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ABSTRACT

Document reranking is a key component in information retrieval (IR), aimed at
refining initial retrieval results to improve ranking quality for downstream tasks.
Recent studies—motivated by large reasoning models (LRMs)—have begun in-
corporating explicit chain-of-thought (CoT) reasoning into LLM-based rerankers.
However, the effectiveness of such reasoning for ranking tasks remains underex-
plored. In this work, we present the first systematic study of reasoning in reranking
across both logits-based pointwise and listwise settings, under both supervised
fine-tuning and reinforcement learning. Using diverse benchmarks, including
reasoning-intensive datasets (BRIGHT) and standard IR benchmarks (BEIR), we
find that reasoning-augmented rerankers consistently underperform their direct
counterparts that predict rankings without CoT, despite substantially higher infer-
ence costs. Our analysis reveals three core limitations: (i) in pointwise rerankers,
reasoning breaks calibration and biases models toward the positive class, rais-
ing TPR but lowering TNR, which inflates false positives and degrades ranking in
negative-dominant pools; (ii) in listwise rerankers, explicit reasoning improves the
fit during training but leads to higher variance and fails to improve performance in
both in-domain and out-of-domain evaluations, even when reinforcement learning
shortens rationales; and (iii) overall, directly fine-tuned rerankers remain more
stable, effective, and robust. These findings challenge the assumption that ex-
plicit reasoning is universally beneficial for reranking. We conclude by highlight-
ing future directions, including calibration-aware scoring for pointwise rerankers
and the design of concise, targeted reasoning strategies to mitigate overfitting and
overthinking in listwise rerankers.

1 INTRODUCTION

Document reranking is a crucial step in information retrieval (IR), aimed at refining the coarse-
grained results produced by first-stage retrieval methods. By reordering candidate documents,
reranking improves precision and overall ranking quality, which is essential for downstream applica-
tions such as retrieval-augmented generation (RAG) (Lewis et al., 2020) and recommendation (Ren
et al., 2024). The landscape of reranking is dominated by two primary paradigms: pointwise and list-
wise. Pointwise rerankers independently estimate the relevance score of each query–document pair
and sort documents accordingly. Since each document is processed in isolation, pointwise rerankers
allow parallel computation and efficiency. In contrast, listwise rerankers consider the entire candi-
date set jointly, asking the model to output a ranked list. While computationally more expensive,
listwise rerankers often achieve more accurate rankings by leveraging cross-document interactions
and relative comparisons, which is fundamentally easier than assigning a precise relevance score to
each document in isolation.

With the rise of large language models (LLMs), reranking performance has advanced substantially.
By combining targeted prompts with task-specific fine-tuning, LLM-based rerankers have achieved
state-of-the-art results on diverse benchmarks (Sun et al., 2023a). Recently, large reasoning models
(LRMs), such as DeepSeek-R1 (Guo et al., 2025) and OpenAI o1 (Jaech et al., 2024), have further
drawn attention. Unlike typical LLMs that directly produce answers, LRMs explicitly decode rea-
soning chains before providing the final prediction. This process narrows the gap between input and
output, smooths token-by-token transitions, and has been shown to improve performance in many
tasks. Motivated by these advances, recent studies have sought to extend test-time reasoning to
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reranking via supervised fine-tuning Weller et al. (2025); Ji et al. (2025); Yang et al. (2025) or using
reinforcement learning Zhang et al. (2025); Zhuang et al. (2025); Liu et al. (2025).

Despite these developments, a fundamental question remains unresolved: Does explicit reasoning
truly benefit reranking? Prior work often assumes that chain-of-thought (CoT) reasoning enhances
reranking (Weller et al., 2025; Yang et al., 2025; Zhuang et al., 2025), yet such claims are rarely
supported by fair comparisons against non-reasoning baselines (Weller et al., 2025; Yang et al.,
2025; Zhuang et al., 2025; Liu et al., 2025). Moreover, emerging evidence suggests that reasoning-
augmented rerankers can suffer from overthinking and lengthy reasoning chains introduce noise that
degrades performance (Jedidi et al., 2025; Fan et al., 2025). However, these analyses are limited in
scope, focusing narrowly on pointwise rerankers trained with supervised objectives, and fail to offer
a systematic understanding of reasoning’s actual role in reranking.

In this work, we present the first comprehensive and fair study of reasoning in reranking. To ensure
rigor and comparability, we adopt a unified experimental design: all rerankers are trained on the
MS MARCO dataset, with reasoning-augmented models using CoT chains generated by DeepSeek-
R1. We cover both logits-based pointwise and listwise rerankers, both direct-output and reasoning-
augmented variants, and both supervised fine-tuning (SFT) and reinforcement learning (RL) training
regimes. This setup eliminates inconsistencies across prior work and allows for a clean, apples-
to-apples comparison. We further evaluate models on two complementary benchmarks: BRIGHT,
which emphasizes reasoning-intensive queries, and BEIR, a standard suite of retrieval datasets. The
scale, diversity, and uniformity of this design ensure that our conclusions are not anecdotal but
systematically validated. Our extensive experiments reveal a striking and consistent pattern: under-
current training and inference setups, reasoning-based rerankers underperform their direct-output
counterparts, even though they incur substantially higher inference costs. This finding holds across
architectures, training strategies, and benchmarks, suggesting that explicit reasoning—which ben-
efits many other LLM tasks—does not translate into gains for reranking. Instead, reasoning intro-
duces calibration errors, overthinking, and poor generalization, ultimately harming ranking quality.
Our contributions can be summarized as follows:

• A rigorous, systematic study. We conduct the first large-scale, controlled comparison of rea-
soning vs. direct reranking, covering pointwise and listwise paradigms, SFT and RL training,
and both reasoning-intensive and standard IR benchmarks.

• Clear evidence against reasoning in reranking. Direct-output rerankers consistently outper-
form reasoning-augmented variants, despite the latter’s substantially higher inference cost.

• Deeper insights into failure modes. Our analysis reveals that for pointwise rerankers, rea-
soning does not improve calibrated relevance prediction; instead, it shifts the error distribu-
tion—raising TPR while reducing TNR—which disrupts score calibration and introduces a bias
toward false positives. Similarly, for listwise rerankers, reasoning leads to better training fit but
increases variance and fails to yield gains on both in-domain and out-of-domain evaluations,
even when rationales are shortened via GRPO.

• Guidance for future research. Our findings suggest that reranking should prioritize effi-
cient direct scoring rather than reasoning-heavy approaches. Promising directions include
calibration-aware scoring for pointwise rerankers and designing concise, targeted reasoning
strategies to mitigate overfitting and overthinking in listwise rerankers.

2 PRELIMINARIES

2.1 TASK SETUP

We consider the reranking task in information retrieval (IR), where the goal is to reorder an initial
set of candidate documents so that those most relevant to a query appear at the top. Formally, given
a query q, a retriever first returns a candidate set

C(q) = {d1, d2, . . . , dk}.

The reranker then takes (q, C(q)) as input and produces an improved ordering of the documents in
C(q). This approach reflects the standard two-stage retrieve-and-rerank architecture used in modern
IR systems. First, an efficient retriever, optimized for recall, generates an initial, coarsely-ranked list
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Figure 1: Illustration of Pointwise and Listwise Reranking (Direct vs. Reasoning). In pointwise, each query–
document pair is judged independently, with relevance scores computed as the normalized probability of the
TRUE token over {TRUE,FALSE} logits. Listwise directly optimizes the ranking order over candidate sets,
with or without explicit reasoning.

of documents from a large corpus. Then, a reranker, typically a more expressive model optimized
for precision, refines this list. The goal of this two-stage process is to maximize user satisfaction by
placing the most relevant documents at the very top of the results.

2.2 POINTWISE RERANKER

In the pointwise setting, each query–document pair (q, di) is evaluated independently. Let ξ(q, di)
denote the prompt that encodes the pair, and let the answer space be A = {TRUE, FALSE}, corre-
sponding to tokens τTRUE and τFALSE. For candidate di, the model produces logits ℓi ∈ R|V|, from
which a relevance score is derived as the normalized probability of the TRUE token:

si =
exp(ℓi[τTRUE])

exp(ℓi[τTRUE]) + exp(ℓi[τFALSE])
.

The final ranking is obtained by sorting {si}ki=1 in descending order.

Optionally, a pointwise reranker can be extended with explicit reasoning: before predicting the
binary decision, the model generates an intermediate reasoning trace zi (e.g., a chain-of-thought),

zi ∼ pθ
(
z | ξ(q, di)

)
, si = Pr

θ

(
a = TRUE | ξ(q, di), zi

)
,

where a ∈ A and the probability is computed from the answer-token distribution conditioned on
zi. In practice, multiple traces {z(m)

i }Mm=1 may be sampled and aggregated (e.g., by averaging or
voting). Suppressing zi recovers the non-reasoning formulation above.

2.3 LISTWISE RERANKER

In the listwise setting, the model considers the entire candidate set C(q) jointly. Let φ(q, C(q))
denote the encoding of the query and its candidate list. The model autoregressively generates a
permutation π = ⟨π1, . . . , πk⟩ of indices:

π ∼ pθ
(
π | φ(q, C(q))

)
, πj ∈ {1, . . . , k} \ {π1, . . . , πj−1}.

At inference, one may decode the most likely permutation π̂ (e.g., via greedy or beam search),
or compute ranking scores from partial sequence probabilities. When k exceeds the context win-
dow, candidates can be processed in overlapping blocks (e.g., sliding windows), with local rankings
merged into a global order.

Optionally, a listwise reranker can be extended with explicit reasoning. In this case, the model first
generates a global reasoning trace Z that captures cross-document comparisons:

Z ∼ pθ
(
Z | φ(q, C(q))

)
, π ∼ pθ

(
π | φ(q, C(q)), Z

)
.
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The trace Z may include pairwise judgments, list-level critiques, or structured deliberation, and can
be produced either as a separate stage (generate Z then π) or interleaved with ranking. Suppressing
Z recovers the standard listwise formulation described above.

3 EVALUATING THE IMPACT OF REASONING ON RERANKING

3.1 MODEL VARIANTS

We design four LLM-based rerankers, each corresponding to a different combination of pointwise
vs. listwise and reasoning vs. non-reasoning paradigms:

• Direct-Point (Non-Reasoning Pointwise): the model directly outputs a binary relevance
decision (TRUE/FALSE). We take the logits of the answer token and transform them into a
probability score, which is used for ranking.

• Reason-Point (Reasoning Pointwise): the model first generates a reasoning trace describ-
ing why the document may or may not be relevant, and then produces the final binary
decision. The relevance score is computed from the logits at the answer token position.

• Direct-List (Non-Reasoning Listwise): the model takes the entire candidate list as input
and directly generates a permutation as the output ranking, e.g., [3] > [5] > [4] > · · · .

• Reason-List (Reasoning Listwise): the model first generates a reasoning sequence that
compares and analyzes candidates, and then outputs the final ranking sequence.

3.2 TRAINING DETAILS

Backbone Models We adopt the Qwen3 series as the backbone for our rerankers, specifically
Qwen3-4B and Qwen3-8B. This choice is consistent with the prevailing practice in the reranking
community1. All training experiments are conducted on two NVIDIA A100 (80 GB) GPUs.

Pointwise Rerankers We study two pointwise variants: Direct-Point and Reason-Point. Both
models are trained on the RANK1 corpus (Weller et al., 2025) derived from MS MARCO, compris-
ing ∼ 386k query–passage pairs annotated by DeepSeek-R1 with a chain-of-thought rationale and
a binary answer (TRUE/FALSE). For Reason-Point, we perform supervised fine-tuning on quadru-
ples ⟨query, passage, rationale, answer⟩. For Direct-Point, we ablate the rationale and fine-tuning on
⟨query, passage, answer⟩, training the model to emit a single token in {TRUE, FALSE}. Both variants
minimize cross-entropy loss. We employ the LLaMA-Factory2 framework for supervised fine-
tuning. All models are trained using LoRA with rank 32 and α = 64, a learning rate of 1×10−4, and
cross-entropy loss. Both DIRECT-POINT and REASON-POINT rerankers are trained for one epoch.
At inference time, we compute the relevance score used for ranking as the probability assigned to
TRUE via a two-way softmax over the logits of {TRUE, FALSE}; ties are broken by the logit margin.
Example prompts and data instances for both settings are provided in the Appendix C.1.

Listwise Rerankers We train listwise rerankers on the REASONRANK training corpus (Liu et al.,
2025), which contains ∼13k query–candidate sets primarily derived from MS MARCO and related
benchmarks, split evenly between SFT and GRPO (approximately 6.7k each). Each instance in-
cludes a query, a candidate set, a rationale produced with DeepSeek-R1, and a gold ranking order.
We consider two variants: Direct-List, which generates an ordering directly from the query and can-
didate set, and Reason-List, which is prompted to first generate own rationale and then produce the
final ordering.

We adopt two-stage training for traning Direct-List and Reason-List Stage 1 performs super-
vised fine-tuning (SFT) to teach the model to output ranking sequences. To encourage struc-
turally valid outputs, prompts require the model to produce a reasoning segment demarcated by
<think>· · ·</think> and a final ranking in <answer>[·] > [·] > · · ·</answer> format.
Stage 2 refines the SFT model with Group Relative Policy Optimization (GRPO) (Guo et al., 2025).

1A complete list of backbone models used in both our work and prior reasoning-enhanced rerankers is
provided in Appendix A.

2https://github.com/hiyouga/LLaMA-Factory
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We follow the setting in ReasonRank (Liu et al., 2025), using a composite multi-view ranking reward
that reflects position sensitivity, coverage, and list similarity:

Let ylist denote the predicted ranking sequence and y′ the gold ranking. We combine three signals:

Rm = NDCG@10(ylist, y′) + ϕ · Recall@10(ylist, y′) + γ · RBO(ylist, y′), (1)

where ϕ, γ weight coverage and overlap. Rank-Biased Overlap (RBO) (Webber et al., 2010) em-
phasizes top ranks and is computed as

RBO(ylist, y′) = (1− p)

|ylist|∑
d=1

p d−1

∣∣ ylist
1:d ∩ y′1:d

∣∣
d

, (2)

with persistence parameter p ∈ (0, 1) and y1:d the top-d prefix. Following REASONRANK, we gate
Rm with simple format validators to stabilize learning:

R =


Rm, both output and answer formats are valid,
0, only the output format is valid,
−1, otherwise,

(3)

where the output-format check requires the presence of <think> and <answer> tags, and the
answer-format check verifies that the <answer> contains a canonical listwise ordering.

With the gated multi-view reward in Eqs. (1)–(2), we refine the SFT policy via GRPO (Guo et al.,
2025). Given input x, a group of samples G = {yi} is drawn, sequence rewards R(x, yi) are
converted to token-level advantages Âi,t, and the policy is updated by the clipped objective:

JGRPO(θ) = − 1
|G|

∑
i,t

min
(
ri,t(θ)Âi,t, clip(ri,t(θ), 1− ϵ, 1 + ϵ)Âi,t

)
− β DKL(πθ ∥πref), (4)

where ri,t(θ) is the importance ratio and πref the SFT reference. We implement GRPO with Verl3

for one epoch on the ReasonRank data, producing Direct-List and Reason-List models.

3.3 EXPERIMENTAL SETUP

All experiments are conducted on two NVIDIA A100 (80 GB) GPUs. Rerankers operate on a fixed
first-stage candidate pool of k=100 passages per query built with BM25. Unified system prompts
are used across all datasets, as shown in Appendix C. Dataset-level instructions strictly follow the
original Rank1 templates (Weller et al., 2025).

Baselines We compare our four proposed rerankers—Direct-Point, Reason-Point, Direct-List, and
Reason-List—including ablations across training stages (SFT only vs. SFT+GRPO). In addition, we
compare our models against state-of-the-art reasoning-enhanced LLM rerankers from prior work:
Pointwise: Rank1-7B, Rank1-14B (Weller et al., 2025), TF-Rank-4B, TF-Rank-8B (Fan et al.,
2025); Listwise: Rank-R1-7B, Rank-R1-14B (Zhuang et al., 2025), REARank-7B (Zhang et al.,
2025), and ReasonRank-7B (Liu et al., 2025).

Benchmarks and Metrics We evaluate on two retrieval benchmarks: BRIGHT, a reasoning-
intensive IR suite spanning diverse domains, and BEIR, a standard heterogeneous IR benchmark.
Following common practice, the primary metric is NDCG@10, which captures both relevance and
position sensitivity on the top-10 results.

3.4 MAIN RESULTS

Reasoning Does Not Improve Reranking Performance As shown in Tables 1 and 2, a con-
sistent and repeatable pattern emerges across all training settings (SFT and SFT+GRPO), model
sizes (4B/8B), and benchmarks (BRIGHT and BEIR): direct rerankers consistently outperform
their reasoning-augmented counterparts. For pointwise rerankers on BRIGHT, Direct-Point-4B

3https://github.com/volcengine/verl
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exceeds Reason-Point-4B by ∆N@10= + 9.0, and Direct-Point-8B by +6.1 on the original query,
while the advantage remains +4–6 points on the gpt4 reason query split.4; on BEIR, the correspond-
ing gaps are +5.3 and +4.3. For listwise rerankers, the advantage is smaller but remains stable: on
BRIGHT, Direct-List achieves +0.4–+1.7 higher N@10 than Reason-List, while on BEIR the mar-
gin ranges from +0.3 to +1.9, consistently observed under both SFT and SFT+GRPO. Moreover,
GRPO provides further improvements for listwise rerankers compared to SFT alone, yet the su-
periority of direct reranking persists regardless of training strategy. These results reveal one clear
trend: under current logits-based pointwise and generative listwise reranking setups, we observe that
explicit reasoning does not improve ranking performance.

Comparison Results on BRIGHT and BEIR. Tables 1 and 2 report the performance of our
rerankers compared to reasoning-enhanced baselines on BRIGHT and BEIR, respectively. On orig-
inal query split of BRIGHT, our Direct-List-8B achieves the best overall score with N@10 = 27.1,
followed closely by Direct-Point-8B at 26.8, both outperforming reasoning-based baselines such as
ReasonRank-7B (26.4), TFRank-8B (22.6), and Rank-R1-14B (20.5). On the gpt4 reason split of
BRIGHT, Direct-List-4B and Direct-List-8B (both N@10 = 35.3) likewise surpass all Reason-List
baselines. On BEIR, the strongest model is Direct-Point-4B, which obtains N@10 = 45.4, surpass-
ing larger reasoning-enhanced listwise rerankers such as Rank-R1-14B (43.8) and ReasonRank-7B
(41.7). These results demonstrate that our direct rerankers not only outperform existing reasoning-
based counterparts, but also highlight that explicit reasoning is unnecessary for achieving state-of-
the-art effectiveness in LLM-based reranking.

Table 1: Performance comparison on BRIGHT across different reranker variants. We report results
for Direct-Point, Reason-Point, Direct-List, and Reason-List under both SFT and GRPO training,
together with representative pointwise and listwise baselines.

Model Training
StackExchange Coding Theorem-based

Avg.Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.

Pointwise

BM25 / 18.9 27.2 14.9 12.5 13.6 18.4 15.0 7.9 24.4 6.2 4.9 10.4 14.5
Rank1-7B SFT 31.4 36.7 18.3 25.4 13.8 17.6 24.8 16.7 9.5 6.1 9.5 11.6 18.5
Rank1-14B SFT 29.6 34.8 17.2 24.3 18.6 16.2 24.5 17.5 14.4 5.5 9.2 10.7 18.5
TFRank-4B SFT+GRPO 33.2 45.9 17.6 29.5 21.0 20.9 18.3 25.0 9.1 9.5 9.8 7.3 20.6
TFRank-8B SFT+GRPO 33.7 46.2 23.7 26.0 24.1 20.1 23.6 28.8 12.5 10.8 11.4 9.7 22.6

Reason-Point-4B SFT 23.6 29.0 15.0 23.7 16.7 12.2 18.3 18.4 12.4 8.9 11.0 9.4 16.5
Direct-Point-4B SFT 34.9 45.1 23.3 31.8 26.6 23.6 30.7 18.5 35.4 7.2 13.6 15.2 25.5
Reason-Point-8B SFT 24.9 34.6 17.5 26.2 25.9 22.4 19.7 11.9 36.6 9.3 6.5 12.6 20.7
Direct-Point-8B SFT 33.9 46.4 24.6 31.6 25.8 25.9 32.0 25.3 35.5 12.0 13.5 15.2 26.8

Listwise

Rank-R1-7B GRPO 26.0 28.5 17.2 24.2 19.1 10.4 24.2 19.8 4.3 4.3 8.3 10.9 16.4
Rank-R1-14B GRPO 31.2 38.5 21.2 26.4 22.6 18.9 27.5 20.2 9.2 9.7 9.2 11.9 20.5

REARANK-7B GRPO 23.4 27.4 18.5 24.2 17.4 16.3 25.1 27.0 8.0 7.4 7.9 9.5 17.7
ReasonRank-7B SFT+GRPO 36.3 44.2 24.8 31.7 30.7 24.9 32.8 28.7 17.5 12.0 18.5 14.0 26.4
Reason-List-4B SFT 30.7 37.3 18.7 27.7 27.9 19.8 28.5 28.1 13.7 9.1 13.9 13.3 22.4
Direct-List-4B SFT 32.7 38.6 20.0 28.4 28.6 20.5 31.2 30.9 15.1 10.4 17.8 15.6 24.1
Reason-List-8B SFT 31.9 39.6 22.4 29.0 29.9 23.4 34.5 26.8 18.9 9.7 15.6 12.1 24.5
Direct-List-8B SFT 32.6 38.4 21.3 28.9 31.9 22.6 31.8 28.9 16.9 11.1 18.5 15.4 24.9
Reason-List-4B SFT+GRPO 33.6 40.8 21.6 28.0 33.3 26.0 29.3 31.0 13.3 11.4 16.5 15.4 25.0
Direct-List-4B SFT+GRPO 33.8 41.5 23.4 29.3 34.0 23.9 34.2 33.4 13.7 11.9 17.1 14.6 25.9
Reason-List-8B SFT+GRPO 32.1 40.3 26.7 32.1 30.0 25.5 33.8 28.8 19.4 9.8 18.0 14.0 25.9
Direct-List-8B SFT+GRPO 35.2 42.7 23.1 30.6 34.0 27.6 33.9 29.2 22.9 12.1 17.9 15.8 27.1

4 ANALYSIS

4.1 POINTWISE: CALIBRATION FAILURE AND TRUE BIAS WITH REASONING

Reasoning breaks calibration of confidence and accuracy Calibration assesses whether pre-
dicted probabilities match the true likelihood of relevance. In pointwise rerankers, the score as-

4Complete results for the gpt4 reason split are reported in Appendix B.
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Table 2: Performance comparison on BEIR across different reranker variants. We report results
for Direct-Point, Reason-Point, Direct-List, and Reason-List under both SFT and GRPO training,
together with representative pointwise and listwise baselines

Model Training ArguA ClimF DBP FiQA NFCorp SciDoc SciFact Touche TrecC Avg.

Pointwise

BM25 / 39.7 16.5 31.8 23.6 33.8 14.9 67.9 44.2 59.5 36.9
Rank1-7B SFT 26.4 16.2 37.7 38.4 37.9 16.5 76.1 24.5 79.5 39.2
Rank1-14B SFT 32.2 15.6 34.2 36.6 35.1 16.6 73.8 25.9 78.0 38.7
TF-Rank-4B SFT+GRPO 37.2 19.7 37.9 36.2 38.3 18.3 76.6 37.6 80.5 42.5
TF-Rank-8B SFT+GRPO 36.5 21.7 37.0 38.0 38.0 17.9 74.6 35.0 80.0 42.1

Reason-Point-4B SFT 38.1 16.5 39.1 36.0 30.8 16.8 74.9 27.1 81.3 40.1
Direct-Point-4B SFT 57.5 19.6 43.4 42.4 35.9 18.6 77.4 30.6 83.5 45.4
Reason-Point-8B SFT 40.1 13.8 37.5 35.6 32.5 18.2 74.1 21.6 80.3 39.3
Direct-Point-8B SFT 58.6 15.7 42.7 43.3 36.2 16.8 75.3 22.3 82.7 43.7

Listwise

Rank-R1-7B GRPO 37.0 24.1 43.2 40.1 36.2 18.8 76.1 33.0 82.6 43.5
Rank-R1-14B GRPO 34.4 24.2 44.0 43.0 37.9 19.7 77.5 29.6 83.9 43.8

REARANK-7B GRPO 35.6 20.6 43.5 35.8 37.9 19.2 71.9 40.2 80.1 42.8
ReasonRank-7B SFT+GRPO 33.3 20.0 44.7 38.2 36.6 19.7 72.8 30.4 79.6 41.7
Reason-List-4B SFT 39.3 13.8 37.7 32.9 30.2 16.0 69.1 24.6 79.5 38.1
Direct-List-4B SFT 41.7 14.1 36.5 37.0 33.5 16.4 72.4 22.9 78.1 39.2
Reason-List-8B SFT 32.8 16.2 42.2 36.6 36.0 18.1 69.7 27.1 79.2 39.8
Direct-List-8B SFT 28.9 16.4 42.3 37.7 35.9 18.9 73.6 27.0 80.1 40.1
Reason-List-4B SFT+GRPO 30.8 15.7 43.3 36.1 36.5 18.2 73.1 26.4 78.0 39.8
Direct-List-4B SFT+GRPO 36.7 19.4 43.8 34.4 36.4 18.2 69.8 29.4 77.7 40.6
Reason-List-8B SFT+GRPO 28.6 19.9 43.5 35.5 37.2 18.8 72.5 24.9 77.8 39.9
Direct-List-8B SFT+GRPO 36.4 19.4 45.1 38.2 36.9 18.7 71.0 31.6 78.7 41.8

(a) Direct-Point-8B (b) Reason-Point-8B

Figure 2: Calibration curves of pointwise rerankers: predicted probabilities vs. empirical accuracies.

signed to a candidate is interpreted as the model’s confidence that it is relevant. A perfectly cali-
brated model satisfies, for example, that predictions of 0.9 correspond to roughly 90% truly relevant
items; in reliability diagrams this appears as points along the diagonal y=x. To quantify devia-
tions from perfect calibration, we use the Expected Calibration Error (ECE) (Guo et al., 2017),
the weighted discrepancy between predicted confidence and empirical accuracy across M bins:
ECE =

∑M
m=1

|Bm|
N

∣∣acc(Bm) − conf(Bm)
∣∣, where Bm is the set of samples in bin m, |Bm|

its size, N the total number of samples, acc(Bm) the empirical accuracy, and conf(Bm) the average
predicted probability in that bin. Smaller values indicate better calibration. Notably, we observe a
pronounced polarization in the logits: most predictions cluster near 0 or 1, reflecting overconfident
decision boundaries. As shown in Figure 2, based on results from the BEIR, the direct pointwise
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Table 3: Class-conditional performance on pointwise
rerankers. We report TPR (%) and TNR (%).

Model Biology MS MARCO Avg.
TPR TNR TPR TNR

DeepSeek-R1 52.4 96.1 40.8 85.1 68.6
Reason-Point-4B 43.7 91.3 38.7 79.4 63.3
Direct-Point-4B 34.0 93.2 30.7 85.7 60.9
Reason-Point-8B 50.5 98.1 35.9 85.5 67.5
Direct-Point-8B 31.1 100.0 25.5 94.2 62.7

Table 4: Listwise (GRPO) performance
on MS MARCO (NDCG@10).

Model MS MARCO

DL19 DL20

Direct-List-4B 73.77 68.97
Reason-List-4B 70.76 68.71
Direct-List-8B 73.00 71.38
Reason-List-8B 72.60 69.81

reranker—though not perfect—maintains a clear monotonic relationship between confidence and
accuracy (ECE = 0.105). By contrast, the reasoning-enhanced reranker exhibits systematic over-
confidence with larger departures from the diagonal (ECE = 0.151), indicating that adding rea-
soning breaks confidence calibration in the pointwise setting. This miscalibration helps explain the
observed degradation in ranking quality (e.g., lower NDCG).

Reasoning increases “True” proclivity Beyond aggregate calibration, class-conditional analy-
sis reveals a consistent shift toward predicting the positive class. The training data have a posi-
tive:negative ratio of approximately 1:2. To match this prior, we construct evaluation pools with
100 positives and 200 negatives per query—both in-domain (MS MARCO DL19/DL20) and out-
of-domain (BRIGHT–Biology)—and also include the teacher model (DeepSeek-R1). Letting the
reranker judge relevance and decode the answer token, we report class-conditional performance in
Table 3 using standard notation: TPR (true positive rate; recall on positives) and TNR (true negative
rate; specificity = 1−FPR). Under this matched prior, Reason models tend to achieve higher macro
binary accuracy (the mean of TPR and TNR) than Direct models; however, the gains consistently
arise from higher TPR coupled with lower TNR (i.e., higher FPR). In reranking regimes where neg-
atives dominate, this combination is detrimental: elevated FPR promotes non-relevant documents
into the head of the ranked list and, together with the calibration failure above, prevents the binary
accuracy gains from translating into improved ranking metrics.

4.2 LISTWISE: REASONING IMPROVES TRAINING FIT BUT HURTS GENERALIZATION

Figure 3: Training-split listwise performance of
four 8B variants. Reasoning improves mean
NDCG@10 but increases variance.

Reasoning boosts training fit but hurts gen-
eralization Unlike pointwise rerankers that as-
sign scores to query–document pairs and then
sort, listwise objectives directly optimize the per-
mutation of a candidate set. We therefore ask
whether exposing chain-of-thought (CoT) helps
under listwise training. We evaluate four 8B
variants on a training split of 100 instances:
Direct-List SFT vs. Reason-List SFT and Direct-
List GRPO vs. Reason-List GRPO. As shown in
Fig. 3, reasoning attains higher mean NDCG@10
on the training split but with markedly larger dis-
persion: Reason-List SFT 82.57±3.2 vs. Direct-
List SFT 80.41± 2.1 (∆=+ 2.16), and Reason-
List GRPO 87.55 ± 2.7 vs. Direct-List GRPO
86.93 ± 1.6 (∆= + 0.62). These patterns indi-
cate that CoT can better fit the target permutations
encountered during training, while simultaneously introducing instance-level instability. On the in-
domain MS MARCO Dev sets (DL19/20), Direct-List consistently outperforms Reason-List across
both 4B and 8B backbones (Table 4). Concretely, Direct-List-4B surpasses its reasoning counterpart
by +3.01 (73.77 vs. 70.76) on DL19 and +0.26 (68.97 vs. 68.71) on DL20; Direct-List-8B leads by
+0.40 (73.00 vs. 72.60) on DL19 and +1.57 (71.38 vs. 69.81) on DL20. Thus, the training-split ad-
vantage of Reason-List does not translate to stronger in-domain performance. The same trend holds
on BRIGHT and BEIR: reasoning-based listwise models lag behind their direct counterparts, rein-
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forcing that CoT’s gains on the training split reflect improved in-sample fitting rather than genuine
out-of-domain generalization.

GRPO improves performance and reduces overthinking. As shown in Table 1, Table 2, and
Fig. 3, GRPO yields substantial performance improvements over SFT training. At the same time,
GRPO markedly shortens the rationales produced by reasoning models. On the training split (Fig. 3),
the average rationale length decreases from 397.7 tokens in Reason-List SFT to 172.3 in Reason-
List GRPO, reducing inference cost and mitigating extreme “overthinking,” yet achieving higher
NDCG scores. This finding suggests that excessively long CoT rationales are not a prerequisite for
producing effective ranking orders. The compression effect follows directly from the GRPO reward
design (Eq. 3), which incentivizes only output format validity and ranking quality rather than ver-
bose reasoning. Although GRPO enhances stability and efficiency, Direct-List models still achieve
stronger generalization on MS MARCO DL19/20 and on BRIGHT/BEIR (Table 4), implying that
shorter CoT mitigates overthinking but does not substitute for direct optimization of permutations.
These observations point to a broader research direction: future work should explore how to design
concise and targeted reasoning strategies that balance interpretability, stability, and generalization,
while avoiding overfitting and reliance on lengthy CoT outputs.

4.3 IMPLICATIONS FOR FUTURE RESEARCH

Our findings show that explicit reasoning does not inherently lead to performance gains in reranking,
and therefore researchers should not assume that longer or more elaborate reasoning will universally
improve ranking quality. Instead, the results point to two concrete directions for future work.

For logits-based pointwise rerankers, the performance degradation is primarily driven by score
miscalibration rather than insufficient reasoning capacity. This suggests that future progress is more
likely to come from calibration-aware training objectives that preserve score monotonicity, rather
than increasing the depth or length of reasoning traces. Beyond calibration, another promising
direction is to explore token-based scoring and ranking mechanisms (Shao et al., 2025; Fan et al.,
2025), which operate at the token level rather than relying solely on a scalar logit. Such methods can
produce more stable and fine-grained relevance signals, and therefore may complement calibration-
oriented approaches in improving pointwise reranking.

For listwise reranking, we observe that the training data may contain unnecessarily long chain-of-
thought traces, which increase inference cost without translating into better ranking quality. This
suggests two promising directions: (i) developing more concise or adaptive reasoning strategies to
reduce overthinking, and (ii) designing reward formulations directly aligned with ranking metrics,
rather than relying on generic reasoning supervision.

Overall, direct models remain more stable and effective across both in-domain and OOD settings,
highlighting calibration (for pointwise rerankers) and objective alignment (for listwise training) as
the key bottlenecks for future research, rather than reasoning capacity itself.

5 RELATED WORKS

LLMs for Ranking The use of Large Language Models (LLMs) for ranking has emerged as a
dominant paradigm in information retrieval, with methods that can be broadly classified into two
primary approaches: pointwise and listwise (Qin et al., 2024; Lu et al., 2025). Pointwise rerankers
evaluate the relevance of each query-document pair in isolation. This is typically achieved by fram-
ing the task as a classification problem, where the model computes a relevance score from the output
logits of binary tokens like “true” or “false”. This approach, exemplified by influential models such
as MonoT5 (Nogueira et al., 2020), MonoBERT (Nogueira et al., 2019), and RankLLaMA (Ma
et al., 2024), benefits from simplicity and computational efficiency, as each document can be scored
independently. In contrast, the listwise paradigm is built on the principle of relative comparison,
where multiple candidate documents are considered jointly to determine their final order. This cate-
gory encompasses several implementation styles. The most direct application is generative listwise
ranking, where models like RankGPT (Sun et al., 2023b), RankVicuna (Pradeep et al., 2023a), and
RankZephyr (Pradeep et al., 2023b) leverage their generative capabilities to output a fully sorted
list of documents. This broader paradigm also includes pairwise methods, which learn relative
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preferences by predicting the more relevant document from a pair (Qin et al., 2024), and setwise ap-
proaches that operate on a group of candidates, for example by identifying the single most relevant
document within the set (Zhuang et al., 2024). To manage the long input sequences inherent to this
approach, many listwise methods employ strategies like sliding windows or hierarchical ranking to
improve efficiency (Sharifymoghaddam et al., 2025).

LRMs for Ranking Inspired by the success of Large Reasoning Models (LRMs), a recent line
of research has focused on incorporating explicit reasoning into the reranking process to handle
complex queries and improve interpretability. This effort has largely followed two main technical
strategies: supervised fine-tuning with distillation and reinforcement learning. The first strategy
involves Supervised Fine-Tuning (SFT) and distillation, where reasoning capabilities are transferred
from powerful teacher models (e.g., GPT-4, DeepSeek-R1) to smaller, more efficient rerankers. For
instance, ReasoningRank (Ji et al., 2025) and Rank1 (Weller et al., 2025) distill pairwise or listwise
comparative rationales into models such as the LLaMA-3 and Qwen2.5 series. This approach has
also been extended to generative listwise settings, where reasoning tokens are directly integrated
into the ranking sequence (Yang et al., 2025). A complementary strategy employs Reinforcement
Learning (RL) to further refine these reasoning-aware models. Works like Rank-R1 (Zhuang et al.,
2025) and REARANK (Zhang et al., 2025) use RL to directly optimize for ranking metrics, while
others such as TFRank (Fan et al., 2025) and ReasonRank (Liu et al., 2025) adopt a hybrid two-
stage approach combining SFT with subsequent RL fine-tuning. Beyond these dominant paradigms,
other methods have explored more structured formulations, such as modeling reranking as a decision
process to improve robustness (Lee et al., 2025; Niu et al., 2024). Despite these advances, the core
premise that explicit reasoning is beneficial is being called into question. Recent findings suggest
that for pointwise rerankers, the addition of reasoning can be detrimental, leading to issues like
overthinking (Jedidi et al., 2025; Fan et al., 2025). This emerging evidence highlights that the utility
of reasoning in reranking is far from settled, motivating the systematic investigation in our work.

6 CONCLUSION

In this work, we systematically examined the role of explicit reasoning in document reranking across
pointwise and listwise paradigms with SFT and GRPO training. Our findings are threefold: (i)
in pointwise rerankers, reasoning breaks calibration, yielding overconfident scores and degraded
ranking despite modest gains in binary accuracy; (ii) reasoning biases models toward the positive
class, raising TPR but reducing TNR, which is harmful in negative-dominant candidate pools; (iii)
in listwise rerankers, reasoning improves in-domain fit but increases variance and fails to generalize
out-of-domain, even when GRPO shortens rationales. Overall, direct models remain more stable
and effective, pointing to the need for calibration-aware objectives in pointwise rerankers and more
concise reasoning strategies in listwise rerankers to improve generalization.

ETHICS STATEMENT

This work does not involve human subjects, personal data, or sensitive information, and therefore
raises no direct ethical concerns. Our research focuses on reranking methods for information re-
trieval benchmarks, which do not include personally identifiable information or sensitive content.
We follow the ICLR Code of Ethics and ensure that our methodology and results are presented with
transparency and fairness.

REPRODUCIBILITY STATEMENT

We are committed to ensuring the reproducibility of our results. All datasets used in this paper are
publicly available, and detailed descriptions of preprocessing steps are provided in the appendix.
In addition, we will release our source code, trained models, and experiment configurations upon
publication to facilitate replication of our experiments. This includes scripts for data preprocessing,
training, and evaluation, ensuring that other researchers can reproduce our findings.
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A BACKBONES OF RERANKERS

Table 5 summarizes the backbones and training strategies of both existing reasoning-enhanced
rerankers and our proposed models. We observe that the Qwen family has become the mainstream
backbone for LLM-based reranking. Our proposed Direct Rerankers and Reason Rerankers are
built upon Qwen3-4B and Qwen3-8B, ensuring a fair comparison with recent reasoning-enhanced
baselines while highlighting the impact of reasoning versus direct decision-making.

Table 5: Overview of baseline and proposed rerankers.

Model Training Backbone Type
BM25 / / Pointwise
Rank1-7B SFT Qwen2.5-7B Pointwise
Rank1-14B SFT Qwen2.5-14B Pointwise
TFRank-4B SFT + GRPO Qwen3-4B Pointwise
TFRank-8B SFT + GRPO Qwen3-8B Pointwise
REARANK-7B GRPO Qwen2.5-7B Listwise
Rank-R1-7B GRPO Qwen2.5-7B Listwise
Rank-R1-14B GRPO Qwen2.5-14B Listwise
ReasonRank-7B SFT + GRPO Qwen2.5-7B Listwise
Direct-Point-4B SFT Qwen3-4B Pointwise
Direct-Point-8B SFT Qwen3-8B Pointwise
Reason-Point-4B SFT Qwen3-4B Pointwise
Reason-Point-8B SFT Qwen3-8B Pointwise
Direct-List-4B SFT + GRPO Qwen3-4B Listwise
Direct-List-8B SFT + GRPO Qwen3-8B Listwise
Reason-List-4B SFT + GRPO Qwen3-4B Listwise
Reason-List-8B SFT + GRPO Qwen3-8B Listwise

B EXPERIMENTAL RESULTS FOR GPT4 REASON QUERY

Table 6 reports the performance of Reason rerankers and Direct rerankers under different train-
ing stages on BRIGHT with gpt4 reason queries. The results are consistent with the findings in
Section 3.4, showing that non-CoT Direct rerankers consistently outperform their reasoning coun-
terparts. Table 7 further presents the performance of Direct rerankers on BRIGHT with gpt4 reason
queries. Among pointwise models, Direct-Point-4B achieves the best score of 33.3, followed by
Direct-Point-8B with 32.0. For listwise models, both Direct-List-4B and Direct-List-8B obtain 35.3,
outperforming reasoning-enhanced rerankers and providing further evidence that explicit reasoning
does not lead to better reranking performance.

C PROMPTS FOR RERANKING

C.1 PROMPT FOR POINTWISE RERANKING

In the pointwise setting, the reranker judges each query–passage pair independently. The non-
reasoning version (Direct-Point) directly outputs a binary decision, as shown in Figure 5. The
reasoning version (Reason-Point) additionally generates a rationale enclosed within <think> tags
before giving the final decision, as shown in Figure 4.

C.2 PROMPT FOR LISTWISE RERANKING

In the listwise setting, the reranker considers the entire candidate set and outputs a ranked order
of passages. The non-reasoning version (Direct-List) directly produces the final ranking sequence,
as shown in Figure 7. The reasoning version (Reason-List) first generates a reasoning trace in
<think> tags and then outputs the final ranking within <answer> tags, as shown in Figure 6.
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Table 6: Performance of Direct-Point, Reason-Point, Direct-List, and Reason-List under different
training strategies on BRIGHT (gpt4 query).

Model Training
StackExchange Coding Theorem-based

Avg.Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.

Pointwise

Reason-Point-4B SFT 46.2 49.8 26.1 37.0 22.0 26.2 28.4 24.7 23.9 6.5 33.5 20.2 28.7
Direct-Point-4B SFT 50.8 54.7 31.2 41.7 25.8 30.6 32.1 29.1 28.8 7.8 38.5 25.0 33.0
Reason-Point-8B SFT 42.0 44.5 27.0 36.4 23.1 28.7 30.2 28.1 18.9 7.5 24.5 19.5 27.5
Direct-Point-8B SFT 46.9 49.2 31.5 41.7 27.0 33.6 35.3 34.6 22.5 9.7 28.8 22.9 32.0

Listwise

Reason-List-4B SFT 50.9 45.5 27.5 38.0 28.5 28.8 34.0 20.1 21.5 6.9 24.0 31.0 29.7
Direct-List-4B SFT 53.5 48.3 29.8 39.9 31.2 30.5 36.9 23.0 25.0 8.2 26.3 34.2 32.2
Reason-List-8B SFT 51.4 47.0 29.5 40.1 29.0 29.9 35.5 21.9 26.2 7.7 27.5 32.0 31.5
Direct-List-8B SFT 54.0 49.6 30.1 42.0 31.6 31.8 37.1 24.1 28.0 8.4 28.1 35.0 33.3
Reason-List-4B SFT+GRPO 55.1 49.0 28.7 42.7 31.1 33.1 36.6 21.8 23.8 7.8 27.7 37.2 32.9
Direct-List-4B SFT+GRPO 58.4 51.8 31.3 41.6 34.4 33.4 41.0 25.2 27.9 9.8 29.5 39.2 35.3
Reason-List-8B SFT+GRPO 54.5 49.4 30.8 44.4 29.9 32.1 38.7 22.6 28.0 8.9 31.4 36.0 33.9
Direct-List-8B SFT+GRPO 56.1 52.2 30.3 44.8 32.5 36.4 38.8 25.0 30.9 8.5 29.6 38.9 35.3

Table 7: Performance of different rerankers on BRIGHT datasets (gpt4 query).

Model Training
StackExchange Coding Theorem-based

Avg.Bio. Earth. Econ. Psy. Rob. Stack. Sus. Leet. Pony AoPS TheoQ. TheoT.

Pointwise

BM25 / 53.6 53.6 24.3 38.6 18.8 22.7 25.9 17.7 19.3 3.9 20.2 18.9 26.5
MonoT5-3B SFT 16.0 24.0 17.7 19.5 8.0 10.5 19.5 17.2 29.2 7.1 20.3 12.0 16.8

RankLLaMA-7B SFT 17.5 15.5 13.1 13.6 17.9 6.9 16.9 8.4 46.8 2.2 4.5 3.5 13.9
RankLLaMA-13B SFT 21.6 19.1 16.3 14.0 15.7 7.7 18.5 8.8 31.1 1.7 4.4 4.9 13.7

Rank1-7B SFT 48.8 36.7 20.8 35.0 22.0 18.7 36.2 12.7 31.2 6.3 23.7 37.8 27.5
Rank1-14B SFT 49.3 37.7 22.6 35.2 22.5 20.8 33.6 17.7 33.2 8.4 22.5 41.4 28.7
Rank1-32B SFT 49.7 35.8 22.0 37.5 22.5 21.7 35.0 18.8 32.5 10.8 22.9 43.7 29.4

Direct-Point-4B SFT 50.8 54.7 31.2 41.7 25.8 30.6 32.1 29.1 28.8 7.8 38.5 25.0 33.0
Direct-Point-8B SFT 46.9 49.2 31.5 41.7 27.0 33.6 35.3 34.6 22.5 9.7 28.8 22.9 32.0

Listwise

RankZephyr-7B SFT 44.1 31.0 17.9 28.4 17.5 27.0 21.6 18.9 17.8 2.7 15.9 12.7 21.3
Rank-K SFT 50.4 46.2 30.6 46.7 32.4 33.0 41.2 24.0 32.2 7.6 28.3 26.6 33.3

ReasonRank-7B SFT+GRPO 56.4 51.2 28.4 43.4 31.0 31.9 39.1 23.0 7.6 8.1 29.9 39.1 32.4
Direct-List-4B SFT+GRPO 58.4 51.8 31.3 41.6 34.4 33.4 41.0 25.2 27.9 9.8 29.5 39.2 35.3
Direct-List-8B SFT+GRPO 56.1 52.2 30.3 44.8 32.5 36.4 38.8 25.0 30.9 8.5 29.6 38.9 35.3

D EXAMPLES FOR RANKING OUTPUT

D.1 EXAMPLES FOR POINTWISE RANKING

Direct-Point rerankers perform a single forward pass per input and predict a binary answer token
(true/false); we report the logits at the answer position, so the model does not explicitly print
the answer string. In contrast, Reason-Point first generates a natural-language rationale and then
computes the logits at the answer position, thereby outputting the complete reasoning text. For
clarity, Figure 8 presents an output instance, where we additionally decode the answer-position
logits into the corresponding answer token.

D.2 EXAMPLES FOR LISTWISE RANKING

Figures 6 and 10 illustrate a concrete example of the listwise reranking setting. Figure 6 shows the
input prompt template provided to the model, where the query and candidate passages are listed, and
the model is instructed to return a complete ranking. Figure 10 presents the corresponding outputs
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<|im_start|>system
Determine if the following passage is relevant
to the query. Answer only with ’true’ or ’false’.
<|im_end|>
<|im_start|>user
Query: {}
Passage: {}
<|im_end|>
<|im_start|>assistant

Figure 4: Prompt template for pointwise relevance judgement.

<|im_start|>system
Determine if the following passage is relevant
to the query. Answer only with ’true’ or ’false’.
<|im_end|>
<|im_start|>user
Query: {}
Passage: {}
<|im_end|>
<|im_start|>assistant

<think> </think>

Figure 5: Prompt template for pointwise relevance judgement (non-reasoning version). The
<think> tag is kept empty to maintain consistency with reasoning prompts.

from different variants of our models. Non-reasoning models (Direct-List) directly produce the
ranked sequence enclosed in <answer> tags, while reasoning models (Reason-List) first generate
an explicit rationale enclosed in <think> tags before outputting the final ranking. This comparison
highlights how reasoning influences the ranking process, providing intermediate explanations at the
cost of increased verbosity.

E ADDITIONAL GENERALIZATION EXPERIMENTS

To address the reviewer’s request for verification beyond the Qwen3 backbone and the inclusion
of zero-shot baselines, we conducted two additional sets of experiments: (1) Generalization across
model families. We trained Qwen2.5-7B and Llama-3.2-8B rerankers using the same pointwise
and listwise configurations as reported in the main paper. (2) Zero-shot baselines. We evaluated
Qwen3-8B in zero-shot mode under both pointwise and listwise settings.

As shown in Figure 8, across all examined backbones—Qwen3, Qwen2.5, and Llama-3.2—we
observe a highly consistent pattern: explicit reasoning does not yield improvements under either
pointwise or listwise reranking. This confirms that our findings are architecture-agnostic rather than
specific to a single model family. These results strengthen the generality of our conclusions and
confirm that the observed reasoning-induced degradation is not tied to a specific model family.

F ANALYSIS OF PROMPT SENSITIVITY AND TRAINING STABILITY

This appendix provides additional analyses to examine whether the performance gap between Direct
and Reason rerankers may be attributed to prompt sensitivity, checkpoint instability, or randomness
from training seeds. The results indicate that the observed performance differences are systematic
rather than arising from experimental artifacts.
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You are RankLLM, an intelligent assistant that can
rank passages based on their relevance to the query.
Given a query and a passage list, you first think
about the reasoning process in the mind and then
provide the answer (i.e., the reranked passage list).

The reasoning process and answer are enclosed
within <think> </think> and <answer> </answer>
tags, respectively, i.e.,
<think> reasoning process here </think>
<answer> answer here </answer>.

I will provide you with {num} passages, each
indicated by a numerical identifier [].
Rank the passages based on their relevance to
the search query:

[1]: {{passage_1}}
[2]: {{passage_2}}
(more passages)...

Search Query: {{query}}.
Rank the {num} passages above based on their
relevance to the search query.

All passages should be included and listed using
identifiers, in descending order of relevance.
The format of the answer should be [] > [],
e.g., [2] > [1].

Figure 6: Prompt template for listwise reranking with explicit reasoning. The model produces a
reasoning trace within <think> tags and a final ranking within <answer> tags.

Table 8: Reranking performance across different model families. Metrics are NDCG@10 on
BRIGHT and BEIR.

Model Variant Backbone BRIGHT BEIR
Direct-Point Qwen2.5-7B 21.6 41.3
Reason-Point Qwen2.5-7B 18.3 39.4
Direct-List Qwen2.5-7B 22.3 40.6
Reason-List Qwen2.5-7B 20.5 38.3

Direct-Point Llama-3.2-8B 22.8 42.1
Reason-Point Llama-3.2-8B 19.0 39.7
Direct-List Llama-3.2-8B 23.7 41.0
Reason-List Llama-3.2-8B 22.8 39.8

Direct-Point Qwen3-8B (zero-shot) 16.9 38.4
Reason-Point Qwen3-8B (zero-shot) 15.4 37.3
Direct-List Qwen3-8B (zero-shot) 17.3 39.2
Reason-List Qwen3-8B (zero-shot) 16.4 37.8

F.1 PROMPT SENSITIVITY EVALUATION

To assess whether the gap is caused by instruction phrasing rather than model behavior, we con-
ducted a semantic prompt–swap study on both BRIGHT and BEIR. The original Rank1-style in-
struction was replaced with (i) a paraphrased semantic rewrite and (ii) a minimal instruction with no
dataset hint, while preserving task semantics. As shown in Table 9, across all variants, the relative
ranking between Direct and Reason models remains stable, indicating that the performance gap does
not arise from prompt sensitivity.
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You are RankLLM, an intelligent assistant that can
rank passages based on their relevance to the query.
Given a query and a passage list, directly provide
the reranked passage list without generating any
reasoning process.

I will provide you with {num} passages, each
indicated by a numerical identifier [].
Rank the passages based on their relevance to
the search query:

[1]: {{passage_1}}
[2]: {{passage_2}}
(more passages)...

Search Query: {{query}}.
Rank the {num} passages above based on their
relevance to the search query.

All passages should be included and listed using
identifiers, in descending order of relevance.
The format of the answer should be [] > [],
e.g., [2] > [1].

Figure 7: Prompt template for listwise reranking without explicit reasoning (non-reasoning version).
The <think> tag is kept empty to maintain format consistency with reasoning prompts.

Prompt Variant Direct-List-8B (BRIGHT) Reason-List-8B (BRIGHT) Direct-List-8B (BEIR) Reason-List-8B (BEIR)

Original instruction 27.1 25.9 41.8 39.9
Semantic rewrite (paraphrased) 26.8 25.3 40.9 39.4
Minimal instruction (no dataset hint) 26.3 24.7 40.5 39.2

Table 9: Prompt sensitivity evaluation on BRIGHT and BEIR. Relative ordering remains unchanged
across prompt variants.

F.2 INTERMEDIATE CHECKPOINT ANALYSIS

To determine whether the gap reflects transient training fluctuations, multiple checkpoints from
listwise training were evaluated. As shown in Table 10, Direct models outperform Reason models
at every stage, confirming that the effect is not checkpoint-dependent.

Checkpoint Direct-List-8B (BRIGHT) Reason-List-8B (BRIGHT)

Step 100 22.4 21.8
Step 200 25.1 24.2
Final (Step 376) 27.1 25.9

Table 10: Intermediate checkpoint evaluation showing consistent Direct > Reason performance.

F.3 RANDOM SEED STABILITY

To rule out stochastic variance, an additional training run was conducted with a different random
seed. As shown in Table 11, the performance gap persists across seeds, indicating that the effect is
not driven by initialization randomness.
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<|im_start|>system
Determine if the following passage is relevant
to the query. Answer only with ’true’ or ’false’.
<|im_end|>
<|im_start|>user
Query: Have governments ever defaulted on their
domestic public debt or treasury bonds due to
hyperinflation or political crises?

Passage: Argentina experienced a unique default
when it suspended all debt payments before a legal
default was declared, with 60% of the debt held
by Argentines. Rating agencies still classified it
as a default. Russia defaulted on its domestic debt
(GKOs) in 1998, which became one of the most
significant financial crises of that decade.
<|im_end|>
<|im_start|>assistant

<think>
Okay, let’s tackle this query. The user is asking if
governments have ever defaulted on their public domestic
debt or treasury bonds, specifically due to hyperinflation
or political issues. The passage mentions Argentina and
Russia. Argentina suspended all payments, considered a
default by agencies, and Russia defaulted on GKOs in 1998.
Both are clear cases of default on domestic debt. While the
passage does not explicitly state hyperinflation, these are
examples that confirm the query.
...
</think>
true

Figure 8: Example of a Reason-Pointwise output with explicit reasoning in the <think> block
before producing the binary decision.

Seed Direct-List-8B (BRIGHT) Reason-List-8B (BRIGHT)

42 (default) 27.1 25.9
0 26.9 25.7

Table 11: Random seed robustness evaluation. Results remain consistent across training runs.

G REASONING ASSUMPTION IN RANKING AND VERIFICATION OF
REASONING TRACE QUALITY

This section presents quantitative and qualitative analyses to verify that the reasoning-based models
generate valid and meaningful reasoning traces. The goal is to ensure that the observed performance
trends are not attributable to poorly trained or defective reasoning behavior.

G.1 REASONING ASSUMPTION IN RANKING

Reranking with explicit reasoning implicitly relies on a core assumption: the generated chain-of-
thought should provide a logically valid, coherent, and decision-supportive explanation that reflects
the model’s underlying relevance judgment.

This assumption has been adopted—either explicitly or implicitly—in recent reasoning-enhanced
ranking systems, where the reasoning trace is expected to: (1) extract or reference query–document
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Search Query: where is a elephant habitat.

Passages:
[1] Elephant Habitat. Elephants make home in a variety of habitats

including tropical and subtropical zones...
[2] Elephant Natural Habitat. Elephants are able to survive in a

variety of different locations...
[3] This is because the elephant is well known to being intelligent

and capable of experiencing...
...
[20] Elephant Habitat. Elephants make home in a variety of habitats

including tropical and subtropical zones...

Rank the 20 passages above based on their relevance to the query.
All the passages should be included and listed using identifiers, in

descending order.
The format of the answer should be [] > [], e.g., [2] > [1].

Figure 9: Example listwise prompt for the query “where is a elephant habitat” with 20 candidate
passages.

evidence relevant to the final decision; (2) maintain internal logical consistency; and (3) articulate
the decision boundary in a manner aligned with the teacher or supervision signal.

Under this assumption, if explicit reasoning improves the quality of the relevance decision, we
would expect the reasoning-based reranker to produce accurate, coherent, and faithful reasoning
traces, which subsequently translate into better ranking performance.

Therefore, our analyses proceed from the following question: Do reasoning-based rerankers indeed
learn to generate high-quality reasoning traces that support the relevance decision?

To answer this, we conduct both quantitative and qualitative verification of reasoning trace quality
in the following sections.

G.2 QUANTITATIVE VERIFICATION

To assess whether the reasoning model has successfully learned to produce teacher-level decisions,
we evaluate its binary true/false classification accuracy without applying any ranking procedure.
The reported results (Table 3) compare the teacher model (DEEPSEEK-R1), the reasoning-based
student (REASON-POINT-8B), and the direct baseline (DIRECT-POINT-8B) across both in-domain
(MS MARCO) and out-of-domain (BRIGHT–Biology) settings.

The REASON-POINT-8B model achieves an average accuracy of 67.5, closely matching the teacher
model (68.6). This demonstrates that the student has successfully learned the teacher’s decision
behavior, indicating that the performance degradation observed in ranking cannot be attributed to
failed reasoning acquisition.

G.3 QUALITATIVE VERIFICATION

We further assess the validity of generated reasoning traces through a targeted qualitative study. A
total of 50 query–document pairs were randomly sampled from MS MARCO and BRIGHT. For each
pair, reasoning chains produced by DEEPSEEK-R1 and REASON-POINT-8B were independently
evaluated by three annotators using a three-dimensional rubric:

• Correctness: logical appropriateness of the conclusion,

• Coherence: internal consistency of reasoning steps,

• Faithfulness: structural alignment with the teacher’s reasoning.
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Direct-List-8B SFT:

<think>
</think>
<answer> [8] > [19] > [11] > ... > [14] > [3] > [4] </answer>

Reason-List-8B SFT:

<think>
Okay, let’s tackle this ranking problem. The user wants to know where

elephants live.
I need to focus on passages that explicitly describe habitats (

savannas, forests, deserts, etc.).
Passage [1] lists tropical zones, dry forests, savannas, semi-deserts,

rainforests.
[2] and [5] mention grasslands, deserts, forests, swamps.
[8] mentions Africa and South Asia. [10] and [11] describe

adaptability.
Passages [4], [6], [7], [9], [19] repeat similar information.
[13] talks about different species. [15] and [17] focus on

conservation.
[18] and [20] similar to [1] and [16].
Less direct: [3], [14], [12].
So top: [1], [2], [5], [8], [10], [11], [19], [13], [16], [20].
</think>
<answer> [1] > [2] > [5] > ... > [12] > [3] > [14] </answer>

Direct-List-8B GRPO:

<think>
</think>
<answer> [8] > [19] > [1] > ... > [6] > [13] > [14] </answer>

Reason-List-8B GRPO:

<think>
Okay, let’s tackle this query about where elephants live. The user

wants to know their habitats.
Passages that directly mention savannas, forests, deserts, and

rainforests are key.
Looking at [1], [2], [5], [8], [10], [11], [16], [19], [20] all list

habitats.
[8] and [19] mention Africa and South Asia, which is important.
Others talk about captivity or human impact, less relevant.
So the top ones are those listing habitats explicitly.
</think>
<answer> [1] > [2] > [5] > ... > [17] > [18] > [14] </answer>

Figure 10: Examples of model outputs on the elephant habitat ranking task. Non-reasoning models
(NL) directly output rankings, while reasoning models (RL) generate intermediate rationales within
<think> tags before the final answer.

Majority-vote results are summarized in Table 12.

Evaluation Dimension DeepSeek-R1 Reason-Point-8B Agreement (%)
Correctness 88% 86% 83%
Coherence 92% 88% 81%
Faithfulness – 83% –

Table 12: Qualitative evaluation of reasoning trace quality.
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The results show that REASON-POINT-8B produces reasoning traces that are largely correct (86%),
coherent (88%), and structurally aligned with the teacher (83%). These findings confirm that the
model generates valid and well-formed reasoning, and that the observed ranking behavior is not
attributable to defective or low-quality reasoning traces.

H THE USE OF LARGE LANGUAGE MODELS (LLMS)

In the preparation of this manuscript, we employed GPT-5 to assist with text refinement. Specif-
ically, the model was used to improve the clarity, readability, and overall presentation of the paper
by correcting grammatical errors, smoothing sentence structures, and enhancing stylistic consis-
tency. Importantly, all core research ideas, experimental designs, and results were conceived and
validated by the authors; the role of the LLM was limited to linguistic polishing. This ensured that
the scientific content remained entirely authored by the researchers, while benefiting from improved
academic writing quality.
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