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Abstract

Semi-supervised learning (SSL) has been a fundamental challenge in machine learn-
ing for decades. The primary family of SSL algorithms, known as pseudo-labeling,
involves assigning pseudo-labels to confident unlabeled instances and incorporating
them into the training set. Therefore, the selection criteria of confident instances
are crucial to the success of SSL. Recently, there has been growing interest in the
development of SSL methods that use dynamic or adaptive thresholds. Yet, these
methods typically apply the same threshold to all samples, or use class-dependent
thresholds for instances belonging to a certain class, while neglecting instance-level
information. In this paper, we propose the study of instance-dependent thresholds,
which has the highest degree of freedom compared with existing methods. Specifi-
cally, we devise a novel instance-dependent threshold function for all unlabeled
instances by utilizing their instance-level ambiguity and the instance-dependent
error rates of pseudo-labels, so instances that are more likely to have incorrect
pseudo-labels will have higher thresholds. Furthermore, we demonstrate that our
instance-dependent threshold function provides a bounded probabilistic guarantee
for the correctness of the pseudo-labels it assigns. Our implementation is available
at https://github.com/tmllab/2023_NeurIPS_InstanT.

1 Introduction

In recent years, machine learning algorithms trained on abundant accurately labeled data have
demonstrated unparalleled performance across different domains. However, in practice, it is often
financially infeasible to collect reliable labels for all samples in large-scale datasets. A more practical
solution is to select a subset of the data and use expert annotations to assign labels to them [39]. This
scenario, where the majority of the data is unlabeled and only a portion has reliable labels, is known
as semi-supervised learning (SSL). In SSL, our aim is usually to learn a classifier that has comparable
performance to the one trained in a fully supervised manner. To achieve this, the majority of existing
approaches adopt a training strategy named pseudo-labeling. More specifically, a model will be
trained on a small set of labeled data first, and this model will then be applied to the larger unlabeled
set to assign predicted pseudo-labels to them. If the model’s confidence in an instance exceeds a
certain threshold, then this instance along with its predicted pseudo-label will be added to the training
set for this iteration. Thus by iteratively expanding the training set, if the expanded instances are
indeed assigned with correct labels, then the classification error will be gradually reduced [43].

However, since the model is bound to make mistakes, the newly added training samples are not
always assigned with correct labels, which generates label noise [5, 46, 44]. Under the influence of
label noise, the model will gradually over-fits to noisy supervision, hence accumulating generalization
error. Since the model makes predictions based on instance features, it is usually assumed that for
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Figure 1: Illustration on the differences between uniform thresholds, class-dependent thresholds, and
instance-dependent thresholds in SSL. The black solid lines are the decision boundaries generated by
the classifier, and the colored dashed lines are the confidence thresholds, the colored square, triangle,
and circle represent the unlabeled instances with their predicted class. We can observe that a uniform
threshold does not depend on any factors, class-dependent thresholds only depend on the predicted
pseudo-label, and instance-dependent thresholds depend on the features of unlabeled instances.

"hard" examples, the classifier is more likely to give incorrect predictions to them [55], making the
label noise pattern instance-dependent [11, 45, 55].

Consequently, selecting an appropriate confidence threshold for pseudo-label assignment becomes a
key factor that determines the performances of SSL methods. For predictions that are more likely to
have incorrect labels, we want to assign higher thresholds to avoid selecting them prematurely. And
for predictions that are more likely to be correct, we want to assign lower thresholds to encourage
adding them to the training set at an earlier stage. Conventionally, such a threshold is usually
determined by empirical experience in an ad-hoc manner, where only a few of the existing works
consider the theoretical implication of threshold selection. Recently, increasing research focused
on the investigation of dynamic or adaptive thresholds [9, 17, 41, 48, 54], where such confidence
threshold is conditional on some external factors, such as the current training progress. Notably,
the vast majority of those methods consider a single threshold for all instances and overlook their
instance-level information, such as the instance-level label noise rate. As illustrated in Figure 1, the
instance-dependent threshold is the most flexible among existing threshold types.

Motivated by this challenge, in this paper, we propose a new SSL algorithm named Instance-
dependent Thresholding (InstanT). Since the learned model is subject to the influence of instance-
dependent label error, we aim to quantify and reduce such error by estimating an instance-dependent
confidence threshold function based on the potential label noise level and instance ambiguity (clean
class posterior). In addition, we can derive a lower-bounded probability, for samples that satisfy
the thresholds will be assigned to a correct label. From our main theorem, we show that as the
training progresses, this probability lower-bound will asymptotically increase towards one, hence
guaranteeing the pseudo-label quality for instances that satisfies our proposed thresholds.

We summarize our contributions as follows: (1) We propose an SSL algorithm named InstanT, which
assigns thresholds to individual unlabeled samples based on the instance-dependent label noise level
and prediction confidence. (2) We prove InstanT has a bounded probability to be correct, which vouch
for the reliability of the pseudo-labels it assigns with a theoretical guarantee. (3) To the best of our
knowledge, this is the first attempt to estimate the instance-dependent thresholds in SSL, which has
the highest degree of freedom compared with existing methods. (4) Through extensive experiments,
we show that our proposed method is able to surpass state-of-the-art (SOTA) SSL methods across
multiple commonly used benchmark datasets.

Related work. As we mentioned, some existing works have already been considered to improve
pseudo-labeling by leveraging "dynamic" or "adaptive" thresholds. More specifically, Dash [48]
considers a monotonically decreasing dynamic threshold, based on the intuition that as training
progresses, the model at a later stage will provide more reliable predictions than at early stages. Flex-
Match [54] further introduced class-dependent learning status in addition to the dynamic threshold.
Adsh [17] employs adaptive threshold under class imbalanced scenario by optimizing the number
of pseudo-labels per class. As for adaptive thresholds, AdaMatch [9] considers using a pre-defined
threshold factor multiplied by the averaged top-1 prediction confidence, making it adaptive to the
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model’s current confidence level. FreeMatch [41] considers a combination of adaptive global and
local thresholds, which combines the training progress and class-specific information.

In addition to the aforementioned more recent methods, most of the classical methods use pre-defined
fixed thresholds, which remain constant throughout the entire training process [8, 18, 19, 29, 36].
Such thresholds are usually set to be high enough to prevent the occurrence of incorrect pseudo-
labels. Notably, other approaches such as reweighting [10, 22], distribution alignment [20, 31, 42],
contrastive learning [24, 49], consistency regularization [1, 34] were also employed to improve SSL.

2 Preliminaries

2.1 Notation and Problem Setting

We consider the general setting from SSL, namely, we have a small group of labeled instances
Xl := {x1, ...,xn} with their corresponding labels Yl := {y1, ..., yn}. And there is an unlabeled
instance group Xu := {xn+1, ...,xn+m} with their latent labels Yu := {yn+1, ..., yn+m}, usually,
we have m >> n. Furthermore, we assume that the labeled instances and unlabeled instances are
independent and identically distributed (i.i.d), i.e. X := {Xl, Xu} ∈ X , Y := {Yl, Yu} ∈ Y .

We term the model trained with clean and pseudo-labels as f̂ , parameterized by θ. Since f̂θ is
bound to make mistakes, its generated pseudo-label Ŷu will contain label errors. Hence the softmax
predictions of f̂θ are actually approximating the noisy class posterior. We fix the notation for the real
noisy class posterior as P (Ŷ |X)t at t-th iteration, whereas our approximated noise class posterior is
P̂ (Ŷ |X)t, which can be obtained from the softmax predictions of the model f̂θ at t-th iteration.

As the clean label for the unlabeled set is unknown, we instead wish to recover the Bayes optimal
label for all the unlabeled instances, which is the label class that maximizes the clean class posterior
[50, 56]. The Bayes optimal label is generated by the hypothesis that minimizes the risk within the
hypothesis space, i.e. the Bayes optimal classifier, which we denote as h∗. And we can denote the
Bayes optimal label for x as h∗(x).

2.2 Instance-dependent Label Noise in SSL

As mentioned in the previous section, label noise is an inevitable challenge in SSL. Moreover, since
P (Ŷ |X) is dependent on X , we say the label noise is instance-dependent [12, 45]. Concretely,
we have P (Ŷ |X = x) = T (x)P (Y |X = x) [32, 35], where T (xu) is the instance-dependent
transition matrix, which models the generation of label noise. P (Y |X = x) represents the latent
clean class posterior for unlabeled samples. We can define the ij-th entry of T (x) as:

Ti,j(x) = P (Ŷ = j|Y = i,X = x), (1)

which means the ij-th entry of T (x) models the probability that x with clean label y = i will be
predicted as ŷ = j.

2.3 Tsybakov Margin Condition

We assume our learned classifier satisfies Tsybakov Margin Condition [38], which essentially re-
strained the level of complexities of the classification problem by assuming the data are separable
enough. It is a commonly used assumption for various Machine Learning problems [2, 6, 56] in-
cluding SSL [48]. Without the loss of generality, we will directly present the multi-class Tsybakov
Margin Condition [2, 56], whereas the binary case will be provided in the Appendix B.

Assumption 1 (Multi-class Tsybakov Margin Condition). For some finite constant C,α > 0, and
δ0 ∈ (0, 1], the Tsybakov Margin Condition holds if ∀δ ∈ (0, δ0], we have

P [P (Y = γ|X = x)− P (Y = s|X = x) ≤ δ] ≤ Cδα.

Where P (Y = γ|X = x) and P (Y = s|X = x) are the largest and second-largest clean class
posterior probability for x.
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2.4 Quality-Quantity Trade-off in SSL

To understand the choice of pseudo-label thresholds in SSL, it is essential to consider the trade-off
between the quality and the quantity of the pseudo-labels [10, 41]. Typically, a higher threshold is
presumed to yield superior label quality, as it assigns pseudo-labels solely to instances where the
classifier exhibits a high level of confidence. Conversely, elevating the threshold diminishes the
quantity of pseudo-labels, as it leads to the exclusion of instances where the classifier lacks sufficient
confidence. Hence causing the dilemma of quality-quantity trade-off.

One possible approach to address the quantity-quality trade-off in SSL is to apply a dynamic threshold,
which is dependent on the training progress. This is because the evaluation metric for confident
samples is usually not stationary throughout the training process of neural networks. As the model’s
predicted probability is subject to the level of over-fitting [16, 30], designing a thresholding function
that is dependent on the training process is crucial to the success of SSL algorithms[9, 41]. Intuitively,
in the early stage of the training process, where the model has just started to fitting, the threshold
should not be set too high to filter out too many samples, and as the model has already well-fitted to
the training data, the threshold should be elevated to combat falsely confident instances caused by
confirmation bias [4].

3 Instance-dependent thresholds - A theoretical perspective

In this section, we focus on answering the specific research question: For SSL, can we derive
instance-dependent pseudo-label assignment thresholds with theoretical guarantees?

The answer to this question is affirmative. We will present our main theorem and the proof to show
that for samples that satisfy our instance-dependent threshold function, their likelihood of being
correct is lower-bounded.

3.1 Lower-bound Probability of Correctness

For a classifier trained with sufficient accurately labeled data, its prediction γ will be made if
P (Y = γ|X = x) > P (Y = s|X = x). However, under the existence of label errors, the fidelity
of the classifier can no longer be guaranteed. Recently, Zheng et al. [56] showed that the classifier
influenced by the label noise can still have a bounded error rate. We show that in SSL tasks, where
the label noise is instance-dependent, we can establish a lower-bound probability for the predictions
to be correct through similar derivations.

Recall Assumption 1, we have γ := argmaxi P (Y = i|X = xu), s := argmaxi ̸=k P (Y =

i|X = xu), k := argmaxi P̂ (Ŷ = i|X = xu) = ŷu. And let ϵθ be the estimation error between
our estimated noisy class posterior P̂ (Ŷ |X) and true noisy class posterior P (Ŷ |X). We can then
formulate our main theorem:
Theorem 1. Assume estimated noisy class posterior P̂ (Ŷ |X) satisfies Assumption 1 with C,α > 0,
δ0 ∈ (0, 1], and ϵθ ≤ δ0 min

i
Ti,i(xu), we have:

P
[
k = h∗(xu), P̂ (Ŷ = k|X = xu) ≥ τ(xu)

]
> 1− C[O(ϵθ)]

α, (2)

where τ(xu) is the instance-dependent threshold function:

τ(xu) = Tk,k(xu)P (Y = s|X = xu) +

|Y |∑
i ̸=k

Ti,k(xu)P (Y = i|X = xu). (3)

The proof of Theorem 1 is provided in Appendix C. Theorem 1 substantiates that, as our model
over-fits to the label error (as ϵθ decreases), and the transition matrix can be successfully estimated,
the probability lower-bound of the assigned pseudo-labels are correct will increase asymptotically.
This guarantees the quality of the pseudo-labels τ(xu) assigned. Note that, τ(xu) requires the clean
class posterior of unlabeled instances, which can be provably inferred upon the successful estimation
of T (x) and the noisy class posterior [26, 32].

To gain a deeper understanding of Theorems 1, we will try to intuitively understands the outputs of
τ(xu). Our aim is to examine the behavior of τ(xu) in relation to the unlabeled sample xu, which

4



Figure 2: Overview of InstanT. Left: training process of transition matrix estimator f̂θ′ . For a labeled
instance xl, whose label is 2, the classifier f̂θ will first generate its noisy class posterior. Then, we
want the second row of the transition matrix to approximate the noisy class posterior by minimizing
L(θ

′
) from Equation 7. Right: The inference process of τ(xu). When calculating τ(xu), xu will

be simultaneously passed to the classifier and transition matrix estimator. Since 1 is the predicted
class label from the model that minimizes the forward loss (Equation 8), we will use the first column
from our estimated transition matrix to modulate threshold based on Theorem 1.

has a predetermined clean class posterior. If we observe an increase in the sum of column k in the
transition matrix, it will result in a corresponding increase in the threshold τ(xu). This implies that
when xu is highly likely to be assigned with an incorrect pseudo-label, τ(xu) will assign a higher
threshold in order to prevent its premature inclusion of {xu, ŷu} in the training set. Conversely, when
xu is less likely to be assigned with a incorrect pseudo-label, τ(xu) will assign a lower threshold to
encourage adding {xu, ŷu} to the training set.

3.2 Identification of Instance-dependent Transition Matrix in SSL

Theorem 1 builds upon the assumption that T (x) can be successfully identified. Yet, the identification
of T (x) has been a long-standing issue in the field of label noise learning. Fortunately, in SSL, we
argue that T (x) can be provably identified under mild conditions. We will first justify our argument
from a theoretical perspective based on the Theorems from Liu et al. [27]. Subsequently, we will
also propose the empirical methods for estimating T (x) from an intuitively understandable aspect in
the following section.

We will start by defining the identifiability, we use Ω to represent an observation space and use Θ to
represent a general parametric space. Then, for a distribution with parameter θ

′
, such that θ

′ ∈ Θ, a
model Pθ′ on Ω can be defined [3, 50]. We further define its identifiability as:

Definition 1 (Identifiability). Parameter θ
′

is said to be identifiable if Pθ′ ̸= Pθ′′ , ∀θ
′ ̸= θ

′′
.

In our case, θ
′
(x) := {T (x), P (Y |X = x)}, i.e., Pθ′ is a distribution defined by the transition

probability and clean class posterior. To determine the identifiability of T (x), we also need to define
the term informative noisy labels. Specifically, we have:

Definition 2 (Informative noisy labels). For a given sample (x, y)i, its noisy label ŷi is said to be
informative if rank(T (xi)) = |Y |.

Then, we can make the following theorem:

Theorem 2. With i.i.d (x, y)i pairs, three informative noisy labels ŷi are sufficient and necessary
for the identification of T (xi).

The Theorem 2 is based on Kruskal’s Identifiability Theorem, the proof is provided in the Appendix
D. From Theorem 2 and Definition 2, we can conclude that, in SSL, if we have more than three
labeled samples per class, transition matrix T (x) is identifiable, more discussions on this can also be
found in Appendix D.
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4 InstanT: Instance-dependent thresholds for pseudo-label assignment

4.1 Instance-dependent Threshold Estimation

While Theorem 1 provides a theoretical guarantee for the correctness of τ(xu), as discussed in
section 2.4, SSL algorithms can benefit from non-constant thresholds [9, 41]. Here we define the
dynamic threshold κt at iteration t from the relative confidence threshold (RT) in AdaMatch [9]:

κt =
1

n

n∑
i=1

max
j∈[1,...,|Y |]

P̂ (Ŷ = j|X = xi)t · β, (4)

where n is the number of labeled samples, and β is a fixed discount factor. Subsequently, we present
the instance-dependent threshold function at iteration t:

τ(xu)t = min

1, T̂k,k(xu)tP̂ (Y = s|X = xu)t +

|Y |∑
i̸=k

T̂i,kP̂ (Y = i|X = xu)t + κt

 . (5)

Note that this estimation process requires the clean class posterior, which can be estimated or
approximated using a transition matrix via importance re-weighting [26, 46] or loss correction
[32, 45], details will be introduced in the following section. We also remark here that a less strict
instance-dependent version of the threshold function can be used with the class-dependent transition
matrix [32, 46, 52], which can lead to better empirical results under certain cases, it is also important
to note that even under class-dependent transition matrix, the threshold function is still instance-
dependent, as the noise class posterior are instance-dependent.

4.2 Modelling Instance-dependent Label Noise

Now we will introduce a piratical method for estimating T (x) in SSL. Our approach involves
approximating the label noise transition pattern using a Deep Neural Network. As we recall from
Equation 1, T (x) can be described as a mapping function T : X → R|Y |×|Y |, since we already know
that, in general cases, T (x) is identifiable in SSL, we only need to find the correct mapping function.
In addition, since we have clean label Yl for Xl, and we also have the noisy pseudo-labels Ŷl for Xl,
this enables us to directly fit a model to approximate T (x). Therefore, we want our transition matrix
estimator, parameterized by θ

′
, to approximate the label noise transition process at every iteration t:

T̂i,j(xl) = P̂ (Ŷl = j|Yl = i,Xl = xl; θ
′
) ≈ P (Ŷ = j|Y = i,X = x) = T (x). (6)

The above approximation holds since label noise is assumed to be i.i.d, therefore both labeled and
unlabeled samples share the same noise transition process. As we can estimate the noisy class
posterior for labeled samples, we can therefore collect distribution D := {Xl, Yl, P̂ (Ŷ |X = xl)}.
Observing Equation 6, we can design following objective for θ

′
to minimize:

LD(θ
′
) = − 1

n

n∑
l=1

ŷl log(yl · T̂ (xl)). (7)

Where yl is the one-hot vector for the label of labeled samples, thus yl · T̂ (xl) is equivalent to finding
the class-conditional noise class posterior P̂ (Ŷl = j|Yl = i,Xl = xl; θ

′
). ŷl is the one-hot noisy

pseudo-label of xl, minimizing LD(θ
′
) will result T̂ (xl; θ

′
) approximate T (x). As shown in Figure

2, f̂θ′ will be trained in parallel to the main classifier and updated in every epoch.

Notably, the estimator for the transition matrix in InstanT is not constrained to one specific method,
there has been a wide versatile of T estimator in the field of label noise learning [25, 45, 51], we have
incorporated some of them into the implementation of InstanT, indicating the good extensibility of
InstanT.
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4.3 Distribution Alignment

When the prediction of the classifier becomes imbalanced, Distribution Alignment (DA) is used
to modulate the prediction so that the poorly predicted class will not be overlooked completely
[7, 9, 20, 42]. This is achieved by estimating the prior of the pseudo-label P (Ŷ ) during training,
and setting a clean class prior P̂ (Y ), which is usually assumed to be uniformly distributed. The
distribution alignment process can be described as P̂ (Ŷ = j|X = xu) = Norm(P̂ (Ŷ = j|X =

xu)P (Y = j)/P (Ŷ = j)), where Norm is a total-sum scaling. Therefore, if the distribution of Ŷ
is severely imbalanced, DA will force the prediction for the minority class to be scaled up, and the
prediction for the over-populated class to be scaled down.

4.4 Loss Correction

While the classifier trained with incorrect pseudo-labels is subject to the influence of noisy supervision,
in order to satisfy Theorem 1, the estimated softmax predictions from f̂θ must approximate the clean
class posterior [56]. As we have already demonstrated that the transition matrix can be identified
in standard SSL setting, in this part, we will show how to infer clean class posterior from noisy
predictions and transition matrix, by utilizing forward correction [32]. Specifically, let ℓψ be a proper
composite loss [33] (e.g. softmax cross-entropy loss), forward correction is defined as:

ℓ→ψ (ŷu, f̂θ(xu)) = ℓ(ŷu, T̂ (xu)
⊤ψ−1f̂θ(xu)), (8)

where ψ is an invertible link function. It has been proven that minimizing the forward loss with
an accurately estimated transition matrix is equivalent to minimizing the loss defined over clean
latent pseudo-labels [32]. Therefore, minimizing ℓ→ψ will let the softmax prediction of classifier f̂θ
approximate the clean class posterior.

4.5 Training with Consistency Regularization Loss

Lastly, we provide an overview of the training objective of InstanT. We employ the widely adopted
consistency regularization loss [36, 47], which assumes a well-learned and robust model should
generate consistent predictions for random perturbations of a given instance. Previous methods
have commonly employed augmentation techniques to introduce perturbations. The training loss of
classifier f̂θ consists of two parts: supervised loss LDs

(θ) and unsupervised loss LDu
(θ). LDs

(θ) is
calculated by the labeled samples, specifically, we have:

LDs
(θ) =

1

n

n∑
l=1

ℓ(yl, f̂θ(W(xl)), (9)

where n is the number of labeled samples, yl is the one-hot label for xl, and W is a weak augmentation
function [36, 47], and ℓ is the cross-entropy loss function. Unsupervised loss LDu(θ) is calculated by
the unlabeled samples Xu and their predicted pseudo-labels Ŷu, which can be defined as:

LDu
(θ) =

1

m

m∑
u=1

1(P̂ (Ŷ = k|X = W(xu)) > τ(xu)t)ℓ
→
ψ (ŷu, f̂θ(S(xu)), (10)

where m is the number of unlabeled instances, ŷu is the one-hot pseudo-label for xu, and S is a
strong augmentation function [7, 14, 15]. 1 is an indicator function that filters unlabeled instances
using τ(xu)t. Combining the supervised and unsupervised loss, we then have the overall training
objective:

LD(θ) = LDs(θ) + λLDu(θ), (11)

where λ is used to control the influence of the unsupervised loss.
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Table 1: Top-1 accuracy with pre-trained ViT. The best performance is bold and the second best
performance is underlined. All results are averaged with three random seeds {0,1,2} and reported
with a 95% confidence interval.

Dataset CIFAR-10 CIFAR-100 STL-10

# Label 10 40 250 200 400 2500 10 40 100

PL 37.65±3.1 88.21±5.3 95.42±0.4 63.34±2.0 73.13±0.9 84.28±0.1 30.74±6.7 57.16±4.2 73.44±1.5

MT 64.57±4.9 87.15±2.5 95.25±0.5 59.50±0.8 69.42±0.9 82.91±0.4 42.72±7.8 66.80±3.4 77.71±1.8

MixMatch 65.04±2.6 97.16±0.9 97.95±0.1 60.36±01.3 72.26±0.1 83.84±0.2 10.68±1.1 27.58±16.2 61.85±11.3

VAT 60.07±6.3 93.33±6.6 97.67±0.2 65.89±1.8 75.33±0.4 83.42±0.4 20.57±4.4 65.18±7.0 80.94±1.0

UDA 78.76±3.6 97.92±0.2 97.96±0.1 65.49±1.6 75.85±0.6 83.81±0.2 48.37±4.3 79.67±4.9 89.46±1.0

FixMatch 66.50±15.1 97.44±0.9 97.95±0.1 65.29±1.4 75.52±0.1 83.98±0.1 40.13±3.4 77.72±4.4 88.41±1.6

FlexMatch 70.54±9.6 97.78±0.3 97.88±0.2 63.76±0.9 74.01±0.5 83.72±0.2 60.63±12.9 78.17±3.7 89.54±1.3

Dash 74.35±4.5 96.63±2.0 97.90±0.3 63.33±0.4 74.54±0.2 84.01±0.2 41.06±4.4 78.03±3.9 89.56±2.0
AdaMatch 85.15±20.4 97.94±0.1 97.92±0.1 73.61±0.1 78.59±0.4 84.49±0.1 68.17±7.7 83.50±4.2 89.25±1.5

InstanT 87.32±10.2 97.93±0.1 98.08±0.1 74.17±0.3 78.80±0.4 84.28±0.5 69.39±7.4 85.09±2.8 89.35±1.9

5 Experiments

5.1 Experiment Setup

We use three benchmark datasets for evaluating the performances of InstanT, they are: CIFAR-10,
CIFAR-100 [21], and STL-10 [13]. CIFAR-10 has 10 classes and 6,000 samples per class. CIFAR-
100 has 100 classes and 600 samples per class. STL-10 has 10 classes and 500 labeled samples per
class, 100,000 unlabeled instances in total. For each dataset, we set varying numbers of labeled
samples to create different levels of difficulty. Following recently more challenging settings [10, 41],
where the labeled samples could be extremely limited, we set the number of labeled samples per class
on CIFAR-10 as {1, 4, 25}, for CIFAR-100, we set as {2, 4, 25}, for STL-10, we set as {1, 4, 10}.

To ensure fair comparison between our method and all baselines, and to allow simple reproduction
of our experimental results, we implemented InstanT and conducted all experiments within USB
(Unified SSL Benchmark) framework [40]. To improve the training efficiency, e.g. faster convergence,
we use pre-trained ViT as the backbone model for all baselines with the same hyper-parameters in
part I. We use AdamW [28] as the default optimizer, where the learning rate is set as 5e − 4 for
CIFAR-10/100, 1e − 4 for STL-10 [40]. The total training iterations K are set as 204,800 for all
datasets. The training batch size is set as 8 for all datasets. For a more comprehensive evaluation of
our proposed method, we also conduct experiments with Wide ResNet [53] trained from scratch, the
detailed settings are aligned with existing works [7, 9, 36, 47, 48, 54], these results are summarized
in part II. We select a range of popular baseline methods to evaluate against InstanT, which includes
Pseudo-Label (PL) [23], MeanTeacher (MT) [37], VAT [29], MixMatch [8], UDA [47], FixMatch
[36], Dash [48], FlexMatch [54] and AdaMatch [9]. More comprehensive setting details, including
full details of hyper-parameters, can be found in Appendix A.

5.2 Main results

Table 2: Running time on
STL-10(40)2.

Method s/epoch

FixMatch 30.1
AdaMatch 30.1

InstanT 31.1

Part I. Our main results will be divided into two parts: part I and part
II. For training efficiency, we will use a pre-trained Vision Transformer
as the backbone model in part I, enabling us to compare a more diverse
collection of baselines over a broader range of benchmark settings. In
Part II, we will select baselines with better performance from Part I and
train them from scratch for a more comprehensive evaluation.

Experimental results from part I are summarized in Table 1, where we
can observe that, overall, InstanT achieves the best performances in most
of the settings. More specifically, in the setting where label amount is
extremely limited, InstanT exhibits the most significant improvement over all datasets, including
an average 2.17% increase in accuracy on CIFAR-10 (10) over SOTA. While the identifiability of
the transition matrix cannot be guaranteed with extremely limited labels, this could be remedied
by including highly confident instances and their pseudo-labels to the labeled set and using them
to better estimate the transition matrix. However, as the number of labeled samples increases, the

2Running time is tested on NVIDIA RTX 4090 GPUs.
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Table 3: Top-1 accuracy with WRN-28. The best performance is bold and the second best performance
is underlined. All results are averaged with three random seeds {0,1,2} and reported with a 95%
confidence interval.

Dataset CIFAR-10 CIFAR-100

# Label 40 250 4000 400 2500 10000

UDA 91.60±1.5 94.44±0.3 95.55±0.0 40.60±1.8 64.79±0.8 72.13±0.2

FixMatch 91.45±1.7 94.87±0.1 95.51±0.1 45.08±3.4 65.63±0.4 71.65±0.3

FlexMatch 94.53±0.4 94.85±0.1 95.62±0.1 47.81±1.4 66.11±0.4 72.48±0.2
Dash 84.67±4.3 94.78±0.3 95.54±0.1 45.26±2.6 65.51±0.1 72.10±0.3

AdaMatch 94.64±0.0 94.76±0.1 95.46±0.1 52.02±1.7 66.36±0.7 72.32±0.2

InstanT 94.83±0.1 94.72±0.2 95.57±0.0 53.94±1.8 67.09±0.0 72.30±0.4

dominance of InstanT becomes less pronounced. We hypothesize that this can be attributed to the
classifier f̂θ performing better with more labeled samples, resulting in fewer label errors. Since
InstanT primarily aims to increase the threshold for instances likely to have noisy pseudo-labels,
the impact of InstanT becomes less significant in the presence of reduced label noise. Moreover,
comparing the performance gap between InstanT and its closest counterpart, AdaMatch, it becomes
apparent that InstanT consistently outperforms AdaMatch in nearly all cases. This observation
underscores the non-trivial improvement and contribution brought forth by InstanT.

Part II. In this part, we will present the experiment results of part II, which are summarized in Table
3. Specifically, we will compare InstanT against other popular baseline methods on CIFAR-10/100
trained from scratch. For all methods, we use WRN-28-2 as default backbone model, trained with
220 iterations. We use SGD as the default optimizer, with momentum set as 0.9, initial learning rate
as 0.03 and a cosine learning rate scheduler.

Observing from experiment results, we can summarize similar patterns as the results from part
I. Overall, InstanT brings most significant performance increases when the number of labeled
samples are limited, e.g., when there is only 4 labeled samples per-class. Notably, for CIFAR-100
(400), InstanT exhibits an increase in accuracy for nearly 2%, which can be view as a significant
improvement over SOTA baseline. While on other cases such as CIFAR-10 (250) and CIFAR-100
(10000), InstanT outperformed by other baseline methods, we emphasize that no single baseline
consistently outperforms InstanT in all cases.

Another question of interest is whether InstanT will be as efficient as other methods in training
time. While learning transition matrix estimator does sacrifice time and space complexity to some
extent, we show that InstanT can still maintain high efficiency. As shown in Table 2, compared with
FixMatch and AdaMatch, InstanT almost does not introduce further significant computational burden.

To gain a better understanding of the key differences between InstanT and existing methods, we now
focus on the visualizations of InstanT compared to representative baselines. Specifically, we will
display the classification accuracy, unlabeled sample utilization ratio, and pseudo-label accuracy of
InstanT, FreeMatch [41], AdaMatch [9], and FixMatch [36] in Figure 3. These models are trained
from scratch on CIFAR-100 with 400 labeled samples, following commonly used settings [36, 41].

Examining the classification accuracy in Figure 3(a), we observe that while InstanT does not converge
as rapidly as FreeMatch, it ultimately achieves superior accuracy in the later stages of training. This is
attributed to InstanT’s ability to find a better balance between the quantity and quality of pseudo-labels.
As depicted in Figure 3(b) and 3(c), although InstanT utilizes fewer unlabeled samples compared to
FreeMatch, it demonstrates significantly improved accuracy on pseudo-labels. On the other hand,
AdaMatch exhibits similar pseudo-label accuracy to InstanT but utilizes a smaller proportion of
unlabeled instances. The key distinction lies in the instance-dependent threshold function employed
by InstanT, which allows us to set a lower κt for InstanT compared to AdaMatch, as InstanT mitigates
the negative impact by increasing the instance-dependent thresholds for instances more prone to label
noise, whereas AdaMatch will incorporate too many instances with incorrect pseudo-labels.

5.3 Ablation study
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Figure 3: Results from InstanT and selected baselines, trained from scratch on CIFAR-100(400).

Table 4: Ablation study on STL-10(40).

Method RT DA Acc.

FixMatch ✗ ✗ 77.72±4.4

AdaMatch ✓ ✓ 83.50±4.2

InstanT-I ✗ ✗ 79.92±5.8

InstanT-II ✓ ✗ 81.49±4.9

InstanT-III ✗ ✓ 82.97±2.7

InstanT ✓ ✓ 85.09±2.8

In this section, we will be verifying the effects of each
component of InstanT, specifically, we will focus on eval-
uating the parts that we adapted from existing works, and
determine how many performance improvements are at-
tributed to our instance-dependent thresholds. Results of
this ablation study are summarized in Table 4, where all
experiments are averaged over three random seeds and ran
on STL-10(40) using the setting of part I. First, we observe
that InstanT-I removed both Distribution Alignment (DA)
and relative thresholds (RT), which makes it equivalent
to adding τ(xu) on top of the fixed threshold of FixMatch. Notably, this also brings a significant
improvement over FixMatch for over 2%, which further verifies the effectiveness of our proposed
instance-dependent thresholds. Simply removing RT or DA will also cause a performance drop,
which is aligned with the results from AdaMatch [9].

6 Conclusion

In this paper, we introduce a novel approach to thresholding techniques in SSL called instance-
dependent confidence threshold. This approach offers the highest level of flexibility among existing
methods, providing significant potential for further advancements. We then present InstanT, a theoret-
ically guided method designed under the concept of instance-dependent threshold. InstanT assigns
unique confidence thresholds to each unlabeled instance, considering their individual likelihood of
having incorrect labels. Additionally, we demonstrate that our proposed method ensures a bounded
probability of assigning correct pseudo-labels, a characteristic rarely offered by existing SSL ap-
proaches. Through extensive experiments, we demonstrate the competitive performance of InstanT
when compared to SOTA baselines.
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A Comprehensive settings

For all methods, we apply temperature scaling for probability calibration by default, and the scaling
factor is set as 0.5. For FixMatch, Dash, FlexMatch and AdaMatch, τ is set as 0.95. For UDA, τ is
set as 0.8, temperature scaling factor is set as 0.4, according to the recommendation of the original
paper. For Dash, γ is set as 1.27, C is set as 1.0001, ρ is set as 0.05, warm-up iteration is set as 5120
iterations. For InstanT, base τ is set as 0.9 by default.

B Tsybakov Margin Condition (Binary)

We present the binary case of Tsybakov Margin Condition here. It can be defined as:

Assumption 2 (Binary Tsybakov Margin Condition). For some finite constant C,α > 0, and
δ0 ∈

(
0, 12

]
, the Tsybakov Margin Condition holds if ∀δ ∈ (0, δ0], we have

P

[∣∣∣∣P (Y |X = x)− 1

2

∣∣∣∣ ≤ δ

]
≤ Cδα.

Through similar derivations, we can provide our main theorem in binary case:

Theorem 3. Assume estimated noisy class posterior P̂ (Ŷ |X) satisfies Assumption 2 with C,α > 0,
δ0 ∈

(
0, 12

]
, and ϵθ ≤ δ0(1− T1,0(x)−T0,1(x))), we have:

P
[
k = h∗(xu), P̂ (Ŷ = k|X = xu) ≥ τ(xu)

]
> 1− C[O(ϵθ)]

α, (12)

where τ(xu) is the instance-dependent threshold function under binary case:

τ(xu) = Tk,k(xu)P (Y = s|X = xu) +

|Y |∑
i ̸=k

Ti,k(xu)P (Y = i|X = xu). (13)

C Proof of Theorem 1

Definition 3. For multi-class classification, the relationship between noisy class posterior P (Ŷ |X)
and clean class posterior P (Y |X) can be concluded as:

P (Ŷ = j|X = x) =

|Y |∑
i=1

Ti,j(X = x)P (Y = i|X = x). (14)

Proof of Theorem 1

For simplicity, we will denote the clean class posterior P (Y = k|X = x) as ηk(x), noise class
posterior P (Ŷ = k|X = x) as ηk̂(x), estimated noise class posterior P̂ (Ŷ = k|X = x) as η̂k̂(x).

Proof.

P
[
k = h∗(xu), η̂k̂(xu) ≥ τ(xu)

]
= 1− P

[
k = h∗(xu), η̂k̂(xu) < τ(xu)

]
= 1− P

[
ηk(xu) ≥ ηs(xu), η̂k̂(xu) < τ(xu)

]
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Based on Definition 3, we can substitute ηk̂(xu) with
∑|Y |
i=1 Ti,k(xu)ηi(xu), and since ∥ηk̂ −

η̂k̂∥∞ ≤ ϵθ (ϵ-close), we can continue with:

≤ 1− P

ηk(xu) ≥ ηs(xu),

|Y |∑
i=1

Ti,k(xu)ηi(xu) < τ(xu) + ϵθ


= 1− P

[
ηk(xu) ≥ ηs(xu), ηk(xu) <

τ(xu)−
∑|Y |
i ̸=k Ti,k(xu)ηi(xu) + ϵθ

Tk,k(xu)

]

= 1− P

[
ηs(xu) ≤ ηk(xu) <

τ(xu)−
∑|Y |
i ̸=k Ti,k(xu)ηi(xu)

Tk,k(xu)
+

ϵθ
Tk,k(xu)

]

= 1− P

[
ηs(xu) ≤ ηk(xu) < ηs(xu) +

ϵθ
Tk,k(xu)

]
Note that, since ϵθ ≤ t0 min

k
Tk,k(xu), the Multi-class Tsybakov Condition can be applied here:

P

[
0 ≤ ηk(xu)− ηs(xu) <

ϵθ
Tk,k(xu)

]
≤ C

[
ϵθ

Tk,k(xu)

]α
Which gives us:

1− P

[
0 ≤ ηk(xu)− ηs(xu) <

ϵθ
Tk,k(xu)

]
> 1− C

[
ϵθ

Tk,k(xu)

]α
Hence proved P

[
k = h∗(xu), η̂k̂(xu) ≥ τ(xu)

]
> 1− C[O(ϵθ)]

α.

D Proof of Theorem 2

In this section, we provide the proof from Liu et al. for the necessary and sufficient condition of
the identification of instance-dependent transition matrix T (x). First, we provide the Kruskal’s
Identifiability Theorem (or Kruskal rank Theorem):

Theorem 4. The parameters Mi, i = 1, ..., p are identifiable, up to label permutation, if
p∑
i=1

(Mi) ≥ 2|Y |+ p− 1 (15)

Proof. Then we follow the proof from Liu et al. to first prove the sufficiency. Since we cannot
observe the true label for unlabeled instances Xu, we denote them as hidden variable Z for simplicity.
P (Z = i) is the prior for the latent true label.

Each Ŷ = i,∀i = 1, ..., p corresponds to the observationOi. |Ŷ | is the cardinality of the pseudo-label
space. Without loss of generality, we will fix the number of classes as three during the analysis.

Each Ŷi corresponds to an observation matrix Mi:

Mi[j, k] = P (Oi = k|Z = j) = P (Ŷi = k|Y = j,X = x)

Therefore, by definition of M1,M2,M3 and T (x), they all equal to T (x): Mi ≡ T (X), i = 1, 2, 3.
When T (x) has full rank, we know immediately that all rows in M1,M2,M3 are independent.
Therefore, the Kruskal ranks satisfy

(M1) = (M2) = (M3) = |Ŷ |

Checking the condition in Theorem 4, we easily verify

(M1) + (M2) + (M3) = 3|Ŷ | ≥ 2|Ŷ |+ 2

Where Theorem 4 proves the sufficiency for three labeled samples per-class is sufficient for the
identification of T (x)
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Subsequently, Liu et al. also provides the proof for necessity, without the loss of generality, the
analysis for this part will be conducted in binary case only. More specifically, the label error
generation in SSL can be described by a binary transition matrix:

T (x) =

[
1− e−(x) e−(x)
e+(x) 1− e+(x)

]
In order to prove necessity, we must show that less than three informative labels per-class will not
give us a unique solution for T (x). If we were given two unlabeled instances with their pseudo-label
Ŷ1 and Ŷ2. Specifically, with two unlabeled instance and pseudo-label pairs, we can conclude the
following probabilities can derive all potential probabilities we can possibly get from them:

Posterior: P (Ŷ1 = +1|X)

Positive Consensus: P (Ŷ1 = Ŷ2 = +1|X)

Negative Consensus: P (Ŷ1 = Ŷ2 = −1|X)

This is because other probability distributions are able to be derived from these three quantities:
P (Ŷ1 = −1|X) = 1− P (Ŷ1 = +1|X) ,

P (Ŷ1 = +1, Ŷ2 = −1|X) = P (Ŷ1 = +1|X)− P (Ŷ1 = Ŷ2 = +1|X) ,

P (Ŷ1 = −1, Ŷ2 = +1|X) = P (Ŷ2 = +1|X)− P (Ŷ1 = Ŷ2 = +1|X) .

But P (Ŷ2 = +1|X) = P (Ŷ1 = +1|X), since noisy labels are i.i.d. The above three quantities led to
three equations that depend on e+, e−. This gives us the following system of equations:

P (Ỹ = +1|X) = P (Y = +1) · (1− e+) + (1− P (Y = +1)) · e−
P (Ŷ1 = Ŷ2 = +1|X) = P (Y = +1) · (1− e+)

2 + (1− P (Y = +1)) · e2−
P (Ŷ1 = Ŷ2 = −1|X) = P (Y = +1) · e2+ + (1− P (Y = +1)) · (1− e−)

2

Where:

P (Ŷ1 = Ŷ2 = +1|X)

=P (Ŷ1 = Ŷ2 = +1, Y = +1|X)

+ P (Ŷ1 = Ŷ2 = +1, Y = −1|X)

=P (Ŷ1 = Ŷ2 = +1|Y = +1, X) · P (Y = +1|X)

+ P (Ŷ1 = Ŷ2 = +1|Y = −1, X) · P (Y = −1|X)

=P (Y = +1) · (1− e+)
2 + (1− P (Y = +1)) · e2−

Given Y , Ŷ1, Ŷ2 are conditional independent, which gives us:

P (Ŷ1 = Ŷ2 = +1|Y = +1, X) =

P (Ŷ1 = +1|Y = +1, X)(Ŷ2 = +1|Y = +1, X)

P (Ŷ1 = Ŷ2 = +1|Y = −1, X) =

P (Ŷ1 = +1|Y = −1, X)(Ŷ2 = +1|Y = −1, X)

Conversely, for P (Ŷ1 = Ŷ2 = −1|X), the derivation can follow similar procedure. We can now
assert that e+, e− are not identifiable. Where a simple counter example can show that two sets of
unique e+, e− both satisfies above derivation:

• P (Y = +1) = 0.7, e+ = 0.2, e− = 0.2

• P (Y = +1) = 0.8, e+ = 0.242, e− = 0.07

Which proves that two informative noisy labels are insufficient to identify T (xu).
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