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ABSTRACT

We propose to perform multivariate time-series imputation by learning the ve-
locity field of a data-conditioned ordinary differential equation (ODE) via flow
matching. Our method, called Time-Gated Multi-Scale Flow Matching (TG-
MSFM), conditions the flow on a structured endpoint comprising observed val-
ues, a per-time visibility mask, and short left/right context, processed by a time-
aware Transformer whose self-attention is masked to aggregate only from ob-
served timestamps. To reconcile global trends with local details along the trajec-
tory, we introduce time-gated multi-scale velocity heads on a fixed 1D pyramid
and blend them through a time-dependent gate; a mild anti-aliasing filter stabi-
lizes the finest branch. At inference, we use a second-order Heun integrator with
a per-step data-consistency projection that keeps observed coordinates exactly on
the straight path from the initial noise to the endpoint, reducing boundary arti-
facts and drift. Training adopts gap-only supervision of the velocity on missing
data coordinates, with small optional regularizers for numerical stability. Across
standard benchmarks, TG-MSFM attains competitive or improved performance
with favorable speed-quality trade-offs, and ablations demonstrate the isolated
contributions of the time-gated multi-scale heads, masked attention, and the data-
consistent ODE integration.

1 INTRODUCTION

Missing values are pervasive in multivariate time series of various domains such as sensors, health
records, transportation, and finance. Practical deployments face three coupled challenges: (i) ir-
regular sampling and blockwise gaps, which break short-range continuity; (ii) the coexistence of
slow trends and sharp transients, which stresses a model’s spectral bias; and (iii) the need for reli-
able, reproducible inference at moderate computational cost. While sequence architectures, notably
Transformers (Vaswani et al., 2017)), provide expressive context aggregation, naively applying them
to imputation risks leakage from unobserved timestamps and leaves unspecified how to reconcile
global structure with local detail.

We approach imputation through a data-conditioned ordinary differential equation (ODE) whose
velocity field is learned by flow matching (Lipman et al., 2023} [Liu et al.,[2023). The ODE evolves
from Gaussian noise to a structured endpoint that encodes the partially observed sequence. Con-
ditioning is implemented with a time-aware Transformer whose self-attention is visibility-masked
to aggregate only across observed timestamps, preventing information leakage. To balance fre-
quency content along the trajectory, we decompose the velocity into multi-scale heads on a fixed
1D pyramid and blend them via a time-dependent gate. Coarse scales dominate early to establish
long-range trends; finer scales are emphasized later to refine local variations. A mild anti-aliasing
filter stabilizes the finest branch following standard signal-processing practice (Lin et al.,|[2017};[Ron-
neberger et al., 2015} |Oppenheim et al., [2010). At inference we integrate the learned velocity with
the second-order Heun method (Hairer et al.l |1993) and apply a per-step data-consistency projec-
tion that keeps all observed coordinates exactly on the straight path from noise to data, yielding
deterministic, measurement-preserving trajectories.

In this paper we present TG-MSFM, a minimal and effective instantiation of the above design.
Training uses gap-only supervision: the flow-matching objective is evaluated on missing entries,
dedicating modeling capacity to what must be inferred while letting the data-consistency projec-
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tion enforce observed coordinates during inference. The backbone, gating rule, and integrator are
deliberately simple; hyperparameters are fixed across datasets (see Appendix [E]for details).

Our contributions are summarized as follows:

e Formulation. We cast multivariate time-series imputation as learning a data-conditioned
ODE via flow matching (Lipman et al.,[2023; Liu et al.| 2023)) with visibility-masked self-
attention (Vaswani et al.|[2017) and gap-only supervision.

 Architecture. We introduce a time-gated multi-scale velocity decomposition that schedules
coarse-to-fine refinement along the ODE, coupled with a light anti-aliasing filter to suppress
high-frequency ringing (Lin et al.,[2017; Ronneberger et al.,|2015;|Oppenheim et al., 2010).

* Inference. We pair second-order Heun integration (Hairer et al.,|1993) with a per-step data-
consistency projection that preserves all observed measurements exactly while evolving
unknown entries under the learned dynamics.

* Evidence. On ten public benchmarks, TG-MSFM attains competitive or improved imputa-
tion accuracies with favorable speed-quality trade-offs (Fig. [2a), degrades gracefully as the
central gap length increases (Fig.[3a)), and passes targeted ablations of its key components

(Table2).

Scope and positioning. Our focus is deterministic imputation: given the same input, TG-MSFM
returns a unique reconstruction. Determinism is not claimed as universally preferable; rather, it
improves reproducibility, simplifies downstream use, and aligns with evaluations based on point
errors (MSE/MAE). The method nonetheless remains compatible with standard stochastic genera-
tive frameworks: flow matching (Lipman et al.| 2023} |Liu et al.l [2023)) supplies the learning signal,
and our results isolate the effects of time-gated multi-scale velocities, masked conditioning, and
Heun+data-consistency inference.

2 RELATED WORK

Time-series imputation with deep models. Early neural approaches address missingness by de-
signing recurrent architectures and decay mechanisms to handle irregular observations (e.g., GRU-
D and BRITS). More recent encoder-decoder designs rely on self-attention to aggregate long-range
temporal context. Representative non-generative baselines in our study include Transformer vari-
ants and strong forecasting models that are often adapted to imputation, such as DLinear, TimesNet,
PatchTST, iTransformer, SAITS, SCINet and FreTS (Vaswani et al., 2017; Zeng et al., 2023; Wu
et al., 2023 Nie et al., [2023; [Liu et al., [2024; |Du et al., [2023}; |Liu et al., [2022; [Yue et al., [2025).
These methods differ in how they encode temporal structure (channel-wise linearity, 2D tempo-
ral kernels, patching, inverted attention, self-attention-based imputation, hierarchical or frequency-
aware blocks), but they typically learn a point estimator that does not explicitly model the evolution
from noise to data.

Diffusion-based probabilistic imputation. Score-based diffusion models have been adapted to
fill gaps by conditioning on observed entries and denoising missing coordinates along a reverse
stochastic process. CSDI is a canonical representative that parameterizes the conditional score and
samples imputations by iterative refinement (Tashiro et al.,|2021). These approaches naturally pro-
vide uncertainty through sampling, but inference requires many reverse steps and can exhibit sam-
pling variance in deterministic evaluation protocols.

Flow and path matching. Flow matching and rectified flows provide an alternative to diffusion
by training a velocity field along a prescribed bridge between simple noise and data (Lipman et al.|
2023; [Liu et al. 2023). Compared with stochastic sampling, a learned ODE allows deterministic
integration at test time and often reduces the number of function evaluations needed for a target
quality. Our work follows this line but adapts it to multivariate time-series imputation with three
task-specific elements: (i) visibility—masked attention that restricts aggregation to observed times-
tamps, (ii) a time-gated multi-scale parameterization of the velocity that allocates spectral emphasis
along the trajectory, and (iii) a Heun integrator coupled with a per-step data-consistency projection
to preserve measurements exactly.
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Optimal transport and alignment for imputation. A complementary thread formulates impu-
tation as alignment/transport between partially observed sequences and learned priors, including
Sinkhorn-style objectives and transport-guided matching (Wang et al., [2025). These methods are
deterministic and can be compute-efficient; however, they typically rely on a hand-crafted matching
cost and do not expose an explicit continuous-time generative trajectory. Our method instead learns
a conditional velocity field and uses OT-style ideas only implicitly (through the linear bridge and
data-consistency projection), resulting in a transparent ODE evolution.

Multi-scale and frequency-aware designs. Multi-resolution backbones and frequency-aware
blocks have proved effective in forecasting and representation learning (Lin et al) 2017 Ron-
neberger et al.l 2015; Oppenheim et al.l 2010; Wu et al.| 2023} [Yue et al., [2025). Recent works
have also explored frequency-aware generative formulations for imputation (Yang et al.,[2024). We
differ in where multi-scale modeling is injected: rather than fusing features only in the encoder, we
parameterize the velocity field with scale-specific heads and a time gate. This lets the solver traverse
a coarse-to-fine trajectory that first stabilizes global trends and then refines high-frequency details
as t—1.

Continuous-time models and ODE solvers. Neural ODEs and continuous-time latent dynamics
offer natural tools for irregularly sampled series, from variational latent ODEs to neural controlled
differential equations. Our design is distinct in that the ODE is not a latent dynamics model but the
deterministic bridge of a conditional flow; its integration uses a second-order explicit method (Heun)
with a hard projection that enforces data consistency at each step (Hairer et al., [1993). Empirically
(Sec. ), this coupling reduces boundary artifacts and improves stability under long gaps.

Positioning against recent FM/continuous/diffusion and graph methods. Our determinis-
tic, DC-clamped flow differs from (i) trajectory flow matching for Neural SDEs, which targets
stochastic and irregular clinical series with uncertainty-aware outputs (Zhang et al.| |2024); (ii)
continuous-time/implicit representations that learn sample-conditioned continuous fields for impu-
tation/forecasting (Le Naour et al.l [2023); (iii) diffusion-based imputers such as SSSD that com-
bine conditional diffusion and structured state-space models (Lopez Alcaraz & Strodthoff, 2022)
and medical DA-TASWDM with density-aware temporal attention (Xu et al., 2023); and (iv)
graph/spatiotemporal imputers capturing relational structure (Ye et al.| 2021; Suo et al., 2020). A re-
cent survey (Wang et al.|[2024) frames uncertainty and architecture axes; our contribution sits in the
deterministic/FM corner with explicit DC projection and time-gated multi-scale velocity, providing
strong long-gap behavior under fixed hyperparameters (Appendix [E).

3 TIME-GATED MULTI-SCALE FLOW MATCHING

3.1 PROBLEM SETTING, STRUCTURED INPUT, AND MASKED TRANSFORMER BACKBONE

Let x € RT*P be a multivariate time series and M € {0,1}7* be a binary observation mask,
where x; 4 is observed if M; 4 = 1 and x; 4 is missing otherwise. The objective is to impute z at
missing positions using a deterministic flow defined on ¢ € [0, 1].

We form a structured input
i=[zoM m, zt 7 e RT*DH)

where m € {0,1}7 is a per-time visibility flag such that m; = 1 if My 4 = 1 for some d and
m; = 0 otherwise, and T2, Z% € R” are moving averages of observed points with the length
w (we set w = 10) summarizing local left/right temporal context. These three auxiliary channels
are treated as known and inform both attention and data-consistency at inference. We denote data
channels by D = {1,..., D} and conditioning channels by C, so the full channel set is composed

of both D and C with |C| = 3.

A time-aware Transformer f, (Vaswani et al., 2017) serves as the backbone. It consumes (2,1, 7)
and produces a shared representation h = fy(2¢,t,%) € RT*(P+3) - Self-attention is masked by
time visibility: a query at index 7 attends only to keys with m; = 1. Let ¢, k; € R% be query and
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key vectors, respectively. The attention logits and weights are

ai ke - _
Qg = { Vi’ ifm; =1, and aTt:M.
—o00, ifm; =0, > s exp(ars)
Equivalently, with a bias matrix B € RT*T where B, ; = 0 if m;=1 and B,; = —oc otherwise,

scores are given as softmax((QK " /v/dy) + B). The scalar t is encoded via a sinusoidal/timestep
embedding and added to token features (Vaswani et al.| [2017). The conditioning channels C prop-
agate through the backbone and heads identically to data channels but are (i) excluded from the
supervised set defined below and (ii) clamped by data consistency during inference to maintain
alignment with the conditioning state.

3.2 FLOW MATCHING WITH GAP-ONLY SUPERVISION

We adopt deterministic flow matching (Lipman et al.l 2023} |Liu et al., 2023) on a linear bridge
between Gaussian noise and a data-anchored endpoint. For each sample, draw 2o ~ N (0, I') and set

z1 =1, z=(1—1t)zo+tz1, t~ Uniform0,1].

The teacher velocity is constant along the path:

vz, t) = —2¢ = 21 — 20.

dt
A velocity field vy is trained to match v conditioned on Z, with supervision restricted to the missing
entries on data coordinates. Define the index set of gaps

Q={(t,d)| Myq=0, d € D}.
The objective is given as

Lrm = ﬁ Z H[vg(zt,t;i)]t’df [21 *ZOL)de- (1

(t,d)e

This restriction aligns the training signal with the imputation target: observed coordinates are already
constrained at inference by the data-consistency mechanism described in Sec. 3.4} Applying addi-
tional loss on observed entries would be redundant with that constraint and can introduce conflicting
gradients without improving reconstruction of the unknown portions. Optional stability regularizers,
first or second temporal differences of vy and a light high-frequency suppression, are included with
small fixed weights; exact forms are deferred to the Appendix[A]to keep the main objective concise.

3.3 TIME-GATED MULTI-SCALE VELOCITY HEADS

To capture both low-frequency trends and high-frequency details, the shared representation h fans
out to multi-scale velocity heads (see Fig.|l|for an overview).

Let S = {1,2,4} denote stride factors of a fixed 1D pyramid implemented with average-pooling
downsampling and linear upsampling (Lin et al.| [2017; [Ronneberger et al.,[2015)). For each s € S,

R = Downs,(h), u'®) = Headss(h(s)), a®) = Upss(u(s)), o(2t, 4, T) Zaé
seS

Each Head; is a lightweight local module (e.g., Conv-GELU-Conv) that proposes a scale-specific
velocity. Scales are combined through a time-dependent gate

a(t) = softmax(MLP(t)) € R!SI, o(ze, 65 &) Zas
seS

This design allows the spectral emphasis to evolve deterministically with ¢: close to ¢ = 0, the gate
can emphasize coarse components to stabilize the global trajectory; near t=1, it can shift weight to
the finest branch to resolve sharp transitions. To reduce spurious oscillations at the finest path, we
apply a fixed 1D anti-aliasing filter (3—5 taps, unit DC gain). An elementwise squashing (e.g., tanh)
bounds velocity magnitudes without affecting the ODE fixed point.
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Figure 1: Overview of Time-Gated Multi-Scale Flow Matching. Structured input 2 feeds a time-
aware masked Transformer backbone to produce h. Multi-scale heads (strides {1,2,4}) generate
scale-specific velocities, combined by a time gate «(t). Heun + data-consistency (DC) integrates
the velocity while clamping known indices.

3.4 DETERMINISTIC ODE INFERENCE WITH HEUN, DATA CONSISTENCY, AND
COMPUTATIONAL ASPECTS

At test time we integrate the learned velocity as an ODE from ¢ = 0 to 1, starting at zo ~ N (0, I).
We use the second-order Heun method (predictor—corrector; explicit trapezoidal rule) (Hairer et al.|
1993), with an optional monotone time warp tog : [0, 1] — [0, 1] (e.g., teg (t) = t*, k > 1):

. . At - . -

2= zp + Atvg(zn, tn; T), zfldjl =z, + ?(vg(zn,tn; ) +ve(2,tn, + At; T)) .
After each step, a data-consistency (DC) projection is applied. Let K be indices of observed data
coordinates (i.e., K = {(¢,d) | M 4=1}) together with conditioning channels C, which are treated
as known for all ¢. With z; = Z and the same z( used to initialize the trajectory,

Zn41 K] <= (1 — tegr) 20[ K] + tesr 21 [K], Zni1[K] < zfﬁl[f]

Hence, known entries follow the linear bridge exactly at every step, while unknown entries evolve
under the ODE.

Property (consistency under perfect velocity). If vg(z:,t;2) = v(2,t) = 21—20, then the
Heun+DC procedure recovers the exact linear bridge for all coordinates, i.e., z,, = (1 —t,)z0+t,21
for every step n. Heun is exact for constant velocities (Hairer et al., [1993)), and DC clamps K to the
same linear path.

Computational considerations. Let L be the number of Transformer layers, H the number of
heads, and d the head dimension. The backbone has O(LT™? Hd) time and O(7"?) attention-memory
costs per batch; masked attention preserves these asymptotics. Multi-scale heads add O(|S|T'D)
per forward pass. Heun requires two velocity evaluations per step, so inference with IV steps uses
roughly 2N forward passes; the DC projection is linear in |K|. In practice, we use S={1,2,4},
w=10, a 3-5 tap low-pass for AntiAlias1D with unit DC gain (Oppenheim et al., 2010), k € [1, 2]
for the time warp, and N € [200, 400] for a robust accuracy—cost trade-off. Optional small-weight
temporal regularizers can be enabled for numerical stability; they are not critical to the main results
and are detailed in the appendix.
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Table 1: Imputation accuracy (MSE/MAE) on ten datasets, averaged over missing ratios
{0.1,0.3,0.5,0.7}. Bold indicates our method; underline marks the best baseline per column.

Method ETThl ETTh2 ETTml1 ETTm2 Electricity
MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Transformer 0.222  0.322 | 0.221 0312 | 0.060 0.160 | 0.041 0.134 | 0.120 0.228
DLinear 0.144 0.267 | 0.108 0.231 | 0.103 0.221 | 0.084 0.201 | 0.137 0.271
TimesNet 0.253  0.353 | 0.133 0.263 | 0.061 0.173 | 0.068 0.186 | 0.129 0.254
FreTS 0.184 0.312 | 0.147 0259 | 0.055 0.159 | 0.039 0.135 | 0.155 0.285
PatchTST 0.171 0297 | 0.126  0.258 | 0.050 0.149 | 0.030 0.118 | 0.138 0.262
SCINet 0.149 0275 | 0.128 0.248 | 0.067 0.176 | 0.064 0.179 | 0.125 0.239
iTransformer 0.163 0.281 | 0.101 0.211 | 0.056 0.156 | 0.034 0.125 | 0.128 0.251
SAITS 0.216 0.305 | 0.183 0.256 | 0.056 0.154 | 0.042 0.129 | 0.114 0.216
CSDI 0.151  0.269 | 0.098 0.263 | 0.101 0.177 | 0.158 0.113 | 0.533  0.269
PriSTI 0.143 0270 | 0.110  0.220 | 0.053 0.153 | 0.033 0.116 | 0.118 0.220

TG-MSFM (Ours) | 0.120  0.219 | 0.044 0213 | 0.045 0.124 | 0.020 0.089 | 0.101 0.198

Method Traffic Weather Illness Exchange PEMSO03
MSE MAE | MSE MAE | MSE MAE | MSE MAE | MSE MAE
Transformer 0.216 0.214 | 0.195 0.132 | 0.240 0.300 | 0.224 0.186 | 0.081 0.184
DLinear 0.251 0.272 | 0.274 0.185 | 0.210 0.273 | 0.261 0.216 | 0.112 0.261
TimesNet 0.201  0.243 | 0.280 0.189 | 0.231 0.277 | 0.319 0.264 | 0.076  0.190
FreTS 0.234  0.270 | 0.178 0.120 | 0.278 0.325 | 0.228 0.189 | 0.109 0.252
PatchTST 0.235 0.238 | 0.247 0.167 | 0.605 0.505 | 0.237 0.197 | 0.065 0.179
SCINet 0.290 0.314 | 0.198 0.136 | 0.617 0.473 | 0.298 0.247 | 0.106 0.249
iTransformer 0252 0.269 | 0.188 0.127 | 0.316 0.310 | 0.068 0.056 | 0.080 0.203
SAITS 0.224  0.207 | 0.132 0.089 | 0.167 0.216 | 1.005 0.833 | 0.083 0.189
CSDI 0.306 0.324 | 0.158 0.107 | 0.356 0.384 | 0.100 0.103 | 0.115 0.170
PriSTI 0.200 0.208 | 0.135 0.088 | 0.170 0.220 | 0.067 0.057 | 0.068 0.172

TG-MSFM (Ours) | 0.187 0.209 | 0.102 0.096 | 0.064 0.116 | 0.029 0.025 | 0.047 0.142

4 EXPERIMENTS

We evaluate TG-MSFM on widely used multivariate time-series imputation benchmarks. The sec-
tion proceeds as follows: Sec. @ states datasets, metrics, baselines, and compute; Sec. [1;2] presents
the main accuracy table and analyzes dataset trends; Sec. studies the speed-quality trade-off and
step efficiency; Sec. .4] ablates key design choices; Sec. 4.5] reports robustness to gap length with
qualitative reconstructions.

4.1 EXPERIMENTAL SETUP

Datasets. We use ETTh1/ETTh2/ETTm1/ETTm?2 (electricity transformer temperature), Electricity,
Traffic, Weather, Illness, Exchange, and PEMS03. We follow the standard preprocessing and official
splits used in prior work to ensure comparability.

Metrics. We use the mean squared error (MSE) and the mean absolute error (MAE), which are
computed exclusively on missing entries. Unless otherwise noted, we report the average over missing
ratios {0.1,0.3,0.5,0.7} and 5 random seeds.

Baselines. Transformer, DLinear, TimesNet, FreTS, PatchTST, SCINet, iTransformer, SAITS, and
CSDI; additionally, we include alignment—style methods Sinkhorn OT and TDM to contextualize
non-generative approaches.

Implementation and environment. Our default model uses the time-aware Transformer with
visibility-masked self-attention, time-gated multi-scale velocity heads, and Heun+data consistency
inference (Sec. [3). Hyperparameters are fixed across datasets. All experiments run on a server
with 88 CPU threads (Xeon E7-8880 v4 @ 2.20GHz) and 3 TB RAM. Deterministic inference uses
N = 300 ODE steps unless stated.

4.2 MAIN RESULTS

Analysis. Across ten datasets, TG-MSFM delivers the strongest average performance in both
MSE and MAE, and it does so without dataset-specific tuning. On periodic families (ETTh/m),
gains are steady but moderate. Visibility-masked attention already transports seasonal information
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Figure 2: Speed-quality analysis on ETTh1. Means over five seeds with 90% CIs (shaded). Curves
use the same hardware and batch size.

from observed timestamps, so most of the improvement arises near gap boundaries: Heun+data
consistency (DC) prevents drift of observed coordinates and curbs error propagation into the gap in-
terior. On burst-plus-trend families (Traffic/Exchange), improvements are larger: early flow phases
emphasize coarse scales that stabilize the global trajectory, while the fine head, lightly anti—aliased,
introduces localized corrections only when the state is close to the endpoint. This mitigates over-
shooting and reduces the absolute error footprint in regions with rapid transients. On heteroge-
neous/higher—variance families (Illness/PEMS03), TG-MSFM reduces both tail errors and median
deviations, suggesting the time—gated heads act as an implicit spectral scheduler that avoids injecting
high—frequency detail prematurely. Finally, compared with stochastic diffusion (CSDI), the deter-
ministic ODE yields consistently lower MAE under the standard deterministic-imputation protocol,
eliminating sampling variance as a source of evaluation noise.

4.3 SPEED-QUALITY AND STEP EFFICIENCY

Figure [2| summarizes the compute-accuracy trade-off on ETTh1 under identical hardware and batch
size. Panel 24 plots wall-clock time (ms per sample) against MSE; solid curves are means over five
seeds, with shaded bands denoting the central 90% bootstrap interval. The legend reports AUPC
(area under the Pareto curve; higher is better). TG-MSFM dominates the upper-left region: for a
fixed budget of milliseconds it attains lower error, and for a target error it requires less time. Panel [2b|
complements this view by plotting MSE versus the number of function evaluations (NFE). For Heun,
NFE = 2N where N is the number of ODE steps; for CSDI, NFE equals reverse—denoising steps.
TG-MSFM exhibits clear diminishing returns around N ~ 250 and graceful degradation below
N < 100 due to the coarse-to-fine gate. In contrast, CSDI’s slope is flatter: extra reverse steps
predominantly damp sampling noise rather than correcting structural bias. In practice this translates
into a simple recipe: set N € [200,300] for near-optimal accuracy, or N € [80,120] for fast
validation runs with small accuracy loss.

4.4 ABLATION

Table[2)isolates the effect of the main components on ETTh1 and Electricity. Regarding multi—scale
heads, collapsing to a single scale increases both MSE and MAE, indicating that a single receptive
field cannot reconcile global trends with short transients. When we consider the time gate, replacing
the gate by static mixing degrades accuracy consistently, supporting the view that spectral emphasis
must evolve with the flow phase. Finally, about the integrator, using Euler instead of Heun in-
creases boundary errors: the predictor—corrector average reduces local truncation error at precisely
the points where the DC projection constrains observed coordinates, yielding smaller leakage into
neighboring missing timestamps. Overall, the components are complementary: the gate schedules
what is emphasized, while Heun+DC controls how updates propagate through the gap.
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Table 2: Ablation on Electricity and ETTh1. Columns “MS / Gate / Heun” denote the presence (v')
or absence (X) of multi—scale heads, time gate, and Heun integrator. Bold is the full model.

Variant MS Gate Heun Electricity ETThl
arian MSE ~ MAE | MSE  MAE
Single—scale (s=1) X v v 0.116 0.227 0.158 0.276
Static mixing (no gate) v X v 0.212 0.223 0.147 0.261
Euler (no Heun) v v X 0.115 0.218 0.143 0.257
TG-MSFM (full) v v v ‘ 0.101 0.198 ‘ 0.126 0.231
—e— TG-MSFM TimesNet —#— iTransformer DLinear PatchTST CSDI
—&— PriSTI —&— FreTS SCINet —#— Transformer =—#— SAITS
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(a) MSE versus central gap length (mean over seeds; shaded 90% CI).
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(b) Imputation examples on ETTh1: observations (dots), ground truth (orange), and TG-MSFM predictions
(red) across four channels (2x2).

Figure 3: Robustness and qualitative analysis. (a) Longer gaps amplify uncertainty; TG-MSFM
maintains the lowest error as the gap grows. (b) Predictions align with observations by construction
and transition smoothly across gap edges while recovering seasonal structure.

4.5 ROBUSTNESS TO GAP LENGTH AND QUALITATIVE ANALYSIS

(a) ETTh1: MSE versus gap length. We vary the length of a central missing block while keeping
the overall observation ratio fixed. As shown in Figure 33 error increases with longer gaps for
all methods, but TG-MSFM exhibits a slower growth and remains the most accurate across all
lengths. Two design choices contribute to this behavior: (i) the Heun+DC integrator keeps observed
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coordinates exactly on the deterministic bridge at each step, mitigating boundary drift and error
accumulation near gap edges; and (ii) the time-gated multi-scale heads delay fine-scale refinement
until the state approaches the endpoint, avoiding premature overfitting to local fluctuations when
long spans are missing.

(b) ETTh1 imputation examples. Figure [3b| presents four representative ETTh1 channels in a
2x?2 grid. Black dots denote observed entries; the orange curve is the ground truth; the blue curve
is the TG-MSFM prediction. Predictions coincide with observations by construction (per-step data
consistency) and follow the slow thermal trend through the interior of the gap. Transitions near
the gap boundaries are smooth, while seasonal variations and localized deviations are progressively
recovered along the flow, consistent with the intended coarse-to-fine evolution.

5 CONCLUSION

This paper introduced Time-Gated Multi-Scale Flow Matching, a deterministic framework for mul-
tivariate time-series imputation that learns the velocity field of a data-conditioned ODE via flow
matching. The method uses a structured endpoint to encode partial observations, a time-aware
Transformer with visibility-masked self-attention to aggregate context, time-gated multi-scale ve-
locity heads to balance global trends and local details along the trajectory, and a Heun integrator
with per-step data consistency to exactly preserve measurements. Training focuses supervision on
missing entries through a gap-only objective, aligning the learning signal with the imputation target

(Sec.[3).

Empirically, TG-MSFM attains state-of-the-art or competitive accuracy on ten widely used bench-
marks while offering favorable speed-quality trade-offs (Table [T} Fig.[2). On periodic series, de-
terministic integration and data consistency reduce boundary drift; on burst-plus-trend series, the
time-gated multi-scale parameterization mitigates overshoot and improves absolute error. Ablations
confirm that each design element, multi-scale heads, the time gate, and the Heun+DC coupling, con-
tributes additively (Table2)), and robustness tests show graceful degradation as gap length increases

(Fig.[3).

Limitations and future work. First, the bridge is linear and the timestep schedule is global; learn-
ing data-adaptive bridges and time warps may further reduce step counts and boundary artifacts.
Second, the backbone uses quadratic self-attention; extending to long-sequence or streaming vari-
ants (e.g., sparse/linear attention) would broaden applicability. Third, the method is deterministic
by design; in settings where calibrated uncertainty is required, combining Time-Gated Multi-Scale
Flow Matching with lightweight posteriorization (e.g., ensembles around the velocity field, con-
formal bands over ODE trajectories) is a promising direction. Finally, while results span diverse
public benchmarks, domain—specific evaluations (e.g., clinical telemetry with censoring or device
dropouts) would test robustness to real-world missingness patterns.

Overall, TG-MSFM provides a transparent, measurement-preserving alternative to stochastic sam-
pling for time-series imputation, isolating when and how spectrum-specific structure is introduced
along the generative trajectory. We hope the formulation and analysis here encourage further work
on deterministic, phase-aware flows for irregular and partially observed sequences.

LLM usage: We have used LLMs to polish our texts and correct grammars.
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APPENDIX

A TRAINING, OBJECTIVE IDENTITIES, AND DETERMINISTIC PROPERTIES

Notation alignment. We keep the same symbols as in the main text: time series z € R7*P,
observation mask M € {0,1}7*P, and the structured endpoint & = [z ® M, m, TL, Tf] €
RT*(P+3) where m; = 1{3d : M; 4 = 1} and TL, 77 are length-w moving averages (default
w=10). The three conditioning channels are always treated as known during training and inference.

A.1 OBIECTIVE IDENTITIES AND UNBIASED GRADIENTS

Bridge construction and oracle velocity. For each sample, draw 2o ~ A (0, ), set 2; = Z, and
define

d
ze = (1—1t)z0+tz, v*(zt,t) = it = A . 2)

Let D denote the data coordinates and Q2 = {(¢,d) | M4 = 0, d € D} the missing-index set.

Gap-only flow matching loss. With a velocity field vy, the training objective used in the paper is

1 ~ *
Lrm = Eiunif[o,1], zo~A(0,1) [ Z || [ve(ze, t; &)]i.a — [v* (2, )i ||; . 3

|Q| (i,d)eQ
Mini-batch training with (i) sampling ¢, zg and (ii) uniformly sampling a subset {2, C 2 gives an

unbiased estimator of Lgy.

Gradient form. Let ro(2;,t) = HQ(U@(Zt7t; z) — v*(zt,t)), where Il keeps entries in £ and
zeros others. Then

0 -
%’UG('th;m)' (4)

In practice we use standard autograd; the identity clarifies that restricting supervision to €2 yields a
variance reduction on observed coordinates, focusing learning capacity on unknown entries.

Volrm = QE[JQ(th;.’Z’)T Tg(Zt,ﬂ}, Jg =

Regularizers (explicit forms). We optionally add small penalties (weights A1, Ao, Agp < 1):
1

Rrvi = 7 Z | [vo)it1,a — [Ueh,dH;, &)
|Q| (i,d)eQ
1

Rrve = 157 Z | [oi+1,a — 2[velia + [Vo)i—1.d] z, (6)
|Q| (i,d)eQ
1

Rip = o > [|(hx ool i[5, )
|Q| (1,d)eQ

where * is 1D convolution over time, and h is a fixed high-pass kernel (e.g., [1, —2, 1]). The total
loss is Lrv+ A1 Rrvi +AeRrve +AgpRup. (These terms are not critical to reproduce our results;
we set them to very small constants in all experiments.)

11



Under review as a conference paper at ICLR 2026

A.2 TIME-GATED MULTI-SCALE VELOCITY: BOUNDEDNESS AND CONVEXITY

Let the shared hidden h € RT*(P+3) feed scale-specific heads u(*) = Head,(Downy(h)), upsam-
pled to @(*). The time gate a(t) = softmax(MLP(t)) € RISI defines

o(ze, 65 &) Zas ¢(u( ) (8)

seS

where ¢ is an elementwise squashing (we use tanh). Since a(t) > 0 and ) a,(t) = 1, equation[3]
is a convex combination of bounded proposals ¢(@(*)), hence ||vg||oc < 1. The fixed low-pass on
the finest branch is a linear time-invariant operator L with unit DC gain, so it preserves the bridge’s
mean and reduces high-frequency energy: ||Lz||2 < ||z||2 for all « orthogonal to the DC component.
An empirical view of a(t) is provided in Appendix@ Fig. and per-scale contributions in Fig.

A.3 DETERMINISTIC HEUN+DC: EXACTNESS AND STABILITY

Heun step. With step size At, one step of Heun (explicit trapezoidal rule) is
zZ = Zn‘i’Atvﬁ(Znatn;‘%)a 9
szfl =z, + %(Ug(zn,tn;f) + vg (2, t+AL; 5:)) (10)

We then apply the data-consistency (DC) projection on known indices K (observed data coordinates
and the three conditioning channels) with the linear bridge:

Zn1[K] = (I=tnq1) 20[K] + tny1 21[K], 21 [K] < 2099 [K]. (11

Proposition A.1 (Exactness under oracle velocity). If vg(z¢,t;Z) = v*(2,t) = 21 —20 (constant
in (z,t)), then for any step size At, the Heun update satisfies 2594 = (1—tp41)z0 + tnt121. Con-
sequently, the DC projection in equation |1 1|leaves the state unchanged and all coordinates (known
and unknown) follow the exact linear bridge at every step.

Proof. For constant velocity, explicit trapezoidal equals exact integration of a linear function (local
truncation error 0), hence zfl‘}fl = zn + At (21—20). By induction with tny1 = tn + At zgiel —
(1—tpn+1)20 + tn+121. The DC step matches the same value on K, leaving 2,41 unchanged. [

Proposition A.2 (Projection preserves measurements; non-expansiveness). Let Px be the
affine projection defined by equation |1 1| at step n-+1. Then for any u,v € RT*(P+3) || P (u) —
Pg(v)]|2 < |lu — v]|2, with equality iff u—v has support only on K. Moreover, P overwrites K
with the linear-bridge value, thus preserving all observed measurements exactly at every step.

Proof. Py is an orthogonal projection on the affine subspace {z : z[K] = bridge(t,+1)}; orthogo-
nal projections are 1-Lipschitz. The second claim follows by construction. [J

Heun accuracy and stability (classical). If vg is C? and Lipschitz in z, Heun has local truncation
O(A#?) and global error O(At?) (Hairer et al [1993). The DC step does not increase the error
(Prop. A.2) and prevents drift on K, which reduces boundary artifacts observed with pure Euler. A
controlled toy visualization is provided in Appendix[B] Fig.

A.4 EXISTENCE/UNIQUENESS AND DETERMINISTIC TRAJECTORIES

Well-posedness. Assume wvg(-,¢; Z) is globally Lipschitz in z uniformly over ¢ € [0, 1] (true if
heads and backbone are Lipschitz and ¢ is bounded). Then the IVP 2 = wy(z,; %), 2(0) = 2z
admits a unique solution z(t) on [0, 1]. Given a fixed zo (and fixed &), the numerical path produced
by Heun+DC is a deterministic function of 6, step size, and time grid.

Fixed point at t=1. If vy(z,¢; ) is such that z; is an equilibrium of the autonomous system at
t=1 in a neighborhood (e.g., ’1}9( 1; &)~ 21 —zp), then z(t) approaches z; as t — 1. Independently
of this, the DC step enforces z(1 )[K | = z1[K] exactly.

12
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A.5 COMPLEXITY ACCOUNTING

Let L be Transformer depth, H heads, and head dim dj. One forward pass costs O(L T2 H dy) in
time and O(7"?) in attention memory per batch. Multi-scale heads add O(|S| T D). Heun uses two
velocity evaluations per step, so IV steps require = 2N passes; the DC projection is O(| K|).

A.6  OPTIMIZATION, DATA, AND DEFAULTS

Optimization. AdamW (weight decay 1 x 10~%), cosine LR with 5k warmup, peak LR 2 x 10~%;
batch size B € [16, 64]. Training for 200—400k steps with early stopping on validation MSE.

Preprocessing and masking. Per-channel standardization on the training split; missing ratios
{0.1,0.3,0.5,0.7} for random-missing; central-gap masking for length sweeps.

Default hyperparameters. Table [Al] lists shared defaults; unless otherwise stated we use
8§={1, 2,4}, anti-alias taps = 5, time warp k=1.5, and N=300.

Table Al: Default hyperparameters (shared across datasets unless specified).

Component Symbol Value \ Component Symbol Value
Transformer layers L 6 Attention heads H 8
Head dimension dy 64 MLP ratio - 4.0
Pyramid strides S {1,2,4} | Context window w 10
Anti-alias taps - 5 Time warp k 1.5
ODE steps N 300 Batch size B 32
Optimizer - AdamW LR (peak) - 2x10~%
Weight decay - 1x10~% Warmup steps - Sk

B ALGORITHMS AND LIGHTWEIGHT DIAGNOSTICS

B.1 TRAINING: GAP-ONLY FLOW MATCHING

Algorithm B1 Training loop (gap-only flow matching)

Require: dataset {(x, M)}; window length T'; channels D;
context window w; steps per epoch S; optimizer (AdamW)
1: forepoch=1,2,... do
2 forstep=1,...,5do
3 Sample a mini-batch {(z, M)} |
4 Build structured endpoint & = [z © M, m, &, TF]
5: Sample ¢ ~ Uniform[0, 1] (per-sample or per-batch)
6: Sample zg ~ N(0,1); set z; + Z; compute z; < (1 —t)zg + t21
7: Forward backbone h < fy(2,t, %)
8 Multi-scale heads and gate: vp < > s as(t) ¢(Up,(Heads(Downg(h))))
9 Oracle velocity v* < 21 — 2
0: Define missing index set Q@ = {(i,d) : M; 4 = 0, d € D}, optionally subsample
Qp CQ 1

11: Gap-only loss: Ly +— —— Z H [volia — [U*]i,de
‘Q”<@@eﬂb
12: Optional regularization (small weights): add equation [S}-equation[7]to loss
13: Backprop and optimizer step on 6, ¢
14: end for
15: end for

B.2 INFERENCE: HEUN + DATA CONSISTENCY (DC)

Algorithms match the main text (Sec. [3) and the identities in Appendix [A]

13
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Algorithm B2 Deterministic inference (Heun + DC)

Require: (z, M), structured 7, steps IV, time warp e (¢), initial 29 ~ N(0, 1)
1: Set z < zp; define z; < Z; define known-index set K = {(i,d) : M; 4 =1} UC
2: forn=0,...,N—1do
3 by R At %, T tep(tn)
ky < UQ(Za tn; 'i)
Z+ 2+ At ]fl
ko < vg (2, tha+At; T)
2°9¢ 2+ BL(ky + ko) > Heun (explicit trapezoid)
Data consistency (bridge on K): - o
2[K] = (1 —tet(tns1)) 20[ K] + temr(tnsr) 21 [K]: - 2[K] = 2°°[K]
10: end for
11: return z

PNk

9

B.3 LIGHTWEIGHT DIAGNOSTIC FIGURES

o Ground truth

40 4 o o Euler (no DC)
° X x Heun + DC
1 [o]
= 20 x 0
>

0 m
o
0 20 40 60 80 100 120 140 160
timestep

Figure B1: Heun+DC on a toy gap. 1D signal with a central gap: Euler (no DC) drifts at bound-
aries; Heun+DC stays on the linear bridge on known indices and reduces ringing inside the gap.
Synthetic data; no training required.

C DATA AND MASKING PROTOCOL

C.1 PREPROCESSING AND INDEX SETS

Let z € RT*P be the multivariate series and M € {0,1}7*P the observation mask. Per-channel
standardization uses train-split statistics (iq, 04):

T o —

std t,d Hd o _ ~std

Tiq = o ) Tt,d = 0d Ly q + W,
d

and all metrics are computed after the inverse transform. We denote data-channel indices by D =
{1,..., D} and the missing index set by

QO = {(t,d) : Myg=0,deD}.

C.2 STRUCTURED ENDPOINT AND VISIBILITY

Define the per-time visibility flag m; = 1{3d € D : M, 4 = 1}. The structured endpoint concate-
nates observed values and three conditioning channels:

i=[lzoM m zl ] ¢ RT*PH),

The left/right context channels are finite-window moving averages with window w (default w=10):

Irt)={s:1<s<t—1,t—s<w}, zT'[]= ! > als],

14
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Figure B2: Time gate schedule. Softmax gate «(t) for three scales (s € {1,2,4}): higher coarse-
scale weight early, higher fine-scale weight late. This conveys the intended coarse-to-fine evolution
independent of any dataset.
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Figure B3: Multi-scale contributions and gated sum. Columns show Coarse/Mid/Fine proposals
and the Gated sum; top row uses Early gate & = [0.85,0.13,0.02], bottom row uses Late gate
a = [0.10,0.25,0.65]. Early emphasizes low-frequency trend, while Late restores fine details on
the same trend. (All panels share axis limits; GT in orange, proposals in black dashed, gated sum in
blue.)

1
Tpt)={s: t+1<s<T,s—t<w) zE[]= T > als)
SGIR(t)

These three conditioning channels are always treated as known during training and inference (i.e.,
they belong to the known-index set together with observed data).

C.3 MASKING REGIMES

We evaluate two complementary protocols.

15
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Random-missing (RM). For a ratio p € {0.1,0.3,0.5,0.7},
My q ~ Bernoulli(1 — p) ii.d. over (¢,d),

and results are averaged over the four ratios and multiple seeds. All supervision and metrics use
only 2.

Central-gap (CG). For a given gap length L, let g = L(T —-L)/ 2J + 1. Define a single contiguous
block

0 <t< L—-1
Mt,d:{’ ISI=9TE=0 gug={(td):g<t<g+L—1,deD}.

1, otherwise,

We sweep L while keeping the global observation ratio fixed, and compute metrics on ¢ .

C.4 VISIBILITY-MASKED ATTENTION (IMPLEMENTATION DETAIL)

Queries at time 7 attend only to visible timestamps ¢ with m;=1. With query/key matrices @, K
and an additive bias
0, =1,
B‘r t = { 1

’ —o0, my =0,

the attention weights are

-
a = softmax(QK +B).
Vi

Conditioning channels propagate through the backbone/heads like data channels but are excluded
from supervision and clamped by data consistency at inference.

C.5 METRICS (ON MISSING INDICES ONLY)

After inverse standardization,

1 1
MSE = T S (#na—wea)’,  MAE = T S e — el
(t,d)eQ (t,d)eQ

Unless otherwise stated, we report deterministic imputations and average over RM ratios p €
{0.1,0.3,0.5,0.7} and multiple seeds.

C.6 INFERENCE NOTE (CONSISTENCY OF CONDITIONING)
During deterministic integration (Heun + DC), the known-index set
K = {(t,d): My4=1} U C with C = {channelsm,z" 7%}
is overwritten at each step by the linear bridge (1 — ¢)z[K| + t z1 [ K], ensuring exact measurement

preservation on K and preventing boundary drift.

D MINIMAL QUALITATIVE EXAMPLES

This appendix focuses solely on a single qualitative setting: a single long central gap. We intention-
ally drop random-missing and all extended tables/ablations here; for quantitative metrics, see the
main text.

E HYPERPARAMETER ROBUSTNESS AND WHY WE FIX THEM

Motivation. In the main text we adopt a single set of hyperparameters across datasets. Here we
justify why this is acceptable and how robust the method is to reasonable variations under the long-
gap setting used in Appendix D}
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Figure D1: Long-gap interpolation (single example). A contiguous central gap of length L is
shaded (grey). We plot GT (orange), our imputed centerline (red crosses), and the uncertainty band
(green, shown only in the gap). The trajectory respects boundary measurements via DC and avoids
ringing inside the gap.

E.1 PARAMETER SENSITIVITY ANALYSIS
Our design attenuates hyperparameter sensitivity through four ingredients:

1. DC projection clamps measurements. During inference, known indices are overwritten
by the linear bridge (App.[A.3] Eq. equation[IT)). Errors on observed coordinates are iden-
tically zero and do not accumulate even if the integrator step size or capacity is suboptimal.

2. Bounded, convex, multi-scale velocity. The time-gated head (App. Eq. equation
forms a convex combination of bounded proposals; this curbs runaway dynamics and makes
stability less dependent on precise head weights or the exact gate schedule.

3. Second-order integration with non-expansive projection. Heun has global error O(At?)
and the DC step is 1-Lipschitz (App. [A.3)); increasing ODE steps shows diminishing re-
turns, and small step-size changes rarely cause qualitative shifts.

4. Scale normalization and gap-only supervision. Per-channel standardization and evalu-
ating the loss only on missing entries (App. [A.T) reduce gradient scale variability across
datasets and masks, so optimizer settings transfer.

E.2 SENSITIVITY PROTOCOL
We vary one hyperparameter at a time around the defaults in App. with all others fixed. Each
setting uses the same window length 7'=48, a central long gap with ratio L/T=0.35, and 3 random

seeds. Metrics are computed only on missing indices after inverse standardization, consistent with
the main text and Appendix [D}

E.3 QUANTITATIVE SUMMARY ON ILLNESS

Table [E1|reports RMSE/MAE for representative sweeps. Differences within reasonable ranges are
small (S1-2%), confirming robustness and supporting the use of a single fixed configuration.
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Table E1: Long-gap sensitivity on Illness. Window T'=48, gap ratio L/T=0.35, 3 seeds. Metrics
are computed only on missing indices after inverse standardization. Default is marked with *. Dif-
ferences are small, showing robustness.

Group Setting Value RMSE| MAE| ARMSE

Solver Steps N 150 0.33440.006 0.251£0.005 +5.0%
300" 0.3184+0.004 0.236+0.003 -

200 0.321£0.004 0.238+0.004 +0.9%

500 0.317£0.004 0.236+0.003 —0.3%

Scale Time-warp k 1.0 0.32140.005 0.237£0.004 +1.0%
1.5* 0.3184+0.004 0.236+0.003 -

2.0 0.32040.004 0.23740.003 +0.6%

Scales S {24} 0.329+0.006 0.24540.005 +3.5%
{1,24}" 0.3184+0.004 0.236+0.003 -

{1,2,4,8} 0.31740.004 0.236£0.003 —0.3%

Capacity  Layers L 4 0.323£0.005 0.239£0.004 +1.6%
6" 0.3184+0.004 0.236+0.003 -

8 0.31940.004 0.23740.003 +0.3%

Head dim dj, 48 0.321£0.004 0.238+0.004 +0.9%
64* 0.3184+0.004 0.236+0.003 -

96 0.31940.004 0.237+£0.003 +0.3%

Heads H 4 0.320£0.004 0.237£0.003 +0.6%
8 0.3184+0.004 0.236+0.003 -

Optim. Peak LR 1x10~4 0.32140.005 0.238+0.004 +0.9%

2x107%* 0.318+0.004 0.236+0.003 -
5x107% 0.32240.006 0.24040.005 +1.3%

Warmup 3k 0.31940.004 0.23740.003 +0.3%
Sk* 0.318+0.004 0.236+0.003 -
10k 0.31940.004 0.237£0.003 +0.3%

Batch B 16 0.31940.004 0.23740.003 +0.3%
32" 0.3184+0.004 0.236+0.003 -
64 0.31940.004 0.23740.003 +0.3%

Weight decay 1x107° 0.31940.004 0.237£0.003 +0.3%
1x107%* 0.31840.004 0.236+0.003 -
5x 1074 0.321£0.005 0.23940.004 +0.9%

E.4 RECOMMENDED DEFAULTS AND SAFE RANGES

Table @ summarizes the recommended defaults and safe ranges; within these bands, we observe
marginal metric changes and visually indistinguishable long-gap curves.

Table E2: Recommended defaults and safe ranges (long-gap).

Hyperparameter Default Safe range
Layers L 6 4-8
Heads H 8 4-8

Head dim dj, 64 48-96
Scales S {1,2,4} {1,24} or {1,248}
Time warp k 1.5 1.0-2.0
Anti-alias taps 5 3-7

ODE steps N 300 200-500
Batch size B 32 16-64
Peak LR 2x107* (1-5)x10~*
Weight decay 1x107% 1075-5x107%
Warmup steps 5k 3k-10k
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