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Abstract

Large language models’ reasoning abilities ben-
efit from methods that organize their thought
processes, such as chain-of-thought prompt-
ing, which employs a sequential structure to
guide the reasoning process step-by-step. How-
ever, existing approaches focus primarily on
organizing the sequence of thoughts, leaving
structure in individual thought steps underex-
plored. To address this gap, we propose Table
as Thought, a framework inspired by cognitive
neuroscience theories on human thought. Ta-
ble as Thought organizes reasoning within a
tabular schema, where rows represent sequen-
tial thought steps and columns capture critical
constraints and contextual information to en-
hance reasoning. The reasoning process itera-
tively populates the table until self-verification
ensures completeness and correctness. Our ex-
periments show that Table as Thought excels in
planning tasks and demonstrates a strong poten-
tial for enhancing LLM performance in math-
ematical reasoning compared to unstructured
thought baselines. This work provides a novel
exploration of refining thought representation
within LLMs, paving the way for advancements
in reasoning and AI cognition.

1 Introduction

Recent advancements in reasoning have demon-
strated that the reasoning capabilities of large lan-
guage models (LLMs) can be enhanced by intro-
ducing structure into the reasoning process (Wei
et al., 2023; Yao et al., 2023; Besta et al., 2024). For
instance, the chain-of-thought approach organizes
textual reasoning in a step-by-step manner using a
linear chain structure (Wei et al., 2023). Building
on this, following works have shown that incor-
porating more complex organizational structures
further improves reasoning performance (Besta
et al., 2024; Yao et al., 2023). However, these
approaches structure reasoning only at the level
of connections between distinct reasoning steps

(inter-thought level) and leave the content of in-
dividual steps (thought level) unstructured. This
raises the critical question: Can LLMs’ reason-
ing abilities be further enhanced by introducing
structure within individual thoughts?

To address this question, we draw inspiration
from cognitive neuroscience theories of human
thought. Neuroscientists have found that humans
think in a structured way, with the brain’s orga-
nization facilitating sequential and goal-oriented
reasoning. Christoff and Gabrieli (2000) provided
early evidence that the prefrontal cortex supports
structured reasoning through a rostrocaudal hi-
erarchy, enabling the processing of increasingly
abstract concepts and complex goal-directed be-
havior. Later, Friston (2005)’s predictive coding
framework demonstrated how structured cognition
emerges from the brain’s ability to build hierarchi-
cal models, combining experiences with current in-
put to predict results. More recently, Jeff Hawkins
(Hawkins, 2021) argued that humans think in a
structured manner, with the neocortex organizing
knowledge in certain structures, and thinking arises
from neurons activating sequential locations in
these frames. Building on these insights, we pro-
pose investigating whether similarly structured rep-
resentations can be incorporated into LLMs to en-
hance their reasoning and planning capabilities.

In this work, we adopt a simple yet effective
structural format—a tabular schema—to approxi-
mate the structured nature of human thinking pro-
cesses. In our approach, the schema of a table
serves as a framework for organizing and navigat-
ing knowledge. Inspired by the sequential pro-
cesses described in neuroscience—where neurons
activate specific patterns step by step (Hawkins,
2021)—we model these processes as the sequen-
tial population of rows in a table, moving across
columns according to a predefined schema. A sin-
gle table can encapsulate one or more such struc-
tured thought processes, providing a coherent con-



tainer for organizing and connecting thinking steps
and associated information. Tables not only repre-
sent step-by-step processes for achieving specific
goals but also serve as robust frameworks for plan-
ning tasks. Moreover, utilizing tables as structured
representations enables schema design that ensures
organization and data integrity, thereby facilitating
efficient verification and analysis.

The contributions of our paper are as follows:

• Motivated by insights from cognitive neuro-
science regarding the structured nature of human
thinking, we propose a novel framework, Table
as Thought, that injects structure at the thought
level. To the best of our knowledge, this is the
first exploration and demonstration of integrat-
ing structured representations directly into the
reasoning process of large language models.

• We demonstrate the advantages of Table as
Thought in tasks requiring planning, highlight-
ing its potential to enhance performance on
tasks that demand sequential and goal-oriented
thought processes.

• We provide a detailed and comprehensive anal-
ysis of Table as Thought, offering insights into
its functionality and strengths, and comparing
the benefits of structured versus unstructured
thought representations. We hope these find-
ings inspire future research into the nature and
representation of thought processes in artificial
intelligence and computational linguistics.

2 Related Work

Structures in LLM Reasoning. Recent advance-
ments in large language models (LLMs) have in-
creasingly focused on integrating structured pro-
cesses to enhance reasoning capabilities. Chain-of-
Thought prompting (Wei et al., 2023) introduces a
step-by-step framework that organizes thoughts in
a sequential manner, enabling more coherent rea-
soning. Building on this, Tree of Thoughts (Yao
et al., 2023) and Graph of Thoughts (Besta et al.,
2024) employ hierarchical and networked struc-
tures to further enhance problem-solving, leverag-
ing branching and interconnected paths. Moreover,
self-consistency (Wang et al., 2023) improves reli-
ability by sampling multiple reasoning paths and
selecting the most consistent outcome, thereby ad-
dressing variability in generated responses.

While these methods excel at organizing rea-
soning at a macro level—such as through chain-

ing, branching, or aggregating thought paths—they
do not address the internal structure of individual
thoughts. Our work is distinct in that it introduces
structure directly at the thought level, refining the
granularity of reasoning processes in LLMs. By
focusing on the internal organization of individual
reasoning steps, we provide a novel perspective
on enhancing the depth and precision of structured
reasoning in LLMs.

Representations of Tables in LLM Inference.
Tables have traditionally played a significant role
in LLMs for tasks involving the understanding
and processing of tabular data, such as knowledge
retrieval (Cong et al., 2024), question answering
over structured data (Yin et al., 2020; Zhang et al.,
2024b), and tabular reasoning (Herzig et al., 2020;
Deng et al., 2024). In these tasks, tables are lever-
aged only as input for interpretation and manipula-
tion.

The Chain-of-Table framework (Wang et al.,
2024) extends the application of tables by employ-
ing them as proxies for intermediate thoughts in rea-
soning tasks involving tabular data. In this frame-
work, LLMs iteratively update a table, forming a
dynamic reasoning chain where the table evolves
based on intermediate results. While this approach
has proven effective on tabular-specific datasets, it
remains inherently tied to tasks where tabular data
is part of the input or reasoning context.

In contrast, our work redefines the role of tables
by utilizing them as a universal framework for struc-
turing and representing the internal thought pro-
cesses of LLMs in non-table-specific tasks, such as
planning and mathematical reasoning. Unlike prior
approaches that depend on pre-existing tabular in-
puts, we employ tables as dynamic containers to or-
ganize and manipulate thoughts step by step. This
approach enables structured reasoning even in tasks
where no tabular data is initially present, bridging
the gap between unstructured text-based reasoning
and structured problem-solving paradigms. By gen-
eralizing the utility of tables beyond table-specific
reasoning tasks, our work marks a significant de-
parture from previous methods and demonstrates
the versatility of this novel framework.

3 Table as Thought

We present the design of the Table as
Thought framework, which introduces a novel
approach to reasoning in large language models by
leveraging tables as structured representations of
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Thoughts

Reasoning Table Reasoning 
Verification

{                
Participant_Name: 
Michelle,
Unavailable_Time:  
11:00 to 12:00,
...
 }

Participant Name

Unavailable Time

…

Available Time

Selected Time

Participant Unavailable … Selected 

Michelle 11:00 to 12:00 9:30 to 10:30

Steven 9:00 to 9:30, 11:30 
to 12:00, ….

9:30 to 10:30

Jerry 9:00 to 9:30, 10:00 
to 11:00, …

9:30 to 10:30

You need to 
schedule a 
meeting for 
Michelle, 
Steven and 
Jerry for 
one hour …

❌
✅

Answer

✅: The reasoning 
process is correct.

❌: Selected Time 
conflicts with Jerry’s 
unavailable time…

The meeting 
should be 
scheduled 
9:30 to 10:30

Figure 1: The Overall Pipeline for Table as Thought Reasoning. The figure illustrates how Table as Thought
structures reasoning by iteratively populating a reasoning table based on the schema, verifying consistency, and
updating the table until the final answer is achieved.

thoughts.

Table as Thought. Table as Thought employs
a table as a container to represent one or more
structured thoughts. These tables, referred to as
"reasoning tables", encapsulate thoughts and pro-
vide a transparent representation of the reasoning
process. A reasoning table T is initialized with an
original table schema S, which is defined by the
LLM for a given query Q. Structured thoughts Θ
are then generated based on S, with each thought
corresponding to a row in the reasoning table T .
The table T is subsequently populated and updated
according to these structured thoughts Θ.

The overall reasoning workflow using the reason-
ing table is illustrated in Figure 1 and formalized
in Algorithm 1.

Algorithm 1 Table as Thought

Require: Query Q
Ensure: A table T that satisfies Q

1: S ← DESIGNSCHEMA(Q) // Define table
schema

2: Initialize an empty table T with schema S.
3: while not SUFFICIENT(T , Q) do
4: Θ← REFLECT(T,Q) // Generate possible

updates
5: T ← UPDATETABLE(T,Θ) // Apply

updates if needed
6: end while
7: return T

Schema Development Module. The Schema
Development Module dynamically adapts table
schemas to accommodate various queries across
different reasoning tasks. For constraint-planning
tasks, where the primary objective is to satisfy

constraints, we prompt LLMs to identify the con-
straints explicitly before designing the schema.
This ensures that both explicit and implicit con-
straints are addressed in the reasoning process. For
mathematical reasoning tasks, the schema is tai-
lored to reflect the logical progression of the rea-
soning steps, enabling systematic organization of
critical information.

The headers in the table schemas are designed
to represent essential reasoning steps and key infor-
mation pertinent to the task. These headers act as
anchors for organizing and verifying intermediate
and final reasoning outputs.

For example, consider the travel planning query:

I plan to travel alone, and my
planned budget for the trip is
around $1,100.

In this case, a key constraint is that the total cost
should not exceed $1,400. To address this con-
straint, the schema must include a header such as
Cost, with the type Number, ensuring that the rele-
vant information is captured and evaluated against
the budgetary constraint.

For a mathematical reasoning task, such as a
question from the GSM8K dataset:

A robe takes 2 bolts of blue fiber
and half that much white fiber.
How many bolts in total does it
take?

Here, the reasoning process requires consideration
of the quantities of blue and white fibers. The
schema should therefore include keys such as Blue
Fiber and White Fiber, ensuring that all relevant
elements are systematically tracked and calculated.



Reasoning Verification Module. Our prelimi-
nary experiments reveal that existing LLMs may
fail to generate a consistent reasoning path. There-
fore, we introduce a verification module to verify
the completeness and correctness of the reasoning
process.

For constrained reasoning tasks, such a mod-
ule verifies whether the constraints identified in
the schema development phase are satisfied. Con-
straint checking is typically performed by the LLM
through reflective reasoning. The structured nature
of thoughts in Table as Thought brings a natural
benefit: Auto-Check Constraints, which are con-
straints set that can be externally verified. In Table
as Thought, Auto-Check Constraints facilitate the
systematic validation of intermediate steps and fi-
nal outputs.

For math reasoning tasks, such a module ensures
that the table reflects an accurate and logically cor-
rect reasoning path toward solving the problem.
This involves checking whether the intermediate
and final outputs align with the expected reasoning
steps outlined in the schema.

Table Construction Module. The Table Con-
struction Module iteratively generates structured
thoughts and constructs the reasoning table by in-
corporating the schema and feedback from the rea-
soning verification module. This process involves
dynamically adding new thoughts to the table, mod-
ifying existing entries, or removing entries that do
not align with the schema or query requirements.

The iterative process terminates under one of the
following conditions:

1. The reasoning table is verified as complete and
correct by the reasoning verification module.

2. The maximum number of iterations, which we
set empirically as 10 in all our experiments, is
reached.

4 Experiments

4.1 Tasks and Language Models

For all tasks, we adopt the original evaluation meth-
ods to ensure consistency and comparability.

Constraint Planning Tasks. The goal of con-
straint planning tasks is to generate plans that sat-
isfy both explicit and implicit constraints. We eval-
uate our approach on two datasets, each presenting
different levels of complexity in the expected plans.

The TravelPlanner dataset (Xie et al., 2024) re-
quires LLMs to generate detailed travel plans that
adhere to explicit constraints provided in the query,
such as budget limitations, as well as implicit con-
straints derived from common sense. The expected
travel plans are highly complex, encompassing
multi-day agendas that include transportation, ac-
commodations, and daily attractions. Due to the
exceptionally long context required for this task,
which results in substantial token costs, we con-
duct experiments exclusively with GPT-4-o-mini.
The calendar scheduling task from the NaturalPlan
benchmark (Zheng et al., 2024) focuses on gener-
ating single-object plans. In this task, LLMs must
determine an appropriate meeting time based on
explicit constraints, such as the company’s work-
ing hours and the unavailable time slots of each
participant.

Math Reasoning Tasks. We evaluate LLMs us-
ing GSM-8K and MATH500 to assess structured
mathematical reasoning. GSM-8K (Cobbe et al.,
2021) contains 8,000 grade-school-level word prob-
lems, testing multi-step reasoning and numerical
precision. MATH500 (Lightman et al., 2023) fea-
tures 500 advanced problems from the MATH
dataset (Hendrycks et al., 2021), covering alge-
bra, calculus, and geometry. It challenges models
with tasks requiring symbolic manipulation and
deep mathematical understanding. These datasets
help evaluate our approach across diverse scenarios,
from simple arithmetic to complex problems.

Language Models. The schema design and table
construction modules in Table as Thought require
LLMs capable of generating complex, structured
outputs that conform to intricate schemas. This
capability is natively supported by OpenAI’s Struc-
tured Outputs Mode, which allows for precise align-
ment with defined schema requirements. Conse-
quently, our experiments are conducted exclusively
on OpenAI’s GPT-4-o-mini and GPT-4-o-2024-08-
06 models (OpenAI et al., 2024). Expanding the
evaluation to include open-source models with sim-
ilar capabilities remains an area for future work.

4.2 Text Thought Baselines

Direct Prompting. Direct Prompting involves
solving queries by directly generating an answer
from the input, without prompting for any interme-
diate reasoning steps.



CoT Prompting. Chain-of-Thought (CoT)
Prompting organizes reasoning as a sequential
chain of thoughts.

Text as Thought. This approach differs from Ta-
ble as Thought only in its use of unstructured repre-
sentations for thoughts. Text as Thought employs
text as the medium for reasoning. This method
extends CoT prompting by iteratively updating the
reasoning process based on reflection. Each iter-
ation involves generating intermediate reasoning
steps, reflecting on their correctness, and refining
the reasoning path as needed. The streamlined pro-
cess is formalized in Algorithm 2.

Algorithm 2 Text as Thought

Require: Query Q
Ensure: A text T that satisfies Q

1: Initialize an empty text T .
2: while not SUFFICIENT(T , Q) do
3: Θ← REFLECT(T,Q) // Generate possible

updates
4: T ← UPDATETEXT(T,Θ) // Apply

updates if needed
5: end while
6: return T

4.3 Variations of Table as Thought

To fully explore and understand the boundaries of
Table as Thought, we introduce two variations to
the TravelPlanner task. These variations include
Table as Thought with auto check constraint, which
adds complexity to schema design, and Table as
Thought with given schema, which simplifies the
task by providing a predefined schema.

Table as Thought with Auto-Check Constraint.
This variation builds on the vanilla Table as
Thought by requiring the LLM to add additional
constraints during schema design to ensure data
integrity and reflect the constraints present in the
query. For instance, if a TravelPlanner query in-
cludes budget constraints, the LLM is expected to
design a schema with headers like Cost and en-
force a rule ensuring that the sum of the column
does not exceed the specified budget. By introduc-
ing this variation, we aim to explore the boundaries
of LLMs in designing complex reasoning structures
and handling intricate schema requirements.

Table as Thought with Given Schema. In this
variation, the LLM is provided with a predefined

schema, as shown in Table 7, rather than designing
the schema independently. The given schema is
derived from the evaluation pipeline of the Trav-
elPlanner task (Xie et al., 2024), where answers are
processed into tables following this schema before
evaluation. This variation serves as a comparative
baseline to assess the effectiveness and adaptability
of schemas designed by LLMs compared to fixed,
predefined schemas.

5 Results

5.1 Calendar Scheduling Task

Table as Thought achieves the highest performance
among all prompting methods on the Calendar
Scheduling Task, as shown in Table 2. On GPT-4o,
Table as Thought improves performance by 10.8%
over Direct Prompting and achieves a 5.4% im-
provement compared to the Text as Thought base-
line. This highlights the advantage of using tables
as structured representations for planning over un-
structured text-based representations. A similar
trend is observed with GPT-4o-mini, where Table
as Thought outperforms other methods, suggesting
the robustness of table-based reasoning for simpler
constraint reasoning tasks like calendar scheduling.

For GPT-4o, the improvement from Direct
Prompting to CoT Prompting is minimal (0.5%).
In contrast, incorporating self-verification through
Text as Thought yields a 4.9% improvement. When
transitioning from unstructured thoughts to struc-
tured tables, there is a substantial performance
boost (5.4%), underscoring the benefits of struc-
tured representations in reasoning tasks.

For GPT-4o-mini, CoT Prompting achieves a
moderate 2.2% improvement over Direct Prompt-
ing, but Text as Thought fails to provide any addi-
tional gains. In contrast, Table as Thought demon-
strates a significant 4.4% improvement over CoT
Prompting, demonstrating the effectiveness of in-
troducing structure at the thought level over chain-
like structures at the reasoning level.

5.2 TravelPlanner Task

Table 1 shows that Table as Thought with a given
schema achieves the best performance on metrics
for commonsense and hard constraint in the Trav-
elPlanner task. The results reveal an important
trend: on a challenging task like TravelPlanner,
which demands complex reasoning, introducing
increasingly sophisticated structures into the rea-
soning process can lead to performance degrada-



Metric Direct CoT Text as Thought Table as Thought
Vanilla w/ Auto-Check constraint w/ Given Schema

Delivery Rate (%) 100.0 100.0 100.0 100.0 99.4 100.0
Commonsense Constraint Micro Pass Rate (%) 68.3 69.0 68.3 64.4 63.8 70.1
Commonsense Constraint Macro Pass Rate (%) 2.22 2.22 0.556 0.0 0.0 3.33
Hard Constraint Micro Pass Rate (%) 7.62 6.19 3.81 3.33 1.90 5.95
Hard Constraint Macro Pass Rate (%) 4.44 4.44 2.78 1.67 0.556 5.00
Final Pass Rate (%) 0.556 0.556 0.0 0.0 0.0 1.11

Table 1: Evaluation results for different models and prompt methods on TraverPlanner Tasks on GPT4o-mini

Direct CoT Text as Thought Table as Thought

GPT-4o 64.0 64.5 69.4 74.8
GPT-4o-mini 36.2 38.4 38.4 42.3

Table 2: Performance of GPT-4o and GPT-4o-mini
models under different prompting methods for calendar
scheduling.

Direct CoT Text as Thought Table as Thought

MATH500
GPT-4o 75.0 72.2 72.6 64.2
GPT-4o-mini 65.4 65.2 63.4 47.8

GSM8K
GPT-4o 95.4 95.9 95.7 94.1
GPT-4o-mini 93.9 93.6 92.9 92.4

Table 3: Performance of GPT-4o and GPT-4o-mini mod-
els under different prompting methods for MATH500
and GSM8K.

Direct CoT Text as Thought

MATH500
GPT-4o 4.4/25.0 5.4/27.8 4.4/27.4
GPT-4o-mini 2.0/36.6 2.4/34.6 2.8/34.8

GSM8K
GPT-4o 1.59/4.62 1.29/4.09 1.60/4.33
GPT-4o-mini 1.59/6.14 2.12/6.37 2.50/7.13

Table 4: The Percentage of Questions that Table as
Thought successfully work out while other prompting
methods failed vs failed rate of other prompting meth-
ods.

tion. Specifically, methods that incorporate addi-
tional complexity—such as chain-of-thought (CoT)
prompting, self-reflection in Text as Thought, and
rule-constrained structured thoughts in Table as
Thought with Auto-Check constraint—tend to per-
form worse compared to simpler approaches. The
exception is Table as Thought with a given schema,
which avoids this degradation by relieving the LLM
of the need to design its own schema, allowing it
to focus solely on reasoning within a predefined
structure.

5.3 Math Reasoning Tasks

Table 3 highlights a general trend in the MATH500
and GSM8K tasks: introducing additional com-
plexity into the reasoning process often leads to a
performance drop, particularly for GPT-4o-mini.
For instance, on MATH500, the performance of
both GPT-4o and GPT-4o-mini decreases as the rea-
soning structures become more complicated, from
Direct Prompting to Text as Thought to Table as
Thought. This effect is especially pronounced for
GPT-4o-mini, where the performance of Table as
Thought falls to 47.8%, compared to 65.4% with
Direct Prompting. A similar trend is observed on
GSM8K, where the addition of more structured
reasoning methods results in marginal performance
degradation. These results suggest that LLMs may
already be overfitted to math reasoning tasks, as
noted in recent studies (Mirzadeh et al., 2024;
Zhang et al., 2024a).

Despite this general trend, Table as Thought
demonstrates its potential to improve performance
by successfully solving questions that text-thought-
based methods fail to address, particularly with
more capable models like GPT-4o. Table 4 pro-
vides a detailed breakdown of the percentage of
questions that Table as Thought solves, which were
missed by other methods. On MATH500, Table
as Thought resolves approximately 20% of such
questions, while on GSM8K, this figure exceeds
30%. These findings underscore the utility of struc-
tured reasoning in identifying alternative pathways
to solutions that text-based reasoning methods may
overlook.

6 Analysis

6.1 Effect of Schema Design

Schema design plays a pivotal role in structuring
the reasoning paths of Calendar Scheduling tasks.
Different schemas determine the granularity of the
reasoning process, which in turn affects model per-
formance.



Schema Example

One Row Time Slot, Jesse Availability
Kathryn Availability, Megan Availability

All Participants Available, Earliest Availability

Multi Row Participant Name, Availability Start Time
Availability End Time, Meeting Duration

Work Hours Constraint, Schedule Constraint
Preference Constraint, Proposed Meeting Time

Table 5: Schema examples for Multi Row Thought and
One Row Thought.

GPT-4o-mini GPT-4o

One Row 45.05 72.93
Multi Row 43.46 80.28

Table 6: Performance Comparison of Multi Row and
One Row Schemas for GPT-4o-mini and GPT-4o on
Calendar Scheduling.

Table 5 shows that in the one-row schema, the
reasoning process is concise: the LLM identifies all
available time slots for participants in a single step
and selects a suitable meeting time. This schema
produces a single-row table, encapsulating the rea-
soning process in a compact form. In contrast, the
multi-row schema divides the process into finer-
grained steps. The LLM first extracts unavailable
and preferred time slots for each participant. It then
computes available time slots before aggregating
this information to finalize the meeting time. This
approach results in a table with multiple rows, each
representing an intermediate reasoning step, and
provides a more detailed reasoning path.

In Table 6, for GPT-4o, the multi-row schema
outperforms the one-row schema, achieving
80.28% accuracy compared to 72.93%. In contrast,
GPT-4o-mini performs better with the simpler one-
row schema (45.05% vs. 43.46% for the multi-row
schema). This highlights that schema complexity
impacts performance differently for the two models.

6.2 LLM Struggles to Design Effective
Schema for Complex Planning

Unlike Calendar Scheduling, which focuses on se-
lecting a single time slot, TravelPlanner involves
generating a comprehensive travel itinerary, which
is much more complex. Our findings indicate that
tasking the LLM with designing a table schema
results in a notable performance drop compared to
using direct prompting with a pre-defined schema.

Schema Example

Given Schema days, current_city, attraction,
transportation, breakfast,

lunch, dinner, accommodation

LLM Developed Schema Day, Date, Location,
Transportation Details,

Accommodation Details,
Activities/Attractions, Dining Options,

Estimated Cost, Notes/Preferences

Table 7: Given Schema and Example of GPT-4o devel-
oped Schema.

Schema Designing Resoning Verification ACC(%)

✓ ✓ 42.3
✓ × 38.5 (↓ 3.8)
× ✓ 36.2 (↓ 6.1)
× × 32.7 (↓ 9.6)

Table 8: Ablation study results for GPT-4o-mini with
schema designing and reasoning verification effects on
performance of calendar scheduling.

This suggests that the insufficient capability of
LLM in designing table schemas may hinder its
performance on complex planning tasks.

Although the provided schema is not per-
fect—omitting some critical columns, such as
"cost" for budget constraints—it is generally more
effective than most LLM-designed schemas. For
instance, as shown in Table 7, the LLM-developed
schema and the given schema are structurally simi-
lar. However, a key difference is the use of "Dining
Options" in the LLM-designed schema, as opposed
to separating dining into specific categories like
"breakfast," "lunch," and "dinner." In practice, this
simplification often leads the LLM to allocate only
a single meal per day, which contradicts common-
sense expectations for travel planning.

6.3 Ablation Study

We conducted an ablation study using GPT-4o-mini
on the Calendar Scheduling task to evaluate the in-
dividual contributions of schema design and reason-
ing verification . Table 8 shows that when reason-
ing verification is removed, accuracy drops from
42.3% to 38.5% (↓ 3.8%). This indicates that with-
out explicitly verifying constraints, the LLM may
overlook key restrictions in the query, leading to
false positives during self-checking. The absence
of schema design leads to a larger performance
drop, from 42.3% to 36.2% (↓ 6.1%), and further
to 32.7% (↓ 9.6%) when both schema design and
reasoning verification are removed. This highlights



Column Headers

wo/ Schema Design Participant, Available Time Slots,
Selected Meeting Time

w/ Schema Design Participant Name, Participant Availability,
Meeting Duration, Meeting Day,

Proposed Meeting Time, Work Hours Start,
Work Hours End, Conflict Check,

Final Meeting Time , Notes/Comments

Table 9: Example of Column Headers of Table Thoughts
w/wo Schema Design.

the critical role of schema design in structuring
the reasoning process. Table 9 shows that with-
out a schema, the LLM tends to create tables with
fewer columns, omitting key information neces-
sary for constraint checking. While the table with-
out schema design contains basic headers such as
Participant and Selected Meeting Time, the
schema-designed table includes additional headers
like Conflict Check, Work Hours Start/End,
and Notes/Comments. These additional columns
capture critical reasoning steps and constraints, en-
abling more effective verification and selection of
a valid meeting time.

7 Conclusion

We proposed Table as Thought, a novel framework
that introduces structured reasoning at the thought
level. The framework centers on the design and uti-
lization of table schemas, where the LLM is tasked
with constructing a schema and generating struc-
tured thoughts based on it. Our results demonstrate
that Table as Thought excels in constraint planning
tasks, showcasing its ability to manage complex
constraints effectively. Moreover, the framework
exhibits significant potential for further improv-
ing performance in math reasoning tasks, partic-
ularly in addressing unsolved problems through
structured reasoning.

Additionally, we conducted detailed analyses of
the results, exploring the interplay between schema
design, reasoning complexity, and model capabil-
ities. These insights pave the way for future re-
search into the nature and representation of thought
processes, offering a promising direction for the
development of more robust reasoning frameworks
in LLMs.

Limitations

Our proposed methods are currently supported only
by models capable of generating structured data

with complex schemas. This limitation restricts our
experiments to a small set of closed-source models,
such as those provided by OpenAI. Consequently,
the generalizability of our findings to open-source
LLMs remains unexplored. Future work should in-
vestigate approaches for adapting Table as Thought
to a broader range of models, including those with
limited native support for structured data genera-
tion.

Ethical Statement

This research was conducted using publicly avail-
able datasets (e.g., GSM-8K, MATH500, Trav-
elPlanner) in compliance with their terms of use,
ensuring no personally identifiable information
(PII) was processed. While our proposed frame-
work, Table as Thought, aims to enhance structured
reasoning in LLMs, we acknowledge the potential
risks of misuse in harmful applications, such as
deceptive planning or adversarial reasoning. To
mitigate this, we advocate for responsible deploy-
ment with appropriate safeguards.
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A Completion Rate Analysis of Table as
Thought on Closed and Open Source
LLMs

We investigate the completion rate of Table as
Thought when using both closed-source and open-
source LLMs in calendar scheduling tasks. De-
spite advancements in open-source models such as
LLaMA 3.1-8B and LLaMA 3.1-70B, these mod-
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The results are summarized in Table 10.

Table 10: Success Rates of Table as Thought with Dif-
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Model Completion Rate (%)

LLaMA 3.1-8B 0
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B Example of Table as Thought on TraverPlanner Task

B.1 Table as Thought w/ Given Schema

Query: Please draw up a 3-day travel itinerary for one person, beginning in Oakland and heading
to Tucson from March 15th to March 17th, 2022, with a budget of $1,400.
Raesoning table:

1 "day1": {
2 "days": 1,
3 "current_city ": "Oakland",
4 "transportation ": "Flight Number: F4002752 , from Oakland to Tucson ,

Departure Time: 15:07, Arrival Time: 17:00" ,
5 "breakfast ": "-",
6 "attraction ": "-",
7 "lunch": "-",
8 "dinner ": "Pizza Street , Tucson",
9 "accommodation ": "Private room with private bathroom , Tucson",

10 "total_cost ": 270,
11 "id": "day1"
12 },
13 "day2": {
14 "days": 2,
15 "current_city ": "Tucson",
16 "transportation ": "-",
17 "breakfast ": "Mocha , Tucson",
18 "attraction ": "Pima Air & Space Museum , Tucson",
19 "lunch": "Pizza Street , Tucson",
20 "dinner ": "Canteen Till I Die , Tucson",
21 "accommodation ": "Room for rent shared bathroom , Tucson",
22 "total_cost ": 61,
23 "id": "day2"
24 },
25 "day3": {
26 "days": 3,
27 "current_city ": "Tucson",
28 "transportation ": "Self -driving from Tucson to Oakland , Duration: 12 hours

42 mins , Cost: $68",
29 "breakfast ": "-",
30 "attraction ": "-",
31 "lunch": "-",
32 "dinner ": "-",
33 "accommodation ": "-",
34 "total_cost ": 68,
35 "id": "day3"
36 }

B.2 Table as Thought w/ Self-designed Schema

Query: Please draw up a 3-day travel itinerary for one person, beginning in Oakland and heading
to Tucson from March 15th to March 17th, 2022, with a budget of $1,400.
Raesoning table:

1 "1": {
2 "Day": "Day 1",
3 "Date": "2022 -03 -15" ,
4 "Travel Mode": "Flight",
5 "Departure Location ": "Oakland",
6 "Destination ": "Tucson",
7 "Travel Duration ": "1 hour 53 minutes",
8 "Travel Cost": 190,
9 "Accommodation Name": "Private room with private bathroom",

10 "Accommodation Cost": 58,
11 "Room Type": "Private room",
12 "House Rules": "No smoking",



13 "Attractions ": "Pima Air & Space Museum (Cost: $15), Reid Park Zoo (Cost:
$10)",

14 "Dining Options ": "Villa Tevere (Cost: $37), Magic Spice Wok (Cost: $31)",
15 "Total Trip Cost": 341,
16 "Budget Remaining ": 1059,
17 "id": "1",
18 "Maximum Occupancy ": "2 people"
19 },
20 "2": {
21 "Day": "Day 2",
22 "Date": "2022 -03 -16" ,
23 "Travel Mode": "Self -driving",
24 "Departure Location ": "Tucson",
25 "Destination ": "Oakland",
26 "Travel Duration ": "12 hours 40 minutes",
27 "Travel Cost": 68,
28 "Accommodation Name": "Private room with private bathroom",
29 "Accommodation Cost": 58,
30 "Room Type": "Private room",
31 "House Rules": "No smoking",
32 "Attractions ": "Tucson Botanical Gardens (Cost: $15), Old Tucson (Cost:

$20)",
33 "Dining Options ": "La Plage (Cost: $93), Ooh Lala! (Cost: $70)",
34 "Total Trip Cost": 324,
35 "Budget Remaining ": 735,
36 "id": "2",
37 "Maximum Occupancy ": "2 people"
38 },
39 "3": {
40 "Day": "Day 3",
41 "Date": "2022 -03 -17" ,
42 "Travel Mode": "Self -driving",
43 "Departure Location ": "Tucson",
44 "Destination ": "Oakland",
45 "Travel Duration ": "12 hours 42 minutes",
46 "Travel Cost": 68,
47 "Accommodation Name": "None",
48 "Accommodation Cost": 0,
49 "Room Type": "Private room",
50 "House Rules": "No smoking",
51 "Attractions ": "Arizona -Sonora Desert Museum (Cost: $15), Children ’s

Museum Tucson (Cost: $10)",
52 "Dining Options ": "Pirates of Grill (Cost: $52), Mood 4 Food (Cost: $20)",
53 "Total Trip Cost": 165,
54 "Budget Remaining ": 570,
55 "id": "3",
56 "Maximum Occupancy ": "N/A"
57 }

C Example of Table as Thought on Calendar Scheduling Task

C.1 Table as Thought w/ One Row Schema

Query: You need to schedule a meeting for Roy, Kathryn and Amy for half an hour between the
work hours of 9:00 to 17:00 on Monday.
Here are the existing schedules for everyone during the day: Roy has blocked their calendar on
Monday during 9:00 to 9:30, 10:00 to 10:30, 11:00 to 11:30, 12:30 to 13:00; Kathryn has meetings
on Monday during 9:30 to 10:00, 16:30 to 17:00; Amy has blocked their calendar on Monday
during 9:00 to 14:30, 15:00 to 16:00, 16:30 to 17:00;
Amy would rather not meet on Monday after 15:30. Find a time that works for everyone’s schedule
and constraints.
Raesoning table:



1 "1": {
2 "Meeting Duration ": "30 minutes",
3 "Work Hours Start": "9:00" ,
4 "Work Hours End": "17:00" ,
5 "Roy ’s Unavailable Times": "9:00 -9:30 , 10:00 -10:30 , 11:00 -11:30 ,

12:30 -13:00" ,
6 "Kathryn ’s Unavailable Times": "9:30 -10:00 , 16:30 -17:00" ,
7 "Amy ’s Unavailable Times": "9:00 -14:30 , 15:00 -16:00 , 16:30 -17:00" ,
8 "Amy ’s Preference ": "Prefers not to meet after 15:30" ,
9 "Proposed Meeting Time": "14:30 -15:00"

10 }

C.2 Table as Thought w/ Multi Row Schema

Query: You need to schedule a meeting for Kathryn, Charlotte and Lauren for half an hour
between the work hours of 9:00 to 17:00 on Monday.
Here are the existing schedules for everyone during the day: Kathryn has blocked their calendar
on Monday during 9:00 to 9:30, 10:30 to 11:00, 11:30 to 12:00, 13:30 to 14:30, 16:30 to 17:00;
Charlotte has blocked their calendar on Monday during 12:00 to 12:30, 16:00 to 16:30; Lauren has
blocked their calendar on Monday during 9:00 to 10:00, 12:00 to 12:30, 13:30 to 14:30, 15:00 to
16:00, 16:30 to 17:00;
Charlotte do not want to meet on Monday after 13:30. Find a time that works for everyone’s
schedule and constraints.
Raesoning table:

1 "1": {
2 "Participant Name": "Kathryn",
3 "Unavailable Time Slots": "9:00 -9:30 , 10:30 -11:00 , 11:30 -12:00 ,

13:30 -14:30 , 16:30 -17:00" ,
4 "Preferred Meeting Time": "None",
5 "Meeting Duration ": "30 minutes",
6 "Work Hours": "9:00 -17:00" ,
7 "Available Time Slots": "9:30 -10:30 , 11:00 -11:30 , 12:00 -13:30 ,

14:30 -16:30" ,
8 "Constraints Satisfied ": true ,
9 "Proposed Meeting Time": "10:00 -10:30"

10 },
11 "2": {
12 "Participant Name": "Charlotte",
13 "Unavailable Time Slots": "12:00 -12:30 , 16:00 -16:30" ,
14 "Preferred Meeting Time": "Before 13:30" ,
15 "Meeting Duration ": "30 minutes",
16 "Work Hours": "9:00 -17:00" ,
17 "Available Time Slots": "9:00 -12:00 , 12:30 -16:00 , 16:30 -17:00" ,
18 "Constraints Satisfied ": true ,
19 "Proposed Meeting Time": "10:00 -10:30"
20 },
21 "3": {
22 "Participant Name": "Lauren",
23 "Unavailable Time Slots": "9:00 -10:00 , 12:00 -12:30 , 13:30 -14:30 ,

15:00 -16:00 , 16:30 -17:00" ,
24 "Preferred Meeting Time": "None",
25 "Meeting Duration ": "30 minutes",
26 "Work Hours": "9:00 -17:00" ,
27 "Available Time Slots": "10:00 -12:00 , 12:30 -13:30 , 14:30 -15:00" ,
28 "Constraints Satisfied ": true ,
29 "Proposed Meeting Time": "10:00 -10:30"
30 }



D Comparison of Table as Thought and Direct Prompting on GSM-8k

D.1 Example where Direct Prompting succeceds while Table as Thought Fails

Query: Stephen placed an online order for groceries. His final bill came to $40.00. Because this
was through a delivery vendor, they tacked on a 25% fee to his final total and charged him $3.00
in delivery fees. Stephen also added a $4.00 tip. After the extra fees, what was the final price of
Stephen’s groceries?
Raesoning table:

1 "1": {
2 "Base_Price ": 40.0,
3 "Delivery_Fee_Percentage ": 0,
4 "Delivery_Fee_Amount ": 0,
5 "Tip_Amount ": 0,
6 "Total_Fee_Percentage ": 0,
7 "Total_Fee_Amount ": 0,
8 "Final_Price ": 40.0
9 }

Direct Prompting response:
To find the final price of Stephen’s groceries after all the extra fees, we need to calculate each
component and add them together.
1. Original Bill: Stephen’s original grocery bill was $40.00.
2. Vendor Fee: The vendor adds a 25% fee to the original bill. To calculate this fee:

Vendor Fee = 0.25× 40.00 = 10.00

3. Delivery Fee: The delivery fee is a flat $3.00.
4. Tip: Stephen added a $4.00 tip.
Now, we add all these amounts together to find the final price:

Final Price = Original Bill + Vendor Fee + Delivery Fee + Tip

Final Price = 40.00 + 10.00 + 3.00 + 4.00 = 57.00

Therefore, the final price of Stephen’s groceries, after all the extra fees, is $57.00.

D.2 Example where Table as Thought succeceds while Direct Prompting Fails

Query: Jamal’s phone can hold 6 times more photographs than can Brittany’s phone. The
maximum number of photographs that Brittany’s phone can hold is 50 times more than the number
of birds in Jamal’s photograph of the ducks at the zoo. If Jamal’s phone can hold 1800 photographs,
how many ducks can be seen in Jamal’s photograph of ducks at the zoo?
Raesoning table:

1 "1": {
2 "Jamal_Phone_Capacity ": 1800,
3 "Brittany_Phone_Capacity ": 300,
4 "Ducks_in_Photograph ": 6,
5 "Brittany_Phone_Additional_Capacity ": 50,
6 "Equation ": "300 = 50D",
7 "Solution_Steps ": "1. Jamal ’s phone can hold 6 times more photographs than

Brittany ’s phone. 2. Jamal ’s phone can hold 1800 photographs. 3. Let
B be the number of photographs Brittany ’s phone can hold. Then , 6B =
1800. 4. Solve for B: B = 1800 / 6 = 300. 5. Brittany ’s phone can hold
50 times more photographs than the number of ducks in Jamal ’s

photograph. 6. Let D be the number of ducks in Jamal ’s photograph. B =
50D. 7. Substitute B = 300 into the equation: 300 = 50D. 8. Solve for
D: D = 300 / 50 = 6.",



8 "Final_Answer ": 6
9 }

Direct Prompting response:
To solve the problem, we need to determine the number of ducks in Jamal’s photograph.
First, let’s define the variables:

• Let B be the maximum number of photographs Brittany’s phone can hold.

• Let D be the number of ducks in Jamal’s photograph.

According to the problem, Jamal’s phone can hold 6 times more photographs than Brittany’s phone.
Therefore, we have the equation:

J = 6B

where J is the number of photographs Jamal’s phone can hold. We know from the problem that
J = 1800. Substituting this into the equation gives:

1800 = 6B

To find B, divide both sides by 6:

B =
1800

6
= 300

Next, the problem states that Brittany’s phone can hold 50 more photographs than the number of
ducks in Jamal’s photograph. This gives us the equation:

B = D + 50

We already found that B = 300. Substituting this into the equation gives:

300 = D + 50

To find D, subtract 50 from both sides:

D = 300− 50 = 250

Thus, the number of ducks in Jamal’s photograph is 250 .
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