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Abstract
Many real-world optimization problems contain
unknown parameters that must be predicted prior
to solving. To train the predictive machine learn-
ing (ML) models involved, the commonly adopted
approach focuses on maximizing predictive accu-
racy. However, this approach does not always
lead to the minimization of the downstream task
loss. Decision-focused learning (DFL) is a re-
cently proposed paradigm whose goal is to train
the ML model by directly minimizing the task
loss. However, state-of-the-art DFL methods are
limited by the assumptions they make about the
structure of the optimization problem (e.g., that
the problem is linear) and by the fact that can only
predict parameters that appear in the objective
function. In this work, we address these limi-
tations by instead predicting distributions over
parameters and adopting score function gradient
estimation (SFGE) to compute decision-focused
updates to the predictive model, thereby widening
the applicability of DFL. Our experiments show
that by using SFGE we can: (1) deal with pre-
dictions that occur both in the objective function
and in the constraints; and (2) effectively tackle
two-stage stochastic optimization problems.

1. Introduction
Many real-world decision-making problems contain param-
eters that are uncertain at solving time. Consider, for ex-
ample, a manufacturing company that needs to schedule its
production in function of uncertain customer demands, or a
delivery company that needs to route its vehicles in function
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of uncertain traffic conditions. These kinds of problems can
be framed as predict-then-optimize problems. As indicated
by their name, predict-then-optimize problems consist of
two stages – a prediction stage and an optimization stage.
In the prediction stage, a machine learning (ML) model is
used to predict the unknown quantities. In the optimization
stage, the predicted quantities occur as parameters in an
optimization problem, which is solved by optimizing some
objective function while satisfying a set of domain-specific
constraints. Effective solving of predict-then-optimize prob-
lems hinges on the quality of the ML model used, and thus
the way this model is trained is highly important. Two
paradigms for doing so can be distinguished: prediction-
focused and decision-focused learning.

In prediction-focused learning (PFL) (also called two-stage
learning in (Wilder et al., 2019)), the predictive model is
trained without considering the downstream optimization
problem. In other words, it is trained to maximize the ac-
curacy of the predicted parameters, using traditional ML
losses like the mean squared error (MSE). While this may
appear entirely sensible at first – after all, higher predictive
accuracy generally leads to better decisions – it does not
take into account the complex ways in which prediction
errors affect the downstream decision-making.

To account for this, decision-focused learning (DFL) trains
the predictive model to directly minimize the task loss at
hand, i.e., some metric that depends on the outcome of the
optimization problem instantiated by the predicted parame-
ters. This involves a deeper integration of the prediction and
optimization phases, as training the predictive model now re-
quires backpropagation through the optimization procedure.
While this can be done exactly for convex optimization
problems through implicit differentiation (Agrawal et al.,
2019; Amos & Kolter, 2017), it is more tricky when the
optimization problem is combinatorial. This is because,
when the parameters of a combinatorial optimization prob-
lem change, the solution either does not change at all, or
changes discontinuously. In other words, the partial deriva-
tives of the solution with respect to the parameters are zero
almost everywhere, and do not exist at the points where the
solution changes suddenly. This makes the straightforward
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application of gradient descent unhelpful in training.

To address this challenge, previous works (Elmachtoub &
Grigas, 2022; Elmachtoub et al., 2020; Mandi & Guns, 2020;
Mandi et al., 2022; Mulamba et al., 2021; Shah et al., 2022;
Wilder et al., 2019) have proposed different techniques to
still obtain useful gradients. However, most works con-
sider optimization problems where the predicted parameters
appear only in the objective function. This is a major limita-
tion, as in many real-world problems, both the objective and
constraint functions contain uncertain parameters. More-
over, most methods are restricted to problems in which the
objective function is linear. These limitations in the state
of the art motivated us to develop a more widely applicable
methodology for DFL. More concretely, this paper inves-
tigates the use of score function gradient estimation (i.e.,
the REINFORCE algorithm (Williams, 1992)) to learn to
predict any parameters of an optimization problem (in the
objective, in the constraints, or both), regardless of whether
the objective function is linear or not. We also show how,
thanks to its generality, the method can effectively tackle
stochastic optimization problems, with consistent improve-
ment over PFL approaches.

2. Problem setting
We consider a parametric optimization problem:

z⋆(y) = argmin
z

f(z, y) (1a)

s.t. g(z, y) ≤ 0 (1b)
h(z, y) = 0 (1c)

The goal of the optimization problem is to find a solution
z⋆(y), a minimizer of the objective function f , that satisfies
a set of inequality and equality constraints defined by g and
h, respectively. Parameter vector y is unknown, but can be
estimated as a function of some correlated known features
x. Given is a set of examples D = {(xi, yi)}Ni=1. This
is used to train a machine learning model mω that makes
predictions ŷ = mω(x).

In the predict-then-optimize setting, the goal in training
the predictive model is not to maximize the accuracy of
ŷ with respect to y. Rather, the goal is to learn to make
predictions ŷ that lead to good decisions z⋆(ŷ), with respect
to some task loss L. A common task loss is the regret
(also called the SPO loss in (Elmachtoub & Grigas, 2022)),
which expresses the suboptimality of the decisions made on
the basis of the predicted parameters, with respect to the
ground-truth parameters:

Regret(ŷ, y) = f(z⋆(ŷ), y)− f(z⋆(y), y) (2)

The regret is commonly used because most DFL work is
limited to predicting parameters of the objective function.

The regret, however, is not appropriate when the predicted
parameters also occur in the constraints. To this end, (Hu
et al., 2022) introduced the notion of post-hoc regret, which
is based on the use of a correction and a penalty function.
The correction function turns a solution z⋆(ŷ) that is infea-
sible with respect to y into a feasible one z⋆corr(ŷ, y), while
the penalty function Pen(z⋆(ŷ), z⋆corr(ŷ, y)) expresses the
cost for doing so. Note that feasible solutions are mapped
onto themselves by the correction function, and that the as-
sociated penalty for this is 0. The post-hoc regret PRegret
captures the suboptimality of the corrected decisions, plus
the associated penalty:

PRegret(ŷ, y) =f(z⋆corr(ŷ, y), y)− f(z⋆(y), y)

+ Pen(z⋆(ŷ), z⋆corr(ŷ, y))
(3)

Note that while we consider the post-hoc regret as task loss
in the experiments, our method does not depend on it and
will be formalized in function of an arbitrary task loss.

3. Score Function Gradient Estimation
The central problem in decision-focused learning is that
when the loss L depends on the outcome z⋆ of a combina-
torial optimization procedure, it has zero-valued gradients
with respect to the predictive model’s parameters almost
everywhere. This can be seen when applying the chain rule:

∂L(z⋆(ŷ), y)
∂ω

=
∂L(z⋆(ŷ), y)

∂z⋆(ŷ)

∂z⋆(ŷ)

∂ŷ

∂ŷ

∂ω
(4)

The second factor, ∂z⋆(ŷ)
∂ŷ , measures the change in z⋆(ŷ)

when ŷ changes infinitesimally. However, since the problem
is combinatorial, this change is zero almost everywhere.
This in turn causes the entire gradient ∂L(z⋆(ŷ),y)

∂ω to be zero
almost everywhere, and thus to be unhelpful in gradient-
based learning.

To tackle this, we shift from training a model that makes
point predictions ŷ, to a model that predicts a vector θ that
instantiates a distribution pθ(y). In other words, instead of
predicting parameter vectors, the model predicts distribu-
tions over parameter vectors. For instance, we consider y to
be sampled from a multivariate Gaussian distribution param-
eterized by its means µ and standard deviations σ, which
the predictive model is trained to predict, i.e., θ = (µ, σ).
The loss then becomes an expectation:

L(θ, y) = Eŷ∼pθ(y)[L(ŷ, y)] (5)

The motivation for this is that it removes the zero-gradient
problem: by predicting distributions, the gradient of the loss
with respect to the output of the predictive model is not zero
anymore. Despite overcoming differentiability via stochas-
tic smoothing is not novel (Niepert et al., 2021), (Petersen,
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2022), (Berthet et al., 2020), (Abernethy et al., 2016), to
the best our knowledge, this is the first time it is applied in
the context of DFL. However, computing the gradient of
the loss is not trivial. To do so, we take inspiration from
the field of reinforcement learning, where score function
gradient estimation (i.e., the REINFORCE algorithm) is
used. Consider the following derivation:

∇θL(θ, y) = ∇θEŷ∼pθ(y)[L(ŷ, y)] (6a)

= ∇θ

∫
pθ(y)L(ŷ, y)dŷ (6b)

=

∫
L(ŷ, y)∇θpθ(ŷ)dŷ (6c)

=

∫
L(ŷ, y)pθ(ŷ)∇θ log pθ(ŷ)dŷ (6d)

= Eŷ∼pθ(y)[L(ŷ, y)∇θ log pθ(ŷ)] (6e)

The validity of bringing the gradient inward in line 6c is
discussed in (Mohamed et al., 2020). In line 6d, the log
derivative trick is used.

To get an estimation of this gradient that can effectively be
used in training, the final result in line 6e can be estimated
using a Monte Carlo method, giving

∇θL(θ, y) ≈
1

S

S∑
i=1

L(ŷ(i), y)∇θ log pθ(ŷ
(i))

with ŷ(i) ∼ pθ(y)

(7)

with S as the total number of samples.

Note that the method is not specific to any loss function L.
For example, this can be the Hamming distance between
solutions z⋆(ŷ) and z⋆(y), the regret, or the post-hoc regret.
In our experiments, the latter is used.

4. Experimental Results
We conducted a preliminary analysis by focusing on two
main research questions: 1) Does SFGE outperform PFL
when predicting parameters that appear in the constraints?;
2) Does SFGE outperform PFL when predicting parameters
of stochastic optimization problems?

Prediction of parameters in the constraints To the best
of our knowledge, the only work that tackles the problem
of predicting parameters in the constraints in a decision-
focused manner is (Hu et al., 2022) but it is limited to linear
packing and covering problems, and thus is not applicable
to general integer linear programs. A wider applicable ap-
proach is proposed in (Paulus et al., 2021); however, the
machine learning model is trained end-to-end to provide a
more accurate solution rather than making decision-focused
prediction.

We consider the knapsack problem (KP) wherein the item
weights are unknown. Since the predicted weights may lead
to a solution that exceeds the capacity when considering
the ground-truth weights, a correction action is required to
recover feasibility. In the case of the KP, this function dis-
cards a subset of the chosen items, for which an additional
cost is payed, whose value depends on a penalty coefficient
ρ. More precisely, for the i-th item, the cost for discarding
it is ρ · vi, where vi is the item value.

Table 1. PFL and SFGE results on the KP with uncertain weights
of size 50 for different penalty coefficient values.

Method Rel. PRegret Infeas. ratio

ρ = 1

PFL 0.119± 0.014 0.33± 0.05
SFGE 0.103± 0.019 0.23± 0.06

ρ = 5

PFL 0.259± 0.046 0.33± 0.05
SFGE 0.187± 0.069 0.05± 0.03

ρ = 10

PFL 0.435± 0.091 0.33± 0.05
SFGE 0.235± 0.078 0.03± 0.03

We compare SFGE with a PFL approach that trains a ML
model to minimize the MSE. For each of the methods, we
report the relative post-hoc regret (Rel. PRegret) and the
ratio of infeasible solutions (Infeas. ratio), which expresses
how frequently the recourse action is used. We run exper-
iments on three different KPs, all with 50 items , but with
differing penalty coefficients ρ, namely ρ = {1, 5, 10}. We
generated synthetic data by introducing a mapping between
input features and targets in the same way as described in
the shortest path experimental evaluation of (Elmachtoub
& Grigas, 2022), with a degree of model misspecification
deg = 5 and number, p = 5, of input features, and a noise
half-width ϵ̄ = 0.5. The results are shown in Table 1: SFGE
outperforms PFL in all the cases and it provides both better
relative regret and infeasibility ratio.

Stochastic Optimization To assess the performance of
SFGE on stochastic optimization problems, we run exper-
iments on the weighted set multi-cover problem (WSMC)
with stochastic coverage requirements. A recourse action
is employed whenever the demands are not satisfied at the
price of paying an additional cost whose value depends on
a penalty coefficient. More specifically, the additional cost
for each unit of not satisfied demand of the i-th product is
computed as the maximum set cost among the ones that
cover it, multiplied by the coefficient ρ. We conducted the
experimental analysis on synthetic data that were generated
following a set of guidelines that allows us to obtain real-
istic instances (Grossman & Wool, 1997). The set costs
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Figure 1. The relative post-hoc regret and normalized runtime at
inference time of SFGE and PFL+SAA on the WSMC

are randomly generated in the range [1, 100] with a uniform
probability distribution. Finally, we assume that the de-
mands follow a Poisson distribution whose rate λ depends
on a set of correlated features. The ground-truth mapping
between features and rate is the same as the one previously
described for the KP, and was taken from (Elmachtoub &
Grigas, 2022).

Table 2. PFL and SFGE results on the WSMC with 5 items and
25 sets for different penalty coefficient values.

Method Rel. PRegret Infeas. ratio

ρ = 1

PFL 1.18± 0.62 0.63± 0.11
SFGE 0.850± 0.264 0.55± 0.27

ρ = 5

PFL 7.27± 4.20 0.63± 0.11
SFGE 2.53± 0.53 0.23± 0.11

ρ = 10

PFL 17.8± 13.3 0.63± 0.11
SFGE 3.47± 1.73 0.12± 0.06

To the best of our knowledge, the only work that proposes
a method to tackle stochastic optimization problems in a
DFL fashion is (Donti et al., 2017); however it assumes
the problem is convex thus restricting the applicability of
the method. Despite that, PFL approaches can still be ap-
plied. While in principle one could train an ML model by
minimizing the MSE, we devised a PFL approach that is
more suitable in a stochastic optimization setup: we trained
a probabilistic model by maximum likelihood estimation.

The probabilistic model is a multivariate Gaussian distri-
bution whose means µ ∈ Rd are parameterized by a linear
regression model, and whose standard deviations σ ∈ Rd

are a set of trainable but non-contextual parameters, where
d is the number of products. In Table 2, we report results
for the WSMC with 5 products and 25 items with different
penalty values, ρ = {1, 5, 10}. Similarly to the previous
problem, SFGE achieved lower relative post-hoc regret and
infeasibility ratio and the gap with PFL becomes larger
when the problem has a larger penalty coefficient.

We employed the same probabilistic model in conjunction
with the Sample Average Approximation (SAA) algorithm
(Kleywegt et al., 2002): we rely on the model to gather
a set of instance-specific samples, which are subsequently
used as scenarios in the SAA algorithm. This approach
enables us to obtain a more robust solution. We refer to
this pipeline as PFL+SAA. In Figure 1, we show the rela-
tive post-hoc regret and the normalized runtime at inference
time in function of the number of sampled scenarios, for
the WSMC previously described and ρ = 10. The normal-
ized runtime expresses the relative slowdown in runtime
at inference time with respect to SFGE. When increasing
the number of scenarios, PFL+SAA improves in relative
regret, but at the price of a higher computational cost. As a
reference value, we also reported the relative post-hoc regret
of SFGE, which does not involve sampling scenarios. Even
when 100 scenarios are employed, PFL+SAA does not out-
perform SFGE and, at the same time, has a computation
time at inference time that is at least one order of magnitude
larger.

5. Conclusions
This work aims to widen the applicability of decision-
focused learning to tackle predict-then-optimize problems
by proposing a method that does not suffer from the lim-
itations of the state of the art. Concretely, we predict dis-
tributions over problem parameters, which circumvents the
zero-gradient problem that occurs when the optimization
problem is combinatorial. To estimate the resulting non-zero
gradients, we employ SFGE. We showcased the effective-
ness of the method on two problems of practical relevance
on which no other DFL approach can be applied. In a set
of preliminary experiments, SFGE demonstrated superior
performance to PFL in terms of both post-hoc regret and
infeasibility ratio.
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A. Additional results
For a more comprehensive analysis, we provide additional results for larger sizes of the KP with uncertain weights and
the WSMC. When compared to the sole PFL, we can draw similar conclusions as for the smaller size problems: SFGE
always outperforms PFL in terms of both the relative post-hoc regret and infeasibility ratio; moreover, the gap becomes
more evident with the increasing of the penalty coefficient value.

Table 3. PFL and SFGE results on the KP with uncertain weights of size 75 for different penalty coefficient values.

Method Rel. PRegret Infeas. ratio

ρ = 1

PFL 0.115± 0.017 0.31± 0.05
SFGE 0.114± 0.014 0.20± 0.04

ρ = 5

PFL 0.247± 0.048 0.31± 0.05
SFGE 0.214± 0.058 0.04± 0.02

ρ = 10

PFL 0.440± 0.091 0.31± 0.05
SFGE 0.251± 0.064 0.03± 0.02

.

Table 4. PFL and SFGE results on the WSMC with 10 items and 50 sets for different penalty coefficient values.

Method Rel. PRegret Infeas. ratio

ρ = 1

PFL 2.35± 0.85 0.98± 0.01
SFGE 1.94± 0.50 0.94± 0.05

ρ = 5

PFL 12.17± 4.73 0.98± 0.01
SFGE 4.87± 1.15 0.64± 0.08

ρ = 10

PFL 22.41± 7.90 0.98± 0.01
SFGE 7.08± 1.29 0.54± 0.14
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When compared to PFL+SAA, SFGE probes its efficiency in terms of computational cost at inference time. PFL+SAA
provides better relative post-hoc regret but it requires sampling a non-negligible number of scenarios. This is especially
visible when ρ = 10: even if the post-hoc regret is slightly improved, 100 scenarios are sampled at the price of more than 50
times the computational time of SFGE.

Figure 2. Comparison between SFGE and PFL+SAA on the WSMC of size 5× 25.

Figure 3. Comparison between SFGE and PFL+SAA on the WSMC of size 10× 50.
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