al., 2021); Endoscopy image datasets
for polyp detection CVC-300 (Vazquez et al.| [2017), CVC-ClinicDB (Bernal et al., 2015)), CVC-
ColonDB (Tajbakhsh et al.l 2015}, Kvasir (Jha et al., 2020)) and ETIS (Silva et al,|2014); Cytology
image dataset BCCD; Histopathology image dataset CPM-17 (Vu et al.,[2019); and Radiology image
datasets TBX11k (Liu et al., 2020), Lunal6 (Setio et al., [2017), ADNI (Boccardi et al., 2015) and
TN3k (Gong et al.| 2021) for X ray, CT, MRI and ultrasound, respectively. Table E] summarizes the
datasets and more details on the data split and prepossessing are included in the Appendix.

Implementation details. For our experiments, we use the GLIP-T (C) variant (Li et al.l [2022) as
our base pre-trained model and follow their hyper-parameter choices when transferring to medical
images. We train our models using Adam optimizer with base learning rate of 1 x 107% (1 x 107°
for the BERT text encoder), and the weight decay is set to 0.05. We freeze the bottom two layers of
the image encoder and decay the learning rate by 0.1 when the validation performance plateaus. For
the language-driven automatic prompt generation, we use the PubmedBert-base-uncased variant (Gu
et al.| [2021b)) to fill the cloze sentences. Moreover, we use the OFA-base variant (Wang et al., [2022)
and its VQA module to generate the attribute values automatically. For the comparison experiments,
we use the supervised models Faster RCNN (Ren et al., 2015), RetinaNet (Lin et al., [2017) and
DyHead (Dai et al.,[2021) provided by the MMDetection framework (Chen et al.|[2019).

4.2 TRANSFER TO ESTABLISHED MEDICAL BENCHMARKS

This section demonstrates that the GLIP model, with the aid of well-designed language prompts, can
directly or indirectly transfer to the medical domain with competitive performance. For convenience,
we split the medical datasets into two major categories: non-radiology and radiology datasets. In
the following we first give an overview of our fine-tuned models surpassing the supervised baseline.
Then, we illustrate the results of the proposed approach on non-radiology datasets, focusing on the
zero-shot scenario. Finally, we discuss the fine-tuning results on the radiology datasets.

Transfer performance surpassing supervised methods To prove that text prompts are effective
for cross-domain transfer, we conduct extensive experiments under both zero-shot domain transfer
and supervised transfer (fine-tuning) settings. We include a series of supervised baselines: Faster-
RCNN, RetinaNet, and DyHead-L for comparisons. As illustrated in Figure |2} our full data fine-
tuned models with well-designed medical prompts (dark blue) surpass the supervised baseline (e.g.,
DyHead-L in the figure) by a large margin across all datasets. Moreover, even zero-shot (brown)
or 100-shot (sky blue) results on some datasets, e.g., CVC-300 and Luna-16, can rival the full data
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Table 2: Our approaches v.s. supervised models on non-radiology datasets (AP%).

Method Backbone ISIC 2016 DFUC 2022 Polyp (x5) BCCD CPM-17 Avg.
Faster RCNN RN50 50.3 423 56.6 56.9 39.8 49.2
RetinaNet RN50 54.0 43.1 58.8 56.7 35.7 49.7
Full Data . Dyfead ________ SwinT - 529 42 629 601 388 |OIRE
GLIP-T(default cls) Swin-T 62.4 50.3 68.1 62.5 439 57.4
Ours (Manual) Swin-T 64.1 50.3 69.4 62.2 43.4 57.9
Ours (Auto) Swin-T 61.6 50.1 68.8 63.1 44.2 57.6
Faster RCNN RN50 44.6 27.0 449 38.6 - 38.8
RetinaNet RN50 41.7 28.4 41.7 54.3 - 41.5
0Shor _DyHead  swinT 2578 25 405 - 383
GLIP-T(default cls) Swin-T 55.9 414 57.6 59.8 - 53.7
Ours (Manual) Swin-T 58.0 43.7 60.8 60.1 - 55.7
Ours (Auto) Swin-T 58.8 42.4 60.8 60.2 - 55.6
GLIP-T(default cls) Swin-T 20.1 0.1 4.1 0.7 7.6 6.5
GLIP-L(default cls) Swin-L 20.4 3.6 11.9 10.4 11.6 11.6
Zero-Shot Ours (with MLM) Swin-T 25.1 24.8 38.4 24.1 20.3 26.5
Ours (with VQA) Swin-T 23.5 12.9 27.1 14.3 26.2 20.8
Ours (with Hybrid) Swin-T 24.5 22.5 35.1 14.3 24.8 242
Ours (Manual) Swin-T 333 25.9 41.3 26.9 314 31.8
«= CVC-300 = CVC-ColonDB = ETIS BCCD CPM-17 = GLIP-T Ours (manual) == Ours (auto)
CVC-ClinicDB = Kvasir —1SIC 2016 — DFUC 2020 o Faster RCNN ... RetinaNet «wne DyHead
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Figure 3: Left: Attribution injection in the prompts improves the detection performance; Right: Data
efficiency comparison between vision language models and classical detection models (Kvasir).

fine-tuned supervised models. The quantitative numbers are respectively shown in Table [2| for non-
radiology datasets, Table 3] for polyp datasets, and Table 5] for radiology datasets. This is also sup-
ported by Figure 3] (right) where the VLMs significantly outperform the classical detection models
with fully supervised learning, especially in few-shot settings.

Superior zero-shot transfer performance compared to the baseline Here, we provide strong
evidence to show our approaches can empower the pre-trained VLM with remarkable zero-shot
capability in the medical domain. As shown in Table[2] and Table 3] the prompts generated by our
approaches tremendously improve the zero-shot performance of the GLIP models compared to the
default ones. For example, on the polyp benchmarks, the out-of-box GLIP-T model only achieves
an average AP of 4.1%, while the same model with our manually designed prompts reaches 41.3%.
And this massive gain is not an exception. In addition, the models with well-designed prompts
can reach an overall performance on par with the 100-shot fine-tuned baseline models on the polyp
benchmarks (Table E[), and sometimes even rival the supervised baseline models trained with full-
size data, e.g., on the CVC-300 dataset (69.9% AP for zero-shot v.s. 59.4% for Faster RCNN).

The effectiveness of attribution injection and auto-prompts In section 3.2} we discussed that
adding attributes could make the models perform better in zero-shot tasks. Here, we demonstrate
in Figure [3] (left) an overall pattern of the effect of attribute injection on performance under the
zero-shot setting. As shown in the figure, the overall performance increases as more attributes are
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Table 3: Our approaches v.s. supervised models on polyp benchmark datasets (AP%).

Method Backbone CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir ETIS  Avg.
Faster RCNN RN50 59.4 71.6 44.1 63.4 44.5 56.6
RetinaNet RNS50 61.6 71.9 49.8 64.1 46.6 58.8
Full Daa  DYHead SwinT 695 735 Sl4__ 686 513 €9
GLIP-T Swin-T 75.0 71.9 60.9 69.8 62.8 68.1
Ours (Manual) Swin-T 72.4 774 61.2 73.7 62.4 69.4
Ours (Auto) Swin-T 72.0 78.7 61.0 70.9 61.6 68.8
Faster RCNN RN50 53.6 41.2 27.2 439 26.9 38.6
RetinaNet RNS50 54.1 46.8 30.6 47.5 29.4 41.7
100-Shot . DyHead Swin-T 540 ___450 27.6 ___454 304 405
GLIP-T Swin-T 69.6 59.4 52.3 63.0 43.6 57.6
Ours (Manual) Swin-T 70.2 61.6 53.6 66.8 51.8 60.8
Ours (Auto) Swin-T 71.3 60.4 55.4 67.1 49.6 60.8
GLIP-T Swin-T 6.1 4.1 3.2 7.2 0.1 4.1
GLIP-L Swin-L 10.3 9.9 7.4 24.9 7.1 11.9
Zero-Shot Ours (with MLM)  Swin-T 64.1 38.3 27.4 45.0 17.0 38.4
Ours (with VQA)  Swin-T 54.4 22.8 16.1 28.1 14.2 27.1
Ours (with Hybrid) Swin-T 63.2 314 20.0 37.2 23.6 35.1
Ours (Manual) Swin-T 69.9 39.6 323 43.1 21.7 41.3

Table 4: Examples of prompts for BCDD (zero-shot performance on the validation and test set)

Prompt AP AP50

initial  platelet. red blood cell. white blood cell 04 09

thrombocyte. erythrocyte. leukocyte 0.1 0.1

medical  blood platelet. red blood corpuscle. white blood corpuscle 31 7.0
concepts  thrombocyte, blood platelet. erythrocyte, red blood corpuscle. leukocyte, white blood corpuscle 6.8 15.5
thrombocyte or blood platelet. erythrocyte or red blood corpuscle. leukocyte or white blood corpuscle 8.6 17.9

+ location platelet in blood. red blood cell in blood. white blood cell in blood 69 14.4
+ shape  small platelet. rounded red blood cell. irregular white blood cell 7.7 149
colorless platelet. freshcolor red blood cell. blue white blood cell 18.3 32.3

+ color  colorless platelet. freshcolor red blood cell. purple white blood cell 17.8 32.9
colorless platelet. freshcolor red blood cell. purple or blue white blood cell 24.9 43.8

small, colorless platelet. rounded, freshcolor red blood cell. irregular , purple or blue white blood cell 26.6 47.1
combinations small, colorless blood platelet. rounded, freshcolor erythrocyte. irregular, purple or blue leukocyte 26.4 45.3

small, colorless platelet. rounded, freshcolor red blood corpuscle. irregular, purple or blue white blood corpuscle 27.1 47.6

integrated into the prompts. This is also illustrated in Table [4|on the BCCD dataset, where various
attributes and their combinations are shown to improve the results. As this process is rather tedious
and time consuming, we need qualified automatic approaches to accelerate the generation process to
scale up without sacrificing too much performance. Fortunately, the models with our proposed auto-
prompts, especially with the hybrid and MLM-driven approaches, show comparable results to those
with manually created prompts and surpass those with default prompts by a landslide. For example,
the MLM-driven approach achieves an AP of 24.8% for zero-shot on the DFUC2022 dataset, while
the GLIP-T baseline with default prompts only gives 0.1% for the zero-shot performance (Table [2).
Figure ] shows an example of the auto-prompt generation with the hybrid approach.

Fine-tuning on radiology datasets We finally evaluate the fine-tuned models on the radiology
datasets under different few-shot settings, i.e., 1-shot, 10-shot, 100-shot, as well as full-data fine-
tuning. The results are presented in Table 5] As we can see from the numbers, the overall perfor-
mance of our fine-tuned models is much better than that of the supervised baselines, consistent with
the findings in non-radiology medical images. This property reveals itself extremely in the 1-shot
experiments. The average AP across all datasets of our models reaches 5.7 % AP, while other base-
lines give 0% AP. As the training data increases from zero-shot to full-size, the performance gap
gets narrower. According to this pattern, we conclude that the pre-trained VLMs like GLIP is more
data efficient than the traditional supervised baselines. Given the medical image data’s scarcity, we
believe the data efficient property of VLMs would benefit many medical scenarios.
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Generated Prompt

VOA -, Question: What is the bump?.- | Answer:
VQA »{:szi?jgestlon: What shape is® —+[Shape]Answer: Ovals Polyp is an oval bump, often in color, in rectum
MLM .[Location]Question: The bump « . [Location]Answer: [MASK] =,

is located on [MASK]? Rectum

Figure 4: Auto-prompt generation show case.
Table 5: Radiology images requires fine-tuning. Prompts: pulmonary tuberculosis (TBX11K); lung
nodule (Lunal6); hippocampus (ADNI); thyroid nodule (TN3k).

TBX11K Lunal6 ADNI TN3k Avg.

Method Backbone

AP AP50 AP AP5S0 AP APS0 AP AP50 AP AP50

Faster RCNN RN50 0.0 0.3 0.0 0.0 0.0 0.0 0.0 0.3 0.0 0.2

|-Shot  RetinaNet RNSO 00 00 00 00 00 00 00 00 00 00
DyHead Swin-T 00 00 00 00 00 00 00 00 00 00
Ours SwinT 60 198 25 64 17 55 127 242 57 140
Faster RCONN  RN50 32 134 00 00 01 03 10 44 11 43
10-Shot  RetinaNet RNS0O 45 163 00 00 06 27 10 41 15 58
DyHead SwinT 19 65 00 01 05 21 14 54 10 35
Ours Swin-T 130 376 123 328 151 449 261 496 166 412
Faster RCONN  RN50 286 715 153 459 295 734 291 652 (256 640
100-Shot  RetinaNet RNS0 298 733 44 169 275 729 336 695 238 581
DyHead Swin-T 285 704 232 618 289 711 335 715 285 687
Ours Swin-T 335 726 341 781 395 770 485 792 389 767
Faster RCONN  RN50 339 739 320 695 465 808 541 849 416 773
Full Data  RetinaNet RNS0 370 779 323 761 489 828 568 880 438 812
DyHead Swin-T 357 744 331 823 471 812 607 909 442 820
Ours Swin-T 372 785 400 847 486 828 603 907 465 842

Table 6: Ablation on the input size and freeze layers in image and text encoders (Lunal®6).
Image Encoder

Size Text Encoder AP  AP50
layer0 layerl layer2 Ilayer3
. bl2xbH12 v Yy 342  73.0
38.0 ~ 786
800 x 800 (defauly %Y, 199 &7
v v v 40.1 79.1
v v v v v 319 7838

Ablation studies Table [0] presents the ablation studies on the image input size and freeze layers
in the image and text encoders on the Lunal6 lung CT dataset. As shown in the table, our default
choice of using input size at 800x800 (input size used in pre-training) is much better than using
the dataset specific size (i.e., 512x512 for Lunal6). For the freeze layers, we choose to freeze the
bottom two layers as in GLIP (Li et al.,[2022), and we find complete freeze of the visual backbone
or no freeze at all are not the best choice for VLM domain transfer. With the visual backbone set by
default, freezing the linguistic backbone has little impact on the model performance.

5 CONCLUSION

This paper comprehensively studies how to leverage the large-scale vision language models pre-
trained on natural images to medical images. We present that well-designed medical prompts con-
taining domain-specific knowledge is the key to bridging the gap between domains. Therefore, we
propose several approaches to generate medical prompts in either manual or automatic manners.
While the manual approach tremendously improves the zero-shot performance compared to the de-
fault prompts with object names, the automatic approaches allow us to generate expert knowledge
augmented and image-specific prompts on a large scale. Extensive experiments are conducted on
thirteen different medical datasets across various modalities, showing the the prompts generated by
our approaches can improve the transfer performance, and our fine-tuned models surpass the super-
vised baselines by a large margin. This superior domain transfer performance also prompts us to
explore more data-efficient vision-language algorithms to benefit medical image understanding.
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A DATASET INTRODUCTION

In this section, we present the composition details of every dataset we collected. As we mention
before, we divide the datasets into two major categories: the non-radiology and radiology datasets.

For non-radiology images, we have photograph images, endoscopy images, cytology images, and
histopathology images. Photography images is composed of the ISIC 2016 (Gutman et al., [2016)
and DFUC 2020 (Cassidy et al.,|2021) dataset. The ISIC-16 dataset consists of 1,279 images with
1,282 bboxes for benign skin lesions and melanoma detection, divided into 720/180/379 images for
training, validation, and testing. The DFUC2020 dataset is the largest diabetic foot ulcer detection
dataset for now, including 2,000 images, 2,496 bboxes, and 1 class; and those images are divided
into 1,280/320/400 images for training, validation, and testing.

For endoscopy images, we use a benchmark composed of a series of datasets for polyp region de-
tection from PraNet (Fan et al.l |2020), which includes the following datasets: CVC-300, CVC-
ClinicDB, CVC-ColonDB, Kvasir, and ETIS. There are 2,248 images and 2,374 bboxes in total.
The complete training and validation images for the entire benchmark are 1160 and 290, respec-
tively. And the number of test set images for CVC-300, CVC-ClinicDB, CVC-ColonDB, Kvasir,
and ETIS datasets are 60, 62, 380, 100, and 196 respectively.

For microscopy images, we have two datasets: cytology dataset BCCD and histopathology dataset
CPM-17 (Vu et al.} 2019). The BCCD dataset is designed for blood cell detection tasks, including
three classes: white blood cells, red blood cells, and platelets. There are 874 images with 11,789
bboxes for the entire BCCD dataset. Furthermore, the dataset is split into training, validation, and
test sets with 765, 73, and 36 images, respectively. CPM-17 is a cell nuclear detection dataset that
contains only one class and consists of 64 images with 7,506 bbox labels. The dataset is divided into
25/7/32 images for training, validation, and testing.

For some datasets, such as the ISIC 2016, Ployp Benchmark, Lunal6, ADNI, and TN3k datasets,
the bbox labels are obtained from the mask labels of the original dataset, while the labels of dataset
CPM-17 are obtained from the instance segmentation labels. For other datasets, we simply use the
original bbox labels.

We select a representative dataset for each of the four different modalities of radiology images, in-
cludes X-ray dataset TBX11K (Liu et al.,[2020), CT dataset Lunal6 (Setio et al.,[2017)), MRI dataset
ADNI (Boccardi et al., 2015) and ultrasound dataset TN3k (Gong et al.,2021). The TBX11K dataset
is used for tuberculosis detection in the lung, including 799 images and 1,211 bbox labels. Moreover,
this dataset is divided into 479/120/200 images for training, validation, and testing sets, respectively.
The ADNI dataset is designed for the hippocampus gland detection task, which contains 1186 im-
ages and 1186 bboxes. The training, validation, and test sets consist of 759, 190, and 237 images,
respectively. The Lunal6 is a lung nodule detection dataset, including 3,997 images and 7,545 bbox
labels. There are 2,590, 589, and 818 images for training, validation, and test sets. The TN3k dataset
is a large thyroid nodule detection in ultrasound images containing 3,493 images and 3811 bboxes.
Moreover, the datasets’ training, validation, and testing sets consist of 2,303, 576, and 614 images,
respectively.

B PROMPT GENERATION IMPLEMENTATION DETAILS

To automatically generate prompts for unseen concepts, we design various pipelines for obtain-
ing external knowledge from different sources. For the Language Model (LM) based method, as
demonstrated in the methodology section, we use PubmedBERT as our knowledge source and use
a template to elicit the attributes’ knowledge. For example, if we want to obtain the potential color,
shape, and location of polyps from the LM, we will make a template such as “The color of polyps
is [Masked]” and ask the language model to predict the “[Masked]” token. Since the BERT-like
language model is all pre-trained with the masked token prediction task, the above method can elicit
the most likely word for the masked token. Therefore, the LM will give us a probability distribution
over all tokens in its vocabulary, and we can take the tokens with top-3 probability as our answers.
Furthermore, we use the predicted color as the attribute value for the unseen object to make up our
prompts. So, in a nutshell, we first make up a template with the masked token for each attribute,
then we use the LM model to do the masked token prediction task to obtain the values. After we
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collect all the attribute values we need, we then fill these values into our pre-defined prompt tem-
plate. For example, suppose we receive the words such as “pink”, “round”, and “rectum” for the
color, shape, and location attributes of polyps. In that case, we fill the template “Polyp is a [color]
and [shape] bump in [location]” with the corresponding words to obtain our prompt: “Polyp is a
pink and round bump in rectum.” One can directly use this sentence as the final version to be feeded
to the GLIP model. However, because of the implementation detail of the GLIP model which we
will not elaborate here, it is better to rearrange the sentence above to a format of a composition of
phrases, such as “pink, round, bump, in rectum”. The words before the word “bump” will be treated
as a prefix, while the words after the word “bump” will be treated as suffix by the GLIP model. For
further detail of this arrangement, please refer to the code of the GLIP model.

The workflow of the image-specific VQA method is quite similar to the pipeline above, except we
change the knowledge source from the LM model to the VQA model. And for the VQA model, we
don’t ask the model to predict a masked token; we let it answer our pre-defined question for each
attribute and collect the answers.

The hybrid approach is simply a combination of the LM-based and VQA-based methods. We use
the VQA model to get the shape and color of the unseen objects since these attributes can vary
from image to image. We then use the LM model to predict the possible location of the unseen
concepts. After all, we combined the attribute values received from both methods to fill into the
prompt template.

C THUMB RULES OF DESIGNING PROMPTS

We summarize an empirical rule for manually generating prompts because these rules provide help-
ful insight into the essence of prompt designing. The first rule is that the more common the target
object is, the less expressive characteristics are needed. We argue that since the VLMs have seen the
general target objects in their pre-training stage, simply providing the common object names would
be enough to activate the learned knowledge. In the DFUC2020 dataset for example, we observe that
only providing the location attributes would be enough for the prompt to help the model to achieve
the best performance. The target object here is a wound, a fairly common concept not only seen
in medical images. In the Polyp benchmark datasets however, we observe the exact opposite case.
The target object is a polyp, a rather less general concept that arguably only appears in the medical
domain. In this case, we tried including many graphic attributes, such as color, shape, and texture,
to obtain an ideal performance.

D EXTRA EXAMPLES OF MANUAL PROMPT DESIGN

In this section, we would like to provide extra examples of manually designed prompts and the
corresponding results, on both non-radiology and radiology datasets. The following tables show
that the color, shape, and location attributes can significantly improve the results.

Table 7: Examples of prompts for CVC-300 (zero-shot performance on the validation and test set)

Prompt AP AP50

initial polyp 1.1 3.0
medical concepts polyp is an abnormal growth on the surface 7.0 13.1
polyp is a bump. 11.6 19.0

+shape + general 100 i an oval bump. 13.9 22.0
polyp is an oval bump, often in flesh pink color. 15.4 27.6

+ shape + color polyp is an oval bump, often in pink color. 28.6 50.7

In colon polyp is an oval bump, often in pink color 27.8 47.0

-+ shape + color + location In rectum polyp is an oval bump, often in pink color 43.4 69.4
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Table 8: Examples of prompts for TN3k (zero-shot performance on the validation and test set)
Prompt AP AP50

initial thyroid nodule 19 42
thyroid nodules are nodule which commonly arise within

wikipedia an otherwise normal thyroid gland >-6 10.8
+ description irregular thyroid tumor. 48 11.2
salient thyroid tumor. 55 11.1

4 domain thyroid tumor in medical imaging. 11.2 20.3
thyroid tumor in medical ultrasound imaging. 11.3 20.9

+ description + domain salient thyroid tumor in medical ultrasound imaging 12.2 21.4

E STANDARD DEVIATION AND ERROR-BAR FOR FEW-SHOT RESULTS

In this section, we demonstrate the standard deviation numbers and error-bar for our fine-tuning
results. We use 3 different random seeds for our few-shot learning experiments to test whether
our fine-tuning results are consistent across different random settings. The relative small standard
deviation indicates that our method is not sensitive to the randomness.

Table 9: The Mean and Standard Deviation results of Table 2 (AP%).

Method ISIC 2016 DFUC2022 Polyp BCCD Ave.

GLIP-T 55.94167 4144037 57.64110 59.841.15 53.7
100-Shot  Qurs (Manual) 58.0410s  43.74117 60.84.0.6460.110 95 55.7
Ours (AlltO) 58.8:‘:1.93 42-4:t1.06 60.8:|:1.2460.2:|:0‘36 55.6

100-shot results (AP%) from Table 2 with error

bar
65
60 T ]
55 ?
50
45 T
40 !
ISIC2016 DFUC2022 BCCD
® GLIP-T Ours(Manual) Ours(Auto)

Figure 5: 100-shot results (AP%) from Table 2 with error bar
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Table 10: The deviation of the mean results of Table 3 (AP%).

Method CVC-300 CVC-ClinicDB CVC-ColonDB Kvasir  ETIS Avg.
GLIP-T 69.64£2 42 59.441 63 52.340.38 63.041.44 43.643.69 57.6
100-Shot Ours (Manual) 70-2i1.96 61~6i0.88 53~6i2.61 66.8i2,63 51.8i1,94 60.8
Ours (AUtO) 71-3i0.93 60.4i1,25 55~4i2.36 67.1i1,31 49.6i4,31 60.8
100-shot results (AP%) from Table 3 with error
bar
75
70 |
Y 3
65 1 %
60 v
- I
55 i
50 E
45 %
40
35
CVvC-300 CVC-ClinicDB CVC-ColonDB Kvasir ETIS
® GLIP-T @ Ours(Manual) ® Ours(Auto)
Figure 6: 100-shot results (AP%) from Table 3 with error bar
Table 11: Radiology fine-tuning results with standard deviation using our approaches.
TBX11K Lunal6 ADNI TN3k Avg.
AP AP50 AP AP50 AP AP50 AP AP50 AP AP50
1-Shot 6.0x1.10 1981466 251206 6.4xa67 1.74095 551348 127455 24.21818 5.7 14.0
10-Shot  13.043.49 37.641010 1234114 32.84300 15.11059 4494315 26.11160 49.61377 16.6 41.2
100-Shot  33.5+1.35 72.64285 34.1t181 7811278 3954093 77.0x070 48.5+0.66 79.2+152 389  76.7
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Few-shot results (AP%) of our methods with error

50
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10

bar from Table 5

[ ]
T %
J_ I
Y
L
1-shot 10-shot 100-shot

e ADNI e LUNA16 TBX11k TN3K

Figure 7: Few-shot results (AP%) of our methods from Table 5 with error bar

F ZERO-SHOT PERFORMANCE WITH DIFFERENT VLMS

In this section, we present the zero-shot results given various prompts with different VLMs pre-
trained on different datasets. As demonstrated, although the zero-shot results are different for these
different VLMs, but the pattern of performance increasing with adding expressive attributes still
holds. Note that the VLM (0365) is pre-trained with a relative smaller dataset. Furthermore, the
GoldG variant is pre-trained on a much larger dataset, which including the dataset VLM (0365)
pre-trained on and the extra GoldG dataset.

Table 12: Examples of prompts for different VLMs zero-shot results on CVC-300)

Pre-trained Data Attribute Prompt AP AP50
class polyp 25 3.1

0365 +shape polyp irregular shape of bump 9.2 113
+shape +texture +loc polyp irregular flesh bump in rectum 9.5 12.1
+shape +texture +loc +modality colonscope polyp irregular flesh bump in rectum 13.1 16.8
class polyp 6.1 83
+shape polyp irregular shape of bump 8.7 15.0

0365+GoldG +shape +texture +loc polyp irregular flesh bump in rectum 234 35.6
+shape +texture +loc +modality colonscope polyp irregular flesh bump in rectum 34.9 56.3
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G VISUALIZATION

In this section, we provide some visualized examples to illustrate how attribute injection in prompts
could affect the object detection for novel objects. In Figure [8] as we include more expressive
attributes to the prompts, the predicted bbox can locate the target objects more accurately and con-
fidently.

CVC-300 CVC-ClinicDB Prompts

ground truth

polyp 55.26%

default
classname

polyp

pink bump 76.79%

pink bump

+color
+general concept

pink bump in rectum 44.72%

ool pink bump in
color
i i B 3 A . .
+general concept pinKEGIMpRINEre Ui 22/ 0% pink bump in rectum
+loaction pink bump
pink oval bu

o pink oval bump 'n rectum 69
+color ' pink oval bump in rectum
+general concept
+loaction
+shape

Figure 8: Visualized examples of the effect of including expressive attributes.
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As demonstrated in Figure 0] we have shown several images and the predicted bounding boxes
under the zero-shot setting on the TN3K dataset. As mentioned before, we directly use the class
label as the text prompts for the radiology data, and, in this case, we simply use the ‘thryoid nodule’
to prompt the pre-trained VLM. As one can see, since the word ‘nodule” in the prompt has the
language meaning of “small rounded or oval object...” in some context, the predicted bounding
box in the zero-shot examples mostly aligned with the salient circle areas in the images. So, these
examples prove our presumption that the unseen concept in radiology is too far different from the
general image domain, and we need to provide extra visual examples to fine-tune the VLMs.

" thyroid nodulees=s ===

E=Thyroid noduIe

—

- T

=
-~

Ground Truth

Zero-Shot

Figure 9: Visualized examples of zero-shot on the radiology dataset.

In Figure[I0] we demonstrate a series of images and predicted bounding boxes for 1-shot tasks. As
illustrated in the figure, the VLM can quickly understand the pattern of “thyroid nodule”, an unseen
medical concept, even under a 1-shot setting. We believe the alignment of the visual and language
features in the hidden space contributed to such domain-transfer capability of the VLMs. Therefore,
even with a single example, the VLM can quickly map the visual features in the example to the
given text prompt, and such text prompt can elicit the corresponding visual features during the test
time, resulting in a much better performance.

Ground Truth

Zero-Shot

1-8hot

Figure 10: Visualized examples of one-shot results on the radiology dataset.
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