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ABSTRACT

The in-context learning (ICL) ability of large language models (LLMs) enables
them to undertake challenging tasks using provided demonstrations. However,
it is prone to instability: different orderings of demonstrations can significantly
influence predictions, revealing LLMs’ limitations in processing combinatorial
inputs. This paper shows that this vulnerability can be exploited to design a natural
attack that is imperceptible to the model provider and can achieve nearly 80%
success rates on the SOTA open-source model, LLaMA, by simply permuting the
demonstrations. In light of this, how to overcome the ordering sensitivity problem
is an important issue for improving the performance of LLMs. However, current
mitigation methods focus on post-processing and fail to enhance models’ inherent
robustness to the vast space of possible input permutations. To overcome this issue,
we propose a novel Permutation-resilient learning framework (PEARL) based on
distributionally robust optimization (DRO), which optimizes model performance
against the worst case among all possible permutations. Specifically, PEARL
consists of a hard permutation mining network (P-Net) and the LLM. The P-
Net identifies the most challenging permutations by formulating the task as an
optimal transport problem, which is solved using an entropy-constrained Sinkhorn
algorithm. Through minimax optimization, the P-Net progressively generates
harder samples to enhance the LLM’s worst-case performance. Experiments with
synthetic data and instruction tuning tasks demonstrate that the PEARL framework
effectively mitigates permutation attacks and improves overall performance.

1 INTRODUCTION

A hallmark of human intelligence is the ability to learn and execute new tasks by reasoning from a
few examples. Mirroring this, in-context learning (ICL) (Brown et al., 2020), as a crucial supplement
to zero-shot prompting, has shown promising results across a spectrum of complex tasks (Cobbe et al.,
2021; Chowdhery et al., 2023; OpenAI et al., 2023). Despite these advancements, the ICL capabilities
of large language models (LLMs) remain fragile. LLMs exhibit sensitivity to permutations of
provided demonstrations (Lu et al., 2022; Zhao et al., 2021; Reynolds & McDonell, 2021). This
fragility underscores a significant gap in achieving human-like adaptability.

Most existing studies on ICL primarily aim to enhance the normal-case performance on few-shot
learning (Min et al., 2022; Wei et al., 2023), with limited attention to improving permutation
robustness. Current strategies addressing this issue in few-shot learning generally fall into two
categories: 1) Output Calibration (Zhao et al., 2021), which proves effective for classification
tasks but is less applicable to generation tasks, and 2) Order Optimization (Lu et al., 2022), which
focuses on finding the optimal sequence of few-shot demonstrations during inference but suffers from
exponential computational complexity. Consequently, there remains a significant need for methods
that can fundamentally enhance LLMs’ inherent ability to manage the vast combinatorial space of
possible input permutations.

In this work, we first conduct extensive experiments on LLaMA-3 to revisit the vulnerability of
latest LLMs to permutations of ICL (§3). Our empirical analysis reveals that even state-of-the-art
open-source LLMs, such as LLaMA-3-8B, are still highly susceptible to a simple permutation-based
attack that merely alters the order of ICL demonstrations. Remarkably, these attacks, which do not
modify the semantic content of the examples or append any malicious suffixes, can achieve success
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rates exceeding 80%. Consequently, these attacks are less noticeable to model providers but highly
effective against LLMs, highlighting a critical vulnerability of LLms.

To counteract the vulnerability to input permutations, we introduce a novel Permutation-resilient
learning (PEARL) framework, which is based on distributionally robust optimization (DRO) (Ben-Tal
et al., 2011). Unlike standard empirical risk minimization training, adopted by most supervised
fine-tuning (SFT) methods, which views each training instance merely in terms of its one or several
permutations observed during training, DRO conceptualizes each instance as part of a broader
distribution that includes all conceivable permutations. This comprehensive set of all possible
permutations is termed the ambiguity set. By explicitly identifying and optimizing the worst-case
within this ambiguity set, our strategy substantially enhances the resilience of LLMs against all
different permutations. This paradigm shift—from considering training instances as single data points
to viewing them within a distribution of potential permutations— equips the model to better prepare
for and generalize to combinatorial input scenarios.

Specifically, PEARL operationalizes DRO as a two-player game, consisting of a hard permutation
mining network (P-Net) as the adversary and the LLM as the target model. For each training instance,
P-Net identifies a hard permutation of given demonstrations, aiming to maximize the LLM’s loss.
Conversely, the LLM strives to minimize its loss under the P-Net’s perturbations, thereby performing
well on these challenging examples. P-Net frames the identification of the most adversarial ICL
permutation as an optimal transport (OT) (Monge, 1781) problem between the uniform distribution
over permutations and the distribution of currently challenging permutations. We solve the OT
problem using the Sinkhorn algorithm (Sinkhorn, 1966) with an element-wise entropy constraint
designed to prevent trivial solutions. Through adversarial training (AT), both networks improve
iteratively. Ideally, at convergence, the P-Net represents a uniform distribution across all permutations,
as the LLM handles all possible permutations equally well.

We validate our method in two widely used scenarios: (1) pre-training a transformer to in-context
learn linear functions, and (2) instruction finetuning of LLMs on real-word tasks. Comprehensive eval-
uations demonstrate that compared to ERM-based training, our method consistently and substantially
improves both the average and worst-case performance of LLMs across all possible permutations
and effectively defends against permutation-based attacks. Notably, in practical instruction tuning
scenarios, our method achieves superior results with only hundreds of LoRA parameter updates,
highlighting its exceptional effectiveness and efficiency.

2 RELATED WORK

Order Sensitivity in In-context Learning Despite the huge success of ICL, its robustness to
demonstration permutations remains an unresolved challenge (Zhao et al., 2021). Most training-stage
methods focus on improving general performance in ICL (Min et al., 2022; Wei et al., 2023) while
neglecting the lack of robustness to the permutations of demonstrations. Recent studies suggest that
this phenomenon stems from the autoregressive nature of transformer language models (Chen et al.,
2023; Xiang et al., 2024). InfoAC (Xiang et al., 2024) introduces contrastive learning during fine-
tuning to break the autoregressive constraint and enable bidirectional token visibility; however, their
approach achieves limited success and is restricted to classification tasks. Preliminary work of (Chen
et al., 2023) shows the DeepSet architecture exhibits better permutation invariance than transformer;
however, this MLP-based new architecture is too small to solve complex language modeling tasks.
Inference-stage methods can be categorized into four types: (1) demonstration selection (Chang & Jia,
2023; Peng et al., 2024), which primarily enhances normal-case performance without guaranteeing
worst-case performance under permutations; (2) output calibration (Zhao et al., 2021; Li et al., 2023;
Guo et al., 2024a), which proves effective for classification tasks but is less applicable to generation
tasks due to sequence calibration challenges; (3) order optimization (Lu et al., 2022), which aims to
find the best ordering during inference but suffers from exponential computational complexity; and
(4) prediction ensembling: a recent work (Zhang et al., 2024) proposes to transform an n-shot ICL
into n one-shot predictions and ensembles the results—this is effective for classification but leads
to decreased performance on generation tasks. In summary, In summary, inference-stage methods
aims to circumvent order sensitivity by pre/post-processing without fundamentally enhancing the
robustness of LLMs to different orders. Moreover, most methods are designed for classification tasks
and show reduced effectiveness on generation tasks. To the best of our knowledge, our work is the

2



108
109
110
111
112
113
114
115
116
117
118
119
120
121
122
123
124
125
126
127
128
129
130
131
132
133
134
135
136
137
138
139
140
141
142
143
144
145
146
147
148
149
150
151
152
153
154
155
156
157
158
159
160
161

Under review as a conference paper at ICLR 2025

65432
Number of Shots

0.2

0.3

0.4

0.5

0.6

Pe
rfo

rm
an

ce

CurDial

65432
Number of Shots

0.2

0.3

0.4

0.5

Pe
rfo

rm
an

ce

TMW

0 20 40 60 80 100
Threshold (%)

60

65

70

75

80

85

90

95

100

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
) CurDial

0 20 40 60 80 100
Threshold (%)

20

30

40

50

60

70

80

90

100

At
ta

ck
 S

uc
ce

ss
 R

at
e 

(%
) TMW

Average
Worst
Random

Shot 4 (Exhaustive)
Shot 5 (Exhaustive)

Shot 6 (Exhaustive)
Shot 4 (Neural)

Shot 5 (Neural)
Shot 6 (Neural)

Figure 1: Performance and attack success rates of Llama-3 on CurDial and TMW datasets. Left
panels: Random, average and worst-case performance as a function of shot number. Right panels:
Attack success rates for exhaustive and neural search attack methods at different thresholds.

first to solve this problem from an adversarial perspective. We propose a novel distributionally robust
optimization (DRO)-based learning algorithm to enhance the inherent robustness of LLMs against
order perturbations and solve it using the Sinkhorn operator. Our approach complements existing
inference-stage methods and generalizes across diverse task categories.

Distributionally Robust Optimization. In distributionally robust optimization (DRO), ambiguity
sets are often defined as divergence balls centred on the empirical distribution of data pairs (x, y),
which act as regularizers for small radii (Ben-Tal et al., 2013; Lam & Zhou, 2015; Duchi et al.,
2016; Miyato et al., 2018). However, larger radii can result in excessively conservative sets. Prior
applications of DRO have addressed distributional shifts, including label shift (Hu et al., 2018) and
data source shift (Oren et al., 2019) and group shift (Sagawa et al., 2020). In contrast, this study is the
first to apply DRO to in-context learning robustness, defining the ambiguity set through all possible
permutations of the empirical distribution that requires ICL performance guarantees.

Optimal Transport. Optimal transport (OT), a foundational mathematical discipline established by
(Monge, 1781; Kantorovich, 1942), provides a metric for measuring distances between distributions,
commonly known as the Wasserstein distance or Earth Mover Distance. It has been applied as a
tool for manipulating probability distributions. In our study, the hard Permutation mining Network
(P-Net) is designed to act as a conduit for transportation between two discrete measures, leveraging
entropy-constrained OT (Cuturi, 2013), also referred to as the Sinkhorn distance, to enable the
derivation of a differentiable loss (Genevay et al., 2018). Our work extends the concept of learning
permutation structures through neural networks, as explored in (Mena et al., 2018) for learning to
sort numbers or solve jigsaw puzzles. However, we apply OT in the context of LLMs, and design a
neural network (P-Net) equipped with Sinkhorn operator to generate challenging permutations for
LLMs to perform adversarial training.

3 REVISITING PERMUTATION VULNERABILITY IN LLMS

This section examines the severity of performance fluctuations in LLMs in response to different
permutations of given demonstrations. Additionally, from an adversarial perspective, we explore
whether this vulnerability can be exploited to devise an effective attack on LLMs.

Experimental Setups To conduct evaluations, we select two tasks from Super-NaturalInstructions
(Wang et al., 2022), including Curiosity-based Dialog (CurDial) and TellMeWhy QA (TMW). We
test 100 samples for each task, with each sample structured as a quadruple consisting of (instruction,
demonstrations, input, output). The number of demonstrations (shots) ranges from two to six.
Following (Wang et al., 2022), the performance is measured using the ROUGE-L (Lin, 2004).
We adopt LLaMA-3-8B for evaluation due to its widespread use. We analyze the permutation
vulnerability of LLaMA-3-8B on two settings as follows:

1) Permutation Vulnerability on Different Number of Demonstrations We first examine the
average and worst-case performance of the model across different permutations of input demonstra-
tions and the effect of scaling the number of demonstrations. As shown in the left of Figure 1, there
is a notable observation: adding demonstrations is a double-edged sword. Increasing the number of
demonstrations (shots) generally enhances the model’s average performance due to richer contextual
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information. However, it can simultaneously worsen the worst-case performance. This suggests
that while more demonstrations provide beneficial context, the exponentially increasing number of
possible permutations (n!) introduces a higher likelihood of a possible input configuration on which
the model performs poorly.

2) Input Permutation as Attack We then consider a two-party adversarial scenario (Zou
et al., 2023; Rao et al., 2024; He et al., 2024) between a malicious user (attacker) and a model
provider (defender). The attacker seeks to induce compromised responses from LLMs solely by
permuting the ICL demonstrations, making the attack less noticeable to the model provider. We
measure the effectiveness of such attack by reporting the attack success rate (ASR). Given a task
D = {(pi, xi, yi)}, we define a sample (pi, xi, yi) successfully attacked if its relative performance
degradation induced by a attacher exceeds a threshold δ ∈ [0%, 100%]. Here, pi represents an
ICL prompt containing n demonstrations. We denote the set of all possible permutations of the pi
demonstrations as P = {Π0, . . . ,Πn!−1}, where |P| = n!. Let g be a performance metric function
(e.g., ROUGE-L). The ASR on the task D is defined as:

ASR(D, δ) =
1

|D|

|D|∑
i=1

I
(
(µi − ωi)/µi ≥ δ

)
(1)

where I denotes the indicator function, |D| is the size of the dataset, and δ is the threshold. The
average performance of the i-th sample, µi, is defined by:

µi = EΠ∼P[g(Π · pi, xi; yi)] =
1

n!

n!∑
j=1

g(Πj · pi, xi; yi) (2)

and ωi is the compromised performance induced by the attack strategy adopted by the malicious user.
Here, we analyze two attack method:

• Exhaustive Search Attack: To calculate the upper bound of the effect the permutation-based attack
can achieve, we assume that the malicious user has unlimited attempts and conducts an exhaustive
search. For each sample (pi, xi, yi), this process involved testing all possible permutations of
demonstrations in Qi and identifying the permutation that yields the poorest performance. In this
case, the attacked performance is calculated as follows:

ωi = min
Π∈P

g(Π · pi, xi; yi) (3)

• Neural Search Attack: To approximate the upper bound established by the exhaustive search
when the number of attempts is limited, we employ a meta-learning approach to optimize a
hard permutation mining network (P-Net). As illustrated in Figure 3 (details are in the Methods
section), during training, this network takes the standard sample (pi, xi, yi) as input and outputs a
permutation matrix Πi. The permuted samples (Πi ·pi, xi, yi) are then fed into the LM to maximize
its loss function. During testing, the network generates the most challenging permutation Πi for
each sample (pi, xi, yi). Then the attacked performance is calculated as follows:

ωi = g(Πi · pi, xi; yi), s.t. Πi ∼ P-Net(pi, xi, yi) (4)

As shown in the right of Figure 1, the results indicate that permutation attacks are effective and
approachable. Leveraging this characteristic, the exhaustive search attack successfully attacks over
50% and 80% of the samples with δ = 50% on two datasets respectively, and the neural attack
achieved a successful rate close to this upper bound across different shots. These results demonstrate
that this vulnerability poses a real concern, even for advanced LLMs like LLaMA-3.

Remark These deficiencies may directly stem from the fundamental limitations of standard Empir-
ical Risk Minimization (ERM) training, which focuses on optimizing average performance while
neglecting worst-case performance. We discuss this issue in depth in the next section and propose a
method to address the model’s improper behaviour on unseen but practically valid input spaces.

4 PERMUTATION-RESILIENT LEARNING (PEARL)

4.1 INSTRUCTION TUNING VIA DRO

Our objective is to train a LLM to perform well across all possible permutations of given demonstra-
tions when prompted with few-shot instructions.

4
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In supervised fine-tuning for few-shot learning, the LLM is trained to predict an output y ∈ Y given
an input x ∈ X and a few-shot instruction p ∈ P , where p typically consists of a sequence of
demonstrations, each being an input-output pair. Let Θ denote the parameter space of the language
model, and let ℓ : Θ× (P ×X ×Y) → R+ be a nonnegative loss function measuring the discrepancy
between the model’s prediction and the true output. The standard approach is to find parameters
θ ∈ Θ that minimize the empirical loss over the training data via empirical risk minimization (ERM):

θ̂ERM := argmin
θ∈Θ

E(p,x,y)∼P̂ [ℓ(θ; (p, x, y))] (5)

where P̂ denotes the empirical distribution derived from the training dataset.

Under appropriate assumptions, learning theory (Vapnik, 1999; Shalev-Shwartz & Ben-David, 2014)
guarantees that models trained via ERM perform well on the test distribution given sufficient training
data. However, in practice, models trained using ERM often fail to generalize well to different
permutations of the same set of demonstrations. This occurs because the training set covers only
a subset of all possible permutations of the demonstrations, and during testing, the model may
encounter permutations not seen during training, leading to a significant degradation in performance.

To systematically address the permutation sensitivity issue, we propose fine-tuning under the frame-
work of distributionally robust optimization (DRO), which optimizes the risk under the worst-case
distribution within a specified ambiguity set. Specifically, we aim to solve:

θ̂DRO = argmin
θ∈Θ

{
sup

QΠ∈Q
E(p,x,y)∼QΠ

[ℓ(θ; (p, x, y))]
}

(6)

The ambiguity set Q is constructed to capture all distributions obtained by permuting the prompts
in the empirical distribution P̂ . Specifically, for each possible permutation Π ∈ P, we define the
permuted distribution QΠ by applying Π to the prompt p of each data point in P̂ :

QΠ :=
{(

Π · p, x, y
) ∣∣∣ (p, x, y) ∼ P̂

}
, Π ∈ P, (7)

where Π is a permutation matrix acting on the sequence of demonstrations in p, and P denotes the set
of all possible permutation matrices. The ambiguity set Q is then defined as the convex hull of these
permuted distributions:

Q :=

{∑
Π∈P

qΠ QΠ

∣∣∣ q ∈ ∆|P|−1

}
, (8)

where q is a probability vector belonging to the |P| − 1-dimensional simplex ∆|P|−1.

By considering all possible permutations of the prompts in the empirical distribution, Q encompasses
all distributions that could arise due to prompt permutations. This formulation allows DRO to identify
the worst-case distribution within Q (the sup step in Eq. 6) and optimize the model’s performance
against it (the argmin step), thereby enhancing robustness to permutations in the input data.

0 1 2 3 4 5
Permutation Index

P

(a) ERM

0 1 2 3 4 5
Permutation Index

(b) DRO

P

Figure 2: Comparison of models trained under ERM
and DRO paradigms. The blue bars represent the em-
pirical distribution P̂ of training data, showing different
frequencies of six permutations in the training set. The
purple curves denote the learned distribution Pθ by (a)
ERM and (b) DRO models, illustrating their different
behaviors on less appeared but valid permutations.

To illustrate the advantages of DRO over
ERM in handling different permutations,
consider the example in Figure 2. For a 3-
shot training example (p, x, y) with prompt
p containing three demonstrations, there
are six possible permutations denoted as
(p0, x, y), . . . , (p5, x, y), indexed from 0 to
5. P̂ denotes the empirical distribution of
permutations in training data, represented
by blue bars. The bars show that permuta-
tion indices 0, 1, and 4 appear in training
data with frequencies, while permutations
2, 3, and 5 do not appear. Pθ represents
the distribution learned by the LLM, repre-
sented by purple curves. In panel (a), the
ERM-trained model assigns higher proba-
bilities to frequently occurring permutations (0, 1, 4) and lower probabilities to less frequent ones
(2, 3, 5), leading to poor performance on unseen permutations during testing. In contrast, panel
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(b) shows that the DRO-trained model distributes probabilities more uniformly across all possible
permutations, as it explicitly considers them all (Equation (6)) during learning. This demonstrates
how DRO mitigates ERM’s limitations by encouraging models to assign reasonable probabilities to
all valid permutations, regardless of their frequency in training data.

4.2 P-NET: LEARNING TO PERMUTE VIA OPTIMAL TRANSPORT

To enable our DRO framework to function effectively, we need to efficiently find the worst-case
scenario within the ambiguity set (solve the max step in Equation (6)). Directly addressing this
problem through exhaustive search is computationally infeasible due to the exponential search space.

To overcome this challenge, we model the problem as the Otimal Transport (OT) from the distribu-
tion of permutations of the input data to a target distribution that is challenging for the current LLMs.
To implement this, we design a neural network called the Hard Permutation Mining Network
(P-Net), P-Net: (P×X ×Y) → ∆(Π), which maps an input example to a distribution of challenging
permutations. As illustrated in Figure 3, we can sample a hard permutation from this distribution to
reorder the demonstrations into a more challenging version.

The P-Net consists of two components: a parameter part that extracts features and models the
relationships between demonstrations, a non-parameter part using the Sinkhorn algorithm to build
the distribution ∆(Π), and Gumbel sampling for differentiable sampling from it (Π ∼ ∆(Π)).

Parameter component. The parameter component consists of a feature extractor and a cross-
relationship modeling layer. The feature extractor can be a small pre-trained model that takes an ICL
prompt composed of n demonstration pairs p = {(xi, yi)}ni=1 and a predicting sample (x, y), and
produces their representations as follows:

([CLS], (x1, y1), . . . , [CLS], (xn, yn), [CLS], (x, y))
Transformer−−−−−−→ (h1,h2, . . . ,hn,hn+1) , (9)

where hi is the representation corresponding to the i-th [CLS] token, which is often used to segment
and extract the representation of sequences (Devlin et al., 2019b; Lu et al., 2021).

After extracting the representations of n demonstrations, we have H = (h1,h2, . . . ,hn) ∈ Rn×h.
We then model the pairwise relationships among the demonstrations. Specifically, we design a simple
cross-demonstration layer to obtain a relationship matrix R ∈ Rn×n that captures the pairwise
relationships between each pair of demonstrations, defined as:

R = g
(
HWH⊤

)
, (10)

where W ∈ Rh×h is a weight matrix, and g denotes a nonlinear activation function.

The output matrix R ∈ Rn×n can be interpreted as an adjacency matrix in graph theory. Viewing
the demonstrations as nodes in a graph, the relationship between nodes i and j is represented by the
edge Rij . Here, we define Rij as the potential increase in difficulty for the LLM if demonstrations
i and j are swapped; a higher value of Rij indicates that swapping these two demonstrations may
significantly increase the task’s difficulty.

However, while R captures the potential for swapping between demonstrations, it is not yet suitable
for sampling permutations because its elements can take any real values and do not necessarily form
a valid probability distribution. To convert R into a distribution over permutations ∆(Π) that we can
sample from, we introduce a non-parameter component that employs the Sinkhorn operator.

Non-parameter component. As Sinkhorn operator S is a well-established method in optimization
theory that transforms a square matrix into a doubly stochastic matrix—also known as the Sinkhorn
distribution—which represents a distribution over permutations (Sinkhorn, 1966; Adams & Zemel,
2011; Mena et al., 2018), we can use it to transform R into the distribution of permutations ∆(Π).
We implement the sinkhorn algorithm through simple iterative process:

S(R) = lim
l→∞

(Tc (Tr (exp(R)))) , (11)

Tr(R) = R⊘
(
R1n1

⊤
n

)
, Tc(R) = R⊘

(
1n1

⊤
nR

)
, (12)

where Tr(R) and Tc(R) represent the row and column normalization operators, respectively; ⊘
indicates element-wise division; and 1n is a column vector of ones. As established by (Sinkhorn,

6



324
325
326
327
328
329
330
331
332
333
334
335
336
337
338
339
340
341
342
343
344
345
346
347
348
349
350
351
352
353
354
355
356
357
358
359
360
361
362
363
364
365
366
367
368
369
370
371
372
373
374
375
376
377

Under review as a conference paper at ICLR 2025

Figure 3: An overview of the learning framework. The P-Net is a small model incorporating optimal
transport (OT) algorithm, trained jointly with the LLM under the adversarial optimization paradigm.
Note that the permutation matrix operates on the input sequence’s embeddings (simplified here as
text sequences for clarity). After training, only the LLM is retained while the P-Net is discarded.

1966), the Sinkhorn operator S(R) strictly converges to a doubly stochastic matrix as the number of
iterations l approaches infinity.

As we need to sample a permutation matrix from the Sinkhorn distribution (doubly stochastic matrix)
(sample step in Figure 3) and build a differentiable process, Gumbel sampling (Jang et al., 2017) is
applied to the Sinkhorn operator:

Π = S

(
R+ U

τ

)
, Uij = − log

(
− log

(
U ′
ij

))
, U ′

ij ∼ Uniform(0, 1), (13)

where U ∈ Rn×n is a matrix of Gumbel noise and τ is the temperature. As τ approaches zero,
S ((R+ U)/τ) approximates a permutation matrix Π ∈ Pn×n. The hyperparameters of the Sinkhorn
operator are studied in Appendix D.

By modeling permutation generation as an optimal transport problem and designing the P-Net
to implement it, we enable the transformation of the input permutation distribution into a target
permutation distribution. Next, we introduce how P-Net is co-optimized with the LLM to make the
target permutation distribution the most challenging for the current LLMs.

4.3 ADVERSARIAL OPTIMIZATION

As depicted in Figure 3, our framework employs an adversarial approach to co-optimize the LLMs
and the P-Net. Specifically, for each sample, the P-Net generates a challenging permutation designed
to maximize the LLM’s loss. In turn, the LLM seeks to minimize its loss despite the challenging
permutations introduced by the P-Net. Let θ denote the parameters of the LLM, and ϕ those of the
P-Net. We formalize the optimization process as follows.

We first optimize the P-Net, corresponding to the inner maximization step in Equation (6). For a
given example (p, x, y), we sample a permutation Π ∼ P-Net(ϕ; (p, x, y)) from P-Net. We then
compute the LLM’s loss on the permuted example (Π · p, x, y), denoted by ℓ(θ;ϕ; (Π · p, x, y)). The
objective is to optimize the P-Net parameters ϕ to maximize this loss:

L(ϕ; θ)lm = E(p,x,y)∼P̂ ,Π∼P-Net(ϕ;(p,x,y))[ℓ(θ;ϕ; (Π · p, x, y))] (14)

Note that the Sinkhorn operator is implicitly included in Π ∼ P-Net(ϕ; (p, x, y)).

To prevent the P-Net from exploiting trivial solutions, such as outputting uniform matrices that dilute
the semantic content of the demonstrations, we introduce an element-wise entropy constraint term
that encourages Π to be as distinct as possible:

L(ϕ)ent = E(p,x,y)∼P̂ ,Π∼P-Net(ϕ;(p,x,y))

∑
i,j

Πij(1−Πij). (15)

This leads to the following combined optimization for the P-Net:

ϕ̂⋆ = argmax
ϕ∈Φ

(L(ϕ; θ)lm − βL(ϕ)ent) , (16)
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where β represents the penalty coefficient for the entropy constraint, further studied in Appendix D.
Note when optimizing Equation (16), θ remains constant.

We then optimize LLM, corresponding to the inner minimization step in Equation (6). For an
example (p, x, y), we get a challenging permutation from the previously optmized P-Net (ϕ̂⋆), Π ∼
P-Net(ϕ̂⋆; (p, x, y)). We compute the LLM’s loss on this permuted example (Π · p, x, y), denoted by
ℓ(θ; ϕ̂⋆; (Π · p, x, y)). The objective is to optimize the LLM parameters θ to minimize this loss:

θ̂⋆ = argmax
θ∈Θ

L(ϕ̂⋆; θ)lm, (17)

Note when optimizing LLM, we incorporate the previously optimized parameter ϕ̂⋆ from the
P-Net and keep it constant.

From Equation (16) to (17), we complete a loop of iteration. In the next iteration, we substitute θ̂⋆

into Equation (16) for a new round of optimization until convergence. The comprehensive training
algorithm is outlined in Appendix A.

5 IN-CONTEXT LEARNING WITH LINEAR FUNCTIONS

5.1 DATASETS AND EVALUATION METRICS

We investigate in-context learning on linear functions f(x) = w⊤x, where w ∈ Rd, follow-
ing (Garg et al., 2022; Guo et al., 2024b). For each w, we construct each example pi =
(x1, f(x1), . . . , xi, f(xi), xi+1) containing i input-output demonstration pairs and a query input
xi+1. A language model LMθ is trained to minimize:

min
θ

Ep

[
1

k + 1

∑k

i=0
ℓ(LMθ(p

i), f(xi+1))

]
, (18)

where ℓ(·) is the MSE loss and k is the maximum number of demonstrations. We evaluate using
normalized squared error ((LMθ(p)− w⊤xquery)

2/d). Detailed settings are in Appendix B.1.

5.2 IMPLEMENTATION DETAILS AND BASELINES

Architecture and Training. We implement Lθ using a GPT-2 base model (Radford et al., 2019)
and train it from scratch on a generated dataset using the AdamW (Loshchilov & Hutter, 2019).
Key training parameters include a batch size of 128 and 500k training steps. In the PEARL frame-
work, the P-Net is initialized as a BERT-base (Devlin et al., 2019a) and also trained from scratch.
Implementation details are in Appendix B.2.
Baselines. Consistent with (Garg et al., 2022), we adopt an empirical risk minimization method
with curriculum learning (Bengio et al., 2009; Wu et al., 2020) (ERM+CL) to train the model. The
training process gradually increase the number of demonstrations presented to the model, allowing
for progressive learning of more complex patterns and making the training more stable.

5.3 EVALUATION RESULTS

We evaluate the effect of permutations on the worst-case and average performance of different
methods, as well as each method’s defence capability against permutation attacks.

As shown in Table 1, the performance gap between average and worst-case performance across
permutations for the baseline methods was significant, indicating substantial vulnerability to permu-
tations. Specifically, the worst-case performance of the baseline methods decreased dramatically
compared to their average performance, with the relative performance drop increasing from 74.6% at
3 shots to 84.1% at 4 shots, effectively losing most of the performance gains achieved by increasing
the number of shots. In contrast, our method, PEARL, not only improved the average performance
but also significantly enhanced the worst-case generalization performance compared to the baselines.
While the average performance gains tend to plateau as the number of shots increases, the worst-case
performance gains continue to rise, increasing from 65.5% at 3 shots to 73.6% at 5 shots.

Figure 4 depicts the proportion of successfully attacked samples in terms of (1) different attack
success thresholds and (2) number of demonstrations (shots). The former considers more pessimistic

8



432
433
434
435
436
437
438
439
440
441
442
443
444
445
446
447
448
449
450
451
452
453
454
455
456
457
458
459
460
461
462
463
464
465
466
467
468
469
470
471
472
473
474
475
476
477
478
479
480
481
482
483
484
485

Under review as a conference paper at ICLR 2025

Table 1: Normalized MSE across permutations.

Shot Method Avg. Worst.

3 ERM+CL 1.45 2.67
PEARL 0.86 (+40.7) 0.92 (+65.5)

4 ERM+CL 1.20 3.34
PEARL 0.79 (+34.1) 1.11 (+66.8)

5 ERM+CL 1.28 5.03
PEARL 0.87 (+32.0) 1.33 (+73.6)
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Figure 4: Comparison of attack success rates.

scenarios (attacked samples drop a large margin), while the latter examines larger input spaces. We
observed that PEARL’s advantage increased as the threshold grew. At δ > 50%, the defence success
rate for PEARL across all shots was approximately double that of the baseline methods. This indicates
that PEARL can effectively prevent pessimistic scenarios (samples attacked with a large threshold).
Moreover, PEARL’s performance improved with an increasing number of shots, suggesting better
scalability compared to baseline methods.

6 INSTRUCTION FINE-TUNING OF LARGE LANGUAGE MODELS

6.1 EXPERIMENTAL SETUPS

Datasets. Our instruction tuning data were derived from Super-Natural Instructions (Wang et al.,
2022). We selected 17 representative tasks: 9 natural language generation (NLG) tasks and 8 natural
language understanding (NLU) tasks. Following (Wang et al., 2022), we randomly designated 4
datasets as held-out test sets and used the remaining 13 datasets for training. This resulted in a
training set of 1,950 examples and a test set of 400 examples (see Appendix C.1 for details). Each
example follows a format of (p, x, y), where p is an ICL prompt containing 2 to 5 demonstrations.
Evaluation Metrics. Following the practice in Super-Natural Instructions (Mishra et al., 2022; Wang
et al., 2022), we adopt ROUGE-L (Lin, 2004) for reporting performance results, due to the diversity
of our tasks and the open-ended nature of instruction tuning. We also report a single "average" metric
across all datasets, following the methodology in FLAN (Wei et al., 2022; 2023).
Baseline and Implementation Details. To evaluate our framework, we compare it with other
learning algorithms, including Empirical Risk Minimization (ERM) (Min et al., 2022), ERM with
Demonstration Shuffling (ERM+DS) (Zhang et al., 2018), ERM with Instance Mixup (ERM+IM)
(Zhang et al., 2018), InfoAC (Xiang et al., 2024), Batch-ICL (Zhang et al., 2024) and CurStable
(Chang & Jia, 2023). We use FLAN-large as the P-Net and experiment with five LLMs: Llama3-8B,
Llama2-7B/13B, Mistral-7B, Gemma-7B. More details on baselines and implementations are in
Appendix C.2. Hyperparameters are in Appendix C.3.

6.2 EVALUATION RESULTS

We evaluate PEARL from three perspectives: (1) comparison with training-stage methods (empirical
risk minimization [ERM] and its augmentations, InfoAE), (2) comparison and integration with
inference-stage techniques (Batch-ICL, CurStable), and (3) scalability to many-shot in-context
learning (ICL; Agarwal et al., 2024) with more demonstrations.

Table 2 presents the comparative performance of various methods. PEARL consistently improves
both average and worst-case performance across all unseen tasks. As the number of shots increases,
the worst-case performance gain relative to ERM progressively increases from 14.2% at 2 shots
to 29.4% at 4 shots. Notably, while optimized for worst-case performance, PEARL also achieves
superior average performance with gains of 5.7-9.8%. This improvement may stem from the rapid
convergence observed during LLaMA3-8B’s fine-tuning, where training loss plateaus within one
epoch. The rapid convergence suggests that focusing on challenging permutations during training is
more effective than using random ones—an observation consistent with WizardLM (Xu et al., 2024).

Our method demonstrates substantial improvements over strongest training-stage and inference-stage
baselines, achieving 9–21% worst-performance gains. On inference-stage methods, Batch-ICL boosts
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Table 2: Average and Worst-Case Performance of Llama3-8B on four held-out tasks: Common-
senseQA (CSQA), Curiosity Dialogue (CurDial), CoLA, and Tell Me Why (TMW). Performance
improvements (%) over ERM shown in blue. Worst-case performance tested using exhaustive search.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 57.3 49.4 58.0 54.0 57.9 43.4 62.0 58.0 51.1 42.0
ERM+DS 57.5 (-0.2) 48.6 (-1.6) 62.0 54.0 54.1 37.8 61.0 60.0 51.5 42.7
ERM+IM 53.5 (-6.6) 44.4 (-10.1) 63.0 54.0 44.7 28.1 57.0 56.3 49.4 39.2
INFOAC 55.7 (-2.9) 47.6 (-3.7) 57.5 56.0 53.4 36.4 63.0 61.5 48.7 37.3

CURSTABLE 61.6 (+7.5) 52.1 (+5.4) 64.0 56.0 61.7 46.2 68.4 62.0 52.3 44.1
BATCH-ICL 58.6 (+2.2) - 63.0 - 56.3 - 65.5 - 49.6 -

PEARL 62.9 (+9.8) 56.4 (+14.2) 65.0 62.0 60.3 50.7 71.0 68.0 55.1 44.8
+ CURSTABLE 65.6 (+14.5) 58.0 (+17.4) 68.0 63.0 64.6 52.8 74.0 70.0 55.9 46.2
+ BATCH-ICL - - 65.5 - - - 72.0 - - -

3 ERM 57.8 38.3 57.7 47.0 61.4 25.9 61.9 52.0 50.3 29.4
ERM+DS 56.1 (-2.9) 39.7 (+3.7) 60.0 46.0 54.1 25.4 60.0 56.0 50.3 31.5
ERM+IM 55.3 (-4.3) 39.8 (+3.9) 59.0 46.0 54.6 28.0 57.6 53.1 50.0 31.9
INFOAC 56.3 (-2.6) 39.5 (+3.1) 59.3 49.0 55.2 24.3 62.1 55.8 48.4 28.8

CURSTABLE 61.0 (+5.4) 41.4 (+8.0) 65.0 52.0 62.5 26.7 64.0 54.0 52.3 32.7
BATCH-ICL 58.6 (+1.3) - 62.0 - 59.6 - 64.0 - 48.7 -

PEARL 63.1 (+9.2) 46.9 (+22.5) 68.4 62.0 66.7 34.8 64.7 56.0 52.4 34.7
+ CURSTABLE 65.0 (+12.5) 48.9 (+27.5) 70.0 64.0 67.6 35.8 68.4 58.0 54.1 37.6
+ BATCH-ICL - - 68.7 - - - 65.6 - - -

4 ERM 59.7 30.6 61.3 38.0 62.9 21.3 63.3 45.8 51.1 17.5
ERM+DS 57.7 (-3.4) 31.8 (+3.9) 63.3 40.0 57.3 17.6 60.1 52.0 49.9 17.8
ERM+IM 56.0 (-6.2) 32.4 (+5.9) 63.2 42.0 53.7 17.8 57.6 48.5 49.6 21.3
INFOAC 58.6 (-1.8) 33.0 (+7.8) 63.7 44.0 58.7 19.0 63.9 51.0 48.1 17.0

CURSTABLE 60.8 (+1.8) 32.3 (+5.6) 63.0 40.0 64.5 22.8 64.1 48.0 51.5 18.4
BATCH-ICL 58.5 (-2.0) - 62.0 - 61.5 - 63.3 - 47.2 -

PEARL 63.1 (+5.7) 39.6 (+29.4) 68.4 52.0 69.2 31.3 64.7 52.0 50.1 23.0
+ CURSTABLE 65.0 (+8.8) 41.4 (+35.1) 70.6 54.0 72.3 34.2 66.3 54.0 50.6 23.2
+ BATCH-ICL - - 69.0 - - - 65.0 - - -

both average and worst-case performance on classification tasks (CSQA, CoLA); however, it exhibits
limited or negative effects on generation tasks (CurDial, TMW), limiting applicability. In contrast,
CurStable performs well on both task types via demonstration selection. Notably, when combined
with inference-time methods, our approach yields additional performance improvements of 3–5%,
highlighting the complementary nature of our method.

Figure 5: Scaling to many-shot ICL.

We evaluate PEARL and ERM in the many-shot ICL set-
ting. As shown in Fig. 5, PEARL achieves surprising
worst-case performance gains from 24% to 40% when gen-
eralizing to larger shots, despite being trained with fewer
shots and shorter sequences. This suggests our method
helps LLMs learn robust features that generalize well to
many-shot ICL. Detailed results are in Appendix. F.

Analyses of hyperparameters and extended experiments
on LLaMA2, Mistral, and Gemma are provided in Appen-
dices D and E, respectively.

7 CONCLUSION

We introduced a novel permutation-resilient learning framework (PEARL) to enhance the robustness
of LLMs against different permutations. PEARL employs a hard Permutation mining Network (P-Net)
that utilizes the Sinkhorn algorithm to generate challenging permutations, combined with adversarial
training to systematically improve LLM performance. Through empirical evaluations in both the
synthetic ICL task and the instruction tuning task, our framework has proven effective in mitigating
attacks and enhancing the generalization of LLMs. This research addresses a significant vulnerability
in LLMs, setting a foundation for the development of more resilient future language models.
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Algorithm 1 Adversarial Training Algorithm

1: Input: Training data P̂ , LLM θ, P-Net ϕ, P-Net iteration step m, Entropy coefficient β.
2: repeat
3: for t = 1, . . . ,m do
4: Sample an example (p, x, y) from P̂ .
5: Generate a permutation Π using P-Net: Π ∼ P-Net(ϕ; p, x, y).
6: Compute the LLM loss on the permuted input (Π · p, x, y): L(ϕ; θ)lm.
7: Compute the entropy regularization term L(ϕ)ent

8: Update P-Net parameters ϕ by ascending the gradient ∇ϕL(ϕ; θ)lm − β∇ϕL(ϕ)ent.
9: end for

10: Update LLM parameters θ by descending its gradient ∇θL(ϕ; θ)lm.
11: until convergence
12: Output: Optimized parameters θ and ϕ.

Andy Zou, Zifan Wang, Nicholas Carlini, Milad Nasr, J. Zico Kolter, and Matt Fredrikson. Universal
and transferable adversarial attacks on aligned language models, 2023.

APPENDIX

A ADVERSARIAL TRAINING ALGORITHM

We present the adversarial training algorithm in Table A.

B DETAILED SETUP OF ICL WITH LINEAR FUNCTIONS

B.1 DATASETS CONSTRUCTION

We investigate training a language model to perform in-context learning on linear functions, following
(Garg et al., 2022; Guo et al., 2024b). The function class is defined as F = {f | f(x) = w⊤x,w ∈
Rd}, where d is the input dimension. Each data sample is constructed as follows:

(a) Function sampling: A weight vector w ∼ N (0, Id) is sampled, defining a linear function
f(x) = w⊤x.

(b) Input sampling: Inputs x1, x2, . . . , xk+1 ∼ N (0, Id) are independently drawn.

(c) Output generation: For each input, the corresponding output is computed as yi = f(xi) = w⊤xi

for i = 1, 2, . . . , k + 1.

The input prompt pi consists of i demonstrations and the (i + 1)-th example as the query: pi =
(x1, f(x1), x2, f(x2), ..., xi, f(xi), xi+1). We trained a language model Lθ, parameterized by θ, to
minimize the expected loss over all input prompts:

min
θ

Ep

[
1

k + 1

∑k

i=0
ℓ(LMθ(p

i), f(xi+1))

]
, (19)

where l(·) is the mean squared error (MSE) loss. During testing, we evaluated performance using the
same MSE metric. We report the normalized squared error ((LM(p)− w⊤xquery)

2/d), where d is
the problem dimension.

B.2 IMPLEMENT DETAILS

Architecture. Following (Garg et al., 2022), we implement Lθ using a GPT-2 architecture (Radford
et al., 2019) with 12 layers, 8 attention heads, and a hidden dimension of 256. The model takes as
input a sequence of vectors in its embedding space and predicts the next vector in the sequence within
the same space.
Training. We pre-train the model from scratch on a generated dataset of 40k linear functions using
the AdamW (Loshchilov & Hutter, 2019). We employ a batch size of 128 and trained for 500k steps,
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Table 4: Details of datasets used in instruction tuning from natural instructions.

Task ID Task Name Source Category
1297 QASC Question Answering QASC Question Answering
442 COM_QA Paraphrase Question Generation COM_QA Question Rewriting
908 DialogRE Identify Familial Relationships DialogRE Speaker Relation Classification
288 Gigaword Summarization Gigaword Title Generation
582 Natural Questions Answer Generation Natural Questions Question Answering
151 TOMQA Find Location Easy Clean TOM_QA Question Answering
1714 ConvAI3 Sentence Generation ClariQ Dialogue Generation
379 AGNews Topic Classification AG News Text Categorization
639 MultiWOZ User Utterance Generation MultiWOZ 2.2 Dialogue Generation
209 Stance Detection Classification StarCon Stance Detection
1516 IMPPRES Natural Language Inference IMPPRES Textual Entailment
589 Amazon Food Summary Text Generation Amazon Reviews Summarization
1285 KPA Keypoint Matching ArgKP Text Matching

selecting the best checkpoint based on validation set performance. In the PEARL framework, we
randomly initialize the P-Net with a BERT-base-sized transformer encoder, also pre-training it from
scratch. During testing, we sample novel functions to assess the model’s ability to infer new weights
w through in-context demonstrations.

C DETAILED SETUP OF INSTRUCTION FINE-TUNING

C.1 DETAILS OF DATASETS

Table 3: Summary of datasets used
in instruction tuning.

Split Category # Tasks # Samples

Training NLG 7 1050
NLU 6 900

Testing NLG 2 200
NLU 2 200

Our instruction tuning data are derived from Super-Natural In-
structions (Wang et al., 2022), which are part of the FLAN v2
benchmark (Chung et al., 2024). We selected 17 representative
tasks, comprising 9 natural language generation (NLG) tasks
and 8 natural language understanding (NLU) tasks. Following
the methodology of Wang et al. (2022), we randomly desig-
nated 4 datasets as held-out test sets and used the remaining 13
datasets for training. Each training dataset contains 150 exam-
ples, and each test dataset contains 100 examples, resulting in a
training set of 1,950 examples and a test set of 400 examples, as summarized in Table 3 (details are
provided in the Appendix C.1. The details of datasets used in instruction tuning is presented in Table
4.

C.2 BASELINE AND IMPLEMENTATION DETAILS

To evaluate the performance of our trained model, we compare it with other learning algorithms.

Empirical Risk Minimization (ERM) (Min et al., 2022): Standard approach minimizing the average
loss over the training dataset, adopted by mainstream instruction tuning models such as FLAN (Chung
et al., 2024), Natural Instructions (Mishra et al., 2022; Wang et al., 2022), and MetaICL (Min et al.,
2022).

ERM with Demonstration Shuffling (ERM+DS) (Zhang et al., 2018): Enhances ERM by randomly
shuffling the order of in-context demonstrations within each sample at each training step. This
introduces robustness by exposing the model to different permutations of demonstrations during
training. It can be considered a form of epoch-level data augmentation.

ERM with Instance Mixup (ERM+IM)(Zhang et al., 2018): Incorporates Instance Mixup technique
during each training step. For each data point, we generate multiple augmented versions by randomly
selecting different in-context demonstrations. We perform multiple forward passes to compute the loss
for each augmented version, average these losses, and then perform a single backward pass using the
averaged loss. This approach provides finer-grained data augmentation compared to demonstration
shuffling. Notably, by comparing this baseline with our method, we contrast min-mean optimization
(ERM+IM) with min-max optimization (our method).
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Category Hyperparameter Value

LLMs

Learning rate 3e-5
Batch size 16
Max sequence length 512
Weight decay coefficient 0.1
Epoch 2

LoRA

Rank 8
Alpha 32
Dropout 0.1
P-Net target modules q, v

LLMs target modules
q_proj, k_proj, v_proj,
o_proj, gate_proj,
up_proj, down_proj

P-Net

Temperature 0.1
Iteration coefficient 80
Entropy constraint 1.0
Noise 0.3
Learning rate 1e-4
Batch size 16
Max sequence length 512

Table 5: Hyperparameter settings used in our main experiment.

InfoAC: (Xiang et al., 2024) is a training-stage method that employs contrastive learning to enable
earlier tokens to access information from later tokens, amining to mitigate the order sensitivity of
ICL inherent in autoregressive LM.

Batch-ICL: (Zhang et al., 2024) is an inference-stage method that transforms an n-shot ICL prompt
into n individual one-shot prompts and then ensembles the results to improve robustness.

CurStable: (Chang & Jia, 2023) is another inference-stage method that enhances ICL performance
by selecting optimal demonstration samples. This selection process involves performing multiple
inferences with different prompts on a validation set, calculating the expected performance when
each demonstration is used, and assigning an importance score to each. The demonstrations with the
highest scores are then selected to form the demonstration pool.

By including these baselines—training-stage (ERM, ERM+DS, ERM+IM, and InfoAC) and inference-
stage (Batch-ICL and CurStable)—we provide a comprehensive evaluation of our proposed method.

As for the proposed PEARL framework, we select the LLaMA3-8B model as our LLM and the
FLAN-large encoder as the P-Net. Both models are fine-tuned using LoRA (Hu et al., 2022), with
the number of finetuned parameters of P-Net being 1/20 that of the LLM. We train the models on
the instruction dataset for two epochs using a single NVIDIA A40 GPU, with a batch size of 16,
resulting in a total of 246 training steps. The optimizer used was AdamW. The learning rates for the
P-Net and the LLM are set to 1× 10−4 and 3× 10−4, respectively. For the Sinkhorn algorithm, we
use 80 iterations, a temperature parameter of 0.1, and an entropy constraint coefficient β = 1.0.

C.3 DETAILS OF HYPERPARAMETER SETTINGS

In this section, we provide a comprehensive overview of the hyperparameter settings used in our
experiments (Table 5). The hyperparameters can be categorized into three groups: (1) basic LLM
training parameters, such as learning rate and batch size; (2) LoRA configuration parameters; and (3)
P-Net optimization parameters. These hyperparameters were selected based on average validation
performance and kept consistent across comparative experiments to ensure fair comparison.
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Figure 6: Impact of number of iterations and temper-
ature on the average/worst-case performance.

# Iter. Temperature

0.03 0.1 0.3

80 55.7 / 40.0 55.7 / 40.0 55.4 / 39.6
200 55.7 / 40.0 55.8 / 40.0 55.8 / 40.6
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Figure 7: Impact of entropy coefficient.

D ANALYSIS OF HYPERPARAMETERS IN INSTRUCTION FINETUNING

We conduct analysis to understand the impact of key hyperparameters on P-Net learning and our
overall framework. Our analysis focuses on two main aspects: the effect of the entropy constraint
strength, and the influence of iteration number and temperature in the Sinkhorn algorithm.

Influence of Entropy Regularization in OT We examine the impact of the entropy regularization
coefficient in OT, testing values of 0.3, 1.0, 3.0, and 10.0 (Figure 7). At a low coefficient (0.3),
P-Net’s gradient norm remained small, indicating minimal learning and potential generation of
simple semantic overlaps to satisfy adversarial training requirements. Concurrently, the LLM’s
gradient norm struggled to decrease. The gradient norm for P-Net peaked at 1.0, suggesting optimal
learning conditions. As coefficients increased to 3.0 and 10.0, P-Net’s gradient norm decreased
again, suggesting excessive restrictions. The range of 1.0-3.0 provided an ideal balance, encouraging
P-Net to extract meaningful information from the LLM without oversimplifying or overcomplicating
the task. In contrast, the LLM’s gradient norm decreased consistently with increasing coefficients,
indicating a distinct response to entropy regularization.

Effect of Sinkhorn Algorithm Parameters We investigate the interplay between two critical
parameters in the Sinkhorn algorithm: number of iterations and temperature. Intuitively, these
parameters are positively correlated; higher iteration counts typically allow for higher temperatures.
Our experiments, however, reveal an unexpected robustness to parameter variations. With the entropy
regularization coefficient fixed at 1, we vary the number of iterations (80, 200) and temperature
(0.03, 0.1, 0.3). As presented in Table 6, surprisingly, these substantial parameter changes result in
minimal performance variation. This suggests that the Sinkhorn algorithm in our framework is less
sensitive to these parameters than initially hypothesized, potentially indicating a wider range of stable
configurations for practical applications.

E EXTENDED INSTRUCTION FINETUNING ACROSS DIVERSE LLMS

We expanded our evaluation to include additional models: Mistral-7B, Gemma-7B, and earlier
generations such as Llama2-7B and Llama2-13B, as detailed in the tables from Table (6) to Table (8).

Sensitivity to Permutations Across LLM Families Our analysis reveals that different LLM
families exhibit varying degrees of sensitivity to permutations. The sensitivity ranking, from highest
to lowest, is as follows: Llama, Gemma, and Mistral. Notably, all examined families showed
significant performance declines, typically exceeding 10 percentage points.

Adaptation of the Proposed Method In scenarios with three or more examples, our method
consistently demonstrated substantial improvements, often enhancing worst-case performance by
more than 10%. These results confirm the robustness and effectiveness of our approach.

F SCALING TO MANY-SHOT IN-CONTEXT LEARNING

19



1026
1027
1028
1029
1030
1031
1032
1033
1034
1035
1036
1037
1038
1039
1040
1041
1042
1043
1044
1045
1046
1047
1048
1049
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1065
1066
1067
1068
1069
1070
1071
1072
1073
1074
1075
1076
1077
1078
1079

Under review as a conference paper at ICLR 2025

Table 6: Instruction fine-tuning results for Mistral-7B evaluated on four held-out tasks. Performance
gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 64.1 58.1 67.0 64.0 54.6 41.8 81.0 78.0 53.7 48.5
PEARL 67.0 (+4.5) 62.4 (+7.5) 68.0 66.0 59.4 49.0 82.0 78.0 58.4 56.7

3 ERM 66.6 56.1 67.0 62.0 63.7 38.9 80.0 76.0 55.6 47.3
PEARL 69.5 (+4.3) 62.8 (+12.0) 70.0 66.0 70.1 60.1 83.6 78.0 54.1 47.0

4 ERM 66.7 50.4 68.9 60.0 67.6 47.8 74.2 52.0 55.9 41.6
PEARL 68.3 (+2.5) 57.1 (+13.4) 69.9 62.0 71.6 54.8 74.9 66.0 56.8 45.5

5 ERM 67.9 50.7 67.5 56.0 70.7 52.6 76.0 56.0 57.4 38.2
PEARL 70.2 (+3.4) 58.1 (+14.5) 70.4 64.0 76.7 59.3 73.3 66.0 60.4 43.0

Table 7: Instruction fine-tuning results for Gemma-7B evaluated on four held-out tasks. Performance
gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 66.2 (+0.0) 59.5 (+2.0) 71.0 70.0 59.1 46.1 77.0 70.0 57.8 52.0
PEARL 66.3 60.7 74.0 68.0 47.3 39.2 82.0 78.0 61.7 57.6

3 ERM 64.7 (+5.8) 52.5 (+13.0) 70.7 64.0 67.1 45.2 70.3 60.0 50.5 40.7
PEARL 68.4 59.3 74.7 68.0 59.2 42.5 78.7 76.0 61.0 50.6

4 ERM 65.0 (+3.4) 46.5 (+13.0) 65.0 54.0 71.4 41.1 72.5 58.0 51.1 32.9
PEARL 67.2 52.5 71.4 60.0 60.7 38.9 75.9 66.0 60.8 45.2

5 ERM 64.3 (+3.1) 46.3 (+10.2) 65.9 54.0 73.4 48.3 65.6 50.0 52.3 32.9
PEARL 66.3 51.0 70.3 60.0 63.4 43.6 71.3 60.0 60.2 40.4

We evaluate the scalability of PEARL by extending our analysis to many-shot scenarios, testing
performance with 8 to 64 in-context examples (Table 10). Notably, despite being trained solely on
5-shot demonstrations, PEARL exhibits strong generalization to settings with substantially more
examples. Using Llama3-8B as our base model, we compare PEARL and ERM training approaches
across four held-out tasks. Our analysis reveals persistent performance advantages of PEARL over
the ERM baseline across all shot regimes.

G BEST-CASE PERFORMANCE

Although our methodology was initially designed to optimize for pessimistic (worst-case) scenarios,
we have also included an evaluation of the best-case performance for both PEARL and ERM to
provide a balanced perspective. The results are shown in the Table 11.

Surprisingly, the results show that across all datasets and in every shot condition, PEARL’s best
performance consistently exceeded that of ERM. This indicates that our method not only optimizes
performance in worst-case scenarios but also slightly enhances best-case performance.

H SHOT EFFICIENCY

In the analysis of shot efficiency, we observe divergent trends between worst-case and average
performance metrics as the number of shots increases. Specifically, while worst-case performance
may decrease, average performance demonstrates improvement. This analysis is crucial for evaluating
the practical efficacy of training approaches in more realistic, variable conditions.

Our comparative analysis involves models trained with and without PEARL method. The results,
as summarized in Table 3, indicate that the PEARL-trained models generally achieve comparable
average performance to non-PEARL models using approximately two to four times as many shots.
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Table 8: Instruction fine-tuning results for Llama2-7B evaluated on four held-out tasks. Performance
gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2 ERM 56.6 (+1.5) 46.3 (+0.4) 56.0 50.0 61.3 50.2 58.2 42.0 50.7 43.1
PEARL 57.4 46.5 58.0 48.0 55.2 44.7 62.0 48.0 54.4 45.4

3 ERM 58.2 (+2.3) 34.0 (+19.1) 52.7 34.0 64.0 36.4 66.0 36.0 50.1 29.4
PEARL 59.6 40.4 56.3 40.0 66.2 46.2 67.0 42.0 48.7 33.5

4 ERM 58.9 (+2.7) 19.9 (+59.1) 60.0 26.0 68.1 24.4 60.2 14.0 47.3 15.1
PEARL 60.5 31.6 61.2 40.0 69.4 40.1 62.4 24.0 48.9 22.4

5 ERM 61.9 (+1.6) 25.8 (+24.7) 59.0 32.0 74.2 43.9 65.7 10.0 48.6 17.1
PEARL 62.9 32.1 62.4 38.0 73.3 43.4 64.8 24.0 51.0 23.0

Table 9: Instruction fine-tuning results for Llama2-13B evaluated on four held-out tasks. Performance
gains (%) over the ERM baseline are indicated in blue.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

2.0 ERM 66.3 (+2.4) 56.6 (+7.3) 56.0 46.0 72.6 56.2 83.0 76.0 53.4 48.0
PEARL 67.9 60.7 64.0 58.0 73.8 64.2 81.0 76.0 52.6 44.4

3.0 ERM 65.7 (+4.2) 46.2 (+8.7) 55.7 38.0 76.4 51.3 77.7 56.0 53.1 39.6
PEARL 68.5 50.3 62.7 44.0 81.0 58.4 76.7 56.0 53.5 42.6

4.0 ERM 65.8 (+0.9) 33.2 (+21.1) 58.2 28.0 79.6 41.6 73.7 38.0 51.8 25.0
PEARL 66.4 40.2 63.3 42.0 80.4 45.5 69.4 42.0 53.1 29.1

In some instances, the performance equivalence exceeds this range, suggesting substantial gains in
sample efficiency.

As shown in Table 12, the results demonstrate that a PEARL-trained model, on average, requires
between 50% and 75% fewer shots to achieve performance levels comparable to those of a non-
PEARL model. This reduction in the required number of shots translates into a significant decrease
in computational complexity, from O(N2) to O((N/2)2) or O((N/4)2), enhancing computational
efficiency.
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Table 10: Performance evaluation across 8-, 16-, 32-, and 64-shot settings comparing PEARL and
ERM learning algorithm for Llama3-8B on four held-out tasks, with gains (%) relative to the ERM.

Average CSQA CurDial CoLA TMW

# Shot Method Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst. Avg. Worst.

8 ERM 61.8 (+7.6) 21.3 (+39.2) 61.4 36.0 68.3 22.7 62.7 16.0 54.8 10.6
PEARL 66.5 29.7 67.7 44.0 77.1 28.7 65.0 32.0 56.2 14.0

16 ERM 66.9 (+5.3) 21.3 (+23.7) 67.3 36.0 76.5 31.4 67.2 8.0 56.5 9.7
PEARL 70.5 26.3 70.9 46.0 83.9 37.5 70.1 12.0 56.9 9.8

32 ERM 67.4 (+3.8) 19.3 (+36.4) 67.5 32.0 77.8 30.7 68.2 6.0 56.1 8.6
PEARL 70.0 26.4 70.0 44.0 82.6 40.3 70.6 12.0 56.6 9.1

64 ERM 68.1 (+3.5) 20.6 (+36.7) 68.1 38.0 76.9 27.7 72.2 8.7 55.0 8.0
PEARL 70.4 28.2 69.5 46.0 82.9 38.9 74.2 19.6 55.1 8.1

Table 11: Best performance comparison between ERM and PEARL

#Shot Method Average gain CSQA CurDial CoLA TMW
2 ERM 64.1 68.8 64.4 64.1 59.2

PEARL 68.8 7.2% 73.4 69.2 70.3 62.1
3 ERM 72.8 70.3 85.0 65.6 70.3

PEARL 77.0 5.7% 73.4 87.9 79.7 66.9
4 ERM 82.9 81.3 92.4 78.1 79.7

PEARL 84.3 1.7% 82.8 93.6 81.2 79.5
5 ERM 86.8 84.4 95.3 81.3 86.2

PEARL 89.3 2.9% 87.5 96.5 85.9 87.3

Table 12: Average performance with and without PEARL

# Shots 2 4 8 16 32 64
wo PEARL 57.3 59.7 61.8 66.9 67.4 68.1
w PEARL 62.9 63.1 66.5 70.5 70.0 70.4
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