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Abstract

Referring video object segmentation (RVOS) aims to identify, track and segment

]
2 the objects in a video based on language descriptions, which has received great
3 attention in recent years. However, existing datasets remain focus on short video
4 clips within several seconds, with salient objects visible in most frames. To advance
5 the task towards more practical scenarios, we introduce Long-RVOS, a large-scale
6 benchmark for long-term referring video object segmentation. Long-RVOS con-
7 tains 2,000+ videos of an average duration exceeding 60 seconds, covering a variety
8 of objects that undergo occlusion, disappearance-reappearance and shot changing.
9 The objects are manually annotated with three different types of descriptions to

10 individually evaluate the understanding of static attributes, motion patterns and spa-

11 tiotemporal relationships. Moreover, unlike previous benchmarks that rely solely

12 on the per-frame spatial evaluation, we introduce two new metrics to assess the

13 temporal and spatiotemporal consistency. We benchmark 6 state-of-the-art methods

14 on Long-RVOS. The results show that current approaches struggle severely with

15 the long-video challenges. To address this, we further propose ReferMo, a promis-

16 ing baseline method that integrates motion information to expand the temporal

17 receptive field, and employs a local-to-global architecture to capture both short-

18 term dynamics and long-term dependencies. Despite simplicity, ReferMo achieves

19 significant improvements over current methods in long-term scenarios. We hope

20 that Long-RVOS and our baseline can drive future RVOS research towards tackling

21 more realistic and long-form videos. Our dataset and code will be released.

22 1 Introduction

A2D-Sentences
23 Referring Video Object Segmentation (RVOS) [2, 7, 44] ;*;?f'gf\;ls;”;e”ces
24 is an emerging task that aims to identify, track and seg- Refer-YouTube-VOS
25 ment the object in the video based on a natural lan- MeVis
26 guage description. Unlike traditional semi-supervised % Long V08 (ovs)
27 VOS models that require first-frame masks as the object z
28 prompt, RVOS models rely solely on text descriptions to 5
29 segment the target. Considering its potential applications
30 like video editing, growing efforts have been devoted 10
31 to this field [7, 15, 25, 30, 33]. Recently, the advent of s[O
32 multi-modal large language models [17, 27, 51] and seg- o
33 ment anything models [21, 35] has further accelerated 0 1015 55 60 65
34 this progress [l, 47’ 50, 54]. Average Duration (seconds)

Figure 1: Duration comparison of cur-
35 Despite these advances, current RVOS datasets [7, 11, 20,  rent RVOS datasets. The circle size indi-
36 36] remain limited to short video clips lasting only a few  cates the number of frames.
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"A monkey-like toy." Static Typ

Figure 2: Examples from Long-RVOS dataset, with frame indices displayed in the upper left, and
selected objects masked in orange M. Long-RVOS contains extensive long-term videos, where the
objects always undergo occlusion, disappearance-reappearance and shot changing. In addition, the
objects are annotated with three different types descriptions: static, dynamic and hybrid.

seconds, with target objects clearly visible in most frames. For state-of-the-art (SOTA) methods, in
order to capture the target object effectively, it is inevitable to integrate the text and spatiotemporal
information throughout the video. However, when the video becomes longer, the number of distractors
also increase accordingly, making it more challenging to perform sufficient spatiotemporal reasoning
and capture the key information. Especially in RVOS, many text descriptions (e.g., “the cat jumps
down”) only refer to a brief fragment in the video. In addition, due to the GPU memory limitation,
existing methods typically sample 4~8 frames per video for training, but use all the frames during
inference. As the video length increases, the gap between training and inference phases may become
more pronounced. Despite these concerns, due to the lack of a long-term RVOS dataset, the exact
challenges posed by longer videos remain unclear.

Another concern lies in the evaluation metrics. Existing RVOS benchmarks [7, 11, 20, 36] typi-
cally evaluate performance by simply averaging the frame-wise segmentation metrics (e.g., J &F).
However, in real-world videos, the target objects do not appear in every frame, due to occlusion
and constrained camera views. Therefore, a robust RVOS model should exhibit a sound temporal
consistency. This means it should not only accurately segment the target when it is present, but also
be able to predict its absence by outputting an empty mask. However, this capability of temporal
consistency can not be adequately reflected by current metrics.

To address these gaps, this work proposes Long-RVOS, a large-scale benchmark for long-term video
object segmentation. Long-RVOS is the first minute-level dataset in RVOS field, designed to tackle
various realistic long-video challenges such as frequent occlusion, disappearance-reappearance and
shot changing, as shown in Figure 1 and Figure 2. Additionally, we introduce two new metrics
for better evaluation of temporal consistency: tIoU, which measures the temporal overlap between
predicted and ground-truth mask sequences; and vIoU, which further measures the spatiotemporal
volume overlap between them. We benchmark 6 state-of-the-art (SOTA) methods on Long-RVOS. The
results demonstrate that while notable progress has been achieved in existing short-term benchmarks,
these SOTA models still significantly struggle in realistic long-term scenarios, in both frame-level
segmentation and video-level temporal consistency.

To tackle the challenges posed by Long-RVOS, we present a baseline method ReferMo, which
integrates additional motion frames to expand the temporal receptive field during training, and
employs a local-to-global architecture to perceive both static attributes, short-term dynamics and
long-term dependencies. Specifically, ReferMo decomposes each video into a sequence of clips,
each consisting of a high-resolution keyframe and multiple low-resolution motion frames. Then, it
perceives the static appearance and short-term motion within local video clip, and captures the global
target in long-term context via inter-clip interactions. In this way, the temporal receptive field is
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Table 1: Statistical overview of representative RVOS datasets. Long-RVOS features the longest video
duration and the most diverse object classes. Besides, Long-RVOS offers explicit text description
types for finer-grained evaluation.

Dataset Year Videos Mea_m Totz_ﬂ Meanv Masks Objects Obj,e,:CF Text Text
duration duration frames classes type
A2D-Sentences [11] 2018 3,782 4.9s 5.2h 32 58k 4,825 6 6,656 X
JHMDB-Sentences [11] 2018 928 1.3s 0.3h 343 32k 928 1 928 X
Ref-DAVIS17 [20] 2018 90 2.9s 0.1h 69.0 14k 205 78 1,544 X
Refer-YouTube-VOS [36] 2020 3,978 4.5s 5.0h 27.2 131k 7,451 94 15,009 X
MeViS [7] 2023 2,006 13.2s 7.3h 79.0 443k 8,171 36 28,570 X
Long-RVOS (ours) 2025 2,193 60.3s 36.7h 3617 2.1M 6,703 163 24,689 v

expanded from multiple frames to multiple clips, but the training cost does not increase significantly.
Despite simplicity, ReferMo achieves significant improvements over existing RVOS approaches,
serving a promising baseline for long-term referring video object segmentation.

Our contributions are summarized as follows: (i) We build Long-RVOS, the first large-scale bench-
mark for long-term RVOS. In Long-RVOS, we provide explicit description types and introduce
new metrics to enable more comprehensive evaluation. (ii) We benchmark 6 state-of-the-art RVOS
approaches on Long-RVOS, and propose a promising baseline ReferMo to address the challenges in
long-video scenarios. These contributions establish a foundation for developing more robust RVOS
models to handle the realistic long-term videos.

2 Related Works

RVOS Benchmarks. Given an object description, RVOS aims to identify, tracking and segment
the referring object throughout the video. This task was initially introduced by Gavrilyuk et al.
[11] and Khoreva et al. [20] in 2018, and has gradually become a popular topic in vision-language
understanding. Gavrilyuk et al. [11] built A2D-Sentences and JHMDB-Sentences datasets, which
focus on distinguishing different actors in a video through the descriptions about appearance and
actions. Khoreva et al. [20] built Ref-DAVIS17 [20], which covers more diverse object types. Later,
Ref-Youtube-VOS [36] was developed to further expand the benchmark scale in this field. Recently,
MeViS [7] was proposed to highlight the importance of motion understanding in RVOS task. Despite
the efforts, these benchmarks remain limited to short video clips lasting only a few seconds, with
target objects clearly visible in most frames. Besides, they also lack sufficient evaluation mechanisms
to consider the models’ specific capabilities in various aspects.

RVOS Approaches. Recent RVOS approaches are mainly based on Transformer-based end-to-
end architecture, represented by MTTR [2] and ReferFormer [44]. For an effective and consistent
object identification across the frames, follow-up works [14, 15, 30, 39] focus on integrating more
object-level temporal information. ReferDINO [25] further improves the object-level visual-language
understanding by inheriting the object grounding capability of GroundingDINO [28]. Meanwhile,
the recent emergence of segment anything models, i.e., SAM [21] and SAM2 [35], provides unique
opportunity for downstream segmentation tasks. Some frontier studies [1, 5, 26, 47, 50] explore
to incorporate SAM and SAM?2 into RVOS approaches, achieving significant improvements on
existing benchmarks. For example, VideoLISA [1] incorporates large language models with SAM
for reasoning video segmentation. SAMWISE [5] integrate text prompts into SAM2 by inserting
trainable adapters. While these models achieve great progress in current short-video benchmarks,
their abilities and robustness in handling real-world long videos is still unclear.

Long-term Video Understanding. Real-world videos are always long, untrimmed, and involves
multiple events. To promote research into long-term video understanding, many large-scale bench-
marks [3, 10, 31, 43] have been constructed. However, these benchmarks are mainly constructed
for video question answering and temporal action localization, containing only sparse annotations
such as timestamps, action labels and captions. To support object-level long-term understanding,
some datasets including VidOR [37] and LaSOT [9] also provide dense annotations of bounding
boxes. However, long-video datasets with pixel-level dense annotations are still very scarce. Recently,
LVOS [16] is built for long-term video object segmentation. However, it is limited in scale and lacks
text annotation. In this work, we build Long-RVOS, the first large-scale benchmark for long-term
video object segmentation, providing both pixel-wise annotations and diverse object descriptions.
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3 Long-RVOS: A Comprehensive Benchmark for Long-term RVOS

3.1 Video Collection

Previous RVOS datasets [7, 11, 20, 36] were L3328 5% gg* §\

typically constructed by providing text anno- Gqu3 528883888 5 < S s

tations on their corresponding VOS datasets 000//:‘5/’0'/%%@ ng{&f;“i &
(e.g., DAVIS17 [34], YouTube-VOS-2019 [46] o A Ar Soti4l SIS
and MOSE [8]). However, the existing long- °’<>fci°f@f’9 Music %ﬁ\c’}" <0
term VOS datasets like LVOS [16] are lim- s,fff 9‘“}‘;9\\'\“9
ited in scale (containing only 720 videos), . y’;«jmp SMbrtation g “};‘}3\9
and most videos feature only one object tar-  Pans . Soore g cimbid
get. Therefore, in order to establish a large- ot g
scale and diverse RVOS benchmark, we by- coach Surfing
pass the existing VOS datasets and turn to inte- Pl © Kitchen Ct;;-ma'li
grate multi-source long video datasets. Specif- s\zfg“e Daily b’ggg,;g
ically, we build Long-RVOS based on three O & Commodity ./ N oo ltng
long-video datasets: TAO [6], VidOR [37], %%, Varine 8% w2k
and Ego-Exo4D [12]. Moreover, TAO is a Qo%“"(;cziz:o. Terestial Afinal 0;5;:@;%
federated dataset combining multiple sources %@QZ@?@'.... 00000 o@%ﬁ”"%ﬁo

like Charades [38], LaSOT [9], ArgoVerse [4], MR T E UL

AVA [13], YECC100M [41], BDD-100K [49], F788%%8% §%°

and HACS [53]. We select videos and objects

based on the following criteria: Figure 3: Overview of object categories and scenes

in Long-RVOS.
¢ The video duration exceeds 20 seconds.

* Objects that belong to background, ambiguous or unknown categories are excluded.

» Each selected video must contain more than two valid objects, and at least one object is not
continuously visible.

With these criteria, we have initially collected over 3K videos and 8K objects as candidates. After
careful inspections on quality, we finally select 2,193 videos and 6,703 objects to build Long-RVOS.

3.2 Dataset Annotation.

Text Annotation. We develop an online platform for annotating object descriptions. This platform
randomly samples a video from our dataset and displays it, with all target objects highlighted by
bounding boxes. To ensure the diversity of annotations, each video can be sampled repeatedly at
most three times. The annotators consisting of 20 college students are asked to watch the videos and
provide the following three types of descriptions for each object:

* Static type includes appearance (e.g., colors and shapes), relative position (e.g., “the left cat”), and
environmental context (e.g., “on the grass”).

* Dynamic type includes motions, changes over time (e.g., in position or state) and interactions with
other entities (e.g., “the cat chasing a mouse”).

* Hybrid type integrates both static and dynamic attributes to provide comprehensive object cues.

The key annotation principle is that every single description, regardless of type, must clearly distin-
guish the target object from others. For objects that cannot be distinguished by only static or dynamic
attributes, the corresponding type of annotation can be skipped. After this annotation phase, we have
collected over 30K text descriptions. These annotations and the corresponding videos are then sent
to a validation team formed by three experts for quality verification. Any descriptions that violate
our principle are directly removed. Besides, we do not use techniques like synonym replacement to
artificially scale up the text annotations, keeping the dataset clear and authentic to support reliable
RVOS training. Finally, we gather 24,689 high-quality descriptions for building Long-RVOS.

Mask Annotation. Our source datasets [0, 12, 37] have provided sparse bounding-box annotations.
For each object, we segment the video into clips based on the annotated frames. Then, we utilize
SAM2 [35], the state-of-the-art VOS model, to track the objects within each clip and produce
high-quality masks, by regarding the annotated bounding box as the first-frame prompt. To ensure
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Figure 4: Representative statistics of Long-RVOS.

annotation quality, we conduct an iterative check—correct workflow. Specifically, the validation team
checks every object’s mask separately in the video, and marks the objects with inaccurate annotations.
To facilitate the correction process, we develop an interactive annotation tool based on SAM2. This
tool loads a marked object each time and visualizes its masks in the video. Nine annotators use our
tool to refine the masks with point or box prompts, and remove masks from object-absent frames.
The corrected results are then returned to the checking queue, and this check—correct loop repeats
until all mask annotations are qualified.

3.3 Dataset Statistics

A detailed comparison with five existing RVOS datasets is shown in Table 1. Notably, Long-
RVOS offers significantly longer video duration than existing datasets. In addition, it contains the
largest number of object classes and mask annotations. The large scale of Long-RVOS supports
comprehensive training and evaluation of RVOS models.

Diverse Objects and Scenes. Long-RVOS is constructed by integrating multiple sources of video
datasets, achieving a wide variety of objects and scenes, as illustrated in Figure 3. These sources
include indoor videos from Charades [38], outdoor videos from LaSOT [9], movie scenes from
AVA [13], egocentric videos from Ego-Exo4D [12], and more diverse videos from other datasets [37,
41, 53]. In total, Long-RVOS contains 163 object categories, significantly surpassing the existing
RVOS datasets. As shown in Figure 4 (a), while Long-RVOS primarily focuses on human instances
(71.9%), it also covers a diverse range of animals (12.7%) and instruments (15.4%). In Figure 4 (b)-
(d), we present further statistics on the videos and objects in Long-RVOS. Notably, the object number
of each video spans from 2 to 14, preventing over-reliance on the most salient object and highlighting
text-guided segmentation. With such extensive diversity, Long-RVOS can serve a comprehensive
benchmark for RVOS research, facilitating the development of more real-world applications.
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Diverse Descriptions. In real-world applications, user queries are always unpredictable. They might
refer to salient attributes or instantaneous actions. To enable more comprehensive evaluation of
model capabilities, Long-RVOS introduces three distinct types of text descriptions — static, dynamic,
and hybrid. By explicitly categorizing these types, Long-RVOS prevents evaluation bias toward
specific attribute cues (e.g., color or position), ensuring a fair and robust assessment. We present
the detailed statistics of text descriptions in Figure 4 (c)-(g). Critically, Long-RVOS maintains a
balanced distribution of text types, and the description number for each object can vary from 1 to 9.
These properties encourage comprehensive learning of diverse object attributes. With its explicit type
annotations and diverse object descriptions, Long-RVOS provides a comprehensive benchmark for
training and evaluating RVOS models in more realistic scenarios.

3.4 Evaluation Metrics

Previous RVOS benchmarks tend to evaluate model performance with the frame-wise spatial metrics,
such as J&F. Here, J denotes the Intersection-over-Union (IoU) between the predicted and
ground-truth masks, F measures the contour accuracy, and J &.F is their average over all the frames.
However, these metrics focus solely on the per-frame segmentation quality, neglecting the temporal
consistency. A robust RVOS model should accurately segment the target when it is present and
correctly output an empty mask when it is absent. Inspired by the field of spatiotemporal video
grounding [40, 52], we additionally introduce two new metrics, tIoU and vIoU, in Long-RVOS to
individually evaluate the temporal and spatiotemporal performance.

Formally, let M, M, € {0,1}H#*W denote the predicted and ground-truth masks at ¢-th frame,
respectively, where ¢ € [1,7]. The frame-index sets of non-empty masks are defined as 7 = {¢ |

| My]lo > 0} (for predictions) and T = {¢ | ||M]jo > 0} (for the ground-truth), where the £y-norm
|l - []o denotes the count of non-zero elements. Then, tIoU is obtained by computing their IoU:

tIoU:T—7 whereT; =T NT and T, =T UT, 1)
and vIoU computes the volume IoU between predicted and ground-truth mask sequences:
1 A; N
vloU = — Z Ji, where J; = M 2)
T My UM,

YoteT;

By combining the spatial metric J&F, temporal metric tIoU and spatiotemporal metric vIoU,
Long-RVOS establishes a rigorous evaluation protocol for RVOS research.

4 ReferMo: A Baseline Approach

As illustrated in Figure 5, ReferMo decomposes the video into a sequence of clips, each consisting
of a high-resolution keyframe and subsequent low-resolution motion frames. Then, it perceives the
static appearance and short-term motion within local video clip, and captures the object target in
long-term context by integrating the cross-clip information. Critically, ReferMo only predicts target
masks over the keyframes, and the masks on the remain frames are generated by a pretrained object
tracker (e.g., SAM2 [35]). In this way, ReferMo achieves a trade-off between training costs and
long-term understanding without processing a large number of high-resolution frames.

4.1 Video Decomposition

Typically, a long-term video is composed of multiple shots, and the video frames within each shot
often show significant temporal redundancy. This redundancy can be efficiently described by motion
information to reduce the frame-by-frame computations. Inspired by Video-LaVIT [18], we employ
the MPEG-4 [23] compression technique to extract keyframe and motion information from the videos.
More sophisticated (but expensive) keyframe selection strategies [42, 45] can also be explored, but
they are not the primary focus of this work. In MPEG-4, a video is decomposed into multiple clips,
where each clip consists of a keyframe Z € R¥*W >3 and the motion vectors M € RT* 16X 16 %2 of
its subsequent 7" frames. Unlike the dense optical flow, these motion vectors can be directly extracted
during the compressed video decoding process, making them well-suited for processing large-scale,
long-term videos. The details of motion extraction process are provided in the supplementary.
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— "A student watched two girls leave, then rushed to the bathroom, and finally started practicing boxing moves.” —

Figure 5: Overview of ReferMo. A video is decomposed into clips (keyframe + motion frames).
ReferMo perceives the static attributes and short-term motions within each clip, then aggregates
inter-clip information capture the global target. Notably, ReferMo is supervised by only keyframe
masks, and SAM?2 is only used at inference for target tracking in subsequent frames.

4.2 From Local Perception to Global Interaction

Different from the previous RVOS methods [25, 30, 48]
that perform vision-language fusion on each single frame,
we introduce motion representations to enable clip-level Object
vision-language fusion. For each video clip, as shown in Embeddings
Figure 6, the local perceiver encodes the text, keyframe
and motion information through three separate encoders,
and then employs a multi-modal fuser to progressively ag-
gregate these information for clip-level object extraction.
By collecting the objects across different video clips, we
perform global temporal interaction to enable consistent
object prediction and long-term temporal understanding. [ Text ] / Image \ / Motion \
E| r

) Encoder ncode Encoder
Motion Encoder. The motion vectors are first embeded T

into a d-dimensional space via a linear projector. Then,

the motion encoder performs self-attention separately “': ;:”‘:‘:'"S*I:’:J:hfd
along the spatial and temporal dimensions to extract the g
spatiotemporal motion features M € RT* 16 %76 %4 No-

tably, we implement the spatial attention as deformable ~ Figure 6: Overview of local perceiver.
attention due to the large number of spatial tokens.

Attention

Multi-modal Fuser
Dual Attention
Spatiotemporal

Image-Motion Fusion. Modern image encoders (e.g., Swin Transformer [29]) typically output
multi-scale feature maps I; € R¥:xWixd j ¢ [1 4]. To match these spatial resolutions, we adopt a
series of spatial convolutions with specific strides over the motion features M to produce multi-scale
motion features M; € RT>*H:xWixd At each scale i, we treat the keyframe feature I; as query and
perform cross-attention along the temporal dimension to aggregate M; into M; € R7:xWixd o

avoid undesired motion noise, we fuse the keyframe and motion features via the spatial-aware and
channel-aware gating mechanisms:

Mi* = (U(Il ' WdIown) ( Wdown)) : WUP’ (3)
—
Spatial Gate
F, =1+ Yi @maX(Mi*vo)Qv “)
~

Channel Gate
where W1 WM e RY*" indicate the low-rank projectors that compress the features to a lower
dimension r, and W, € R™*? is a projector to resort the dimension. o denotes Sigmoid function and
® denotes Hadamard product. v € R is a learnable vector to modulate the channel-wise weights.
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Vision-Language Fusion. We use the dual cross-attention modules [24, 28] for deep vision-language
fusion. Formally, given the clip-level vision features F' € R™*< and the language features £ € RV*9,
where NV and L individually denote their token number, we derive the cross-modal enhanced vision

features F' and language features FE as follows:
F-ET
vd
For simplicity, the linear projections for multi-head attentions are omitted. The output features F
and F are then fed into the object decoder to extract object features.

A= F = Softmax(A) - E, E = Softmax(A") - F. 3)

Global Interaction. To enable consistent object prediction and long-term temporal understanding,
we collect the object features across video clips to perform global temporal interactions. Following
ReferDINO [25], we use the Hungarian algorithm [22] to align the objects clip-by-clip. Then, we
perform temporal self-attention over the aligned object features to achieve global modeling. For

better modality alignment, we also infuse the language information £ into the object features through
a cross-attention layer. Finally, the interacted object features are output to the segmentation head for
generating instance masks. Note that these masks are only predicted for the key frame within each
clip, serving as object anchors for SAM2’s mask propagation in subsequent frames.

S Experiments

5.1 Experiment Setup

Dataset Split. Long-RVOS is a large-scale dataset containing 2,193 videos and 24,689 sentences,
which are split into three subsets: a training set of 1,855 videos and 20,722 sentences, a validation set
of 113 videos and 1,379 sentences, and a test set of 225 videos and 2,588 sentences.

Evaluation Metrics. We use three kinds of evaluation metrics: the spatial metric 7 &F, the temporal
metric tIoU and the spatiotemporal metric vIoU. Long-RVOS provides three types of descriptions:
static, temporal and hybrid. We report performance for each type separately and overall. Additionally,
we report the FPS for each competitor because efficiency is a major concern for long-video processing.

Implementation Details. We follow the default hyper-parameter settings of ReferDINO [25] and
use Swin-Tiny as the backbone. For SAM2 [35], we use the sam2.1_hiera_large version. In
MPEG-4 [23], each video clip typically consists of a keyframe and the motion vectors for up to 11
subsequent frames. During training, we randomly sample 6 clips and use 3-frame motion vectors.
The input frames are resized to have the longest side of 640 pixels and the shortest side of 360
pixels during training and evaluation. Following the settings on MeViS [7], we do not use referring
image segmentation datasets (e.g., RefCOCO/+/g [19, 32]) for pretraining. We train ReferMo on
Long-RVOS dataset for 6 epochs, which take 24 hours on 8 Nvidia A6000 GPUs.

5.2 Benchmark Results

Overall Comparison. We compare ReferMo with six recent RVOS methods on Long-RVOS. All
models in comparison are trained on Long-RVOS under consistent experimental settings for fairness.
As demonstrated in Table 2, realistic long-video scenarios remain a significant challenge for current
RVOS models. While the SAM2-based methods [5, 26] achieve SOTA performance on existing
short-term benchmarks [7, 20, 36], they significantly struggle in Long-RVOS. This suggests that their
improvements may primarily stem from SAM?2’s superior tracking and segmentation capabilities,
rather than better language-guided object understanding. As the videos grow longer and more
complex, it becomes more challenging to perform video-language reasoning and distinguish the
objects, which leads to their performance degradation. In contrast, our baseline ReferMo integrates
the static attributes, short-term dynamics and long-term dependencies to perform object-level visual-
language reasoning, achieving significant improvements over existing methods. These findings
highlight the need for both frame-level segmentation precision and video-level visual-language
understanding to address the long-video challenges in Long-RVOS.

Fine-grained Evaluation. Long-RVOS provides three types of text descriptions to enable rigorous
evaluation. For most models, the performance for static and hybrid types is comparable and largely
better than that for dynamic type. This implies a strong bias in current RVOS models toward static
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Static Dynamic Hybrid Overall

Method Year FPS
J&F tloU vIoU J&F tloU vIoU J&F tloU vIoU J&F tloU vIoU

Without SAM / SAM2

SOC [30] 2023 348 677 284 349 687 288 351 680 285 349 68.1 286 53.8
MUTR [48] 2024 43.0 70.1 367 402 708 348 432 703 372 422 704 362 204
ReferDINO [25] 2025 50.7 719 428 459 719 389 492 71.5 417 487 717 412 464
With SAM / SAM2

VideoLISA [1] 2024 343 69.6 289 310 69.7 269 339 694 286 331 69.6 282 6.6
GLUS [26] 2025 364 682 343 376 689 358 359 680 339 366 684 346 36
SAMWISE [5] 2025 366 684 292 343 686 28.1 338 694 284 356 684 286 7.0
ReferMo 2025 535 714 440 481 712 401 522 712 436 513 712 426 525

Table 2: Comparison of state-of-the-art RVOS models on Long-RVOS test set. FPS is estimated at
360P on Nvidia A6000 GPUs, excluding the video loading time.

51.5
Dataset Point Box Mask Model J&F J F g0
@
MeViS [7]  Valid_u 77.3 80.0 80.6 ReferDINO 49.1 47.6 50.6 g
50.0
Valid 534 545 535 ReferMo  49.6 480 512 &,
Long-RVOS 01 3 5 8 11
Test 52.8 539 533 -w/o motion 47.5 46.0 48.9 Motion length
(a) Oracle analysis with SAM2. (b) Results on the keyframes. (c) Different motion lengths.

Table 3: Oracle analysis and ablation studies.

attributes. Across different models, while the J&F scores show significant variance, their tloU
are relatively consistent. This reveals that existing RVOS models have little performance gap in
temporal consistency, highlighting the need for effective tracking mechanisms to handle frequent
target disappearance in long-term videos. ReferMo significantly outperforms other models across
various types and metrics, except for tloU, where it is slightly inferior to ReferDINO. We speculate
that this is because ReferMo only performs language-guided reasoning on keyframes, resulting in
suboptimal object identification on motion frames.

Oracle Analysis. We provide SAM2 with first-frame ground-truth object prompts and evaluate
its tracking performance across different datasets. As shown in Table 3 (a), the oracle results for
Long-RVOS (52.8~54.5 J &JF) are significantly lower than those for MeViS (77.3~80.6 J &F). The
notable performance gap of nearly 25% demonstrates the long-term challenges in Long-RVOS.

5.3 Ablation Studies

Results on Keyframes. In Table 3 (b), we compare the performance of ReferMo and ReferDINO [25]
on the keyframes. We focus on the spatial metrics since the length of the keyframe sequence is
short. Note that ReferDINO is trained on all frames, while our ReferMo is only trained on keyframes.
However, ReferMo still outperforms ReferDINO by 0.5% in J&F, owing to the integration of
motion information. When ablating it, we see a significant 2.1% performance drop in 7 &F. These
results encourage further exploration of sparse-frame supervision for RVOS task.

Effect of Motion Information. We investigate the impact of varying the number of motion frames in
ReferMo. As shown in Table 3 (c), the performance without motions is only 49.7 7 &F. However,
even using just one motion frame yields +1.6% 7 &F improvements. Increasing the motion length to
3 frames improves J &F to 51.3, but further increasing only leads to marginal gains.

6 Conclusion

In this work, we introduce Long-RVOS, a large-scale benchmark for long-term referring video object
segmentation, comprising over 2,000 videos averaging 60+ seconds to address the limitations of
existing short-term datasets. To enable comprehensive and rigorous evaluation, we provide three types
of descriptions and two novel metrics, tIoU and vIoU. Results on Long-RVOS indicate that current
RVOS methods struggle severely in long-video scenarios. Furthermore, we propose ReferMo, a
simple motion-enhanced baseline that significantly outperforms existing SOTA methods on long-term
videos. We believe that Long-RVOS and ReferMo will provide a foundation for future research to
develop robust RVOS models tackling real-world long-form videos.



342

343
344
345

346
347
348

349
350
351

352
353
354
355

356
357
358

359
360
361

362
363
364

365
366

368
369
370

371
372
373

374
375
376

377
378
379
380

381
382
383

385
386
387

388
389
390

References

(1]

(2]

(3]

(4]

(5]

(6]

(7]

(8]

(9]

[10]

[11]

[12]

[13]

[14]

[15]

Z. Bai, T. He, H. Mei, P. Wang, Z. Gao, J. Chen, Z. Zhang, and M. Z. Shou. One token to
seg them all: Language instructed reasoning segmentation in videos. Advances in Neural
Information Processing Systems, 37:6833-6859, 2024. 1, 3,9

A. Botach, E. Zheltonozhskii, and C. Baskin. End-to-end referring video object segmentation
with multimodal transformers. In Proceedings of the IEEE/CVF Conference on Computer
Vision and Pattern Recognition, pages 4985-4995, 2022. 1, 3

F. Caba Heilbron, V. Escorcia, B. Ghanem, and J. Carlos Niebles. Activitynet: A large-scale
video benchmark for human activity understanding. In Proceedings of the ieee conference on
computer vision and pattern recognition, pages 961-970, 2015. 3

M.-F. Chang, J. Lambert, P. Sangkloy, J. Singh, S. Bak, A. Hartnett, D. Wang, P. Carr, S. Lucey,
D. Ramanan, et al. Argoverse: 3d tracking and forecasting with rich maps. In Proceedings
of the IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 8748-8757,
2019. 4

C. Cuttano, G. Trivigno, G. Rosi, C. Masone, and G. Averta. Samwise: Infusing wisdom in
sam?2 for text-driven video segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2025. 3, 8,9

A. Dave, T. Khurana, P. Tokmakov, C. Schmid, and D. Ramanan. Tao: A large-scale benchmark
for tracking any object. In Computer Vision—-ECCV 2020: 16th European Conference, Glasgow,
UK, August 23-28, 2020, Proceedings, Part V 16, pages 436—454. Springer, 2020. 4

H. Ding, C. Liu, S. He, X. Jiang, and C. C. Loy. Mevis: A large-scale benchmark for
video segmentation with motion expressions. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 2694-2703, 2023. 1,2, 3,4, 8,9

H. Ding, C. Liu, S. He, X. Jiang, P. H. Torr, and S. Bai. Mose: A new dataset for video object
segmentation in complex scenes. In Proceedings of the IEEE/CVF international conference on
computer vision, pages 20224-20234, 2023. 4

H. Fan, L. Lin, F. Yang, P. Chu, G. Deng, S. Yu, H. Bai, Y. Xu, C. Liao, and H. Ling. Lasot: A
high-quality benchmark for large-scale single object tracking. In Proceedings of the IEEE/CVF
conference on computer vision and pattern recognition, pages 5374-5383, 2019. 3,4, 5

C. Fu, Y. Dai, Y. Luo, L. Li, S. Ren, R. Zhang, Z. Wang, C. Zhou, Y. Shen, M. Zhang, et al.
Video-mme: The first-ever comprehensive evaluation benchmark of multi-modal Ilms in video
analysis. arXiv preprint arXiv:2405.21075, 2024. 3

K. Gavrilyuk, A. Ghodrati, Z. Li, and C. G. Snoek. Actor and action video segmentation from a
sentence. In Proceedings of the IEEE conference on computer vision and pattern recognition,

pages 5958-5966, 2018. 1,2, 3,4

K. Grauman, A. Westbury, L. Torresani, K. Kitani, J. Malik, T. Afouras, K. Ashutosh, V. Baiyya,
S. Bansal, B. Boote, et al. Ego-exo4d: Understanding skilled human activity from first-and
third-person perspectives. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 19383—19400, 2024. 4, 5

C. Gu, C. Sun, D. A. Ross, C. Vondrick, C. Pantofaru, Y. Li, S. Vijayanarasimhan, G. Toderici,
S. Ricco, R. Sukthankar, et al. Ava: A video dataset of spatio-temporally localized atomic visual
actions. In Proceedings of the IEEE Conference on Computer Vision and Pattern Recognition,
pages 6047-6056, 2018. 4, 5

M. Han, Y. Wang, Z. Li, L. Yao, X. Chang, and Y. Qiao. Html: Hybrid temporal-scale
multimodal learning framework for referring video object segmentation. In Proceedings of the
IEEE/CVF International Conference on Computer Vision, pages 13414-13423, 2023. 3

S. He and H. Ding. Decoupling static and hierarchical motion perception for referring video
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 13332-13341, 2024. 1, 3

10



391
392
393

394
395
396
397

398
399
400

401
402
403

404
405
406
407

408
409
410

411
412

413
414

415
416
417

418
419
420

421
422
423

424
425

[16] L. Hong, W. Chen, Z. Liu, W. Zhang, P. Guo, Z. Chen, and W. Zhang. Lvos: A benchmark for
long-term video object segmentation. In Proceedings of the IEEE/CVF International Conference
on Computer Vision, pages 13480-13492, 2023. 3, 4

[17] P.lJin, R. Takanobu, W. Zhang, X. Cao, and L. Yuan. Chat-univi: Unified visual representation
empowers large language models with image and video understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 13700-13710, 2024.
1

[18] Y. Jin, Z. Sun, K. Xu, L. Chen, H. Jiang, Q. Huang, C. Song, Y. Liu, D. Zhang, Y. Song, et al.
Video-lavit: Unified video-language pre-training with decoupled visual-motional tokenization.
arXiv preprint arXiv:2402.03161, 2024. 6

[19] S. Kazemzadeh, V. Ordonez, M. Matten, and T. Berg. Referitgame: Referring to objects in
photographs of natural scenes. In Proceedings of the 2014 conference on empirical methods in
natural language processing (EMNLP), pages 787-798, 2014. 8

[20] A. Khoreva, A. Rohrbach, and B. Schiele. Video object segmentation with language referring
expressions. In Computer Vision-ACCV 2018: 14th Asian Conference on Computer Vision,
Perth, Australia, December 2—6, 2018, Revised Selected Papers, Part IV 14, pages 123-141.
Springer, 2019. 1, 2, 3,4, 8

[21] A. Kirillov, E. Mintun, N. Ravi, H. Mao, C. Rolland, L. Gustafson, T. Xiao, S. Whitehead,
A. C.Berg, W.-Y. Lo, et al. Segment anything. In Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 4015-4026, 2023. 1, 3

[22] H. W. Kuhn. The hungarian method for the assignment problem. Naval research logistics
quarterly, 2(1-2):83-97, 1955. 8

[23] D. Le Gall. Mpeg: A video compression standard for multimedia applications. Communications
of the ACM, 34(4):46-58, 1991. 6, 8

[24] L. H. Li, P. Zhang, H. Zhang, J. Yang, C. Li, Y. Zhong, L. Wang, L. Yuan, L. Zhang, J.-N. Hwang,
et al. Grounded language-image pre-training. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10965-10975, 2022. 8

[25] T. Liang, K.-Y. Lin, C. Tan, J. Zhang, W.-S. Zheng, and J.-F. Hu. Referdino: Referring video
object segmentation with visual grounding foundations. arXiv preprint arXiv:2501.14607, 2025.
1,3,7,8,9

[26] L. Lin, X. Yu, Z. Pang, and Y.-X. Wang. Glus: Global-local reasoning unified into a single
large language model for video segmentation. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, 2025. 3, 8,9

[27] H. Liu, C. Li, Q. Wu, and Y. J. Lee. Visual instruction tuning. Advances in neural information
processing systems, 36:34892-34916, 2023. 1

[28] S.Liu, Z. Zeng, T. Ren, F. Li, H. Zhang, J. Yang, C. Li, J. Yang, H. Su, J. Zhu, et al. Grounding
dino: Marrying dino with grounded pre-training for open-set object detection. In European
Conference on Computer Vision, 2024. 3, 8

[29] Z. Liu, Y. Lin, Y. Cao, H. Hu, Y. Wei, Z. Zhang, S. Lin, and B. Guo. Swin transformer:
Hierarchical vision transformer using shifted windows. In Proceedings of the IEEE/CVF
international conference on computer vision, pages 10012-10022, 2021. 7

[30] Z. Luo, Y. Xiao, Y. Liu, S. Li, Y. Wang, Y. Tang, X. Li, and Y. Yang. Soc: semantic-assisted
object cluster for referring video object segmentation. In Proceedings of the 37th International
Conference on Neural Information Processing Systems, pages 26425-26437,2023. 1,3,7,9

[31] K. Mangalam, R. Akshulakov, and J. Malik. Egoschema: A diagnostic benchmark for very

long-form video language understanding. Advances in Neural Information Processing Systems,
36:46212-46244, 2023. 3

11



438
439
440

441
442
443

444
445

446
447
448
449

450
451
452
453

454
455
456

457
458
459

461
462
463

464

466

467

469

470
471
472

473
474

475
476
477

478
479
480

481
482

484
485

[32] J. Mao, J. Huang, A. Toshev, O. Camburu, A. L. Yuille, and K. Murphy. Generation and
comprehension of unambiguous object descriptions. In Proceedings of the IEEE conference on
computer vision and pattern recognition, pages 11-20, 2016. 8

[33] B. Miao, M. Bennamoun, Y. Gao, and A. Mian. Spectrum-guided multi-granularity referring
video object segmentation. In Proceedings of the IEEE/CVF International Conference on
Computer Vision, pages 920-930, 2023. 1

[34] J. Pont-Tuset, F. Perazzi, S. Caelles, P. Arbeldez, A. Sorkine-Hornung, and L. Van Gool. The
2017 davis challenge on video object segmentation. arXiv preprint arXiv:1704.00675, 2017. 4

[35] N. Ravi, V. Gabeur, Y.-T. Hu, R. Hu, C. Ryali, T. Ma, H. Khedr, R. Rédle, C. Rolland,
L. Gustafson, E. Mintun, J. Pan, K. V. Alwala, N. Carion, C.-Y. Wu, R. Girshick, P. Dol-
lar, and C. Feichtenhofer. Sam 2: Segment anything in images and videos. arXiv preprint
arXiv:2408.00714,2024. 1,3,4,6,8

[36] S. Seo, J.-Y. Lee, and B. Han. Urvos: Unified referring video object segmentation network
with a large-scale benchmark. In Computer Vision—-ECCV 2020: 16th European Conference,
Glasgow, UK, August 23-28, 2020, Proceedings, Part XV 16, pages 208-223. Springer, 2020. 1,
2,3,4,8

[37] X. Shang, D. Dj, J. Xiao, Y. Cao, X. Yang, and T.-S. Chua. Annotating objects and relations in
user-generated videos. In Proceedings of the 2019 on International Conference on Multimedia
Retrieval, pages 279-287. ACM, 2019. 3,4, 5

[38] G. A. Sigurdsson, G. Varol, X. Wang, A. Farhadi, I. Laptev, and A. Gupta. Hollywood in homes:
Crowdsourcing data collection for activity understanding. In Computer Vision—-ECCV 2016:
14th European Conference, Amsterdam, The Netherlands, October 11-14, 2016, Proceedings,
Part I 14, pages 510-526. Springer, 2016. 4, 5

[39] J. Tang, G. Zheng, and S. Yang. Temporal collection and distribution for referring video object
segmentation. In Proceedings of the IEEE/CVF International Conference on Computer Vision,
pages 15466-15476, 2023. 3

[40] Z. Tang, Y. Liao, S. Liu, G. Li, X. Jin, H. Jiang, Q. Yu, and D. Xu. Human-centric spatio-
temporal video grounding with visual transformers. IEEE Transactions on Circuits and Systems
for Video Technology, 32(12):8238-8249, 2021. 6

[41] B. Thomee, D. A. Shamma, G. Friedland, B. Elizalde, K. Ni, D. Poland, D. Borth, and L.-J. Li.
Yfcc100m: The new data in multimedia research. Communications of the ACM, 59(2):64-73,
2016. 4,5

[42] X. Wang, Y. Zhang, O. Zohar, and S. Yeung-Levy. Videoagent: Long-form video understanding
with large language model as agent. In European Conference on Computer Vision, pages 58-76.
Springer, 2024. 6

[43] C.-Y. Wu and P. Krahenbuhl. Towards long-form video understanding. In Proceedings of the
IEEE/CVF Conference on Computer Vision and Pattern Recognition, pages 1884—1894, 2021. 3

[44] J. Wu, Y. Jiang, P. Sun, Z. Yuan, and P. Luo. Language as queries for referring video object
segmentation. In Proceedings of the IEEE/CVF Conference on Computer Vision and Pattern
Recognition, pages 4974-4984, 2022. 1,3

[45] Z. Wu, C. Xiong, C.-Y. Ma, R. Socher, and L. S. Davis. Adaframe: Adaptive frame selection
for fast video recognition. In Proceedings of the IEEE/CVF Conference on Computer Vision
and Pattern Recognition, pages 1278-1287, 2019. 6

[46] N. Xu, L. Yang, Y. Fan, D. Yue, Y. Liang, J. Yang, and T. Huang. Youtube-vos: A large-scale
video object segmentation benchmark. arXiv preprint arXiv:1809.03327, 2018. 4

[47] C. Yan, H. Wang, S. Yan, X. Jiang, Y. Hu, G. Kang, W. Xie, and E. Gavves. Visa: Reasoning
video object segmentation via large language models. arXiv preprint arXiv:2407.11325, 2024.
1,3

12



486
487
488
489

490
491
492

493
494
495

496
497
498

499
500
501

502
503
504

505
506

[48]

[49]

[50]

[51]

[52]

[53]

[54]

S. Yan, R. Zhang, Z. Guo, W. Chen, W. Zhang, H. Li, Y. Qiao, H. Dong, Z. He, and P. Gao.
Referred by multi-modality: A unified temporal transformer for video object segmentation. In
Proceedings of the AAAI Conference on Artificial Intelligence, volume 38, pages 6449-6457,
2024. 7,9

F. Yu, H. Chen, X. Wang, W. Xian, Y. Chen, F. Liu, V. Madhavan, and T. Darrell. Bdd100k:
A diverse driving dataset for heterogeneous multitask learning. Proceedings of the IEEE/CVF
Conference on Computer Vision and Pattern Recognition, pages 2636-2645, 2020. 4

H. Yuan, X. Li, T. Zhang, Z. Huang, S. Xu, S. Ji, Y. Tong, L. Qi, J. Feng, and M.-H. Yang.
Sa2va: Marrying sam?2 with llava for dense grounded understanding of images and videos.
arXiv,2025. 1,3

H. Zhang, X. Li, and L. Bing. Video-llama: An instruction-tuned audio-visual language model
for video understanding. In Proceedings of the 2023 Conference on Empirical Methods in
Natural Language Processing: System Demonstrations, pages 543-553, 2023. 1

Z.Zhang, Z. Zhao, Y. Zhao, Q. Wang, H. Liu, and L. Gao. Where does it exist: Spatio-temporal
video grounding for multi-form sentences. In Proceedings of the IEEE/CVF Conference on
Computer Vision and Pattern Recognition, pages 10668-10677, 2020. 6

H. Zhao, A. Torralba, L. Torresani, and Z. Yan. Hacs: Human action clips and segments
dataset for recognition and temporal localization. Proceedings of the IEEE/CVF International
Conference on Computer Vision, pages 8668—-8678, 2019. 4, 5

R. Zheng, L. Qi, X. Chen, Y. Wang, K. Wang, Y. Qiao, and H. Zhao. Villa: Video reasoning
segmentation with large language model. arXiv preprint arXiv:2407.14500, 2024. 1

13



so7 - NeurIPS Paper Checklist

508

509
510

511

512
513
514

516
517
518
519
520
521
522

523
524

525
526
527

528
529

530

531

533

534
535
536
537
538

539
540
541
542
543
544
545
546
547
548
549
550
551
552
553
554
555
556

557

558
559

1. Claims

Question: Do the main claims made in the abstract and introduction accurately reflect the
paper’s contributions and scope?

Answer: [Yes]

Justification: In this paper, we introduce Long-RVOS, a large-scale benchmark for long-term
referring video object segmentation with comprehensive evaluation. We further propose a
simple yet effective baseline ReferMo to address the long-term challenges.

Guidelines:

* The answer NA means that the abstract and introduction do not include the claims
made in the paper.

* The abstract and/or introduction should clearly state the claims made, including the
contributions made in the paper and important assumptions and limitations. A No or
NA answer to this question will not be perceived well by the reviewers.

* The claims made should match theoretical and experimental results, and reflect how
much the results can be expected to generalize to other settings.

* It s fine to include aspirational goals as motivation as long as it is clear that these goals
are not attained by the paper.

. Limitations

Question: Does the paper discuss the limitations of the work performed by the authors?
Answer: [Yes]

Justification: We discuss the limitations of our ReferMo in Section 5.2. A separate “Limita-
tions” section is provided in the Supplementary.

Guidelines:

* The answer NA means that the paper has no limitation while the answer No means that
the paper has limitations, but those are not discussed in the paper.

* The authors are encouraged to create a separate "Limitations" section in their paper.

* The paper should point out any strong assumptions and how robust the results are to
violations of these assumptions (e.g., independence assumptions, noiseless settings,
model well-specification, asymptotic approximations only holding locally). The authors
should reflect on how these assumptions might be violated in practice and what the
implications would be.

* The authors should reflect on the scope of the claims made, e.g., if the approach was
only tested on a few datasets or with a few runs. In general, empirical results often
depend on implicit assumptions, which should be articulated.

* The authors should reflect on the factors that influence the performance of the approach.
For example, a facial recognition algorithm may perform poorly when image resolution
is low or images are taken in low lighting. Or a speech-to-text system might not be
used reliably to provide closed captions for online lectures because it fails to handle
technical jargon.

 The authors should discuss the computational efficiency of the proposed algorithms
and how they scale with dataset size.

* If applicable, the authors should discuss possible limitations of their approach to
address problems of privacy and fairness.

* While the authors might fear that complete honesty about limitations might be used by
reviewers as grounds for rejection, a worse outcome might be that reviewers discover
limitations that aren’t acknowledged in the paper. The authors should use their best
judgment and recognize that individual actions in favor of transparency play an impor-
tant role in developing norms that preserve the integrity of the community. Reviewers
will be specifically instructed to not penalize honesty concerning limitations.

3. Theory assumptions and proofs

Question: For each theoretical result, does the paper provide the full set of assumptions and
a complete (and correct) proof?
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Answer: [NA]
Justification: The paper does not include theoretical results.
Guidelines:

* The answer NA means that the paper does not include theoretical results.

* All the theorems, formulas, and proofs in the paper should be numbered and cross-
referenced.

* All assumptions should be clearly stated or referenced in the statement of any theorems.

* The proofs can either appear in the main paper or the supplemental material, but if
they appear in the supplemental material, the authors are encouraged to provide a short
proof sketch to provide intuition.

¢ Inversely, any informal proof provided in the core of the paper should be complemented
by formal proofs provided in appendix or supplemental material.

* Theorems and Lemmas that the proof relies upon should be properly referenced.

4. Experimental result reproducibility
Question: Does the paper fully disclose all the information needed to reproduce the main ex-
perimental results of the paper to the extent that it affects the main claims and/or conclusions
of the paper (regardless of whether the code and data are provided or not)?

Answer: [Yes]
Justification: This paper provides comprehensive descriptions of the dataset construction in

Section 3 and the proposed baseline Section 4. The implementation details are present in
Section 5.1.

Guidelines:

* The answer NA means that the paper does not include experiments.

* If the paper includes experiments, a No answer to this question will not be perceived
well by the reviewers: Making the paper reproducible is important, regardless of
whether the code and data are provided or not.

If the contribution is a dataset and/or model, the authors should describe the steps taken
to make their results reproducible or verifiable.

Depending on the contribution, reproducibility can be accomplished in various ways.
For example, if the contribution is a novel architecture, describing the architecture fully
might suffice, or if the contribution is a specific model and empirical evaluation, it may
be necessary to either make it possible for others to replicate the model with the same
dataset, or provide access to the model. In general. releasing code and data is often
one good way to accomplish this, but reproducibility can also be provided via detailed
instructions for how to replicate the results, access to a hosted model (e.g., in the case
of a large language model), releasing of a model checkpoint, or other means that are
appropriate to the research performed.

While NeurIPS does not require releasing code, the conference does require all submis-
sions to provide some reasonable avenue for reproducibility, which may depend on the
nature of the contribution. For example

(a) If the contribution is primarily a new algorithm, the paper should make it clear how
to reproduce that algorithm.

(b) If the contribution is primarily a new model architecture, the paper should describe
the architecture clearly and fully.

(c) If the contribution is a new model (e.g., a large language model), then there should
either be a way to access this model for reproducing the results or a way to reproduce
the model (e.g., with an open-source dataset or instructions for how to construct
the dataset).

(d) We recognize that reproducibility may be tricky in some cases, in which case
authors are welcome to describe the particular way they provide for reproducibility.
In the case of closed-source models, it may be that access to the model is limited in
some way (e.g., to registered users), but it should be possible for other researchers
to have some path to reproducing or verifying the results.
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5. Open access to data and code

Question: Does the paper provide open access to the data and code, with sufficient instruc-
tions to faithfully reproduce the main experimental results, as described in supplemental
material?

Answer: [Yes]

Justification: We will release the new dataset Long-RVOS and the source code of our
baseline ReferMo.

Guidelines:

* The answer NA means that paper does not include experiments requiring code.

* Please see the NeurIPS code and data submission guidelines (https://nips.cc/
public/guides/CodeSubmissionPolicy) for more details.

* While we encourage the release of code and data, we understand that this might not be
possible, so “No” is an acceptable answer. Papers cannot be rejected simply for not
including code, unless this is central to the contribution (e.g., for a new open-source
benchmark).

* The instructions should contain the exact command and environment needed to run to
reproduce the results. See the NeurIPS code and data submission guidelines (https:
//nips.cc/public/guides/CodeSubmissionPolicy) for more details.

* The authors should provide instructions on data access and preparation, including how
to access the raw data, preprocessed data, intermediate data, and generated data, etc.

* The authors should provide scripts to reproduce all experimental results for the new
proposed method and baselines. If only a subset of experiments are reproducible, they
should state which ones are omitted from the script and why.

* At submission time, to preserve anonymity, the authors should release anonymized
versions (if applicable).

* Providing as much information as possible in supplemental material (appended to the
paper) is recommended, but including URLSs to data and code is permitted.

6. Experimental setting/details

Question: Does the paper specify all the training and test details (e.g., data splits, hyper-
parameters, how they were chosen, type of optimizer, etc.) necessary to understand the
results?

Answer: [Yes]
Justification: See Section 5.1.
Guidelines:

* The answer NA means that the paper does not include experiments.

* The experimental setting should be presented in the core of the paper to a level of detail
that is necessary to appreciate the results and make sense of them.

* The full details can be provided either with the code, in appendix, or as supplemental
material.

. Experiment statistical significance

Question: Does the paper report error bars suitably and correctly defined or other appropriate
information about the statistical significance of the experiments?

Answer: [Yes]

Justification: The dataset statistics are provided in Section 3.3 and other experimental
statistics are presented in Section 5.

Guidelines:

* The answer NA means that the paper does not include experiments.

* The authors should answer "Yes" if the results are accompanied by error bars, confi-
dence intervals, or statistical significance tests, at least for the experiments that support
the main claims of the paper.
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8.

10.

* The factors of variability that the error bars are capturing should be clearly stated (for
example, train/test split, initialization, random drawing of some parameter, or overall
run with given experimental conditions).

* The method for calculating the error bars should be explained (closed form formula,
call to a library function, bootstrap, etc.)

* The assumptions made should be given (e.g., Normally distributed errors).

e It should be clear whether the error bar is the standard deviation or the standard error
of the mean.

It is OK to report 1-sigma error bars, but one should state it. The authors should
preferably report a 2-sigma error bar than state that they have a 96% CI, if the hypothesis
of Normality of errors is not verified.

* For asymmetric distributions, the authors should be careful not to show in tables or
figures symmetric error bars that would yield results that are out of range (e.g. negative
error rates).

* If error bars are reported in tables or plots, The authors should explain in the text how
they were calculated and reference the corresponding figures or tables in the text.
Experiments compute resources

Question: For each experiment, does the paper provide sufficient information on the com-
puter resources (type of compute workers, memory, time of execution) needed to reproduce
the experiments?

Answer: [Yes]
Justification: See Section 5.1.
Guidelines:

» The answer NA means that the paper does not include experiments.

* The paper should indicate the type of compute workers CPU or GPU, internal cluster,
or cloud provider, including relevant memory and storage.

* The paper should provide the amount of compute required for each of the individual
experimental runs as well as estimate the total compute.

* The paper should disclose whether the full research project required more compute
than the experiments reported in the paper (e.g., preliminary or failed experiments that
didn’t make it into the paper).

. Code of ethics

Question: Does the research conducted in the paper conform, in every respect, with the
NeurIPS Code of Ethics https://neurips.cc/public/EthicsGuidelines?

Answer: [Yes],
Justification: We have made sure.
Guidelines:

¢ The answer NA means that the authors have not reviewed the NeurIPS Code of Ethics.

* If the authors answer No, they should explain the special circumstances that require a
deviation from the Code of Ethics.

* The authors should make sure to preserve anonymity (e.g., if there is a special consid-
eration due to laws or regulations in their jurisdiction).

Broader impacts
Question: Does the paper discuss both potential positive societal impacts and negative
societal impacts of the work performed?
Answer: [Yes]
Justification: This paper establishes a foundation for long-term video object segmentation,
which potentially enhances the development of realistic video applications, such as video
editing and human-computer interaction. We have briefly discussed the positive impacts
in our abstract and conclusion. A separate “Broader Impacts” section is provided in the
Supplementary.
Guidelines:

17


https://neurips.cc/public/EthicsGuidelines

715

716
77

718
719
720
721

722
723
724
725
726
727
728

729
730
731
732

733
734
735
736
737

738
739
740

741

742
743

744

745

746
747
748
749

750
751

752
753
754
755

756
757
758

760
761

762
763

764
765

766

11.

12.

» The answer NA means that there is no societal impact of the work performed.

* If the authors answer NA or No, they should explain why their work has no societal
impact or why the paper does not address societal impact.

» Examples of negative societal impacts include potential malicious or unintended uses
(e.g., disinformation, generating fake profiles, surveillance), fairness considerations
(e.g., deployment of technologies that could make decisions that unfairly impact specific
groups), privacy considerations, and security considerations.

» The conference expects that many papers will be foundational research and not tied
to particular applications, let alone deployments. However, if there is a direct path to
any negative applications, the authors should point it out. For example, it is legitimate
to point out that an improvement in the quality of generative models could be used to
generate deepfakes for disinformation. On the other hand, it is not needed to point out
that a generic algorithm for optimizing neural networks could enable people to train
models that generate Deepfakes faster.

* The authors should consider possible harms that could arise when the technology is
being used as intended and functioning correctly, harms that could arise when the
technology is being used as intended but gives incorrect results, and harms following
from (intentional or unintentional) misuse of the technology.

* If there are negative societal impacts, the authors could also discuss possible mitigation
strategies (e.g., gated release of models, providing defenses in addition to attacks,
mechanisms for monitoring misuse, mechanisms to monitor how a system learns from
feedback over time, improving the efficiency and accessibility of ML).

Safeguards

Question: Does the paper describe safeguards that have been put in place for responsible
release of data or models that have a high risk for misuse (e.g., pretrained language models,
image generators, or scraped datasets)?

Answer: [NA]

Justification: The paper poses no such risks. Our new benchmark is built upon existing,
publicly available datasets.

Guidelines:

* The answer NA means that the paper poses no such risks.

* Released models that have a high risk for misuse or dual-use should be released with
necessary safeguards to allow for controlled use of the model, for example by requiring
that users adhere to usage guidelines or restrictions to access the model or implementing
safety filters.

* Datasets that have been scraped from the Internet could pose safety risks. The authors
should describe how they avoided releasing unsafe images.

* We recognize that providing effective safeguards is challenging, and many papers do
not require this, but we encourage authors to take this into account and make a best
faith effort.

Licenses for existing assets

Question: Are the creators or original owners of assets (e.g., code, data, models), used in
the paper, properly credited and are the license and terms of use explicitly mentioned and
properly respected?

Answer: [Yes]
Justification: We use publicly available resources to build our dataset.
Guidelines:

* The answer NA means that the paper does not use existing assets.
 The authors should cite the original paper that produced the code package or dataset.

 The authors should state which version of the asset is used and, if possible, include a
URL.

* The name of the license (e.g., CC-BY 4.0) should be included for each asset.
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13.

14.

15.

* For scraped data from a particular source (e.g., website), the copyright and terms of
service of that source should be provided.

o If assets are released, the license, copyright information, and terms of use in the
package should be provided. For popular datasets, paperswithcode.com/datasets
has curated licenses for some datasets. Their licensing guide can help determine the
license of a dataset.

* For existing datasets that are re-packaged, both the original license and the license of
the derived asset (if it has changed) should be provided.

* If this information is not available online, the authors are encouraged to reach out to
the asset’s creators.
New assets

Question: Are new assets introduced in the paper well documented and is the documentation
provided alongside the assets?

Answer: [Yes]
Justification: We cite all the benchmarks and code repositories used.
Guidelines:

* The answer NA means that the paper does not release new assets.

* Researchers should communicate the details of the dataset/code/model as part of their
submissions via structured templates. This includes details about training, license,
limitations, etc.

* The paper should discuss whether and how consent was obtained from people whose
asset is used.

* At submission time, remember to anonymize your assets (if applicable). You can either
create an anonymized URL or include an anonymized zip file.

Crowdsourcing and research with human subjects

Question: For crowdsourcing experiments and research with human subjects, does the paper
include the full text of instructions given to participants and screenshots, if applicable, as
well as details about compensation (if any)?

Answer: [NA]

Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.

* Including this information in the supplemental material is fine, but if the main contribu-
tion of the paper involves human subjects, then as much detail as possible should be
included in the main paper.

* According to the NeurIPS Code of Ethics, workers involved in data collection, curation,
or other labor should be paid at least the minimum wage in the country of the data
collector.

Institutional review board (IRB) approvals or equivalent for research with human
subjects

Question: Does the paper describe potential risks incurred by study participants, whether
such risks were disclosed to the subjects, and whether Institutional Review Board (IRB)
approvals (or an equivalent approval/review based on the requirements of your country or
institution) were obtained?

Answer: [NA]
Justification: This paper does not involve crowdsourcing nor research with human subjects.
Guidelines:

* The answer NA means that the paper does not involve crowdsourcing nor research with
human subjects.
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817 * Depending on the country in which research is conducted, IRB approval (or equivalent)

818 may be required for any human subjects research. If you obtained IRB approval, you
819 should clearly state this in the paper.

820 * We recognize that the procedures for this may vary significantly between institutions
821 and locations, and we expect authors to adhere to the NeurIPS Code of Ethics and the
822 guidelines for their institution.

823 * For initial submissions, do not include any information that would break anonymity (if
824 applicable), such as the institution conducting the review.

825 16. Declaration of LLM usage

826 Question: Does the paper describe the usage of LLMs if it is an important, original, or
827 non-standard component of the core methods in this research? Note that if the LLM is used
828 only for writing, editing, or formatting purposes and does not impact the core methodology,
829 scientific rigorousness, or originality of the research, declaration is not required.

830 Answer: [NA]

831 Justification: The core method development in this research does not involve LLMs as any
832 important, original, or non-standard components.

833 Guidelines:

834 * The answer NA means that the core method development in this research does not
835 involve LLMs as any important, original, or non-standard components.

836 ¢ Please refer to our LLM policy (https://neurips.cc/Conferences/2025/LLM)
837 for what should or should not be described.
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