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Abstract

Referring video object segmentation (RVOS) aims to identify, track and segment1

the objects in a video based on language descriptions, which has received great2

attention in recent years. However, existing datasets remain focus on short video3

clips within several seconds, with salient objects visible in most frames. To advance4

the task towards more practical scenarios, we introduce Long-RVOS, a large-scale5

benchmark for long-term referring video object segmentation. Long-RVOS con-6

tains 2,000+ videos of an average duration exceeding 60 seconds, covering a variety7

of objects that undergo occlusion, disappearance-reappearance and shot changing.8

The objects are manually annotated with three different types of descriptions to9

individually evaluate the understanding of static attributes, motion patterns and spa-10

tiotemporal relationships. Moreover, unlike previous benchmarks that rely solely11

on the per-frame spatial evaluation, we introduce two new metrics to assess the12

temporal and spatiotemporal consistency. We benchmark 6 state-of-the-art methods13

on Long-RVOS. The results show that current approaches struggle severely with14

the long-video challenges. To address this, we further propose ReferMo, a promis-15

ing baseline method that integrates motion information to expand the temporal16

receptive field, and employs a local-to-global architecture to capture both short-17

term dynamics and long-term dependencies. Despite simplicity, ReferMo achieves18

significant improvements over current methods in long-term scenarios. We hope19

that Long-RVOS and our baseline can drive future RVOS research towards tackling20

more realistic and long-form videos. Our dataset and code will be released.21

1 Introduction22
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Figure 1: Duration comparison of cur-
rent RVOS datasets. The circle size indi-
cates the number of frames.

Referring Video Object Segmentation (RVOS) [2, 7, 44]23

is an emerging task that aims to identify, track and seg-24

ment the object in the video based on a natural lan-25

guage description. Unlike traditional semi-supervised26

VOS models that require first-frame masks as the object27

prompt, RVOS models rely solely on text descriptions to28

segment the target. Considering its potential applications29

like video editing, growing efforts have been devoted30

to this field [7, 15, 25, 30, 33]. Recently, the advent of31

multi-modal large language models [17, 27, 51] and seg-32

ment anything models [21, 35] has further accelerated33

this progress [1, 47, 50, 54].34

Despite these advances, current RVOS datasets [7, 11, 20,35

36] remain limited to short video clips lasting only a few36
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“At first, the person in shirt sat at the back, but later moved to the front.” Hybrid Type

“A monkey-like toy.” Static Type

“The cat was chased by a black cat and jumped high later.” Dynamic Type

Occlusion ReappearanceDisappearance Occlusion

t = 0 t = 250 t = 550 t = 1000 t = 1450

···

Disappearance Reappearance Occlusion

t = 50 t = 300 t = 350 t = 1170 t = 1650

···

Disappearance Reappearance Occlusion Occlusion

t = 80 t = 200 t = 300 t =620 t = 1120

···

Figure 2: Examples from Long-RVOS dataset, with frame indices displayed in the upper left, and
selected objects masked in orange ■. Long-RVOS contains extensive long-term videos, where the
objects always undergo occlusion, disappearance-reappearance and shot changing. In addition, the
objects are annotated with three different types descriptions: static, dynamic and hybrid.

seconds, with target objects clearly visible in most frames. For state-of-the-art (SOTA) methods, in37

order to capture the target object effectively, it is inevitable to integrate the text and spatiotemporal38

information throughout the video. However, when the video becomes longer, the number of distractors39

also increase accordingly, making it more challenging to perform sufficient spatiotemporal reasoning40

and capture the key information. Especially in RVOS, many text descriptions (e.g., “the cat jumps41

down”) only refer to a brief fragment in the video. In addition, due to the GPU memory limitation,42

existing methods typically sample 4∼8 frames per video for training, but use all the frames during43

inference. As the video length increases, the gap between training and inference phases may become44

more pronounced. Despite these concerns, due to the lack of a long-term RVOS dataset, the exact45

challenges posed by longer videos remain unclear.46

Another concern lies in the evaluation metrics. Existing RVOS benchmarks [7, 11, 20, 36] typi-47

cally evaluate performance by simply averaging the frame-wise segmentation metrics (e.g., J&F).48

However, in real-world videos, the target objects do not appear in every frame, due to occlusion49

and constrained camera views. Therefore, a robust RVOS model should exhibit a sound temporal50

consistency. This means it should not only accurately segment the target when it is present, but also51

be able to predict its absence by outputting an empty mask. However, this capability of temporal52

consistency can not be adequately reflected by current metrics.53

To address these gaps, this work proposes Long-RVOS, a large-scale benchmark for long-term video54

object segmentation. Long-RVOS is the first minute-level dataset in RVOS field, designed to tackle55

various realistic long-video challenges such as frequent occlusion, disappearance-reappearance and56

shot changing, as shown in Figure 1 and Figure 2. Additionally, we introduce two new metrics57

for better evaluation of temporal consistency: tIoU, which measures the temporal overlap between58

predicted and ground-truth mask sequences; and vIoU, which further measures the spatiotemporal59

volume overlap between them. We benchmark 6 state-of-the-art (SOTA) methods on Long-RVOS. The60

results demonstrate that while notable progress has been achieved in existing short-term benchmarks,61

these SOTA models still significantly struggle in realistic long-term scenarios, in both frame-level62

segmentation and video-level temporal consistency.63

To tackle the challenges posed by Long-RVOS, we present a baseline method ReferMo, which64

integrates additional motion frames to expand the temporal receptive field during training, and65

employs a local-to-global architecture to perceive both static attributes, short-term dynamics and66

long-term dependencies. Specifically, ReferMo decomposes each video into a sequence of clips,67

each consisting of a high-resolution keyframe and multiple low-resolution motion frames. Then, it68

perceives the static appearance and short-term motion within local video clip, and captures the global69

target in long-term context via inter-clip interactions. In this way, the temporal receptive field is70
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Table 1: Statistical overview of representative RVOS datasets. Long-RVOS features the longest video
duration and the most diverse object classes. Besides, Long-RVOS offers explicit text description
types for finer-grained evaluation.

Dataset Year Videos Mean
duration

Total
duration

Mean
frames Masks Objects Object

classes Text Text
type

A2D-Sentences [11] 2018 3,782 4.9s 5.2h 3.2 58k 4,825 6 6,656 ✗
JHMDB-Sentences [11] 2018 928 1.3s 0.3h 34.3 32k 928 1 928 ✗
Ref-DAVIS17 [20] 2018 90 2.9s 0.1h 69.0 14k 205 78 1,544 ✗
Refer-YouTube-VOS [36] 2020 3,978 4.5s 5.0h 27.2 131k 7,451 94 15,009 ✗
MeViS [7] 2023 2,006 13.2s 7.3h 79.0 443k 8,171 36 28,570 ✗

Long-RVOS (ours) 2025 2,193 60.3s 36.7h 361.7 2.1M 6,703 163 24,689 ✓

expanded from multiple frames to multiple clips, but the training cost does not increase significantly.71

Despite simplicity, ReferMo achieves significant improvements over existing RVOS approaches,72

serving a promising baseline for long-term referring video object segmentation.73

Our contributions are summarized as follows: (i) We build Long-RVOS, the first large-scale bench-74

mark for long-term RVOS. In Long-RVOS, we provide explicit description types and introduce75

new metrics to enable more comprehensive evaluation. (ii) We benchmark 6 state-of-the-art RVOS76

approaches on Long-RVOS, and propose a promising baseline ReferMo to address the challenges in77

long-video scenarios. These contributions establish a foundation for developing more robust RVOS78

models to handle the realistic long-term videos.79

2 Related Works80

RVOS Benchmarks. Given an object description, RVOS aims to identify, tracking and segment81

the referring object throughout the video. This task was initially introduced by Gavrilyuk et al.82

[11] and Khoreva et al. [20] in 2018, and has gradually become a popular topic in vision-language83

understanding. Gavrilyuk et al. [11] built A2D-Sentences and JHMDB-Sentences datasets, which84

focus on distinguishing different actors in a video through the descriptions about appearance and85

actions. Khoreva et al. [20] built Ref-DAVIS17 [20], which covers more diverse object types. Later,86

Ref-Youtube-VOS [36] was developed to further expand the benchmark scale in this field. Recently,87

MeViS [7] was proposed to highlight the importance of motion understanding in RVOS task. Despite88

the efforts, these benchmarks remain limited to short video clips lasting only a few seconds, with89

target objects clearly visible in most frames. Besides, they also lack sufficient evaluation mechanisms90

to consider the models’ specific capabilities in various aspects.91

RVOS Approaches. Recent RVOS approaches are mainly based on Transformer-based end-to-92

end architecture, represented by MTTR [2] and ReferFormer [44]. For an effective and consistent93

object identification across the frames, follow-up works [14, 15, 30, 39] focus on integrating more94

object-level temporal information. ReferDINO [25] further improves the object-level visual-language95

understanding by inheriting the object grounding capability of GroundingDINO [28]. Meanwhile,96

the recent emergence of segment anything models, i.e., SAM [21] and SAM2 [35], provides unique97

opportunity for downstream segmentation tasks. Some frontier studies [1, 5, 26, 47, 50] explore98

to incorporate SAM and SAM2 into RVOS approaches, achieving significant improvements on99

existing benchmarks. For example, VideoLISA [1] incorporates large language models with SAM100

for reasoning video segmentation. SAMWISE [5] integrate text prompts into SAM2 by inserting101

trainable adapters. While these models achieve great progress in current short-video benchmarks,102

their abilities and robustness in handling real-world long videos is still unclear.103

Long-term Video Understanding. Real-world videos are always long, untrimmed, and involves104

multiple events. To promote research into long-term video understanding, many large-scale bench-105

marks [3, 10, 31, 43] have been constructed. However, these benchmarks are mainly constructed106

for video question answering and temporal action localization, containing only sparse annotations107

such as timestamps, action labels and captions. To support object-level long-term understanding,108

some datasets including VidOR [37] and LaSOT [9] also provide dense annotations of bounding109

boxes. However, long-video datasets with pixel-level dense annotations are still very scarce. Recently,110

LVOS [16] is built for long-term video object segmentation. However, it is limited in scale and lacks111

text annotation. In this work, we build Long-RVOS, the first large-scale benchmark for long-term112

video object segmentation, providing both pixel-wise annotations and diverse object descriptions.113
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3 Long-RVOS: A Comprehensive Benchmark for Long-term RVOS114

3.1 Video Collection115
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Figure 3: Overview of object categories and scenes
in Long-RVOS.

Previous RVOS datasets [7, 11, 20, 36] were116

typically constructed by providing text anno-117

tations on their corresponding VOS datasets118

(e.g., DAVIS17 [34], YouTube-VOS-2019 [46]119

and MOSE [8]). However, the existing long-120

term VOS datasets like LVOS [16] are lim-121

ited in scale (containing only 720 videos),122

and most videos feature only one object tar-123

get. Therefore, in order to establish a large-124

scale and diverse RVOS benchmark, we by-125

pass the existing VOS datasets and turn to inte-126

grate multi-source long video datasets. Specif-127

ically, we build Long-RVOS based on three128

long-video datasets: TAO [6], VidOR [37],129

and Ego-Exo4D [12]. Moreover, TAO is a130

federated dataset combining multiple sources131

like Charades [38], LaSOT [9], ArgoVerse [4],132

AVA [13], YFCC100M [41], BDD-100K [49],133

and HACS [53]. We select videos and objects134

based on the following criteria:135

• The video duration exceeds 20 seconds.136

• Objects that belong to background, ambiguous or unknown categories are excluded.137

• Each selected video must contain more than two valid objects, and at least one object is not138

continuously visible.139

With these criteria, we have initially collected over 3K videos and 8K objects as candidates. After140

careful inspections on quality, we finally select 2,193 videos and 6,703 objects to build Long-RVOS.141

3.2 Dataset Annotation.142

Text Annotation. We develop an online platform for annotating object descriptions. This platform143

randomly samples a video from our dataset and displays it, with all target objects highlighted by144

bounding boxes. To ensure the diversity of annotations, each video can be sampled repeatedly at145

most three times. The annotators consisting of 20 college students are asked to watch the videos and146

provide the following three types of descriptions for each object:147

• Static type includes appearance (e.g., colors and shapes), relative position (e.g., “the left cat”), and148

environmental context (e.g., “on the grass”).149

• Dynamic type includes motions, changes over time (e.g., in position or state) and interactions with150

other entities (e.g., “the cat chasing a mouse”).151

• Hybrid type integrates both static and dynamic attributes to provide comprehensive object cues.152

The key annotation principle is that every single description, regardless of type, must clearly distin-153

guish the target object from others. For objects that cannot be distinguished by only static or dynamic154

attributes, the corresponding type of annotation can be skipped. After this annotation phase, we have155

collected over 30K text descriptions. These annotations and the corresponding videos are then sent156

to a validation team formed by three experts for quality verification. Any descriptions that violate157

our principle are directly removed. Besides, we do not use techniques like synonym replacement to158

artificially scale up the text annotations, keeping the dataset clear and authentic to support reliable159

RVOS training. Finally, we gather 24,689 high-quality descriptions for building Long-RVOS.160

Mask Annotation. Our source datasets [6, 12, 37] have provided sparse bounding-box annotations.161

For each object, we segment the video into clips based on the annotated frames. Then, we utilize162

SAM2 [35], the state-of-the-art VOS model, to track the objects within each clip and produce163

high-quality masks, by regarding the annotated bounding box as the first-frame prompt. To ensure164
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Figure 4: Representative statistics of Long-RVOS.

annotation quality, we conduct an iterative check–correct workflow. Specifically, the validation team165

checks every object’s mask separately in the video, and marks the objects with inaccurate annotations.166

To facilitate the correction process, we develop an interactive annotation tool based on SAM2. This167

tool loads a marked object each time and visualizes its masks in the video. Nine annotators use our168

tool to refine the masks with point or box prompts, and remove masks from object-absent frames.169

The corrected results are then returned to the checking queue, and this check–correct loop repeats170

until all mask annotations are qualified.171

3.3 Dataset Statistics172

A detailed comparison with five existing RVOS datasets is shown in Table 1. Notably, Long-173

RVOS offers significantly longer video duration than existing datasets. In addition, it contains the174

largest number of object classes and mask annotations. The large scale of Long-RVOS supports175

comprehensive training and evaluation of RVOS models.176

Diverse Objects and Scenes. Long-RVOS is constructed by integrating multiple sources of video177

datasets, achieving a wide variety of objects and scenes, as illustrated in Figure 3. These sources178

include indoor videos from Charades [38], outdoor videos from LaSOT [9], movie scenes from179

AVA [13], egocentric videos from Ego-Exo4D [12], and more diverse videos from other datasets [37,180

41, 53]. In total, Long-RVOS contains 163 object categories, significantly surpassing the existing181

RVOS datasets. As shown in Figure 4 (a), while Long-RVOS primarily focuses on human instances182

(71.9%), it also covers a diverse range of animals (12.7%) and instruments (15.4%). In Figure 4 (b)-183

(d), we present further statistics on the videos and objects in Long-RVOS. Notably, the object number184

of each video spans from 2 to 14, preventing over-reliance on the most salient object and highlighting185

text-guided segmentation. With such extensive diversity, Long-RVOS can serve a comprehensive186

benchmark for RVOS research, facilitating the development of more real-world applications.187
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Diverse Descriptions. In real-world applications, user queries are always unpredictable. They might188

refer to salient attributes or instantaneous actions. To enable more comprehensive evaluation of189

model capabilities, Long-RVOS introduces three distinct types of text descriptions — static, dynamic,190

and hybrid. By explicitly categorizing these types, Long-RVOS prevents evaluation bias toward191

specific attribute cues (e.g., color or position), ensuring a fair and robust assessment. We present192

the detailed statistics of text descriptions in Figure 4 (c)-(g). Critically, Long-RVOS maintains a193

balanced distribution of text types, and the description number for each object can vary from 1 to 9.194

These properties encourage comprehensive learning of diverse object attributes. With its explicit type195

annotations and diverse object descriptions, Long-RVOS provides a comprehensive benchmark for196

training and evaluating RVOS models in more realistic scenarios.197

3.4 Evaluation Metrics198

Previous RVOS benchmarks tend to evaluate model performance with the frame-wise spatial metrics,199

such as J&F . Here, J denotes the Intersection-over-Union (IoU) between the predicted and200

ground-truth masks, F measures the contour accuracy, and J&F is their average over all the frames.201

However, these metrics focus solely on the per-frame segmentation quality, neglecting the temporal202

consistency. A robust RVOS model should accurately segment the target when it is present and203

correctly output an empty mask when it is absent. Inspired by the field of spatiotemporal video204

grounding [40, 52], we additionally introduce two new metrics, tIoU and vIoU, in Long-RVOS to205

individually evaluate the temporal and spatiotemporal performance.206

Formally, let M̂t,Mt ∈ {0, 1}H×W denote the predicted and ground-truth masks at t-th frame,207

respectively, where t ∈ [1, T ]. The frame-index sets of non-empty masks are defined as T̂ = {t |208

∥M̂t∥0 > 0} (for predictions) and T = {t | ∥Mt∥0 > 0} (for the ground-truth), where the ℓ0-norm209

∥ · ∥0 denotes the count of non-zero elements. Then, tIoU is obtained by computing their IoU:210

tIoU =
Ti

Tu
, where Ti = T̂ ∩ T and Tu = T̂ ∪ T , (1)

and vIoU computes the volume IoU between predicted and ground-truth mask sequences:211

vIoU =
1

Tu

∑
t∈Ti

Jt, where Jt =
M̂t ∩Mt

M̂t ∪Mt

. (2)

By combining the spatial metric J&F , temporal metric tIoU and spatiotemporal metric vIoU,212

Long-RVOS establishes a rigorous evaluation protocol for RVOS research.213

4 ReferMo: A Baseline Approach214

As illustrated in Figure 5, ReferMo decomposes the video into a sequence of clips, each consisting215

of a high-resolution keyframe and subsequent low-resolution motion frames. Then, it perceives the216

static appearance and short-term motion within local video clip, and captures the object target in217

long-term context by integrating the cross-clip information. Critically, ReferMo only predicts target218

masks over the keyframes, and the masks on the remain frames are generated by a pretrained object219

tracker (e.g., SAM2 [35]). In this way, ReferMo achieves a trade-off between training costs and220

long-term understanding without processing a large number of high-resolution frames.221

4.1 Video Decomposition222

Typically, a long-term video is composed of multiple shots, and the video frames within each shot223

often show significant temporal redundancy. This redundancy can be efficiently described by motion224

information to reduce the frame-by-frame computations. Inspired by Video-LaVIT [18], we employ225

the MPEG-4 [23] compression technique to extract keyframe and motion information from the videos.226

More sophisticated (but expensive) keyframe selection strategies [42, 45] can also be explored, but227

they are not the primary focus of this work. In MPEG-4, a video is decomposed into multiple clips,228

where each clip consists of a keyframe I ∈ RH×W×3 and the motion vectors M ∈ RT× H
16×

W
16×2 of229

its subsequent T frames. Unlike the dense optical flow, these motion vectors can be directly extracted230

during the compressed video decoding process, making them well-suited for processing large-scale,231

long-term videos. The details of motion extraction process are provided in the supplementary.232
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Local Perception Local Perception Local Perception

“A student watched two girls leave, then rushed to the bathroom, and finally started practicing boxing moves.”

SAM2❄️ SAM2❄️ SAM2❄️

Key Frame Motion Frames Key Frame Motion Frames Key Frame Motion Frames

Global Interaction

Figure 5: Overview of ReferMo. A video is decomposed into clips (keyframe + motion frames).
ReferMo perceives the static attributes and short-term motions within each clip, then aggregates
inter-clip information capture the global target. Notably, ReferMo is supervised by only keyframe
masks, and SAM2 is only used at inference for target tracking in subsequent frames.

4.2 From Local Perception to Global Interaction233

Spatiotemporal 

Attention

Dual Attention

“A student watched 
two girls leave...”

Text 

Encoder

Object Decoder

Image

Encoder

Motion 

Encoder

Multi-modal Fuser × 𝑵

Object

Embeddings

Figure 6: Overview of local perceiver.

Different from the previous RVOS methods [25, 30, 48]234

that perform vision-language fusion on each single frame,235

we introduce motion representations to enable clip-level236

vision-language fusion. For each video clip, as shown in237

Figure 6, the local perceiver encodes the text, keyframe238

and motion information through three separate encoders,239

and then employs a multi-modal fuser to progressively ag-240

gregate these information for clip-level object extraction.241

By collecting the objects across different video clips, we242

perform global temporal interaction to enable consistent243

object prediction and long-term temporal understanding.244

Motion Encoder. The motion vectors are first embeded245

into a d-dimensional space via a linear projector. Then,246

the motion encoder performs self-attention separately247

along the spatial and temporal dimensions to extract the248

spatiotemporal motion features M ∈ RT× H
16×

W
16×d. No-249

tably, we implement the spatial attention as deformable250

attention due to the large number of spatial tokens.251

Image-Motion Fusion. Modern image encoders (e.g., Swin Transformer [29]) typically output252

multi-scale feature maps Ii ∈ RHi×Wi×d, i ∈ [1, 4]. To match these spatial resolutions, we adopt a253

series of spatial convolutions with specific strides over the motion features M to produce multi-scale254

motion features Mi ∈ RT×Hi×Wi×d. At each scale i, we treat the keyframe feature Ii as query and255

perform cross-attention along the temporal dimension to aggregate Mi into M̃i ∈ RHi×Wi×d. To256

avoid undesired motion noise, we fuse the keyframe and motion features via the spatial-aware and257

channel-aware gating mechanisms:258

M∗
i = (σ(Ii ·W I

down)︸ ︷︷ ︸
Spatial Gate

⊙(M̃i ·WM
down)) ·Wup, (3)

259

Fi = Ii + γi︸︷︷︸
Channel Gate

⊙max(M∗
i , 0)

2, (4)

where W I
down,W

M
down ∈ Rd×r indicate the low-rank projectors that compress the features to a lower260

dimension r, and Wup ∈ Rr×d is a projector to resort the dimension. σ denotes Sigmoid function and261

⊙ denotes Hadamard product. γ ∈ Rd is a learnable vector to modulate the channel-wise weights.262
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Vision-Language Fusion. We use the dual cross-attention modules [24, 28] for deep vision-language263

fusion. Formally, given the clip-level vision features F ∈ RN×d and the language features E ∈ RL×d,264

where N and L individually denote their token number, we derive the cross-modal enhanced vision265

features F̃ and language features Ẽ as follows:266

A =
F · E⊤
√
d

, F̃ = Softmax(A) · E, Ẽ = Softmax(A⊤) · F. (5)

For simplicity, the linear projections for multi-head attentions are omitted. The output features F̃267

and Ẽ are then fed into the object decoder to extract object features.268

Global Interaction. To enable consistent object prediction and long-term temporal understanding,269

we collect the object features across video clips to perform global temporal interactions. Following270

ReferDINO [25], we use the Hungarian algorithm [22] to align the objects clip-by-clip. Then, we271

perform temporal self-attention over the aligned object features to achieve global modeling. For272

better modality alignment, we also infuse the language information Ẽ into the object features through273

a cross-attention layer. Finally, the interacted object features are output to the segmentation head for274

generating instance masks. Note that these masks are only predicted for the key frame within each275

clip, serving as object anchors for SAM2’s mask propagation in subsequent frames.276

5 Experiments277

5.1 Experiment Setup278

Dataset Split. Long-RVOS is a large-scale dataset containing 2,193 videos and 24,689 sentences,279

which are split into three subsets: a training set of 1,855 videos and 20,722 sentences, a validation set280

of 113 videos and 1,379 sentences, and a test set of 225 videos and 2,588 sentences.281

Evaluation Metrics. We use three kinds of evaluation metrics: the spatial metric J&F , the temporal282

metric tIoU and the spatiotemporal metric vIoU. Long-RVOS provides three types of descriptions:283

static, temporal and hybrid. We report performance for each type separately and overall. Additionally,284

we report the FPS for each competitor because efficiency is a major concern for long-video processing.285

Implementation Details. We follow the default hyper-parameter settings of ReferDINO [25] and286

use Swin-Tiny as the backbone. For SAM2 [35], we use the sam2.1_hiera_large version. In287

MPEG-4 [23], each video clip typically consists of a keyframe and the motion vectors for up to 11288

subsequent frames. During training, we randomly sample 6 clips and use 3-frame motion vectors.289

The input frames are resized to have the longest side of 640 pixels and the shortest side of 360290

pixels during training and evaluation. Following the settings on MeViS [7], we do not use referring291

image segmentation datasets (e.g., RefCOCO/+/g [19, 32]) for pretraining. We train ReferMo on292

Long-RVOS dataset for 6 epochs, which take 24 hours on 8 Nvidia A6000 GPUs.293

5.2 Benchmark Results294

Overall Comparison. We compare ReferMo with six recent RVOS methods on Long-RVOS. All295

models in comparison are trained on Long-RVOS under consistent experimental settings for fairness.296

As demonstrated in Table 2, realistic long-video scenarios remain a significant challenge for current297

RVOS models. While the SAM2-based methods [5, 26] achieve SOTA performance on existing298

short-term benchmarks [7, 20, 36], they significantly struggle in Long-RVOS. This suggests that their299

improvements may primarily stem from SAM2’s superior tracking and segmentation capabilities,300

rather than better language-guided object understanding. As the videos grow longer and more301

complex, it becomes more challenging to perform video-language reasoning and distinguish the302

objects, which leads to their performance degradation. In contrast, our baseline ReferMo integrates303

the static attributes, short-term dynamics and long-term dependencies to perform object-level visual-304

language reasoning, achieving significant improvements over existing methods. These findings305

highlight the need for both frame-level segmentation precision and video-level visual-language306

understanding to address the long-video challenges in Long-RVOS.307

Fine-grained Evaluation. Long-RVOS provides three types of text descriptions to enable rigorous308

evaluation. For most models, the performance for static and hybrid types is comparable and largely309

better than that for dynamic type. This implies a strong bias in current RVOS models toward static310
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Method Year Static Dynamic Hybrid Overall FPS
J&F tIoU vIoU J&F tIoU vIoU J&F tIoU vIoU J&F tIoU vIoU

Without SAM / SAM2

SOC [30] 2023 34.8 67.7 28.4 34.9 68.7 28.8 35.1 68.0 28.5 34.9 68.1 28.6 53.8
MUTR [48] 2024 43.0 70.1 36.7 40.2 70.8 34.8 43.2 70.3 37.2 42.2 70.4 36.2 20.4
ReferDINO [25] 2025 50.7 71.9 42.8 45.9 71.9 38.9 49.2 71.5 41.7 48.7 71.7 41.2 46.4
With SAM / SAM2

VideoLISA [1] 2024 34.3 69.6 28.9 31.0 69.7 26.9 33.9 69.4 28.6 33.1 69.6 28.2 6.6
GLUS [26] 2025 36.4 68.2 34.3 37.6 68.9 35.8 35.9 68.0 33.9 36.6 68.4 34.6 3.6
SAMWISE [5] 2025 36.6 68.4 29.2 34.3 68.6 28.1 33.8 69.4 28.4 35.6 68.4 28.6 7.0

ReferMo 2025 53.5 71.4 44.0 48.1 71.2 40.1 52.2 71.2 43.6 51.3 71.2 42.6 52.5

Table 2: Comparison of state-of-the-art RVOS models on Long-RVOS test set. FPS is estimated at
360P on Nvidia A6000 GPUs, excluding the video loading time.

Dataset Point Box Mask

MeViS [7] Valid_u 77.3 80.0 80.6

Long-RVOS
Valid 53.4 54.5 53.5

Test 52.8 53.9 53.3

(a) Oracle analysis with SAM2.

Model J&F J F
ReferDINO 49.1 47.6 50.6

ReferMo 49.6 48.0 51.2

-w/o motion 47.5 46.0 48.9

(b) Results on the keyframes.

0 1 3 5 8 11
Motion length

49.5
50.0

51.0
51.5

Pe
rfo

rm
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ce

(c) Different motion lengths.

Table 3: Oracle analysis and ablation studies.

attributes. Across different models, while the J&F scores show significant variance, their tIoU311

are relatively consistent. This reveals that existing RVOS models have little performance gap in312

temporal consistency, highlighting the need for effective tracking mechanisms to handle frequent313

target disappearance in long-term videos. ReferMo significantly outperforms other models across314

various types and metrics, except for tIoU, where it is slightly inferior to ReferDINO. We speculate315

that this is because ReferMo only performs language-guided reasoning on keyframes, resulting in316

suboptimal object identification on motion frames.317

Oracle Analysis. We provide SAM2 with first-frame ground-truth object prompts and evaluate318

its tracking performance across different datasets. As shown in Table 3 (a), the oracle results for319

Long-RVOS (52.8~54.5 J&F ) are significantly lower than those for MeViS (77.3~80.6 J&F ). The320

notable performance gap of nearly 25% demonstrates the long-term challenges in Long-RVOS.321

5.3 Ablation Studies322

Results on Keyframes. In Table 3 (b), we compare the performance of ReferMo and ReferDINO [25]323

on the keyframes. We focus on the spatial metrics since the length of the keyframe sequence is324

short. Note that ReferDINO is trained on all frames, while our ReferMo is only trained on keyframes.325

However, ReferMo still outperforms ReferDINO by 0.5% in J&F , owing to the integration of326

motion information. When ablating it, we see a significant 2.1% performance drop in J&F . These327

results encourage further exploration of sparse-frame supervision for RVOS task.328

Effect of Motion Information. We investigate the impact of varying the number of motion frames in329

ReferMo. As shown in Table 3 (c), the performance without motions is only 49.7 J&F . However,330

even using just one motion frame yields +1.6% J&F improvements. Increasing the motion length to331

3 frames improves J&F to 51.3, but further increasing only leads to marginal gains.332

6 Conclusion333

In this work, we introduce Long-RVOS, a large-scale benchmark for long-term referring video object334

segmentation, comprising over 2,000 videos averaging 60+ seconds to address the limitations of335

existing short-term datasets. To enable comprehensive and rigorous evaluation, we provide three types336

of descriptions and two novel metrics, tIoU and vIoU. Results on Long-RVOS indicate that current337

RVOS methods struggle severely in long-video scenarios. Furthermore, we propose ReferMo, a338

simple motion-enhanced baseline that significantly outperforms existing SOTA methods on long-term339

videos. We believe that Long-RVOS and ReferMo will provide a foundation for future research to340

develop robust RVOS models tackling real-world long-form videos.341
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NeurIPS Paper Checklist507

1. Claims508

Question: Do the main claims made in the abstract and introduction accurately reflect the509

paper’s contributions and scope?510

Answer: [Yes]511

Justification: In this paper, we introduce Long-RVOS, a large-scale benchmark for long-term512

referring video object segmentation with comprehensive evaluation. We further propose a513

simple yet effective baseline ReferMo to address the long-term challenges.514

Guidelines:515

• The answer NA means that the abstract and introduction do not include the claims516

made in the paper.517

• The abstract and/or introduction should clearly state the claims made, including the518

contributions made in the paper and important assumptions and limitations. A No or519

NA answer to this question will not be perceived well by the reviewers.520

• The claims made should match theoretical and experimental results, and reflect how521

much the results can be expected to generalize to other settings.522

• It is fine to include aspirational goals as motivation as long as it is clear that these goals523

are not attained by the paper.524

2. Limitations525

Question: Does the paper discuss the limitations of the work performed by the authors?526

Answer: [Yes]527

Justification: We discuss the limitations of our ReferMo in Section 5.2. A separate “Limita-528

tions” section is provided in the Supplementary.529

Guidelines:530

• The answer NA means that the paper has no limitation while the answer No means that531

the paper has limitations, but those are not discussed in the paper.532

• The authors are encouraged to create a separate "Limitations" section in their paper.533

• The paper should point out any strong assumptions and how robust the results are to534

violations of these assumptions (e.g., independence assumptions, noiseless settings,535

model well-specification, asymptotic approximations only holding locally). The authors536

should reflect on how these assumptions might be violated in practice and what the537

implications would be.538

• The authors should reflect on the scope of the claims made, e.g., if the approach was539

only tested on a few datasets or with a few runs. In general, empirical results often540

depend on implicit assumptions, which should be articulated.541

• The authors should reflect on the factors that influence the performance of the approach.542

For example, a facial recognition algorithm may perform poorly when image resolution543

is low or images are taken in low lighting. Or a speech-to-text system might not be544

used reliably to provide closed captions for online lectures because it fails to handle545

technical jargon.546

• The authors should discuss the computational efficiency of the proposed algorithms547

and how they scale with dataset size.548

• If applicable, the authors should discuss possible limitations of their approach to549

address problems of privacy and fairness.550

• While the authors might fear that complete honesty about limitations might be used by551

reviewers as grounds for rejection, a worse outcome might be that reviewers discover552

limitations that aren’t acknowledged in the paper. The authors should use their best553

judgment and recognize that individual actions in favor of transparency play an impor-554

tant role in developing norms that preserve the integrity of the community. Reviewers555

will be specifically instructed to not penalize honesty concerning limitations.556

3. Theory assumptions and proofs557

Question: For each theoretical result, does the paper provide the full set of assumptions and558

a complete (and correct) proof?559
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Answer: [NA]560

Justification: The paper does not include theoretical results.561

Guidelines:562

• The answer NA means that the paper does not include theoretical results.563

• All the theorems, formulas, and proofs in the paper should be numbered and cross-564

referenced.565

• All assumptions should be clearly stated or referenced in the statement of any theorems.566

• The proofs can either appear in the main paper or the supplemental material, but if567

they appear in the supplemental material, the authors are encouraged to provide a short568

proof sketch to provide intuition.569

• Inversely, any informal proof provided in the core of the paper should be complemented570

by formal proofs provided in appendix or supplemental material.571

• Theorems and Lemmas that the proof relies upon should be properly referenced.572

4. Experimental result reproducibility573

Question: Does the paper fully disclose all the information needed to reproduce the main ex-574

perimental results of the paper to the extent that it affects the main claims and/or conclusions575

of the paper (regardless of whether the code and data are provided or not)?576

Answer: [Yes]577

Justification: This paper provides comprehensive descriptions of the dataset construction in578

Section 3 and the proposed baseline Section 4. The implementation details are present in579

Section 5.1.580

Guidelines:581

• The answer NA means that the paper does not include experiments.582

• If the paper includes experiments, a No answer to this question will not be perceived583

well by the reviewers: Making the paper reproducible is important, regardless of584

whether the code and data are provided or not.585

• If the contribution is a dataset and/or model, the authors should describe the steps taken586

to make their results reproducible or verifiable.587

• Depending on the contribution, reproducibility can be accomplished in various ways.588

For example, if the contribution is a novel architecture, describing the architecture fully589

might suffice, or if the contribution is a specific model and empirical evaluation, it may590

be necessary to either make it possible for others to replicate the model with the same591

dataset, or provide access to the model. In general. releasing code and data is often592

one good way to accomplish this, but reproducibility can also be provided via detailed593

instructions for how to replicate the results, access to a hosted model (e.g., in the case594

of a large language model), releasing of a model checkpoint, or other means that are595

appropriate to the research performed.596

• While NeurIPS does not require releasing code, the conference does require all submis-597

sions to provide some reasonable avenue for reproducibility, which may depend on the598

nature of the contribution. For example599

(a) If the contribution is primarily a new algorithm, the paper should make it clear how600

to reproduce that algorithm.601

(b) If the contribution is primarily a new model architecture, the paper should describe602

the architecture clearly and fully.603

(c) If the contribution is a new model (e.g., a large language model), then there should604

either be a way to access this model for reproducing the results or a way to reproduce605

the model (e.g., with an open-source dataset or instructions for how to construct606

the dataset).607

(d) We recognize that reproducibility may be tricky in some cases, in which case608

authors are welcome to describe the particular way they provide for reproducibility.609

In the case of closed-source models, it may be that access to the model is limited in610

some way (e.g., to registered users), but it should be possible for other researchers611

to have some path to reproducing or verifying the results.612

15



5. Open access to data and code613

Question: Does the paper provide open access to the data and code, with sufficient instruc-614

tions to faithfully reproduce the main experimental results, as described in supplemental615

material?616

Answer: [Yes]617

Justification: We will release the new dataset Long-RVOS and the source code of our618

baseline ReferMo.619

Guidelines:620

• The answer NA means that paper does not include experiments requiring code.621

• Please see the NeurIPS code and data submission guidelines (https://nips.cc/622

public/guides/CodeSubmissionPolicy) for more details.623

• While we encourage the release of code and data, we understand that this might not be624

possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not625

including code, unless this is central to the contribution (e.g., for a new open-source626

benchmark).627

• The instructions should contain the exact command and environment needed to run to628

reproduce the results. See the NeurIPS code and data submission guidelines (https:629

//nips.cc/public/guides/CodeSubmissionPolicy) for more details.630

• The authors should provide instructions on data access and preparation, including how631

to access the raw data, preprocessed data, intermediate data, and generated data, etc.632

• The authors should provide scripts to reproduce all experimental results for the new633

proposed method and baselines. If only a subset of experiments are reproducible, they634

should state which ones are omitted from the script and why.635

• At submission time, to preserve anonymity, the authors should release anonymized636

versions (if applicable).637

• Providing as much information as possible in supplemental material (appended to the638

paper) is recommended, but including URLs to data and code is permitted.639

6. Experimental setting/details640

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-641

parameters, how they were chosen, type of optimizer, etc.) necessary to understand the642

results?643

Answer: [Yes]644

Justification: See Section 5.1.645

Guidelines:646

• The answer NA means that the paper does not include experiments.647

• The experimental setting should be presented in the core of the paper to a level of detail648

that is necessary to appreciate the results and make sense of them.649

• The full details can be provided either with the code, in appendix, or as supplemental650

material.651

7. Experiment statistical significance652

Question: Does the paper report error bars suitably and correctly defined or other appropriate653

information about the statistical significance of the experiments?654

Answer: [Yes]655

Justification: The dataset statistics are provided in Section 3.3 and other experimental656

statistics are presented in Section 5.657

Guidelines:658

• The answer NA means that the paper does not include experiments.659

• The authors should answer "Yes" if the results are accompanied by error bars, confi-660

dence intervals, or statistical significance tests, at least for the experiments that support661

the main claims of the paper.662
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• The factors of variability that the error bars are capturing should be clearly stated (for663

example, train/test split, initialization, random drawing of some parameter, or overall664

run with given experimental conditions).665

• The method for calculating the error bars should be explained (closed form formula,666

call to a library function, bootstrap, etc.)667

• The assumptions made should be given (e.g., Normally distributed errors).668

• It should be clear whether the error bar is the standard deviation or the standard error669

of the mean.670

• It is OK to report 1-sigma error bars, but one should state it. The authors should671

preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis672

of Normality of errors is not verified.673

• For asymmetric distributions, the authors should be careful not to show in tables or674

figures symmetric error bars that would yield results that are out of range (e.g. negative675

error rates).676

• If error bars are reported in tables or plots, The authors should explain in the text how677

they were calculated and reference the corresponding figures or tables in the text.678

8. Experiments compute resources679

Question: For each experiment, does the paper provide sufficient information on the com-680

puter resources (type of compute workers, memory, time of execution) needed to reproduce681

the experiments?682

Answer: [Yes]683

Justification: See Section 5.1.684

Guidelines:685

• The answer NA means that the paper does not include experiments.686

• The paper should indicate the type of compute workers CPU or GPU, internal cluster,687

or cloud provider, including relevant memory and storage.688

• The paper should provide the amount of compute required for each of the individual689

experimental runs as well as estimate the total compute.690

• The paper should disclose whether the full research project required more compute691

than the experiments reported in the paper (e.g., preliminary or failed experiments that692

didn’t make it into the paper).693

9. Code of ethics694

Question: Does the research conducted in the paper conform, in every respect, with the695

NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?696

Answer: [Yes] ,697

Justification: We have made sure.698

Guidelines:699

• The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.700

• If the authors answer No, they should explain the special circumstances that require a701

deviation from the Code of Ethics.702

• The authors should make sure to preserve anonymity (e.g., if there is a special consid-703

eration due to laws or regulations in their jurisdiction).704

10. Broader impacts705

Question: Does the paper discuss both potential positive societal impacts and negative706

societal impacts of the work performed?707

Answer: [Yes]708

Justification: This paper establishes a foundation for long-term video object segmentation,709

which potentially enhances the development of realistic video applications, such as video710

editing and human-computer interaction. We have briefly discussed the positive impacts711

in our abstract and conclusion. A separate “Broader Impacts” section is provided in the712

Supplementary.713

Guidelines:714
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• The answer NA means that there is no societal impact of the work performed.715

• If the authors answer NA or No, they should explain why their work has no societal716

impact or why the paper does not address societal impact.717

• Examples of negative societal impacts include potential malicious or unintended uses718

(e.g., disinformation, generating fake profiles, surveillance), fairness considerations719

(e.g., deployment of technologies that could make decisions that unfairly impact specific720

groups), privacy considerations, and security considerations.721

• The conference expects that many papers will be foundational research and not tied722

to particular applications, let alone deployments. However, if there is a direct path to723

any negative applications, the authors should point it out. For example, it is legitimate724

to point out that an improvement in the quality of generative models could be used to725

generate deepfakes for disinformation. On the other hand, it is not needed to point out726

that a generic algorithm for optimizing neural networks could enable people to train727

models that generate Deepfakes faster.728

• The authors should consider possible harms that could arise when the technology is729

being used as intended and functioning correctly, harms that could arise when the730

technology is being used as intended but gives incorrect results, and harms following731

from (intentional or unintentional) misuse of the technology.732

• If there are negative societal impacts, the authors could also discuss possible mitigation733

strategies (e.g., gated release of models, providing defenses in addition to attacks,734

mechanisms for monitoring misuse, mechanisms to monitor how a system learns from735

feedback over time, improving the efficiency and accessibility of ML).736

11. Safeguards737

Question: Does the paper describe safeguards that have been put in place for responsible738

release of data or models that have a high risk for misuse (e.g., pretrained language models,739

image generators, or scraped datasets)?740

Answer: [NA]741

Justification: The paper poses no such risks. Our new benchmark is built upon existing,742

publicly available datasets.743

Guidelines:744

• The answer NA means that the paper poses no such risks.745

• Released models that have a high risk for misuse or dual-use should be released with746

necessary safeguards to allow for controlled use of the model, for example by requiring747

that users adhere to usage guidelines or restrictions to access the model or implementing748

safety filters.749

• Datasets that have been scraped from the Internet could pose safety risks. The authors750

should describe how they avoided releasing unsafe images.751

• We recognize that providing effective safeguards is challenging, and many papers do752

not require this, but we encourage authors to take this into account and make a best753

faith effort.754

12. Licenses for existing assets755

Question: Are the creators or original owners of assets (e.g., code, data, models), used in756

the paper, properly credited and are the license and terms of use explicitly mentioned and757

properly respected?758

Answer: [Yes]759

Justification: We use publicly available resources to build our dataset.760

Guidelines:761

• The answer NA means that the paper does not use existing assets.762

• The authors should cite the original paper that produced the code package or dataset.763

• The authors should state which version of the asset is used and, if possible, include a764

URL.765

• The name of the license (e.g., CC-BY 4.0) should be included for each asset.766
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• For scraped data from a particular source (e.g., website), the copyright and terms of767

service of that source should be provided.768

• If assets are released, the license, copyright information, and terms of use in the769

package should be provided. For popular datasets, paperswithcode.com/datasets770

has curated licenses for some datasets. Their licensing guide can help determine the771

license of a dataset.772

• For existing datasets that are re-packaged, both the original license and the license of773

the derived asset (if it has changed) should be provided.774

• If this information is not available online, the authors are encouraged to reach out to775

the asset’s creators.776

13. New assets777

Question: Are new assets introduced in the paper well documented and is the documentation778

provided alongside the assets?779

Answer: [Yes]780

Justification: We cite all the benchmarks and code repositories used.781

Guidelines:782

• The answer NA means that the paper does not release new assets.783

• Researchers should communicate the details of the dataset/code/model as part of their784

submissions via structured templates. This includes details about training, license,785

limitations, etc.786

• The paper should discuss whether and how consent was obtained from people whose787

asset is used.788

• At submission time, remember to anonymize your assets (if applicable). You can either789

create an anonymized URL or include an anonymized zip file.790

14. Crowdsourcing and research with human subjects791

Question: For crowdsourcing experiments and research with human subjects, does the paper792

include the full text of instructions given to participants and screenshots, if applicable, as793

well as details about compensation (if any)?794

Answer: [NA]795

Justification: This paper does not involve crowdsourcing nor research with human subjects.796

Guidelines:797

• The answer NA means that the paper does not involve crowdsourcing nor research with798

human subjects.799

• Including this information in the supplemental material is fine, but if the main contribu-800

tion of the paper involves human subjects, then as much detail as possible should be801

included in the main paper.802

• According to the NeurIPS Code of Ethics, workers involved in data collection, curation,803

or other labor should be paid at least the minimum wage in the country of the data804

collector.805

15. Institutional review board (IRB) approvals or equivalent for research with human806

subjects807

Question: Does the paper describe potential risks incurred by study participants, whether808

such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)809

approvals (or an equivalent approval/review based on the requirements of your country or810

institution) were obtained?811

Answer: [NA]812

Justification: This paper does not involve crowdsourcing nor research with human subjects.813

Guidelines:814

• The answer NA means that the paper does not involve crowdsourcing nor research with815

human subjects.816
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• Depending on the country in which research is conducted, IRB approval (or equivalent)817

may be required for any human subjects research. If you obtained IRB approval, you818

should clearly state this in the paper.819

• We recognize that the procedures for this may vary significantly between institutions820

and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the821

guidelines for their institution.822

• For initial submissions, do not include any information that would break anonymity (if823

applicable), such as the institution conducting the review.824

16. Declaration of LLM usage825

Question: Does the paper describe the usage of LLMs if it is an important, original, or826

non-standard component of the core methods in this research? Note that if the LLM is used827

only for writing, editing, or formatting purposes and does not impact the core methodology,828

scientific rigorousness, or originality of the research, declaration is not required.829

Answer: [NA]830

Justification: The core method development in this research does not involve LLMs as any831

important, original, or non-standard components.832

Guidelines:833

• The answer NA means that the core method development in this research does not834

involve LLMs as any important, original, or non-standard components.835

• Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)836

for what should or should not be described.837
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