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Humans tend to trust algorithms less than they trust other 
humans1. In cooperative contexts, they break promises made 
to a computer more easily than promises made to a human2, 

and they believe other humans to be more intelligent3 and more coop-
erative4 than artificial agents. This aversion to artificial intelligence 
as a social partner extends to other settings such as health-care5–7 
and forecasting1. One way for machines to bypass these prejudices is 
to conceal their true nature, that is, to passively let people think they 
are actually interacting with another human. Naturally, this requires 
machines to be sophisticated enough to pass as humans, but this 
hurdle is about to be overcome in various contexts. For example, 
Google Duplex is an automated voice assistant that can perform a 
variety of mundane phone-based tasks on behalf of its user, such as 
making dinner reservations and booking appointments. Duplex has 
crossed the ‘uncanny valley’8 by effectively passing as human. This 
was achieved by imitating human speech patterns including hesi-
tations—ums and ahs—which a machine would ordinarily not do 
except to trick conversation partners into thinking they are interact-
ing with another human. Accordingly, Duplex is able to have natural 
conversations with the people it calls on the phone, and to successfully  
complete bookings and transactions9.

In spite or because of its impressive ability to mimic human 
speech, Duplex’s technological breakthrough was marred by the 
ethical controversy it stirred10,11. The fact that Duplex could hide its 
true nature from humans was considered at least deceitful12, and at 
most horrifying13. Consequently, some voices called for machines 
to be transparent about their true nature, and to disclose it upfront 
before any interaction with a human14. Given the uneasiness that 
humans display against bots in cooperative contexts, this push 
towards transparency raises a critical question: does transparency 
come at the expense of efficiency in human–bot interactions?

To address this question, we sought behavioural evidence for a 
transparency–efficiency tradeoff in the context of social dilemmas, 

where each ‘player’ can choose to either cooperate with, or defect 
against, the other player. We conducted an experiment in which 
participants played the canonical iterated prisoner’s dilemma15–24 
with either a bot or a human, and we orthogonally manipulated 
the information that participants received about the nature of 
their associate—half of the participants were accurately informed 
about whether their partner was human or bot, while the other half 
received inaccurate information.

While this setup is far from addressing the psychological and 
cognitive subtleties involved in interacting with a complex system 
such as Google Duplex in a naturalistic environment, it allowed us 
to investigate whether bots can do better than humans at eliciting 
cooperation from their partner; to assess the prejudice humans have 
against cooperation partners they believe to be bots; and to investi-
gate the extent to which this prejudice may nullify the ability of bots 
to elicit greater cooperation once they reveal their true nature.

Experimental design
We observed the behaviour of human participants in a repeated pris-
oner’s dilemma, a well-established medium for studying and evalu-
ating cooperative behaviour in many disciplines (for example, see  
refs. 2,15,25–27). Each participant played at least 50 rounds of this game 
with either a bot or a human. The actions of the bots were decided by 
a reinforcement-learning algorithm called S++28 (see Supplementary 
Note 5 for a brief overview of this algorithm). Among the numerous 
algorithms that can generate strategic decisions in repeated games 
(for example, see refs. 15,25,29–38), we selected S++ because it outper-
forms other algorithms in simulations, and because it can learn 
effective behaviour within only a few rounds of interaction, mak-
ing it particularly suitable for human–bot experiments where it is  
infeasible for participants to play thousands of rounds39.

A total of 698 human participants were recruited through the 
crowd-sourcing platform MTurk and redirected to an external 
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website that was purpose-built for our experiment (for more details 
on the experimental setup, see Supplementary Notes 1–4 and 
Supplementary Figures). Of the 350 participants who played with 
another human, 170 were accurately informed that their partner was 
human and 180 were inaccurately informed that their partner was 
a bot. Likewise, of the 348 participants who played with a bot, 188 
were accurately informed that their partner was a bot and 160 were 
inaccurately informed that their partner was human. Accordingly, 
the experiment followed a 2 × 2 design, in which participants were 
randomly assigned to one of four conditions: playing with a human 
they knew to be human, playing with a bot they knew to be a bot, 
playing with a human they believed to be a bot, or playing with a bot 
they believed to be human. Hereafter, we sometimes speak of par-
ticipants who played with a ‘purported bot’ to designate participants 
who were told, accurately or not, that their partner was a bot; and 
likewise, we speak of participants playing with a ‘purported human’ 
to designate participants who were told, accurately or not, that their 
partner was human.

Results
Overall, participants who played with bots (whether they knew it or 
not) cooperated slightly more (46%) than participants who played 
with humans (41%). This is consistent with previous evidence 
showing that S++ can do at least as well as humans when it comes to 
eliciting cooperation from its partners. The algorithm achieves this 
by rewarding cooperation, tentatively forgiving lapses of coopera-
tion and meting punishment in case of prolonged defection39. The 
key question we address in this Article, though, is whether humans 
are prejudiced against partners they believe to be bots, and whether 
this prejudice can hurt the performance of transparent bots.

To illustrate the prejudice against purported bots early in the 
game, Fig. 1 displays the proportion of cooperative decisions made 

by human players during rounds 1–3, for all possible sequences of 
decisions up to that round. In qualitative terms, human players were 
consistently less likely to cooperate with purported bots, regardless 
of the decisions made by their partner during previous rounds. To 
test the statistical significance of this result, we conducted a bino-
mial regression for each of the three rounds, in which the depen-
dent variable was the decision to cooperate, and the predictors were 
the purported nature of the partner as well as the number of coop-
erative decisions made by the partner during earlier rounds (this 
predictor was omitted for the round 1 regression). The regression 
tested whether the coefficient attached to each predictor was sig-
nificantly different from zero. As shown in Table 1, the purported 
nature of the partner did not impact cooperation in the first round, 
but did so in rounds 2 and 3, regardless of the decisions that the 
partner made in earlier rounds.

So far, data suggest that actual bots, employing the S++ algo-
rithm28, can elicit cooperation to a greater extent than humans, but 
that humans cooperate less with purported bots. The question, then, 
is whether bots that are transparent about their true nature may be 
penalized to an extent that would offset their greater ability to elicit 
cooperation. To address this question, we must consider coopera-
tion rates throughout the game in all four experimental variations. 
These data are shown in Fig. 2. Participants cooperated less when 
playing with purported bots than with purported humans through 
all 50 rounds of the game. Bots (Fig. 2b) did better than humans 
(Fig. 2a) at eliciting cooperation, mostly because human coopera-
tion deteriorated, while bots managed to keep cooperation with 
humans constant. These results are confirmed by a multilevel bino-
mial regression in which the dependent variable was the decision 
to cooperate and the predictors were the round number, the true 
nature of the partner (and its interaction with the round number) 
and the purported nature of the partner (and its interaction with the 
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Fig. 1 | Prejudice against purported bots early in the game. a–c, Proportion of human participants who made a cooperative decision in round 1 (a), 
round 2 (b) and round 3 (c) as a function of the purported nature of their partner (error bars show the 95% confidence interval). Within each round, the 
participants are split according to the history of decisions made by their partner in previous rounds (there are two such histories for round 2 and four such 
histories for round 3). Participants are always more likely to cooperate with a purported human, regardless of their partner’s decision history. As shown in 
Table 1, this effect is significant both in round 2 and in round 3.
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round number), with a random intercept per participant and per 
game session. We tested whether the coefficients attached to each 
term were significantly different from zero. The model detected a 
significant effect of purported partner (z = −3.5, P < 0.001), and 
a main effect of round number (z = −8.2, P < 0.001), which was 
qualified by an interaction effect between round number and the 
true nature of the partner (z = 8.3, P < 0.001). No other effects were 
detected as significant.

The transparency–efficiency tradeoff is best perceived by com-
paring the red line in Fig. 2a (true humans known to be humans) to 
the red and blue lines in Fig. 2b. A bot passing as human (red line in 
Fig. 2b) is more efficient than a real human, mostly because humans 
are bad at maintaining cooperation in repeated games18,40,41, whereas 
the programming of the bot allows it to keep its partner cooper-
ating. But as soon as the bot reveals its true nature (blue line in  
Fig. 2b), it pays a large penalty that completely offsets its advan-
tage and makes it less efficient than an actual human. After a large 
number of rounds, its performance ends up matching human per-
formance, but this is only because human performance largely dete-
riorates with time, while the bot is able to maintain its mediocre 
performance throughout the game.

The bots used in our study learn to expect less from humans than 
from other bots, especially when they are transparent, as shown by 
changes in the ‘aspiration level’ of S++ over time. In more detail, 
the aspiration level is a parameter expressing the payoff that S++ 
expects to receive (see Supplementary Information for the math-
ematical details). As long as this expectation is met, S++ does not 
change its strategy. If the expectation is not met, S++ starts explor-
ing other strategies. Furthermore, as this expectation decreases, S++ 
becomes less likely to attempt to arrive at a mutually cooperative 
solution. S++ starts with an optimistic aspiration level of 3, which 
corresponds to mutual cooperation. As shown in Fig. 3, on average, 
this aspiration level decreases over time as S++ interacts with people, 
and reaches even lower levels when S++ is being transparent about 
its nature. A linear regression of aspiration level on partner (human 
versus bot) and round detected significant effects of both predic-
tors (partner: t = −43.9, P < 0.001; round: t = −63.4, P < 0.001). 
Another linear regression of aspiration level on transparency 
(opaque versus transparent) and round, restricted to human part-
ners, detected significant effects of both predictors (transparency:  
t = −14.9, P < 0.001; round: t = −65.0, P < 0.001).

In sum, results offer clear behavioural evidence for an efficiency– 
transparency tradeoff in human–machine cooperation. Bots were 
better than humans at eliciting cooperation, but only if they were 
allowed to pass as humans. As soon as their true nature was revealed, 
cooperation rates dropped and could no longer match typical lev-
els of human–human cooperation. The magnitude of this effect 
was about ten percentage points, which may lead to a substantial 
cumulative effect for bots that are used widely and routinely. While 
cooperation is not always or necessarily the best course of action 
(since it could theoretically lead to exploitation) we observed a sub-
stantial correlation between the cooperation rate of human players 
and their profits in the game, whether with other humans (r = 0.52, 
P < 0.001), or with bots (r = 0.58, P < 0.001).

Before we discuss whether people may decide to let bots hide 
their true nature for the sake of efficiency, we need to discuss one 

alternative to deception. What if bots disclosed their true nature 
but let people know that better results can be achieved if they are 
treated just like humans? Perhaps this simple intervention may 
restore cooperation to some degree, without the need for deception. 
We tried this intervention on 190 human participants, who were 
given the following information before the game: “Data suggest 
that people are better off if they treat the bot as if it were a human.” 
Results in this debiasing condition are shown in Fig. 2b (yellow 
line). Participants in this condition behaved essentially the same as 
if they had not received the debiasing information, suggesting that 
simple debiasing cannot solve the transparency–efficiency tradeoff.

Discussion
Many voices have called for intelligent machines to be transparent, 
in the sense that their decisions might be explained in terms that 
would be understood by the people they affect42–44. But machines 
that interact or cooperate with humans can be transparent in a dif-
ferent sense, by disclosing their non-human nature upfront, before 
any interaction, even when their programming could allow them to 
convincingly pass as humans. While these situations are still rare, 
the Google Duplex example has been a warning call for many, by 
showing how close we are to a world where bots can conduct a dis-
cussion and close a transaction with humans, without ever revealing 
their non-human nature.

Although there is broad consensus that machines should be 
transparent about how they think, it is less clear whether they should 
always be transparent about who they are. To make an informed 
decision about this design choice, we need to gain a better under-
standing of the costs and benefits of transparency. In particular, we 
need to know whether the performance we expect from machines 
(for example, fluid and efficient cooperation) can be impaired when 
machines disclose their true nature to their human partners. Here 
we showed that transparency could hurt performance, to the extent 
that the superior efficiency of machines was nullified when they 
disclosed their non-human nature. It is important to note that this 
result is restricted to one form of transparency (that is, a disclo-
sure about non-human nature), and one form of efficiency (that is, 
cooperation in a social dilemma). To generalize this result, future 
research will have to examine a broader range of transparency 
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Fig. 2 | The tradeoff between efficiency and transparency. a,b, Proportion 
of cooperative decisions made by human participants, as a function of the 
purported nature of their partner, across the 50 rounds of the game for the 
cases when the partner is a human (a) or a bot (b). For better visualization, 
fitted lines display a quadratic model of the data, with the shaded area 
representing the 95% confidence interval. See text for details of the 
debiasing condition.

Table 1 | Regression table showing likelihood of cooperation

Round 1 Round 2 Round 3

Purported human 0.13 ± 0.15 0.47 ± 0.16** 0.40 ± 0.16*

Previous cooperation – 0.98 ± 0.16*** 0.63 ± 0.12***

Participants are always more likely to cooperate with a purported human, regardless of their 
partner’s decision history. This effect is significant both in round 2 and in round 3 (*P < 0.05; 
**P < 0.01; ***P < 0.001). Standard errors of the mean are given for each value.
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manipulations (for example, a description of the bots’ learning abili-
ties and prosocial tendency) as well as a broader range of efficiency 
benchmarks (for example, interaction speed or customer satisfac-
tion). We used cooperation in a social dilemma as a proxy for effi-
ciency, to capture situations where cooperation would lead to the 
best possible result, but can be compromised by a temptation not 
to cooperate, or a belief that the partner will not cooperate. Help 
desks operated by bots may provide a good example: while trust-
ing the bot to help might lead to a quicker and easier resolution, 
humans may nevertheless decide to wait for human help due to a 
prejudice against the bot. However, one could imagine situations 
in which knowingly interacting with a bot might make things eas-
ier. For example, providing negative feedback about a product or 
a performance may be easier when talking to a bot, since it would 
eliminate the face-saving issues that complicate such an interaction 
between humans45.

With these caveats, our results lead to the question of whether 
machines should be allowed to hide their non-human nature for the 
sake of efficiency. Ultimately, this choice must be made by the very 
people they interact with, otherwise it would violate fundamental val-
ues of autonomy, respect and dignity for humans in socio-technical 
systems. However, if people know that their interactions with trans-
parent machines will be impaired, if they value the efficiency of these 
interactions and if they value it enough to accept being deceived, 
then they may consider it acceptable for machines to be opaque.

The difficulty, of course, is that this decision cannot be made on 
a case-by-case basis. Once one knows their partner is a machine, 
there is no un-knowing that fact: it would make no sense for a 
machine to ask its partner for the permission to pass as human. 
Accordingly, people must agree on a policy to let machines deceive 
them in some circumstances, without asking them for informed 
consent when it happens.

It remains to be seen whether such a policy might be ethically 
grounded and socially acceptable. It is important to note, though, 
that people sometimes find it acceptable, ethical and desirable to 
be blind to the individuals they deal with. In what is perhaps the 
most famous example of such a policy, major orchestras adopted 
a ‘blind’ audition process in which musicians play out of sight of 
the jury, in order to hide their identity, and most importantly their 
gender46. This policy was for the most part motivated by the desire 
to reduce gender discrimination, and it succeeded in that respect. 
But for orchestras, just as for companies, the objective of blind hir-
ing is not only to increase diversity for diversity’s sake: the goal is 
also to hire better individuals, who might have been rejected due to 
prejudice—in other words, to improve the efficiency of the hiring 
process, along with its fairness.

There is no need for humans to be more ‘fair’ to machines, what-
ever it would mean. Discrimination towards human groups is a 
serious problem, discrimination towards machines is not. However, 
being blind to the true nature of a machine may improve its coop-
erative efficiency, just as being blind to the identity of a candidate 
can improve the efficiency of the hiring process. If people agree, for 
efficiency purposes, to be blind to the individuals they seek to hire, 
then they may also agree to be blind to the machines they inter-
act with, in return for more efficient cooperation. Opaque bots are 
still more ethically challenging than blind hiring, though. In the 
case of blind hiring, the pursuit of efficiency comes together with 
the pursuit of fairness: there is no salient conflict of ethical values. 
In the case of opaque bots, the pursuit of efficiency through non- 
transparency may well conflict with other values, such as respect 
and dignity. Our results highlight the need to reflect on the effi-
ciency cost we are willing to pay in order to uphold these values in 
our interactions with machines.

Reporting Summary. Further information on research design 
is available in the Nature Research Reporting Summary linked to  
this article.
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