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Abstract

Generative models have gained popularity for their potential applications in imaging science,
such as image reconstruction, posterior sampling and data sharing. Flow-based generative
models are particularly attractive due to their ability to tractably provide exact density
estimates along with fast, inexpensive and diverse samples. Training such models, however,
requires a large, high quality dataset of objects. In applications such as computed imaging,
it is often difficult to acquire such data due to requirements such as long acquisition time
or high radiation dose, while acquiring noisy or partially observed measurements of these
objects is more feasible. In this work, we propose AmbientFlow, a framework for learning
flow-based generative models directly from noisy and incomplete data. Using variational
Bayesian methods, a novel framework for establishing flow-based generative models from noisy,
incomplete data is proposed. Extensive numerical studies demonstrate the effectiveness of
AmbientFlow in learning the object distribution. The utility of AmbientFlow in a downstream
inference task of image reconstruction is demonstrated.

1 Introduction

Generative models have become a prominent focus of machine learning research in recent years. Modern
generative models are neural network-based models of unknown data distributions learned from a large
number of samples drawn from the distribution. They ideally provide an accurate representation of the
distribution of interest and enable efficient, high-quality sampling and inference. Most modern generative
models are implicit, i.e. they map a sample from a simple, tractable distribution such as the standard normal,
to a sample from the distribution of interest. Popular generative models for image data distributions include
variational autoencoders (VAEs), generative adversarial networks (GANs), normalizing flows and diffusion
probabilistic models, among others (Kingma et al., 2019; Goodfellow et al., 2020; Kingma & Dhariwal, 2018;
Ho et al., 2020). Recently, many of these models have been successful in synthesizing high-quality perceptually
realistic images from the underlying distribution.

Generative models have also been investigated for applications in imaging science. For example, computed
imaging systems such as computed tomography (CT) or magnetic resonance imaging (MRI) rely on computa-
tional reconstruction to obtain an estimate of an object from noisy or incomplete imaging measurements.
Generative models have been investigated for their use as priors in image reconstruction in order to mitigate
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the effects of data-incompleteness or noise in the measurements. While GANs have been explored for this
purpose (Bora et al., 2017; Menon et al., 2020; Kelkar & Anastasio, 2021), they suffer from shortcomings
such as inadequate mode coverage (Thanh-Tung & Tran, 2020), insufficient representation capacity (Karras
et al., 2020; Bora et al., 2017) and misrepresentation of important domain-specific statistics (Kelkar et al.,
2023a). On the other hand, invertible generative models (IGMs), or normalizing flows offer exact density
estimates, tractable log-likelihoods and useful representations of individual images (Dinh et al., 2016; 2014;
Kingma & Dhariwal, 2018; Kelkar et al., 2021), making them more reliable for downstream inference tasks in
imaging science (Asim et al., 2020; Jalal et al., 2021a). These models have shown potential for use in tasks
such as image reconstruction, posterior sampling, uncertainty quantification and anomaly detection (Kelkar
et al., 2021; Asim et al., 2020; Khorashadizadeh et al., 2023; Jalal et al., 2021a; Zhao et al.).

Although IGMs are attractive for imaging applications, training them requires a large dataset of objects
or high-quality image estimates as a proxy for the objects. Building such a dataset is challenging since
acquiring a complete set of measurements to uniquely specify each object can be infeasible. Therefore, it is of
interest to learn an IGM of objects directly from a dataset of noisy, incomplete imaging measurements. This
problem was previously addressed in the context of GANs via the AmbientGAN framework, which augments
a conventional GAN with the measurement operator (Bora et al., 2018; Zhou et al., 2022). It consists of
generator and discriminator networks that are jointly optimized via an adversarial training strategy. Here,
the generator attempts to synthesize synthetic objects that produce realistic measurements. The real and
synthetic object distributions are then compared indirectly via a discriminator that distinguishes between real
measurements and simulated measurements of the synthetic objects. This is fundamentally different from the
training procedure of IGMs, which directly computes and maximizes the log-probability of the training data
samples. Therefore, ideas from the AmbientGAN framework cannot be easily adapted to train an IGM of
objects when only incomplete measurements is available.

The key contributions of this work are as follows. First a new framework named AmbientFlow is developed
for training IGMs using noisy, incomplete measurements. Second, the accuracy of the object distribution
recovered via AmbientFlow is theoretically analyzed under prescribed ideal conditions using compressed
sensing. Next, numerical studies are presented to demonstrate the effectiveness of the proposed method on
several different datasets and measurement operators. Finally, the utility of AmbientFlow for a downstream
Bayesian inference task is illustrated using a case study of image reconstruction from simulated stylized MRI
measurements.

The remainder of this manuscript is organized as follows. Section 2 describes the background of invertible
generative models, computed imaging systems and image reconstruction from incomplete measurements.
Section 3 describes the notation used and the proposed approach. Section 4 describes the setup for the
numerical studies, with the results being presented in Section 5. Finally, the discussion and conclusion is
presented in Section 6.

2 Background

Invertible generative models. Invertible generative models (IGMs) or flow-based generative models, are
a class of generative models that employ an invertible neural network (INN) to learn an implicit mapping
from a simple distribution such as an independent and identically distributed (iid) Gaussian distribution
to the data distribution of interest. The INN is a bijective mapping Gθ : Rn → Rn constructed using a
composition of L simpler bijective functions gi : Rn → Rn, with

h(i) = gi(h(i−1)) = (gi ◦ gi−1 ◦ · · · ◦ g1)(z), 0 < i ≤ L, z,h(i) ∈ Rn, (1)

and x = Gθ(z) = h(L). As a consequence of bijectivity, the probability distribution function (PDF) pθ of x
represented by the IGM can be related to the PDF qz of z as:

pθ(x) · | det ∇zGθ(z) | = qz(z). (2)

In order the establish the IGM, a dataset D = {x(i)}D
i=1 is used, where x(i) are assumed to be independent

draws from the unknown true distribution qx. The INN is then trained by minimizing the following negative
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log-likelihood objective over the training dataset D:

L(θ) = −
D∑

i=1
log pθ(x(i)) =

D∑
i=1

[
log qz(z(i)) − log |det ∇zGθ(z(i))|

]
, z(i) = G−1

θ (x(i)). (3)

Minimizing the above loss function is equivalent to minimizing the Kullback–Leibler (KL) divergence
DKL(qx∥pθ) := Ex∼qx [log qx(x) − log pθ(x)] between pθ and the true data distribution qx. Most invertible
generative models utilize a specialized architecture in order to guarantee invertibility of the constituent
functions gi and tractable computation of the Jacobian loss term log | det ∇zGθ(z)|. Popular building blocks
of such an architecture are affine coupling layers (Dinh et al., 2016), random permutations (Dinh et al., 2014)
and invertible 1 × 1 convolutions (Kingma & Dhariwal, 2018).

Image reconstruction from incomplete imaging measurements. Many computed imaging systems
can be modeled using an imaging equation described by the following linear system of equations:

g = H f̃ + n, (4)

where f̃ ∈ Rn is approximates the object to-be-imaged, H ∈ Rm×n, known as the forward model, is a linear
operator that models the physics of the imaging process, n ∈ Rm,n ∼ qn models the measurement noise,
and g ∈ Rm are the measurements of the object. Often, H is ill-conditioned or rank deficient, in which
case the measurements g are not sufficient to form a unique and stable estimate f̂ of the object f̃ , and prior
knowledge about the nature of f̃ is needed. Traditionally, one way to incorporate this prior information is to
constrain the domain of H. For example, compressed sensing stipulates that if the true object is k-sparse
after a full-rank linear transformation Φ ∈ Rl×n, l ≥ n, then the object can be stably estimated if for all
vectors v ∈ Rn that are k-sparse in the transform domain Φ, H satisfies the restricted isometry property
(RIP) (Candes et al., 2006):
Definition 2.1 (Restricted isometry property). For s ∈ N, define the restricted isometry constant (RIC) δs

as the smallest constant that satisfies

(1 − δs)∥v∥2
2 ≤ ∥Hv∥2

2 ≤ (1 + δs)∥v∥2
2, (5)

for all v such that ∥Φv∥0 ≤ s. H is said to satisfy the restricted isometry property for all v such that
∥Φv∥0 ≤ k, if δk + δ2k + δ3k < 1 (Candes et al., 2006).

3 Approach

In this section, an AmbientFlow method is proposed for obtaining an IGM of objects from a dataset of
measurements. The following preliminary notation will be used in the remainder of this paper.

Notation. Let qf , qg and qn denote the unknown true object distribution to-be-recovered, the true
measurement distribution and the known measurement noise distribution, respectively. Let D = {g(i)}D

i=1 be
a dataset of independent and identically distributed (iid) measurements drawn from qg. Let Gθ : Rn → Rn

be an INN. Let pθ be the distribution represented by Gθ, i.e. given a latent distribution qz = N (0, In),
Gθ(z) ∼ pθ for z ∼ qz. Also, let ψθ be the distribution of synthetic measurements, i.e. for f ∼ pθ,
Hf + n ∼ ψθ. Let pθ(f | g) ∝ qn(g −Hf) pθ(f) denote the posterior induced by the learned object distribution
represented by Gθ. Let Φ ∈ Rl×n, l ≥ n be a full-rank linear transformation (henceforth referred to as a
sparsifying transform). Also, let Sk = {v ∈ Rn s.t. ∥Φv∥0 ≤ k} be the set of vectors k-sparse with respect
to Φ. Since Φ is full-rank, throughout this work we assume without the loss of generality, that ∥Φ+∥2 ≤ 1,
where Φ+ is the Moore-Penrose pseudoinverse of Φ. Throughout the manuscript, we also assume that qf is
absolutely continuous with respect to pθ, and qg is absolutely continuous with respect to ψθ.

Conventionally, according to the discussion below Eq. (3), DKL(qf ∥pθ) would have to be minimized in order to
train the IGM to estimate qf . However, in the present scenario, only samples from qg are available. Therefore,
we attempt to minimize the divergence DKL(qg∥ψθ), and show that for certain scenarios of interest, this
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is formally equivalent to approximately minimizing a distance between qf and pθ. However, computing
DKL(qg∥ψθ) is non-trivial because a direct representation of ψθ(g) that could enable the computation of
logψθ(g) is not available. Fortunately, a direct representation of pθ is available via Gθ, which can be
used to compute log pθ(f) for a given f ∈ Rn, using Eq. (2). Therefore, an additional INN, known as the
posterior network hϕ(· ; g) : Rn → Rn is introduced that represents the model posterior pϕ(f | g) designed to
approximate pθ(f | g) when jointly trained along with Gθ. The posterior network hϕ is designed to take two
inputs – a new latent vector ζ ∼ qζ = N (0, In), and an auxiliary conditioning input g ∼ qg from the training
dataset, to produce hϕ(ζ ; g) ∼ pϕ(f | g). The following theorem establishes a loss function that minimizes
DKL(qg∥ψθ) using the posterior network, circumventing the need for direct access to ψθ(g), or samples of
true objects from qf .
Theorem 3.1. Let hϕ be such that pϕ(f | g) > 0 over Rn. Minimizing DKL(qg∥ψθ) is equivalent to maximizing
the objective function L(θ, ϕ) over θ, ϕ, where L(θ, ϕ) is defined as

L(θ, ϕ) = Eg∼qg

[
logEζ∼qζ

{
pθ

(
hϕ(ζ; g)

)
qn

(
g −Hhϕ(ζ; g)

)
pϕ

(
hϕ(ζ; g) | g

) }]
(6)

The proof of Theorem 3.1 is provided in the appendix. A variational lower bound of L is employed, which
promotes consistency between the modeled posterior pϕ(· | g) and the posterior induced by the learned object
distribution, pθ(· | g):

LM (θ, ϕ) = Eg,ζi
logavgexp

0<i≤M

[
log pθ

(
hϕ(ζi; g)

)
+ log qn

(
g −Hhϕ(ζi; g)

)
− log pϕ

(
hϕ(ζi; g) | g

)]
, (7)

where ζi ∼ qζ, 0 < i ≤ M , and logavgexp0<i≤M (xi) := log
[

1
M

∑M
i=1 exp(xi)

]
.

Intuitively, the three terms inside logavgexp in Eq. (7) can be interpreted as follows. The first term implies
that Gθ is trained on samples produced by the posterior network hϕ. The second term is a data-fidelity term
that makes sure that hϕ produces objects consistent with the measurement model. The third term penalizes
degenerate hϕ for which ∇ζhϕ(ζ; g) is ill-conditioned, for example when hϕ produces no variation due to ζ
and only depends on g. Note that the first and third terms are directly accessible via the INNs Gθ and hϕ.
Also, for noise models commonly used in modeling computed imaging systems, such as the Gaussian noise
model (Barrett & Myers, 2013), qn can be explicitly computed.

For sufficiently expressive parametrizations for pθ and hϕ, the maximum possible value of LM is Eg∼qg log qg(g),
which corresponds to the scenario where the learned posteriors are consistent, i.e. pϕ(f | g) = pθ(f | g), and
the learned distribution of measurements matches the true measurement distribution, i.e. ψθ = qg. It can be
shown that for a class of forward operators, matching the measurement distribution is equivalent to matching
the object distribution:
Lemma 3.1. If H is a square matrix (n = m) with full-rank, if the noise n is independent of the object,
and if the characteristic function of the noise χn(ν) = En∼qn exp(ιν⊤n) has full support over Rm (ι is the
square-root of −1), then ψθ = qg ⇒ pθ = qf .

The proof of Lemma 3.1 is provided in Appendix A. Lemma 3.1 can be extended to a certain class random,
rank-deficient forward operators that nevertheless provide an invertible push-forward operator (Bora et al.,
2018). However, in computed imaging, forward models are often deterministic with a fixed null-space, where
it is typically not possible to design the hardware to ensure the invertibility of the push-forward operator
(Graff & Sidky, 2015; Lustig et al., 2008). In such a setting, it is not possible to uniquely relate the learned
object distribution pθ to the learned measurement distribution ψθ without additional information about qf .
Nevertheless, if the objects of interest are known to be compressible with respect to a sparsifying transform
Φ, pθ can be constrained to the set of distributions concentrated on these compressible objects. In order
to recover a distribution pθ concentrated on objects that are compressible with respect to Φ, the following
optimization problem is proposed:

θ̂, ϕ̂ = arg min
θ,ϕ

−LM (θ, ϕ) subject to Eg∼qgEf∼pϕ(· | g)∥Φf − ΦprojSk
(f)∥1 < ϵ, (8)

4



Published in Transactions on Machine Learning Research (01/2024)

where projSk
(f) denotes the orthogonal projection of f ∈ Rn onto the set Sk of objects for which Φf is

k−sparse. It can be shown that if H and f ∼ qf satisfy the conditions of compressed sensing and the
AmbientFlow is trained sufficiently well using Eq. (8), then the error between the true and recovered object
distributions can be bounded. This is formalized as follows.
Theorem 3.2. For a PDF q : Rn → R, let qSk denote the distribution of projSk

(x), for x ∼ q. Also,
for distributions q1, q2, let W1(q1∥q2) := infq∈Γ E(x1,x2)∼q∥x1 − x2∥2, denote the Wasserstein 1-distance,
with Γ being the set of all joint distributions q : Rn×n → R with marginals q1, q2, i.e.

∫
q(x1,x2)dx2 =

q1(x1),
∫
q(x1,x2)dx1 = q2(x2).

If the following hold:
1. W1(qf ∥ qSk

f ) ≤ ϵ′ (the true object distribution is concentrated on k-sparse objects under Φ),
2. H satisfies the RIP for objects k-sparse w.r.t. Φ, with isometry constant δk,
3. the characteristic function of noise χn(ν) has full support over Cm, and
4. (θ, ϕ) satisfying pθ = qf and pϕ(· | g) = pθ(· | g) is a feasible solution to Eq. (8) (Gθ and hϕ have sufficient

capacity),
then the distribution pθ̂ recovered via Eq. (8) is close to the true object distribution, in terms of the Wasserstein
distance i.e.

W1(pθ̂ ∥ qf ) ≤
(

1 + 1√
1 − δk

∥H∥2

)
(ϵ+ ϵ′). (9)

The proof of Theorem 3.2 is deferred to Appendix A.
In practice, Eq. (8) is reformulated in its Lagrangian
form, and a regularization parameter µ is used to con-
trol the strength of the sparsity-promoting constraint.
Also, inspired by the β-VAE framework (Higgins et al.,
2017), an additional regularization parameter λ was
used to control the strength of the likelihood term
log qn(g − Hhϕ(ζi; g)). This modifies the problem

Training data

Posterior flow Main flow

Figure 1: A schematic of the AmbientFlow framework

to maximizing the following objective function, which was optimized using gradient-based methods.

L̃M (θ, ϕ) = Eg∼qgEζi∼qζ

[
logavgexp

0<i≤M

{
log pθ

(
hϕ(ζi; g)

)
+ λ log qn

(
g −Hhϕ(ζi; g)

)
− log pϕ

(
hϕ(ζi; g) | g

)}
− µ

∥∥Φhϕ(ζi; g) − projSk
(Φhϕ(ζi; g))

∥∥
1

]
(10)

The proposed additive sparsifying penalty is computed by hard-thresholding the output of Φhϕ(ζi; g) to
project it onto the space of k-sparse signals, and computing the ℓ1 norm of the residual, with k and µ being
treated as tunable hyperparameters. However, note that consistent with Eq. (10), the loss terms for both the
INNs correspond to the original (un-thresholded) outputs of the posterior. This ensures that invertibility
is maintained, and the loss terms from both the INNs are well-defined. Empirically, we observe that the
proposed ℓ1 penalty also promotes sparse deviation of the output of hϕ from Sk, which improves the quality
of the images generated by AmbientFlow.

4 Numerical Studies

This section describes the numerical studies used to demonstrate the utility of AmbientFlow for learning
object distributions from noisy and incomplete imaging measurements. The studies include toy problems in
two dimensions, low-dimensional problems involving a distribution of handwritten digits from the MNIST
dataset, problems involving face images from the CelebA-HQ dataset as well as the problem of recovering the
object distribution from stylized magnetic resonance imaging measurements. A case study that demonstrates
the utility of AmbientFlow in the downstream tasks of image reconstruction and posterior sampling is also
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described. Additional numerical studies, including an evaluation of the posterior network, additional ablation
studies, and a face image inpainting case study are included in Appendix B.
Datasets and imaging models.
1) Toy problems: First, a two-dimensional object
distribution qf : R2 → R was considered, which
was created as a sum of eight Gaussian distribu-
tions N (ci, σ

2
f I2), 1 ≤ i ≤ 8, with centers ci lo-

cated at the vertices of a regular octagon centered
at the origin, and standard deviation σf = 0.15,
as shown in Fig. 2a. The forward operator was
the identity operator, and the noise n was dis-
tributed as a zero-mean Gaussian with covariance
σ2

nI2, with σn = 0.45. The distribution of the

(a) (b) (c) (d)

Figure 2: (a) True distribution qf , (b) distribution qg
of measurements, (c) distribution learned by a flow
model trained on true objects, and (d) distribution
learned by AmbientFlow trained on measurements.

measurements g = f + n is shown in Fig. 2b. A training dataset of size D = 5 × 107 was used.

Next, a problem of recovering the distribution of MNIST digits from noisy and/or blurred
images of MNIST digits was considered (LeCun
et al., 1998). For this problem, three different
forward models were considered, namely the
identity operator, and two Gaussian blurring
operators Hblur1 and Hblur2 with root-mean-
squared (RMS) width values σb = 1.5 and 3.0
pixels. The measurement noise was distributed
as n ∼ N (0, σ2

nIm), with σn = 0.3.

2) Face image study: For the face image
study, images of size n = 64×64×3 from
the CelebA-HQ dataset were considered
(Karras et al., 2017). Two forward models
were considered, namely the identity operator
and the blurring operator with RMS width
σb = 1.5, and the measurement noise was
distributed as n ∼ N (0, σ2

nIm), σn = 0.2. A
discrete gradient operator was used as the
sparsifying transform Φ.

True objects

Flow trained 
on true objects

M
ea

su
re

m
en

ts

AmbientFlow trained on measurements

g = f + n g = Hblur1f + n g = Hblur2f + n

FID = 203.8 FID = 269.3 FID = 301.4

FID = 146.9 FID = 187.4 FID = 244.1FID = 146

Figure 3: Samples from the flow model trained on true
objects and AmbientFlow trained on measurements shown
alongside samples of true objects and measurements for the
MNIST dataset.

3) Stylized MRI study: In this study, the problem of recovering the distribution of objects from simulated,
stylized MRI measurements was considered. T2-weighted brain images of size n = 128×128 from the FastMRI
initiative database were considered (Zbontar et al., 2018) as samples from the object distribution. Stylized
MRI measurements with undersampling ratio n/m = 1 (fully sampled) and n/m = 4 were simulated using
the fast Fourier transform (FFT). Complex valued iid Gaussian measurement noise with standard deviation
0.1 times the total range of ground truth gray values was considered. A discrete gradient operator was used
as the sparsifying transform Φ.

Network architecture and training. 1 The architecture of the main flow model Gθ was adapted from
the Glow architecture (Kingma & Dhariwal, 2018). The posterior network was adapted from the conditional
INN architecture proposed by Ardizzone, et. al (Ardizzone et al., 2021). AmbientFlow was trained using
PyTorch using an NVIDIA Quadro RTX 8000 GPU. All hyperparameters for the main INN were fixed based
on a PyTorch implementation of the Glow architecture (Seonghyeon), except the number of blocks, which
was set to scale logarithmically by the image dimension.

1Our PyTorch implementation of AmbientFlow can be found at https://github.com/comp-imaging-sci/ambientflow
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Baselines and evaluation metrics. For each dataset, an INN was trained on the ground-truth objects.
The architecture and hyperparameters used for this INN for a particular dataset were identical to the
ones used for main flow Gθ within the AmbientFlow framework trained on that dataset. Besides, for each
forward model for the face image and stylized MRI study, a non-data-driven image restoration/reconstruction
algorithm was used to generate a dataset of individual estimates of the object. For H = Im with
n ∼ N (0, σ2

nIm), the block-matching and 3D filtering (BM3D) denoising algorithm was used to perform
image restoration (Dabov et al., 2007). For the blurring operator with Gaussian noise, Wiener deconvolution
was used for this purpose (Blahut, 2004). For the stylized MRI study, a penalized least-squares with
TV regularization (PLS-TV) algorithm was used for image reconstruction (Beck & Teboulle, 2009). The
regularization parameter for the image reconstruction method was tuned to give the lowest RMS error
(RMSE) for every individual reconstructed image. Although this method of tuning the parameters is not
feasible in real systems, it gives the best set of reconstructed images in terms of the RMSE, thus providing a
strong baseline.

The Frechet Inception distance (FID) score, computed using the Clean-FID package (Parmar et al., 2022),
was used to compare a dataset of 5,000 true objects with an equivalent number of images synthesized using
(1) the INN trained on the true objects and (2) the AmbientFlow trained on the measurements, and (3)
images individually reconstructed from their corresponding measurements. Additionally, for the stylized
MRI study, radiomic features meaningful to medical imaging were computed on the true objects, generated
objects, and reconstructed images (Van Griethuysen et al., 2017).

Case study. Next, the utility of the AmbientFlow in a downstream Bayesian inference task was examined.
For this purpose, a case study of image reconstruction from incomplete measurements was considered, where
the AmbientFlow was used as a prior. Importantly, we consider the scenario where the forward model used for
simulating the measurements is different from the one associated with the AmbientFlow training. Preliminaries
of generative priors for image reconstruction are discussed in (Dimakis et al., 2022). In this study, the following
two image reconstruction tasks are considered – (1) approximate maximum a posteriori (MAP) estimation,
i.e. approximating the mode of the posterior pθ(· | g), and (2) approximate sampling from the posterior pθ(· | g).

For both the tasks, an AmbientFlow trained on the fully sampled, noisy simulated MRI measurements, as
well as the flow trained on the true objects were considered. For the first task, the compressed sensing using
generative models (CSGM) formalism was used to obtained approximate MAP estimates from measurements,
for a held-out for a test dataset of size 45 (Asim et al., 2020):

f̂MAP = Gθ(ẑMAP), with ẑMAP = arg min
z

∥g −HGθ(z)∥2
2 + λ∥z∥2

2. (11)

For the second task, approximate posterior sampling was performed with the flow models as priors using
annealed Langevin dynamics (ALD) iterations proposed in Jalal, et al. (Jalal et al., 2021a). For each true
object, the minimum mean-squared error (MMSE) estimate f̂MMSE and the pixelwise standard deviation map
σ̂ were computed empirically using 40 samples obtained via ALD iterations. These image estimates were
compared with reconstructed images obtained using the PLS-TV method. The regularization parameters for
each image reconstruction method were tuned to achieve the best RMSE on a single validation image, and
then kept constant for the entire test dataset.

5 Results

Figure 2 shows the true object distribution, the distribution learned by a flow model trained on objects,
the measurement distribution, and the object distribution recovered by AmbientFlow trained using the
measurements. It can be seen that AmbientFlow is successful in generating nearly noiseless samples that
belong to one of the eight Gaussian blobs, although a small number of generated samples lie in the connecting
region between the blobs.
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True objects Flow trained on true objects (FID = 57.8)

AmbientFlow trained on noisy blurred img. (FID=227.8)AmbientFlow trained on noisy img. (FID=135.5)

BM3D recons from noisy images (FID=139.1) Wiener deconv. from noisy, blurred img. (FID=287.9)

Noisy images with σn = 0.2 (FID=256.4) Blurred noisy img. with σb = 1.5,σn = 0.2 (FID=310)

Figure 4: True objects, noisy/blurred image measurements, reconstructed images and images synthesized by
the flow model trained on the true objects, as well as the AmbientFlows trained on the measurements for the
CelebA-HQ dataset.

For the MNIST dataset, Fig. 3 shows samples from the flow model trained on true objects and AmbientFlow
trained on measurements alongside samples of true objects and measurements, for different measurement
models. It can be seen that when the degradation process is a simple noise addition, the AmbientFlow
produces samples that visually appear denoised. When the degradation process consists of blurring and noise
addition, the AmbientFlow produces images that do not contain blur or noise, although the visual image
quality degrades as the blur increases. The visual findings are corroborated with quantitative results in terms
of the FID score, shown in Fig. 3.

Figure 4 shows the results of the face image study for the two different measurement processes considered -
(1) additive noise, and (2) Gaussian blur followed by additive noise. It can be seen that both visually and in
terms of the FID score, the quality of images generated by the AmbientFlow models was second only to the
flow trained directly on the true objects, for both the forward models considered. The images synthesized by
the AmbientFlow models had better visual quality and better fidelity in distribution with the true objects
with respect to FID than the ones produced by individually performing image restoration using BM3D
and Wiener deconvolution for the two forward models respectively. This suggests that an AmbientFlow
trained directly on the measurements would give a better approximation to the object distribution in terms
of the considered metrics as compared to a regular flow model trained on the image datasets individually
reconstructed via BM3D/Wiener deconvolution.

The results of the stylized MRI study are shown in Fig. 5. The visual and FID-based quality of images
synthesized by the AmbientFlow models was inferior only to the images synthesized by the flow trained
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True objects Flow trained on true objects (FID = 45.6)

IFFT recons from fully sampled meas. (FID = 94.2) IFFT recons from 4x undersampled meas (FID=162.0)

PLS-TV recons from fully sampled meas. (FID=94.4) PLS-TV recons from 4x undersamp. meas (FID=181.7)

AmbientFlow trained on fully sampled meas (FID=72.4) AmbientFlow trained on 4x undersamp. meas (FID=88.2)

Figure 5: True objects, IFFT-based image estimates, PLS-TV based image estimates and images synthesized
by the flow model trained on the true objects, as well as the AmbientFlows trained on the measurements for
the stylized MRI study.

Table 1: The mean ± standard deviation of the RMSE and SSIM values computed over the following test
image datasets – (1) the images reconstructed using the PLS-TV method, (2) the MAP and MMSE estimates
using the flow prior trained on true objects, and (3) the MAP and MMSE estimates using the AmbientFlow
prior trained on fully sampled noisy measurements.

Method RMSE SSIM
PLS-TV 0.038 ± 0.007 0.806 ± 0.019

Flow prior trained on true objects MAP Estimate 0.025 ± 0.005 0.922 ± 0.013
MMSE Estimate 0.022 ± 0.003 0.940 ± 0.006

AmbientFlow prior MAP Estimate 0.025 ± 0.004 0.925 ± 0.012
MMSE Estimate 0.022 ± 0.004 0.936 ± 0.008
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directly on objects, and was superior to the images
reconstructed individually from the measurements
using the PLS-TV method. Since the underlying
Inception network used to compute the FID score is
not directly related to medical images, additional
evaluation was performed in terms of radiomic
features relevant to medical image assessments.

Figure 6 plots the empirical PDF over the first two
principal components of the radiomic features ex-
tracted from each of the MR image sets shown in
Fig. 5, except the IFFT image estimates. It can be
seen that there is a significant disparity between the
principal radiomic feature PDFs of the true objects
and the images reconstructed individually using PLS-
TV. On the other hand, the AmbientFlow-generated
images have a radiomic feature distribution closer to
the true objects for both the fully sampled and 4-
fold undersampled cases. This implies that, training
an AmbientFlow on the noisy/incomplete measure-
ments yielded an estimate of the object distribution
that was more accurate in terms of relevant radiomic
features, than the one defined by images individu-
ally reconstructed from the measurements using the
PLS-TV method.

(a) True objects

(b) Flow trained
on true objects

PLS-TV recons from noisy measurements 
(c) n/m = 1 (e) n/m = 4

AmbientFlow trained on noisy measurements 
(d) n/m = 1 (f) n/m = 4

Figure 6: Empirical PDF over the first two principal
components of the radiomic features extracted from
MRI images. For each plot, the bold contour encloses
the region containing 80% of the probability mass. For
(b-f), the dotted contour encloses the region containing
80% of the probability mass of the true objects.

Next, the utility of the AmbientFlow for Bayesian inference is
demonstrated with the help of an image reconstruction case
study. Figure 7 shows a true object alongside images recon-
structed from stylized 4-fold undersampled MR measurements
simulated from the object, using the reconstruction methods
described in Section 4. Recall that for both the flow-based
priors shown, the MAP estimate was obtained using the CSGM
framework (Bora et al., 2017), and the MMSE estimate and
the pixelwise standard deviation maps were computed empiri-
cally from samples from the posterior pθ(f | g) obtained using
annealed Langevin dynamics (Jalal et al., 2021a). Visually, it
can be seen that the images reconstructed using the Ambient-
Flow prior were comparable to the images reconstructed using
the flow prior trained on the true objects, and better than the
image reconstructed using the PLS-TV method. Table 1 shows
the root-mean-squared error (RMSE) and structural similarity
(SSIM) (Wang et al., 2004) of the reconstructed images with
respect to the true object, averaged over a dataset of 45 test
images. It can be seen that in terms of RMSE and SSIM, both
the MAP and the MMSE image estimates obtained using the
AmbientFlow prior are comparable to those obtained using the
flow prior trained on true objects, despite the AmbientFlow
being trained only using noisy stylized MR measurements.
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Figure 7: Image estimates and pixelwise
standard deviation maps from the image
reconstruction case study.

6 Discussion and conclusion

An estimate of the distribution of objects is known to be important for applications in imaging science. This
is because an unconditional generative model of objects can potentially be used in image reconstruction
tasks without the need for paired data of images and measurements, and in a way that accommodates a
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wide variety of relevant forward models (Bora et al., 2017; Asim et al., 2020). Additionally, unconditional
generative models can be used to approximate ideal Bayesian classifiers (Zhou et al., 2023), or for anomaly
detection (Zhao et al.), or image manipulation (Torres & Brefeld). However, obtaining such an estimate
in terms of a generative model that is useful for downstream tasks has remained challenging, especially
when only noisy and incomplete measurements of the objects are available. In this work, a framework for
learning flow-based generative models of objects from noisy/incomplete measurements was developed. The
presented numerical studies show that the proposed AmbientFlow framework was able to mitigate the effects
of data incompleteness and noise present in the measurements in order to build an accurate estimate of the
object distribution in terms of the considered evaluation metrics, and generate visually appealing images. In
terms of perceptual measures such as the FID score as well as domain specific radiomic features, the images
synthesized by AmbientFlow maintained higher distributional fidelity with the true objects than the images
individually reconstructed from the measurements. Furthermore, when the AmbientFlow trained on noisy
measurements was employed as a prior in an image reconstruction task, the image estimates obtained were
as accurate in terms of RMSE and SSIM as those obtained when a flow model trained directly on the true
objects was employed.

Some of the above observations also apply to the AmbientGAN framework developed by Bora, et al. (Bora
et al., 2018). Although the current state-of-the-art GANs may lead to images with better perceptual quality
than IGMs, GANs trained on medical images have been shown to misrepresent medically relevant statistics
despite producing visually appealing images (Kelkar et al., 2023a). Also, an important drawback of GANs
with in the context of imaging science is its unreliability in downstream Bayesian inference tasks. For example,
GAN-constrained image reconstruction methods are known to be prone to hallucinations caused by dataset
bias, distribution shifts and representation error, whereas IGMs used for the same purpose have been shown to
be comparatively robust (Bhadra et al., 2021; Asim et al., 2020; Menon et al., 2020; Kelkar et al., 2021; Jalal
et al., 2021b;a; Zhao et al., 2022). These drawbacks of GANs are in part due to the insufficient representation
capacity and inability to access the log-probability, both of which are applicable for GANs learned in the
ambient setting as well. IGMs, on the other hand, due to their ability to accurately represent images and
compute fast, exact density estimates, are more suitable for some downstream inference tasks such as image
reconstruction, posterior sampling and uncertainty quantification as compared to GANs. Further similarities
and differences between AmbientGAN and AmbientFlow are as follows. In some scenarios, AmbientGAN can
be more flexible since it can easily accommodate arbitrary differentiable random forward models, whereas
AmbientFlow is limited by the capabilities of the posterior network. However, in the presence of a fixed null
space, some studies have shown that AmbientGAN performance can degrade and the images produced by it
can display aliasing artifacts characteristic of the measurement operator (Zhou et al., 2022). To the best of
our knowledge, incorporating additional priors into the AmbientGAN loss function has not been rigorously
studied. Another key difference between the two approaches is that unlike AmbientGAN, AmbientFlow also
provides a posterior network which can be useful by itself for certain image reconstruction tasks, as shown in
Appendix B.

The AmbientFlow framework bears some similarity with variational autoencoders (VAEs). In both cases, a
variational lower bound of the evidence of the data is minimized. The object distribution in AmbientFlow is
analogous to the latent variable distribution in VAEs. However, in VAEs, the latent distribution is typically
simple and non-unique, and its desirable properties include disentanglement, tractable sampling, and accurate
representation of the data via a trained decoder. However, in the AmbientFlow framework, the object
distribution is a complex high dimensional distribution that is of primary interest and needs to be recovered as
accurately as possible. It is related to the measured data via a physical measurement process, and may have
known structure such as transform compressibility. Therefore, the aims and objectives of the two frameworks
that guide their design are radically different.

The posterior network in our work also has interesting connections to deep probabilistic imaging (DPI) (Sun
& Bouman, 2021), which also uses an invertible network to model the posterior, and trains it in a way that is
constrained by a prior. However, unlike DPI, the posterior model in our work is an end-to-end conditional
generative model that, when trained, can directly produce posterior samples by taking in the measurement
vector as one of the inputs.
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The presented framework can be adopted to other generative models that utilize a log-likelihood-based training
objective, such as denoising diffusion probabilistic models (DDPMs) which enable high-quality Bayesian
inference in imaging (Song et al., 2021). Recent examples of learning diffusion models from noisy/incomplete
data include (Aali et al., 2023) and (Daras et al., 2023). However, the approach by Aali et al. applies only
to measurements with white Gaussian noise and an identity forward operator. In contrast, the approach
by Daras, et al. can incorporate a wide class of forward operators, but does not account for measurement
noise. In the future, an extension of the AmbientFlow framework to diffusion models could account for both,
forward operators with a null space, as well as measurement noise.

A key limitation of the proposed framework is that its performance depends heavily on the design of the
posterior network. The posterior network architecture currently employed is inspired by Ardizzone, et. al
(Ardizzone et al., 2021). It displays favourable inductive biases for images due to several design choices such
as wavelet-based downsampling layers, and a Laplacian pyramid feature extractor for the conditioning input.
However, this architecture may not be able to properly model the posterior when H depends on a random
parameter, such as a random view angle relevant for cryo-electron microscopy (Zhong et al., 2021). In theory,
it is straightforward to modify the loss function so that in addition to g, a random forward model H ∼ qH

is also a conditioning input to the posterior network. However, in practice, designing a posterior network
architecture that can successfully account for the random forward operator is nontrivial, and could be an
interesting avenue for future work. Also, although this work involves preliminary assessments of AmbientFlow
using the FID score and radiomic features, a proper evaluation of generative models for imaging applications
is still an open problem (Sankaranarayanan et al., 2023). Thorough evaluation of such models would involve
assessing whether they can reproduce image statistics that are relevant to a wide variety of downstream tasks
(Kelkar et al., 2023a;b).
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A Theoretical analysis for Section 3

First, the notation defined in Section 3 is rehashed here for convenience.

Notation. Let qf , qg and qn denote the unknown true object distribution to-be-recovered, the true
measurement distribution and the known measurement noise distribution, respectively. Let D = {g(i)}D

i=1 be
a dataset of independent and identically distributed (iid) measurements drawn from qg. Let Gθ : Rn → Rn

be an INN. Let pθ be the distribution represented by Gθ, i.e. given a latent distribution qz = N (0, In),
Gθ(z) ∼ pθ for z ∼ qz. Also, let ψθ be the distribution of fake measurements, i.e. for f ∼ pθ, Hf + n ∼ ψθ.
Let pθ(f | g) ∝ qn(g −Hf) pθ(f) denote the posterior induced by the learned object distribution represented
by Gθ. Let Φ ∈ Rl×n, l ≥ n be a full-rank linear transformation (henceforth referred to as a sparsifying
transform). Also, let Sk = {v ∈ Rn s.t. ∥Φv∥0 ≤ k} be the set of vectors k-sparse with respect to Φ. Since Φ
is full-rank, throughout this chapter we assume without the loss of generality, that ∥Φ+∥2 ≤ 1, where Φ+ is
the Moore-Penrose pseudoinverse of Φ. Throughout the manuscript, we also assume that qf is absolutely
continuous with respect to pθ, and qg is absolutely continuous with respect to ψθ.

A.1 Proof of Theorem 3.1

Theorem 3.1. Let hϕ be such that pϕ(f | g) > 0 over Rn. Minimizing DKL(qg∥ψθ) is equivalent to
maximizing the objective function L(θ, ϕ) over θ, ϕ, where L(θ, ϕ) is defined as

L(θ, ϕ) = Eg∼qg

[
logEζ∼qζ

{
pθ

(
hϕ(ζ; g)

)
qn

(
g −Hhϕ(ζ; g)

)
pϕ

(
hϕ(ζ; g) | g

) }]
(12)

Proof. From the definition of KL divergence, we have

DKL(qg∥ψθ) = Eg∼qg

[
log qg(g)

ψθ(g)

]
(13)

= Eg∼qg log qg(g) − Eg∼qg logψθ(g). (14)

Now, ψθ(g) can be written as

ψθ(g) =
∫
qg|f (g|f)pθ(f)df (15)

=
∫
pϕ(f |g)qn(g −Hf) pθ(f)

pϕ(f |g) df (16)

= Ef∼pϕ(·|g)

[
qn(g −Hf) pθ(f)

pϕ(f |g)

]
. (17)

Therefore,

Eg∼qg logψθ(g) = Eg∼qg

[
logEf∼pϕ(·|g)

{
pθ(f) qn(g −Hf)

pϕ(f | g)

}]
(18)

= Eg∼qg

[
logEζ∼qζ

{
pθ

(
hϕ(ζ; g)

)
qn

(
g −Hhϕ(ζ; g)

)
pϕ

(
hϕ(ζ; g) | g

) }]
(19)

= L(θ, ϕ). (20)

Therefore,

DKL(qg∥ψθ) = Eg∼qg log qg(g) − L(θ, ϕ). (21)

Since Eg∼qg log qg(g) is a constant, minimizing DKL(qg∥ψθ) is equivalent to maximizing L(θ, ϕ).
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Remark. As described in Section 3, a variational lower bound of L is optimized in this work:

LM (θ, ϕ) = Eg,ζi
logavgexp

0<i≤M

[
log pθ

(
hϕ(ζi; g)

)
+ log qn

(
g −Hhϕ(ζi; g)

)
− log pϕ

(
hϕ(ζi; g) | g

)]
, (22)

where ζi ∼ qζ, 0 < i ≤ M , and logavgexp0<i≤M (xi) := log
[

1
M

∑M
i=1 exp(xi)

]
.

For sufficiently expressive parametrizations for pθ and hϕ, the maximum possible value of LM is Eg∼qg log qg(g),
which corresponds to the scenario where the learned posteriors are consistent, i.e. pϕ(f | g) = pθ(f | g), and
the learned distribution of measurements matches the true measurement distribution, i.e. ψθ = qg. This can
be shown as follows.

For M = 1, LM (θ, ϕ) reduces to the evidence lower bound (ELBO):

LELBO(θ, ϕ) = Eg∼qg,ζ∼qζ

[
log pθ

(
hϕ(ζ; g)

)
+ log qn

(
g −Hhϕ(ζ; g)

)
− log pϕ

(
hϕ(ζ; g) | g

)]
. (23)

= Eg∼qg logψθ(g) −DKL(pϕ(·|g)∥pθ(·|g)). (24)

Similar to importance-weighted autoencoders (IWAE), (Burda et al., 2015), it can be shown that

LELBO(θ, ϕ) ≤ LM (θ, ϕ) ≤ Eg∼qg logψθ(g) ≤ Eg∼qg log qg(g), (25)

with equality occurring when ψθ = qg and pϕ(·|g) = pθ(·|g). Thus the maximum value that can be achieved
by LM (θ, ϕ) is Eg∼qg log qg(g).

Lemma 3.1. If H is a square matrix (n = m) with full-rank, if the noise n is independent of the object,
and if the characteristic function of the noise χn(ν) = En∼qn exp(ιν⊤n) has full support over Rm (ι is the
square-root of −1), then ψθ = qg ⇒ pθ = qf .

Proof. This proof as been adapted from the AmbientGAN work (Bora et al., 2018). Let y = Hf represent
the noiseless measurements. Therefore,

g = y + n, (26)
⇒ qg = qy ∗ qn, (27)

where ∗ represents a convolution (in the sense of linear systems theory) (Lathi & Green, 2005). Therefore,

χg(ν) = χy(ν)χn(ν), ν ∈ Rm. (28)

Since χn has full support over Rm, χg uniquely determines χy. Therefore, qg uniquely determines qy.

Also, since H is bijective, qy uniquely determines qf . Therefore, ψθ = qg ⇒ pθ = qf .

A.2 Proof of Theorem 3.2

In order to prove Theorem 3.2, we first establish essential notation and intermediate results needed. Specifically,
in Lemma A.1, we derive an expression for the wasserstein distance between a distribution of a random
variable, and the distribution of its projection onto a set. We then proceed to prove Theorem 3.2.

Notation. For a closed set S ⊂ Rn, let projS(f) denote the orthogonal projection of f onto S, defined as

projS(f) = min
f ′∈S

∥f ′ − f∥2 (29)

For a PDF q : Rn → R, let qS denote the distribution of projS(x), for x ∼ q. Also, for distributions q1, q2, let

W1(q1∥q2) := inf
γ∈Γ (q1,q2)

E(x1,x2)∼γ∥x1 − x2∥2 (30)
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denote the Wasserstein 1-distance, with Γ (q1, q2) being the set of all joint distributions γ : Rn×n → R with
marginals q1, q2, i.e. ∫

γ(x1,x2)dx2 = q1(x1),
∫
γ(x1,x2)dx1 = q2(x2). (31)

Lemma A.1. Let x ∈ Rn be a random vector with distribution q. Then, with the above notation,

W1(q∥qS) = Ex∼q ∥x − projS(x)∥2 . (32)

Proof. Let γ0 : Rn×n → R be a degenerate joint distribution given by

γ0(x,w) = q(x)δ
(
w − projS(x)

)
, x,w ∈ Rn, (33)

where, δ(w) denotes the Dirac delta. Therefore, by definition of the Wasserstein distance,

W1(q∥qS) ≤ E(x,w)∼γ0 ∥x − w∥2 , (34)

=
∫
q(x)δ

(
w − projS(x)

)
∥x − w∥2 dxdw, (35)

=
∫
q(x) ∥x − projS(x)∥2 dx, (36)

= Ex∼q ∥x − projS(x)∥2 . (37)

On the other hand, by definition of orthogonal projection,

∥x − projS(x)∥2 ≤ ∥x − w∥2 , ∀ w ∈ supp(qS). (38)

Therefore,

Ex∼q ∥x − projS(x)∥2 ≤ E(x,w)∼γ ∥x − w∥2 , γ ∈ Γ (q, qS). (39)
⇒ Ex∼q ∥x − projS(x)∥2 ≤ inf

γ∈Γ (q,qS)
E(x,w)∼γ ∥x − w∥2 , (40)

= W1(q∥qS). (41)

Equations (37) and (41) imply

W1(q∥qS) = Ex∼q ∥x− projS(x)∥2 . (42)

With all the tools in place, we now proceed to prove Theorem 3.2. Consider the optimization problem stated
in Eq. (8):

θ̂, ϕ̂ = arg min
θ,ϕ

−LM (θ, ϕ) subject to Eg∼qgEf∼pϕ(·|g)∥Φf − ΦprojSk
(f)∥1 < ϵ. (8)

Theorem 3.2. If the following hold:
1. W1(qf ∥ qSk

f ) ≤ ϵ′ (the true object distribution is concentrated on k-sparse objects under Φ),
2. H satisfies the RIP for objects k-sparse w.r.t. Φ, with isometry constant δk,
3. the characteristic function of noise χn(ν) has full support over Cm, and
4. (θ, ϕ) satisfying pθ = qf and pϕ(· | g) = pθ(· | g) is a feasible solution to Eq. (8) (Gθ and hϕ have sufficient

capacity),
then the distrubution pθ̂ recovered via Eq. (8) is close to the true object distribution, in terms of the Wasserstein
distance i.e.

W1(pθ̂ ∥ qf ) ≤
(

1 + 1√
1 − δk

∥H∥2

)
(ϵ+ ϵ′). (43)
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The intuitive idea behind the proof of this theorem is as follows. Compressed sensing stipulates that under
precribed conditions, the forward operator is injective on a set of sparse vectors. Thus, if an object distribution
is sparse, then the distribution of its measurements should be uniquely linked to it. If the object distribution
qf is compressible, and if it is ensured that a compressible distribution pθ̂ is recovered via Eq. (8), then
both qf and pθ̂ will be concentrated on the sparse vectors, and will associated with the same measurement
distribution qg. Since the sparse vectors are uniquely determined by the measurements, pθ̂ and qf must
themselves be close.

Proof. Since (θ, ϕ) satisfying pθ = qf , and pϕ(·|g) = pθ(·|g) is a feasible solution to Eq. (8), the maximum
value of LM under Eq. (8) is Eg∼qg log qg(g). Therefore, according to Eq. (25), for the estimated θ̂ and ϕ̂,
L(θ̂, ϕ̂) = Eg∼qg log qg(g),

ψθ̂ = qg and pϕ̂(·|g) = pθ̂(·|g). (44)

Let f1, f2 ∈ Rn. Therefore, by triangle inequality,

∥f1 − f2∥2 =
∥∥f1 − fS

1 + fS
2 − f2 + fS

1 − fS
2

∥∥
2 , (45)

≤
∥∥f1 − fS

1
∥∥

2 +
∥∥fS

2 − f2
∥∥

2 +
∥∥fS

1 − fS
2

∥∥
2 , (46)

where fS is a shorthand for projSk
(f) for f ∈ Rn.

f1, f2 can be represented in terms of the spasifying transform Φ. Let ci = Φfi and cS
i = ΦfS

i , for i = 1, 2.
Therefore,

∥f1 − f2∥2 ≤
∥∥f1 − fS

1
∥∥

2 +
∥∥Φ+∥∥

2

∥∥c2 − cS
2

∥∥
2 +

∥∥fS
1 − fS

2
∥∥

2 , (47)

where Φ+ is the Moore-Penrose pseudoinverse of Φ. Also, by definition, recall that cS
1 and cS

2 have at most k
non-zero values.

Now, let yi = Hfi for i = 1, 2. Therefore,∥∥yS
1 − yS

2
∥∥

2 =
∥∥yS

1 − y1 + y2 − yS
2 + y1 − y2

∥∥
2 (48)

≤
∥∥y1 − yS

1
∥∥

2 +
∥∥y2 − yS

2
∥∥

2 + ∥y1 − y2∥2 , (49)
≤ ∥H∥2

∥∥f1 − fS
1

∥∥
2 +

∥∥HΦ+∥∥
2

∥∥c2 − cS
2

∥∥
2 + ∥y1 − y2∥2 . (50)

Now, the restricted isometry property (RIP) on H defined in Definition 2.1 implies∥∥fS
1 − fS

2
∥∥

2 ≤ 1√
1 − δk

∥∥yS
1 − yS

2
∥∥ . (51)

Therefore, Equations (47), (50) and (51) give

∥f1 − f2∥ ≤
∥∥f1 − fS

1
∥∥

2 +
∥∥Φ+∥∥

2

∥∥c2 − cS
2

∥∥
2

+ 1√
1 − δk

[
∥H∥2

∥∥f1 − fS
1

∥∥
2

+
∥∥HΦ+∥∥

2

∥∥c2 − cS
2

∥∥
2 + ∥y1 − y2∥2

]
. (52)

≤ α
( ∥∥f1 − fS

1
∥∥

2 +
∥∥Φ+∥∥

2

∥∥c2 − cS
2

∥∥
2

)
+ 1√

1 − δk

∥y1 − y2∥2 , (53)

where α = 1 + 1√
1 − δk

∥H∥2 . (54)
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Now, let B = Γ (qf , pθ̂), i.e. the set of all joint distributions β : Rn×n → R that have marginals qf and pθ̂.
Also, let ρθ̂ be the distribution of y = Hf for f ∼ pθ̂, i.e. the noiseless version of ψθ̂. Therefore, for β ∈ B,

E(f1,f2)∼β ∥f1 − f2∥2 ≤ α
[
Ef1∼qf

∥∥f1 − fS
1

∥∥
2 + ∥Φ+∥2Ef2∼pθ̂

∥∥Φf2 − ΦfS
2

∥∥
2

]
+ 1√

1 − δk

E(f1,f2)∼β ∥Hf1 −Hf2∥2 . (55)

From Lemma A.1, we have

Ef1∼qf

∥∥f1 − fS
1

∥∥
2 = W1(qf ∥qSk

f ) ≤ ϵ′. (56)

Also, from Eq. (6),

Ef2∼pθ̂

∥∥Φf2 − ΦfS
2

∥∥
2 = Eg∼qgEf2∼pθ̂(·|g)

∥∥Φf2 − ΦfS
2

∥∥
2 , (57)

= Eg∼qgEf∼pϕ̂(·|g)
∥∥Φf − ΦprojSk

(f)
∥∥

2 , (58)

≤ Eg∼qgEf∼pϕ̂(·|g)
∥∥Φf − ΦprojSk

(f)
∥∥

1 , (59)

≤ ϵ. (60)

Taking the infimum of Eq. (55) over β ∈ B, we get

inf
β∈B

E(f1,f2)∼β ∥f1 − f2∥2 ≤ α(ϵ′ + ∥Φ+∥2ϵ) + 1√
1 − δk

inf
β∈B

E(f1,f2)∼β ∥Hf1 −Hf2∥2 . (61)

Note that the left-hand side of the above equation is precisely W1(pθ̂∥qf ). Also, note that the rightmost term
in Eq. (61) is W1(qy∥ρθ̂):

W1(qy∥ρθ̂) = inf
β∈B

E(f1,f2)∼β ∥Hf1 −Hf2∥2 . (62)

From Eq. (44), since qg = ψθ̂, Lemma 3.1 implies qy = ρθ̂

⇒ W1(qy∥ρθ̂) = 0. (63)

Combining with Eq. (61), and setting ∥Φ+∥ ≤ 1 and α according to Eq. (54), we get

W1(pθ̂∥qf ) ≤
(

1 + 1√
1 − δk

∥H∥2

)
(ϵ+ ϵ′) (64)

B Additional numerical experiments

B.1 Evaluation of the posterior network

In order to evaluate the posterior network hϕ, the following experiments were designed using the setup of the
stylized MRI study. First, the consistency of the modeled posterior pϕ(· | g) and the posterior induced by the
main flow model pθ(· | g) ∝ qn(g −Hf) pθ(f) was examined. For a fixed measurement vector g, 50 images
were sampled from pϕ(· | g) using hϕ. For the 50 samples, log pϕ(f | g) and log qn(g −Hf) + log pθ(f) were
computed and plotted against each other. This was repeated was different measurement vectors g. A scatter
plot of log pϕ(f | g) versus log qn(g −Hf) + log pθ(f) is shown in Fig. 8 for the AmbientFlow trained on two
different measurement configurations – (1) fully sampled noisy measurements, and (2) 4x undersampled noisy
measurements. The scatter plots for each individual g are plotted in different colors. It can be seen that
the slope of a linear fit of the scattered points is close to 1 for all three measurement vectors considered.
This indicates that pϕ(· | g) ∝ qn(g −Hf) pθ(f), i.e. the modeled posterior and the posterior induced by the
learned prior are consistent.
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(a) Fully sampled noisy measurements (b) 4x undersampled noisy measurements

Figure 8: Scatter plot of log pϕ(f | g) versus log qn(g −Hf) + log pθ(f) for three different measurement vectors
g, for AmbientFlow trained using two different measurement configurations from the stylized MRI study.
The scatter plots for each individual g are plotted in different colors.

Table 2: The mean ± standard deviation of the RMSE and SSIM values computed over the following test
image datasets – (1) the MMSE estimates using the flow prior trained on true objects, and (3) the MMSE
estimates using the AmbientFlow prior trained on measurements, and (3) the MMSE estimates using samples
from hϕ(· | g). The forward and noise models in the image reconstruction task were the same as the ones
used to train the AmbientFlow.

Method n/m = 1 n/m = 4
RMSE SSIM RMSE SSIM

Flow prior trained on true objects 0.017 ± 0.002 0.95 ± 0.01 0.022 ± 0.003 0.94 ± 0.01
AmbientFlow prior 0.016 ± 0.002 0.96 ± 0.01 0.025 ± 0.004 0.92 ± 0.01
Posterior network hϕ(· ; g) 0.016 ± 0.002 0.96 ± 0.01 0.026 ± 0.004 0.91 ± 0.01

(a) Flow prior from true objects (b) AmbientFlow prior

n/
m

 =
 1

(c) Posterior network

n/
m

 =
 4
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Figure 9: MMSE estimates obtained by an empirical average over images obtained from (a) Langevin dynamics-
based posterior sampling that employs the flow prior trained on true objects, (b) Langevin dynamics-based
posterior sampling that employs the AmbientFlow prior, and (c) the posterior network hϕ(· ; g).
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Figure 10: FID score as a function of the undersampling ratio used to simulate the training data for
AmbientFlow for the stylized MRI study.

Table 3: MSE error in the mean of the images generated by the unconditional model relative to the true mean
image; and relative squared-Frobenius error in the rank-1000 approximation Σp of the learned covariance
matrix relative to the rank-1000 approximation Σq of the true covariance matrix.

Conventional flow n/m = 1 n/m = 2 n/m = 4 n/m = 8

∥Epθ
f − Eqf f∥2

2 / ∥Eqf f∥2
2 0.3% 0.8% 0.7% 0.4% 1.4%

∥Σp −Σq∥2
F / ∥Σq∥2

F 14% 16% 15% 15% 35%

Next, for the two measurement configurations within the stylized MRI study and for a test dataset of size
20, the outputs of the posterior model hϕ(· ; g) for a measurement input g was compared with the images
reconstructed using the corresponding flow prior trained on the ground truths, as well as those reconstructed
using the corresponding AmbientFlow prior. The empirical MMSE estimates as well as pixelwise standard
deviation maps obtained from these posterior samples are shown in Fig. 9. The RMSE and SSIM of the
MMSE estimates are shown in Table 2. It can be seen that the MMSE estimates computed using samples
from hϕ(· ; g) closely resemble those computed via Langevin dynamics-based posterior sampling employing
the AmbientFlow prior, both visually, as well as in terms of the RMSE and SSIM.

B.2 Additional evaluation of unconditional models

In this section, we present additional evaluation and ablation studies on the learned unconditional models
for the stylized MRI study. Figure 10 shows the FID score as a function of the undersampling ratio used to
simulate the incomplete, noisy stylized MRI measurements used to train AmbientFlow. Next, we evaluate
the ability of our models to learn first- and second-order image statistics. For this experiment, a conventional
flow model trained on the true objects, as well as AmbientFlow models trained on noisy, undersampled
stylized MRI measurements with n/m = 1, 2, 4, 8 were considered. Figure 11 shows the empirical mean,
autocorrelation, and radial profile of the autocorrelation of images generated from the true unconditional
distribution qf , and learned unconditional distribution pθ for each of the flow models trained. The MSE error
in the empirical mean image relative to the squared ℓ2 norm of the empirical mean of the true distribution is
shown in Table 3. Next, a rank-1000 approximation of the sample covariance matrix was computed for all
the models using randomized SVD of the data. Since the first and the 1000th singular values of this matrix
differed by almost 6 orders of magnitude, a low-rank approximation to the covariance matrix differs minimally
from the full covariance matrix in terms of the Frobenius norm, while also ensuring numerical stability in
computation. The error in the empirical mean image relative to the squared ℓ2 norm of the empirical mean of

22



Published in Transactions on Machine Learning Research (01/2024)

Real
Synthetic

M
ea

n 
im

ag
e

A
ut

oc
or

re
la

ti
on

 &
it
s 

ra
di

al
 p

ro
fil

e

n/m = 1 n/m = 2 n/m = 4 n/m = 8True Conventional flow

Figure 11: The first row shows the empirical mean of the images generated from the true unconditional
distribution qf , and learned unconditional distribution pθ for four different undersampling ratios considered
in the sylized MRI study. The second row shows the image autocorrelations, and the third row shows the
radial profile of the autocorrelation along the dotted red line.

Table 4: The mean ± standard deviation of the RMSE and SSIM values for the CelebA face image inpainting
study computed over the following test image datasets – (1) the images reconstructed using the PLS-TV
method, (2) the MAP and MMSE estimates using the flow prior trained on true objects, and (3) the MAP
and MMSE estimates using the AmbientFlow prior trained on fully sampled noisy measurements.

Method RMSE SSIM
Navier-Stokes-based inpainting (Bertalmio et al., 2001) 24.3 ± 6.0 0.81 ± 0.03

Flow prior trained on true objects MAP Estimate 17.8 ± 4.5 0.81 ± 0.05
MMSE Estimate 15.1 ± 3.7 0.88 ± 0.03

AmbientFlow prior MAP Estimate 17.7 ± 4.4 0.80 ± 0.03
MMSE Estimate 15.0 ± 4.2 0.88 ± 0.03

the true distribution is shown in Table 3. The squared-Frobenius error between the rank-1000 approximation
Σp and the learned covariance matrix relative to the rank-1000 approximation Σq of the true covariance
matrix relative to ∥Σq∥2

F is shown in Table 3.

B.3 Additional case study: face image inpainting using AmbientFlow prior

Here, the results of a case study of face image inpainting is presented. In particular, we consider the case
where a trained uncomditional AmbientFlow is used as a prior in an image reconstruction task, where the
forward operator applicable to the task is different from the forward operator used to train the AmbientFlow.
The following two image reconstruction tasks are considered – (1) approximate maximum a posteriori (MAP)
estimation, i.e. approximating the mode of the posterior pθ(· | g), and (2) approximate sampling from the
posterior pθ(· | g).

For both the tasks, an AmbientFlow trained on noisy face images from the CelebA dataset, as well as a
conventional flow model trained on the uncorrupted CelebA images were considered. For a held-out dataset of
size 20, the first task was performed using the compressed sensing using generative models (CSGM) formalism
(Asim et al., 2020). For the second task, approximate posterior sampling was performed with the flow models
as priors using annealed Langevin dynamics (ALD) iterations proposed in Jalal, et al. (Jalal et al., 2021a).
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Flow prior trained on uncorrupted images AmbientFlow prior trained on noisy images

Figure 12: Image estimates and pixelwise standard deviation maps from the image inpainting case study.

For each true object, the MMSE estimate and the pixelwise standard deviation map σ̂ were computed
empirically using 36 samples obtained via ALD iterations. A baseline Navier-Stokes-based inpainting method
was also compared (Bertalmio et al., 2001). Table 4 shows the RMSE and SSIM of the reconstructed images
with respect to the true object, averaged over a dataset of 20 test images. It can be seen that in terms of
RMSE and SSIM, both the MAP and the MMSE image estimates obtained using the AmbientFlow prior are
comparable to those obtained using the flow prior trained on uncorrupted images, despite the AmbientFlow
being trained only using noisy CelebA images. Figure 12 shows the true and masked images along with
the images inpainted by the algorithms described above. It can be seen that although the AmbientFlow
prior provides comparable RMSE and SSIM estimates to the flow prior trained on uncorrupted images, it
still retains some smoothing artifacts characteristic of the sparsity-promoting penalty imposed on it during
training.
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